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Motor control

is about the processes of bringing about the 
physical movement of an arm (robot or 
human)

this entails

the mechanical dynamics of an arm

control principles 

actuators 



Resource

R M Murray, Z Li, S S. Sastry: A mathematical 
introduction to robotic manipulation. CRC 
Press, 1994

online version available 



Newton’s law

for a mass, m, described by a variable, x, in an 
inertial frame:   where f is a force 

in non-inertial frames, e.g. rotating or 
accelerating frames: 

centripetal forces

coriolis forces

m··x = f(x, t)



Rigid bodies: constraints

constraints reduce the effective 
numbers of degrees of freedom.. .

θ1

l1

θ2

l2

r1

r2

x

y

Figure 4.4: Two-link planar manipulator.

2.3 Example: Dynamics of a two-link planar robot

To illustrate how Lagrange’s equations apply to a simple robotic system,
consider the two-link planar manipulator shown in Figure 4.4. Model
each link as a homogeneous rectangular bar with mass mi and moment
of inertia tensor

I⟩ =

[
Ixi 0 0
0 Iyi 0
0 0 Izi

]

relative to a frame attached at the center of mass of the link and aligned
with the principle axes of the bar. Letting vi ∈ R3 be the translational
velocity of the center of mass for the ith link and ωi ∈ R3 be the angular
velocity, the kinetic energy of the manipulator is

T (θ, θ̇) =
1

2
m1∥v1∥2 +

1

2
ωT

1 I∞ω∞ +
∞
∈ ⇕∈∥⊑∈∥∈ +

∞
∈ ω

T
∈ I∈ω∈.

Since the motion of the manipulator is restricted to the xy plane, ∥vi∥ is
the magnitude of the xy velocity of the center of mass and ωi is a vector
in the direction of the z-axis, with ∥ω1∥ = θ̇1 and ∥ω2∥ = θ̇1 + θ̇2.

We solve for the kinetic energy in terms of the generalized coordinates
by using the kinematics of the mechanism. Let pi = (xi, yi, 0) denote the
position of the ith center of mass. Letting r1 and r2 be the distance from
the joints to the center of mass for each link, as shown in the figure, we
have

x̄1 = r1c1 ˙̄x1 = −r1s1θ̇1

ȳ1 = r1s1 ˙̄y1 = r1c1θ̇1

x̄2 = l1c1 + r2c12 ˙̄x2 = −(l1s1 + r2s12)θ̇1 − r2s12θ̇2

ȳ2 = l1s1 + r2s12 ˙̄y2 = (l1c1 + r2c12)θ̇1 + r2c12θ̇2,

where si = sin θi, sij = sin(θi + θj), and similarly for ci and cij . The
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relies on the energy properties of mechanical systems to compute the
equations of motion. The resulting equations can be computed in closed
form, allowing detailed analysis of the properties of the system.

2.1 Basic formulation

Consider a system of n particles which obeys Newton’s second law—the
time rate of change of a particle’s momentum is equal to the force applied
to a particle. If we let Fi be the applied force on the ith particle, mi be
the particle’s mass, and ri be its position, then Newton’s law becomes

Fi = mir̈i ri ∈ R3, i = 1, . . . , n. (4.1)

Our interest is not in a set of independent particles, but rather in
particles which are attached to one another and have limited degrees
of freedom. To describe this interconnection, we introduce constraints
between the positions of our particles. Each constraint is represented by
a function gj : R3n → R such that

gj(r1, . . . , rn) = 0 j = 1, . . . , k. (4.2)

A constraint which can be written in this form, as an algebraic rela-
tionship between the positions of the particles, is called a holonomic con-
straint. More general constraints between rigid bodies—involving ṙi—can
also occur, as we shall discover when we study multifingered hands.

A constraint acts on a system of particles through application of con-
straint forces. The constraint forces are determined in such a way that
the constraint in equation (4.2) is always satisfied. If we view the con-
straint as a smooth surface in Rn, the constraint forces are normal to this
surface and restrict the velocity of the system to be tangent to the sur-
face at all times. Thus, we can rewrite our system dynamics as a vector
equation

F =

[
m1I 0

. . .
0 mnI

][
r̈1...
r̈n

]

+
k∑

j=1

Γjλj , (4.3)

where the vectors Γ1, . . . ,Γk ∈ R3n are a basis for the forces of constraint
and λj is the scale factor for the jth basis element. We do not require that
Γ1, . . . ,Γk be orthonormal. For constraints of the form in equation (4.2),
Γj can be taken as the gradient of gj , which is perpendicular to the level
set gj(r) = 0.

The scalars λ1, . . . ,λk are called Lagrange multipliers. Formally, we
determine the Lagrange multipliers by solving the 3n + k equations in
equations (4.2) and (4.3) for the 3n + k variables r ∈ R3n and λ ∈ Rk.
The λi values only give the relative magnitudes of the constraint forces
since the vectors Γj are not necessarily orthonormal.
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Rigid bodies: constraints

generalized coordinates capture 
the remaining, free degrees of 
freedom θ1
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Figure 4.4: Two-link planar manipulator.

2.3 Example: Dynamics of a two-link planar robot
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consider the two-link planar manipulator shown in Figure 4.4. Model
each link as a homogeneous rectangular bar with mass mi and moment
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Since the motion of the manipulator is restricted to the xy plane, ∥vi∥ is
the magnitude of the xy velocity of the center of mass and ωi is a vector
in the direction of the z-axis, with ∥ω1∥ = θ̇1 and ∥ω2∥ = θ̇1 + θ̇2.
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have
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This approach to dealing with constraints is intuitively simple but
computationally complex, since we must keep track of the state of all
particles in the system even though they are not capable of independent
motion. A more appealing approach is to describe the motion of the
system in terms of a smaller set of variables that completely describes the
configuration of the system. For a system of n particles with k constraints,
we seek a set of m = 3n − k variables q1, . . . , qm and smooth functions
f1, . . . , fn such that

ri = fi(q1, . . . , qm)

i = 1, . . . , n
⇐⇒

gj(r1, . . . , rn) = 0

j = 1, . . . , k.
(4.4)

We call the qi’s a set of generalized coordinates for the system. For a
robot manipulator consisting of rigid links, these generalized coordinates
are almost always chosen to be the angles of the joints. The specification
of these angles uniquely determines the position of all of the particles
which make up the robot.

