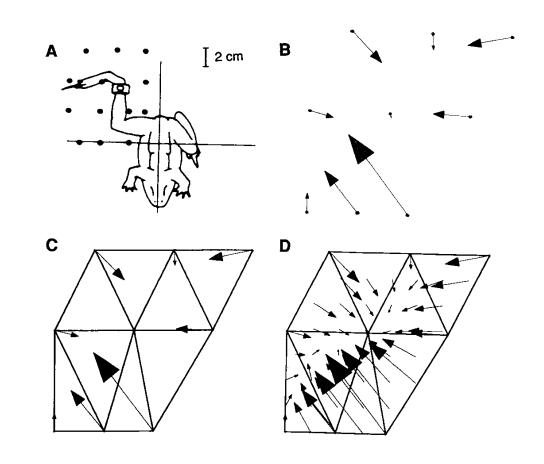
Dynamic movement primitives

Gregor Schöner gregor.schoener@ini.rub.de

Neural motivation