Since the values of the generalized coordinates are sufficient to specify
the position of the particles, we can rewrite the equations of motion for
the system in terms of the generalized coordinates. To do so, we also
express the external forces applied to the system in terms of components
along the generalized coordinates. We call these forces generalized forces
to distinguish them from physical forces, which are always represented
as vectors in R3. For a robot manipulator with joint angles acting as
generalized coordinates, the generalized forces are the torques applied
about the joint axes.

To write the equations of motion, we define the Lagrangian, L, as the
difference between the kinetic and potential energy of the system. Thus,

L(q, q̇) = T (q, q̇)− V (q),

where T is the kinetic energy and V is the potential energy of the system,
both written in generalized coordinates.

Theorem 4.1. Lagrange’s equations
The equations of motion for a mechanical system with generalized coor-
dinates q ∈ Rm and Lagrangian L are given by

d

dt

∂L

∂q̇i
− ∂L

∂qi
= Υi i = 1, . . . ,m, (4.5)

where Υi is the external force acting on the ith generalized coordinate.

The equations in (4.5) are called Lagrange’s equations. We will often
write them in vector form as

d

dt

∂L

∂q̇
− ∂L

∂q
= Υ,
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Lagrangian mechanics

The Lagrangian framework makes it 
possible to capture dynamics in 
generalized coordinates that reflect 
constraints

Lagrange function L = kinetic-
potential energy

Least action principle: The integral of 
L over time=action is minimal 

 δA = δ∫ L(q, ·q, t)dt = 0

[Murray, Sastry, Li, 94]
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Lagrangian mechanics

Least action principle: The integral of L over 

time=action is minimal  δA = δ∫ L(q, ·q, t)dt = 0

[Murray, Sastry, Li, 94]



Euler-Lagrange equation 

 

with  

and with partial integration 

 

first term vanishes: no variation at start/end 
points

δA = ∫ (
∂L
∂q

δq +
∂L
∂ ·q

δ ·q)dt = 0

δ ·q = dδq/dt

δA = [
∂L
∂ ·q

δq] + ∫ ( ∂L
∂q

−
d
dt

∂L
∂ ·q ) δq dt = 0



Euler-Lagrange equation 

=> 

…plus generalized external forces,  

 

in component form: 

d
dt

∂L
∂ ·q

−
∂L
∂q

= 0

γ
d
dt

∂L
∂ ·q

−
∂L
∂q

= γ
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Example: pendulum

generalized coordinates:   

 

 

 

θ, ϕ

We begin by deriving the Lagrangian for the system. The position of
the mass, relative to the origin at the base of the pendulum, is given by

r(θ,φ) =

⎡

⎣
l sin θ cosφ
l sin θ sinφ
−l cos θ

⎤

⎦ . (4.6)

The kinetic energy is

T =
1

2
ml2∥ṙ∥2 =

1

2
ml2

(
θ̇2 + (1− cos2 θ)φ̇2

)

and the potential energy is

V = −mgl cos θ,

where g ≈ 9.8 m/sec2 is the gravitational constant. Thus, the Lagrangian
is given by

L(q, q̇) =
1

2
ml2

(
θ̇2 + (1− cos2 θ)φ̇2

)
+ mgl cos θ,

where q = (θ,φ).
Substituting L into Lagrange’s equations gives

d

dt

∂L

∂θ̇
=

d

dt

(
ml2θ̇

)
= ml2θ̈

∂L

∂θ
= ml2 sin θ cos θ φ̇2 −mgl sin θ

d

dt

∂L

∂φ̇
=

d

dt

(
ml2 sin2 θφ̇

)
= ml2 sin2 θ φ̈+ 2ml2 sin θ cos θ θ̇φ̇

∂L

∂φ
= 0

and the overall dynamics satisfy

[
ml2 0
0 ml2 sin2 θ

] [
θ̈
φ̈

]
+

[
−ml2 sin θ cos θ φ̇2

2ml2 sin θ cos θ θ̇φ̇

]
+

[
mgl sin θ

0

]
= 0.

(4.7)
Given the initial position and velocity of the point mass, equation (4.7)
uniquely determines the subsequent motion of the system. The motion
of the mass in R3 can be retrieved from equation (4.6).

2.2 Inertial properties of rigid bodies

To apply Lagrange’s equations to a robot, we must calculate the kinetic
and potential energy of the robot links as a function of the joint angles
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Figure 4.1: Idealized spherical pendulum. The configuration of the sys-
tem is described by the angles θ and φ.

where ∂L
∂q̇ , ∂L

∂q , and Υ are to be formally regarded as row vectors, though
we often write them as column vectors for notational convenience. A
proof of Theorem 4.1 can be found in most books on dynamics of me-
chanical systems (e.g., [99]).

Lagrange’s equations are an elegant formulation of the dynamics of
a mechanical system. They reduce the number of equations needed to
describe the motion of the system from n, the number of particles in the
system, to m, the number of generalized coordinates. Note that if there
are no constraints, then we can choose q to be the components of r, giving
T = 1

2

∑
mi∥ṙ2

i ∥, and equation (4.5) then reduces to equation (4.1). In
fact, rearranging equation (4.5) as

d

dt

∂L

∂q̇
=
∂L

∂q
+ Υ

is just a restatement of Newton’s law in generalized coordinates:

d

dt
(momentum) = applied force.

The motion of the individual particles can be recovered through applica-
tion of equation (4.4).

Example 4.1. Dynamics of a spherical pendulum
Consider an idealized spherical pendulum as shown in Figure 4.1. The
system consists of a point with mass m attached to a spherical joint by a
massless rod of length l. We parameterize the configuration of the point
mass by two scalars, θ and φ, which measure the angular displacement
from the z- and x-axes, respectively. We wish to solve for the motion of
the mass under the influence of gravity.
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We begin by deriving the Lagrangian for the system. The position of
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uniquely determines the subsequent motion of the system. The motion
of the mass in R3 can be retrieved from equation (4.6).

2.2 Inertial properties of rigid bodies

To apply Lagrange’s equations to a robot, we must calculate the kinetic
and potential energy of the robot links as a function of the joint angles
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We begin by deriving the Lagrangian for the system. The position of
the mass, relative to the origin at the base of the pendulum, is given by

r(θ,φ) =

⎡

⎣
l sin θ cosφ
l sin θ sinφ
−l cos θ

⎤

⎦ . (4.6)

The kinetic energy is

T =
1

2
ml2∥ṙ∥2 =

1

2
ml2

(
θ̇2 + (1− cos2 θ)φ̇2

)

and the potential energy is

V = −mgl cos θ,

where g ≈ 9.8 m/sec2 is the gravitational constant. Thus, the Lagrangian
is given by

L(q, q̇) =
1

2
ml2

(
θ̇2 + (1− cos2 θ)φ̇2

)
+ mgl cos θ,

where q = (θ,φ).
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dt

∂L

∂θ̇
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d

dt

(
ml2θ̇

)
= ml2θ̈

∂L

∂θ
= ml2 sin θ cos θ φ̇2 −mgl sin θ

d

dt

∂L

∂φ̇
=

d

dt

(
ml2 sin2 θφ̇

)
= ml2 sin2 θ φ̈+ 2ml2 sin θ cos θ θ̇φ̇

∂L

∂φ
= 0

and the overall dynamics satisfy

[
ml2 0
0 ml2 sin2 θ

] [
θ̈
φ̈

]
+

[
−ml2 sin θ cos θ φ̇2

2ml2 sin θ cos θ θ̇φ̇

]
+

[
mgl sin θ

0

]
= 0.

(4.7)
Given the initial position and velocity of the point mass, equation (4.7)
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of the mass in R3 can be retrieved from equation (4.6).
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and potential energy of the robot links as a function of the joint angles
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Example: two-link planar robot
generalized coordinates:   

 

where  

θ1, θ2kinetic energy becomes

T (θ, θ̇) =
1

2
m1( ˙̄x2

1 + ˙̄y2
1) +

1

2
Iz1θ̇

2
1 +

1

2
m2( ˙̄x2

2 + ˙̄y2
2) +

1

2
Iz2(θ̇1 + θ̇2)

2

=
1

2

[
θ̇1
θ̇2

]T [
α+ 2βc2 δ + βc2

δ + βc2 δ

] [
θ̇1
θ̇2

]
,

(4.10)
where

α = Iz1 + Iz2 + m1r
2
1 + m2(l

2
1 + r2

2)

β = m2l1r2

δ = Iz2 + m2r
2
2.

Finally, we can substitute the Lagrangian L = T into Lagrange’s
equations to obtain (after some calculation)

[
α+ 2βc2 δ + βc2

δ + βc2 δ

] [
θ̈1
θ̈2

]
+

[
−βs2θ̇2 −βs2(θ̇1 + θ̇2)
βs2θ̇1 0

] [
θ̇1
θ̇2

]
=

[
τ1
τ2

]
.

(4.11)
The first term in this equation represents the inertial forces due to accel-
eration of the joints, the second represents the Coriolis and centrifugal
forces, and the right-hand side is the applied torques.

2.4 Newton-Euler equations for a rigid body

Lagrange’s equations provide a very general method for deriving the equa-
tions of motion for a mechanical system. However, implicit in the deriva-
tion of Lagrange’s equations is the assumption that the configuration
space of the system can be parameterized by a subset of Rn, where n is
the number of degrees of freedom of the system. For a rigid body with
configuration g ∈ SE(3), Lagrange’s equations cannot be directly used
to determine the equations of motion unless we choose a local parame-
terization for the configuration space (for example, using Euler angles to
parameterize the orientation of the rigid body). Since all parameteriza-
tions of SE(3) are singular at some configuration, such a derivation can
only hold locally.

In this section, we give a global characterization of the dynamics of a
rigid body subject to external forces and torques. We begin by reviewing
the standard derivation of the equations of rigid body motion and then
examine the dynamics in terms of twists and wrenches.

Let g = (p,R) ∈ SE(3) be the configuration of a coordinate frame
attached to the center of mass of a rigid body, relative to an inertial
frame. Let f represent a force applied at the center of mass, with the
coordinates of f specified relative to the inertial frame. The translational
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si = sin(θi), ci = cos(θi)
θ1

l1

θ2

l2

r1
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y

Figure 4.4: Two-link planar manipulator.

2.3 Example: Dynamics of a two-link planar robot

To illustrate how Lagrange’s equations apply to a simple robotic system,
consider the two-link planar manipulator shown in Figure 4.4. Model
each link as a homogeneous rectangular bar with mass mi and moment
of inertia tensor

I⟩ =

[
Ixi 0 0
0 Iyi 0
0 0 Izi

]

relative to a frame attached at the center of mass of the link and aligned
with the principle axes of the bar. Letting vi ∈ R3 be the translational
velocity of the center of mass for the ith link and ωi ∈ R3 be the angular
velocity, the kinetic energy of the manipulator is

T (θ, θ̇) =
1

2
m1∥v1∥2 +

1

2
ωT

1 I∞ω∞ +
∞
∈ ⇕∈∥⊑∈∥∈ +

∞
∈ ω

T
∈ I∈ω∈.

Since the motion of the manipulator is restricted to the xy plane, ∥vi∥ is
the magnitude of the xy velocity of the center of mass and ωi is a vector
in the direction of the z-axis, with ∥ω1∥ = θ̇1 and ∥ω2∥ = θ̇1 + θ̇2.

We solve for the kinetic energy in terms of the generalized coordinates
by using the kinematics of the mechanism. Let pi = (xi, yi, 0) denote the
position of the ith center of mass. Letting r1 and r2 be the distance from
the joints to the center of mass for each link, as shown in the figure, we
have

x̄1 = r1c1 ˙̄x1 = −r1s1θ̇1

ȳ1 = r1s1 ˙̄y1 = r1c1θ̇1

x̄2 = l1c1 + r2c12 ˙̄x2 = −(l1s1 + r2s12)θ̇1 − r2s12θ̇2

ȳ2 = l1s1 + r2s12 ˙̄y2 = (l1c1 + r2c12)θ̇1 + r2c12θ̇2,

where si = sin θi, sij = sin(θi + θj), and similarly for ci and cij . The
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kinetic energy becomes
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2
m1( ˙̄x2

1 + ˙̄y2
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1

2
Iz1θ̇

2
1 +

1

2
m2( ˙̄x2

2 + ˙̄y2
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1

2
Iz2(θ̇1 + θ̇2)

2

=
1

2

[
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δ + βc2 δ

] [
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]
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(4.10)
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2
2.
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eration of the joints, the second represents the Coriolis and centrifugal
forces, and the right-hand side is the applied torques.
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tions of motion for a mechanical system. However, implicit in the deriva-
tion of Lagrange’s equations is the assumption that the configuration
space of the system can be parameterized by a subset of Rn, where n is
the number of degrees of freedom of the system. For a rigid body with
configuration g ∈ SE(3), Lagrange’s equations cannot be directly used
to determine the equations of motion unless we choose a local parame-
terization for the configuration space (for example, using Euler angles to
parameterize the orientation of the rigid body). Since all parameteriza-
tions of SE(3) are singular at some configuration, such a derivation can
only hold locally.

In this section, we give a global characterization of the dynamics of a
rigid body subject to external forces and torques. We begin by reviewing
the standard derivation of the equations of rigid body motion and then
examine the dynamics in terms of twists and wrenches.

Let g = (p,R) ∈ SE(3) be the configuration of a coordinate frame
attached to the center of mass of a rigid body, relative to an inertial
frame. Let f represent a force applied at the center of mass, with the
coordinates of f specified relative to the inertial frame. The translational
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Open-chain manipulator

In order to put the equations of motion back into vector form, we
define the matrix C(θ, θ̇) ∈ Rn×n as

Cij(θ, θ̇) =
n∑

k=1

Γijkθ̇k =
1

2

n∑

k=1

(
∂Mij

∂θk
+
∂Mik

∂θj
− ∂Mkj

∂θi

)
θ̇k.

(4.23)
We call the matrix C the Coriolis matrix for the manipulator; the vector
C(θ, θ̇)θ̇ gives the Coriolis and centrifugal force terms in the equations
of motion. Note that there are other ways to define the matrix C(θ, θ̇)
such that Cij(θ, θ̇)θ̇j = Γijkθ̇j θ̇k. However, this particular choice has
important properties which we shall later exploit.

Equation (4.21) can now be rewritten as

M(θ)θ̈ + C(θ, θ̇)θ̇ + N(θ, θ̇) = τ (4.24)

where τ is the vector of actuator torques and N(θ, θ̇) includes gravity
terms and other forces which act at the joints. This is a second-order
vector differential equation for the motion of the manipulator as a func-
tion of the applied joint torques. The matrices M and C, which sum-
marize the inertial properties of the manipulator, have some important
properties which we shall use in the sequel:

Lemma 4.2. Structural properties of the robot equations of mo-
tion
Equation (4.24) satisfies the following properties:

1. M(θ) is symmetric and positive definite.

2. Ṁ − 2C ∈ Rn×n is a skew-symmetric matrix.

Proof. Positive definiteness of the inertia matrix follows directly from
its definition and the fact that the kinetic energy of the manipulator is
zero only if the system is at rest. To show property 2, we calculate the
components of the matrix Ṁ − 2C:

(Ṁ − 2C)ij = Ṁij(θ)− 2Cij(θ)

=
n∑

k=1

∂Mij

∂θk
θ̇k −

∂Mij

∂θk
θ̇k −

∂Mik

∂θj
θ̇k +

∂Mkj

∂θi
θ̇k

=
n∑

k=1

∂Mkj

∂θi
θ̇k −

∂Mik

∂θj
θ̇k.

Switching i and j shows (Ṁ − 2C)T = −(Ṁ − 2C). Note that the skew-
symmetry property depends upon the particular definition of C given in
equation (4.23).
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generate joint torques that produce a 
desired motion…  

PD control  

where  

θd

5.3 PD control

Another approach to controller synthesis for nonlinear systems is to de-
sign a linear controller based on the linearization of the system about an
operating point. Since the linearization of a system locally determines
the stability of the full system, this class of controllers is guaranteed to be
locally stable. In many situations, it is possible to prove global stability
for a linear controller by explicit construction of a Lyapunov function.

An example of this design methodology is a proportional plus deriva-
tive (PD) control law for a robot manipulator. In its simplest form, a PD
control law has the form

τ = −Kv ė−Kpe, (4.51)

where Kv and Kp are positive definite matrices and e = θ−θd. Since this
control law has no feedforward term, it can never achieve exact tracking
for non-trivial trajectories. A common modification is to add an inte-
gral term to eliminate steady-state errors. This introduces additional
complications since care must be taken to maintain stability and avoid
integrator windup.

Before adding a feedforward term, we first show that the PD controller
gives asymptotic setpoint stabilization.

Proposition 4.9. If θ̇d ≡ 0 and Kv,Kp > 0, the control law (4.51)
applied to the system (4.47) renders the equilibrium point θ = θd globally
asymptotically stable.

Proof. For θd ≡ 0, the closed-loop system is

M(θ)θ̈ + C(θ, θ̇)θ̇ + Kv θ̇ + Kp(θ − θd) = 0. (4.52)

Without loss of generality, we assume that θd = 0 (if not, redefine θ′ =
θ − θd). We choose the total energy of the system as our Lyapunov
function,

V (θ, θ̇) =
1

2
θ̇T M(θ)θ̇ +

1

2
θT Kpθ.

The function V is (globally) positive definite and decresent. Evaluating
V̇ along trajectories of (4.52),

V̇ (θ, θ̇) = θ̇T M θ̈ +
1

2
θ̇T Ṁ θ̇ + θ̇T Kpθ

= −θ̇T Kv θ̇ +
1

2
θ̇T (Ṁ − 2C)θ̇,

and since Ṁ − 2C is skew-symmetric, we have

V̇ = −θ̇T Kv θ̇.
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In order to put the equations of motion back into vector form, we
define the matrix C(θ, θ̇) ∈ Rn×n as

Cij(θ, θ̇) =
n∑

k=1

Γijkθ̇k =
1

2

n∑

k=1

(
∂Mij

∂θk
+
∂Mik

∂θj
− ∂Mkj

∂θi

)
θ̇k.

(4.23)
We call the matrix C the Coriolis matrix for the manipulator; the vector
C(θ, θ̇)θ̇ gives the Coriolis and centrifugal force terms in the equations
of motion. Note that there are other ways to define the matrix C(θ, θ̇)
such that Cij(θ, θ̇)θ̇j = Γijkθ̇j θ̇k. However, this particular choice has
important properties which we shall later exploit.

Equation (4.21) can now be rewritten as

M(θ)θ̈ + C(θ, θ̇)θ̇ + N(θ, θ̇) = τ (4.24)

where τ is the vector of actuator torques and N(θ, θ̇) includes gravity
terms and other forces which act at the joints. This is a second-order
vector differential equation for the motion of the manipulator as a func-
tion of the applied joint torques. The matrices M and C, which sum-
marize the inertial properties of the manipulator, have some important
properties which we shall use in the sequel:

Lemma 4.2. Structural properties of the robot equations of mo-
tion
Equation (4.24) satisfies the following properties:

1. M(θ) is symmetric and positive definite.

2. Ṁ − 2C ∈ Rn×n is a skew-symmetric matrix.

Proof. Positive definiteness of the inertia matrix follows directly from
its definition and the fact that the kinetic energy of the manipulator is
zero only if the system is at rest. To show property 2, we calculate the
components of the matrix Ṁ − 2C:

(Ṁ − 2C)ij = Ṁij(θ)− 2Cij(θ)

=
n∑

k=1

∂Mij

∂θk
θ̇k −

∂Mij

∂θk
θ̇k −

∂Mik

∂θj
θ̇k +

∂Mkj

∂θi
θ̇k

=
n∑

k=1

∂Mkj

∂θi
θ̇k −

∂Mik

∂θj
θ̇k.

Switching i and j shows (Ṁ − 2C)T = −(Ṁ − 2C). Note that the skew-
symmetry property depends upon the particular definition of C given in
equation (4.23).
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5.3 PD control

Another approach to controller synthesis for nonlinear systems is to de-
sign a linear controller based on the linearization of the system about an
operating point. Since the linearization of a system locally determines
the stability of the full system, this class of controllers is guaranteed to be
locally stable. In many situations, it is possible to prove global stability
for a linear controller by explicit construction of a Lyapunov function.

An example of this design methodology is a proportional plus deriva-
tive (PD) control law for a robot manipulator. In its simplest form, a PD
control law has the form

τ = −Kv ė−Kpe, (4.51)

where Kv and Kp are positive definite matrices and e = θ−θd. Since this
control law has no feedforward term, it can never achieve exact tracking
for non-trivial trajectories. A common modification is to add an inte-
gral term to eliminate steady-state errors. This introduces additional
complications since care must be taken to maintain stability and avoid
integrator windup.

Before adding a feedforward term, we first show that the PD controller
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Proof. For θd ≡ 0, the closed-loop system is
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τ = ··θd + Kv
·e + Kpe + Ki ∫ edt

In order to put the equations of motion back into vector form, we
define the matrix C(θ, θ̇) ∈ Rn×n as
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∂θj
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∂θi

)
θ̇k.

(4.23)
We call the matrix C the Coriolis matrix for the manipulator; the vector
C(θ, θ̇)θ̇ gives the Coriolis and centrifugal force terms in the equations
of motion. Note that there are other ways to define the matrix C(θ, θ̇)
such that Cij(θ, θ̇)θ̇j = Γijkθ̇j θ̇k. However, this particular choice has
important properties which we shall later exploit.

Equation (4.21) can now be rewritten as

M(θ)θ̈ + C(θ, θ̇)θ̇ + N(θ, θ̇) = τ (4.24)

where τ is the vector of actuator torques and N(θ, θ̇) includes gravity
terms and other forces which act at the joints. This is a second-order
vector differential equation for the motion of the manipulator as a func-
tion of the applied joint torques. The matrices M and C, which sum-
marize the inertial properties of the manipulator, have some important
properties which we shall use in the sequel:

Lemma 4.2. Structural properties of the robot equations of mo-
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Equation (4.24) satisfies the following properties:

1. M(θ) is symmetric and positive definite.

2. Ṁ − 2C ∈ Rn×n is a skew-symmetric matrix.
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its definition and the fact that the kinetic energy of the manipulator is
zero only if the system is at rest. To show property 2, we calculate the
components of the matrix Ṁ − 2C:
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Switching i and j shows (Ṁ − 2C)T = −(Ṁ − 2C). Note that the skew-
symmetry property depends upon the particular definition of C given in
equation (4.23).
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all nonlinearities and apply exactly the torque needed to overcome the
inertia of the actuator,

τ = M(θ)θ̈d + C(θ, θ̇)θ̇ + N(θ, θ̇).

Substituting this control law into the dynamic equations of the manipu-
lator, we see that

M(θ)θ̈ = M(θ)θ̈d,

and since M(θ) is uniformly positive definite in θ, we have

θ̈ = θ̈d. (4.48)

Hence, if the initial position and velocity of the manipulator matches
the desired position and velocity, the manipulator will follow the desired
trajectory. As before, this control law will not correct for any initial
condition errors which are present.

The tracking properties of the control law can be improved by adding
state feedback. The linearity of equation (4.48) suggests the following
control law:

τ = M(θ)
(
θ̈d −Kv ė−Kpe

)
+ C(θ, θ̇)θ̇ + N(θ, θ̇) (4.49)

where e = θ − θd, and Kv and Kp are constant gain matrices. When
substituted into equation (4.47), the error dynamics can be written as:

M(θ) (ë + Kv ė + Kpe) = 0.

Since M(θ) is always positive definite, we have

ë + Kv ė + Kpe = 0. (4.50)

This is a linear differential equation which governs the error between the
actual and desired trajectories. Equation (4.49) is called the computed
torque control law.

The computed torque control law consists of two components. We
can write equation (4.49) as

τ = M(θ)θ̈d + C θ̇ + N
︸ ︷︷ ︸

τff

+M(θ) (−Kv ė−Kpe)︸ ︷︷ ︸
τfb

.

The term τff is the feedforward component. It provides the amount of
torque necessary to drive the system along its nominal path. The term
τfb is the feedback component. It provides correction torques to reduce
any errors in the trajectory of the manipulator.

Since the error equation (4.50) is linear, it is easy to choose Kv and
Kp so that the overall system is stable and e→ 0 exponentially as t→∞.
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In order to put the equations of motion back into vector form, we
define the matrix C(θ, θ̇) ∈ Rn×n as

Cij(θ, θ̇) =
n∑

k=1

Γijkθ̇k =
1

2

n∑

k=1

(
∂Mij

∂θk
+
∂Mik

∂θj
− ∂Mkj

∂θi

)
θ̇k.

(4.23)
We call the matrix C the Coriolis matrix for the manipulator; the vector
C(θ, θ̇)θ̇ gives the Coriolis and centrifugal force terms in the equations
of motion. Note that there are other ways to define the matrix C(θ, θ̇)
such that Cij(θ, θ̇)θ̇j = Γijkθ̇j θ̇k. However, this particular choice has
important properties which we shall later exploit.

Equation (4.21) can now be rewritten as

M(θ)θ̈ + C(θ, θ̇)θ̇ + N(θ, θ̇) = τ (4.24)

where τ is the vector of actuator torques and N(θ, θ̇) includes gravity
terms and other forces which act at the joints. This is a second-order
vector differential equation for the motion of the manipulator as a func-
tion of the applied joint torques. The matrices M and C, which sum-
marize the inertial properties of the manipulator, have some important
properties which we shall use in the sequel:

Lemma 4.2. Structural properties of the robot equations of mo-
tion
Equation (4.24) satisfies the following properties:

1. M(θ) is symmetric and positive definite.

2. Ṁ − 2C ∈ Rn×n is a skew-symmetric matrix.

Proof. Positive definiteness of the inertia matrix follows directly from
its definition and the fact that the kinetic energy of the manipulator is
zero only if the system is at rest. To show property 2, we calculate the
components of the matrix Ṁ − 2C:

(Ṁ − 2C)ij = Ṁij(θ)− 2Cij(θ)

=
n∑

k=1

∂Mij

∂θk
θ̇k −

∂Mij

∂θk
θ̇k −

∂Mik

∂θj
θ̇k +

∂Mkj

∂θi
θ̇k

=
n∑

k=1

∂Mkj

∂θi
θ̇k −

∂Mik

∂θj
θ̇k.

Switching i and j shows (Ṁ − 2C)T = −(Ṁ − 2C). Note that the skew-
symmetry property depends upon the particular definition of C given in
equation (4.23).
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(··θ − ··θd) = ··e = − Kv
·e − Kpe=>
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augmented PD control
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Although Kv is positive definite, the function V̇ is only negative semi-
definite, since V̇ = 0 for θ̇ = 0 and θ ̸= 0. Hence from Lyapunov’s basic
theorem, we can concluded only stability of the equilibrium point.

To check for asymptotic stability, we appeal to Lasalle’s principle.
The set S for which V̇ ≡ 0 is given by

S = {(θ, θ̇) : θ̇ ≡ 0}.

To find the largest invariant set contained in S, we substitute θ̇ ≡ 0 into
the closed loop equations 4.52. This gives

Kpθ = 0

(recalling that θd = 0) and since Kp is positive definite, it follows that the
largest invariant set contained within S is the single point θ = 0. Hence,
the equilibrium point θ = 0 is asymptotically stable.

Since we are primarily interested in tracking, we consider a modified
version of the PD control law:

τ = M(θ)θ̈d + C(θ, θ̇)θ̇d + N(θ, θ̇)−Kv ė−Kpe (4.53)

We call this controller the augmented PD control law. Note that the sec-
ond term in equation (4.53) is different from the Coriolis term C(θ, θ̇)θ̇.
The reason for this difference is found in the proof of the following theo-
rem.

Proposition 4.10. Stability of the PD control law
The control law (4.53) applied to the system (4.47) results in exponential
trajectory tracking if Kv,Kp > 0.

Proof. The closed-loop system is

M(θ)ë + C(θ, θ̇)ė + Kv ė + Kpe = 0. (4.54)

As in the proof of the previous proposition, using the energy of the system
as a Lyapunov function does not allow us to conclude exponential stability
because V̇ is only negative semi-definite. Furthermore, since the system is
time-varying (due to the θd(·) terms), we cannot apply Lasalle’s principle.

To show exponential stability, we adopt the same approach as with
the spring mass system of the previous section. Namely, we skew the level
sets of the energy function by choosing the Lyapunov function candidate

V (e, ė, t) =
1

2
ėT M(θ)ė +

1

2
eT Kpe + ϵeT M(θ)ė,
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Problems

real-time computation.. discretization error

imprecise model of arm (and object that is 
handled) 



Control systems

robotic motion as a special case of control
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FIGURE 1.5 Multiloop feedback system with an inner loop and an outer loop. 

The feedback systems in Figures 1.3 and 1.4 are single-loop feedback systems. Many 
feedback control systems contain more than one feedback loop. A common multi-
loop feedback control system is illustrated in Figure 1.5 with an inner loop and an 
outer loop. In this scenario, the inner loop has a controller and a sensor and the 
outer loop has a controller and sensor. Other varieties of multiloop feedback sys-
tems are considered throughout the book as they represent more practical situa-
tions found in real-world applications. However, we use the single-loop feedback 
system for learning about the benefits of feedback control systems since the out-
comes readily extend to multiloop systems. 

Due to the increasing complexity of the system under control and the interest in 
achieving optimum performance, the importance of control system engineering has 
grown in the past decade. Furthermore, as the systems become more complex, the in-
terrelationship of many controlled variables must be considered in the control 
scheme. A block diagram depicting a multivariable control system is shown in 
Figure 1.6. 

A common example of an open-loop control system is a microwave oven set to 
operate for a fixed time. An example of a closed-loop control system is a person 
steering an automobile (assuming his or her eyes are open) by looking at the auto's 
location on the road and making the appropriate adjustments. 

The introduction of feedback enables us to control a desired output and can im-
prove accuracy, but it requires attention to the issue of stability of response. 
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state of process/actuator x

output, y

control signal, u

26 CHAPTER 2. STABILITY

2.1 Introduction

In Chapter 1 we have seen that, under some regularity conditions, continuous- and discrete-
time causal systems, with state space X, can be described by means of a generating
function and an output transformation, namely

ẋ = f(t, x, u) y = η(t, x, u) (2.1)

and1

x+ = f(t, x, u) y = η(t, x, u), (2.2)

where all signals have to be understood as evaluated at time t, and t ∈ IR if the system is
continuous-time, whereas t ∈ Z if the system is discrete-time. In what follows, whenever
convenient and for compactness, we also use the notation

σx = f(t, x, u) y = η(t, x, u), (2.3)

where σx stands for ẋ if the system is continuous-time, and σx stands for x+ if the system
is discrete-time.

2.2 Existence and unicity of solutions

The simplest question that can be posed in the study of the equations (2.1) and (2.2) is
the following.

Given an initial time t0, an initial value of the state x(t0) = x0 and an input signal
u ∈ UF (t0), is it possible to obtain a solution of the equation (2.3)? By a solution we mean
a function x(t), defined for all t ≥ t0, and such that

σx(t) = f(t, x(t), u(t))

for all2 t ∈ F (t0), or for all t ∈ [t0, t̄), for some t̄ > t0.

1To simplify notation we replace x(t + 1) with x+ and x(t) with x.
2It is enough to require that the equality holds for almost all t, i.e. the condition may be violated

for some t ∈ Ts ⊂ T , provided that Ts has zero Lebesgue measure. To illustrate this point consider the
differential equation

ẋ = −sign(x), (2.4)

where the signum function is defined as

sign(x) =
1 if x > 0
0 if x = 0

−1 if x > 0.

For a given x(0) > 0 we have

x(t) =
x(0) − t for t ≤ x(0)

0 for t ≥ x(0),

which shows that equation (2.4) does not hold for all t, in fact x(t) is not differentiable at t = x(0).
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control law: u as a function of y (or ^y), desired 
response, y_d

disturbances modeled stochastically
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theoretical core of robotic control theory: 
proving stability/asymptotic stability… 

and realizing that stability in numerical 
implementation 



Problem: actuators

actuators do not generate a precise/desired 
torque… true torque depends on the load

difficult to measure torque during 
movement… so not easy/practical to 
control torque

actuators are generally way stronger than 
actual loads… so that the position/velocity 
feedback loop can compensate for any 
deviation of real from required torque



Problem: contact forces

as soon as the robot arm makes contact, a 
host of problems arise from the contact 
forces and their effect on the arm and 
controller… 

need compliance… resisting to a well-
defined degree

=> impedance control… research frontier



Link to movement planning

where does “desired trajectory” come from? 

typically from end-effector level movement 
planning

then add an inverse kinematic… 

which can be problematic

alternative: planning and control in end-
effector space 



Operational space formulation
Euler-Langrage in end-effector space

 

with F forces acting on the end-effector

equivalent dynamics in joint space

  

with joint torques
    

[Khatib, 1987]



Operational space formulation

in end-effector space add constraints as 
contributions to the “virtual forces”

 

 

[Khatib, 1986,1987]



Optimal control

given a plant  

find a control signal  

that moves the state from an final position 
  to a terminal position   within the 
time  

a (difficult) planning problem! 

minimize a cost function to find such a signal

·x = f(x, u)

u(t)

xi(0) xf(tf )
tf



How does the human (or other 
animal) movement system 

generate movement?  

mechanics:… biomechanics

actuator: muscle

control? 

optimal control? 



Human motor control

human movement is highly compliant… 

Q



Is posture “controlled”?

the elbow does not behave like a 
passive mechanical system with a free 
joint at the elbow: 

where J is inertial moment of 
forearm (if upper arm is held fixed) 

Instead, the elbow resists, when 
pushed => there is active control= 
stabilization of the joint 

J ✓̈ = 0 Q

=>experiment



Anatol Feldman 
has figured out, 
what the 
macroscopic 
description of this 
stabilization is

the invariant 
characteristic

the mass spring model 

Q

force applied

L�L�

L�L�



the mass-spring model

this is an elastic force (because it is 
proportional to position)

there is also a viscous component 
(resistance depends on joint velocity)

J ✓̈ = �k(✓��)�µ✓̇

active torques generated by the muscle



agonist-antagonist action

one lambda per 
muscle 

tested on muscles 
detached at one end 

co-contraction 
controls stiffness

Q

force applied

LL
agonist

antagonist

L�L�

L
L




stiffness

the stiffness, k, can be 
measured from 
perturbations

the viscosity “mu” is 
more difficult to 
determine
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the simulated perturbation trials and the regression technique at movement end to levels comparable with those at the
onset of movement.described by Gomi and Kawato (1996) (see APPENDIX B),

we calculated joint stiffness and viscosity matrices for each Using the empirically derived joint-stiffness and viscosity
matrices, Gomi and Kawato (1996) compute a hypotheticalof the nine points in time at which perturbations were ap-

plied. equilibrium trajectory (see APPENDIX B). Their calculations
are based on the assumption that joint torques can be repre-Hand stiffness matrices were computed from the estimated

joint stiffness matrices R using the Jacobian transformation sented with the following linear equation
(see Gomi and Kawato 1995 for details) , and hand-stiffness

tin Å R(qeq 0 q) 0 Dqh (7)
ellipses were used to visualize limb stiffness at the hand.

where R and D are stiffness and viscosity matrices derivedFigure 2, top, shows hand-stiffness ellipses estimated during
from the perturbation procedure, tin are the calculated jointthe simulated movement. The size and orientation of the
torques (see APPENDIX B), qeq is the equilibrium trajectory,ellipses are comparable with those reported by Gomi and
and q and qg are the unperturbed movement position andKawato (1996), and likewise are larger than the correspond-
velocity, respectively.ing ellipses during statics (see Fig. 9) .
To show that the Gomi and Kawato (1996) results canFigure 2, bottom, shows the elements of the estimated

be predicted using simple control signals, we used their pro-joint-stiffness matrices for the arm model during movement.
cedure to compute a hypothetical equilibrium trajectory us-The terms of the joint-stiffness matrix, R, relate joint torques
ing the stiffness and viscosity estimates from our simula-at the shoulder due to shoulder motion (Rss ) , torques at the
tions. The trajectory that results from this calculation isshoulder due to elbow motion (Res ) , and so on. The basic
shown in Fig. 3. The top panel shows the equilibrium trajec-form of the matrices is similar to those reported by Gomi
tory used to generate the movement based on the l modeland Kawato (1996), even though the equilibrium trajectory
(rrr) , the simulated movement trajectory ( – – – ), and thewe used to generate the simulated movement was simple in
hypothetical equilibrium trajectory derived using Gomi andshape. At the beginning of movement onset the shoulder

term, Rss , increases sharply from Ç18 to Ç40 Nrm/rad, Kawato’s equations ( ) , plotted in hand space. Figure
3,middle, shows the horizontal components of these trajecto-then decreases in the middle of movement to Ç20 Nrm/

rad, increases again around movement end to 40 Nrm/rad, ries plotted against time, and Fig. 3, bottom, shows the tan-
gential velocities of the hand trajectories plotted againstand finally decreases after the end of movement to Ç15

Nrm/rad. The other three terms in the stiffness matrix follow time.
The hypothetical equilibrium trajectory computed usingroughly the same form but show a less pronounced decrease

in the middle of the movement. The elbow term, Ree increases Gomi and Kawato’s procedure is ‘‘complex’’ in shape and
does not resemble the simulated movement, which is smooth,from Ç5 Nrm/rad at movement start to 20–25 Nrm/rad

during movement, and the two double-joint terms, Rse and relatively straight and looks like the movements made by
subjects in the Gomi and Kawato (1996) study. Nor does itRes , increase from Ç2 Nrm/rad at movement start to Ç7–

10 Nrm/rad during movement. Ree , Res , and Rse all decrease resemble the equilibrium trajectory that was used to generate
the movement—the equilibrium trajectory used in the simu-
lations is a simple constant-rate monotonic shift from one
position to another. Gomi and Kawato’s hypothetical equi-
librium trajectory first leads then lags the simulated move-
ment. The tangential velocity of the hypothetical equilibrium
trajectory has multiple peaks and does not resemble the ve-
locity profile of the simulated movement, which is smooth
and bell-shaped. We suggest that the discrepancy between
the equilibrium trajectory based on the l model and the
trajectory computed using Gomi and Kawato’s equations
arises from their use of a simplified model of force-genera-
tion (see DISCUSSION).
A number of additional points should be noted. Direct

estimates of joint viscosity are not provided by Gomi and
Kawato (1996). However, the present estimates correspond
to values reported elsewhere. Specifically, the simulated esti-
mates of joint viscosity have maximum values of Ç2.5–3.0
Nms/rad, which is in the range of 5–7% of corresponding
maximum joint stiffness. This is comparable with the rela-
tion between joint viscosity and stiffness during cyclical one-
joint movements (Bennett et al. 1992) and with values for
multijoint stiffness and viscosity in statics (Gomi and Osu
1996; Tsuji et al. 1995). It also should be noted that the
simulations reported above have been based on constant-rate

FIG. 2. Simulated hand-stiffness ellipses and joint-stiffness matrices for
shifts in the hand equilibrium position. We also have carried

the arm model during multijoint movement. Constant-rate equilibrium shifts
out these simulations using constant-rate shifts in l space.and constant cocontraction commands were used to produce the simulated

movements. The time-varying form and the magnitudes of joint-stiffness
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neural basis of EP model: 
spinal reflex loops

alpha-
gamma 
reflex loop 
generates 
the stretch 
reflex

[Kandel, Schartz, Jessell, Fig. 37-11]



spinal cord: reflex loops

the stretch reflex acts as a negative feedback loop

37-12

[Kandel, Schartz, Jessell, Fig. 31-12]



spinal cord: coordination

Ia inhibitory interneuron 
mediates reciprocal 
innervation in stretch 
reflex, leading to 
automatic relaxation of 
antagonist on activation 
of agonist

[Kandel, Schartz, Jessell, Fig. 38-2]


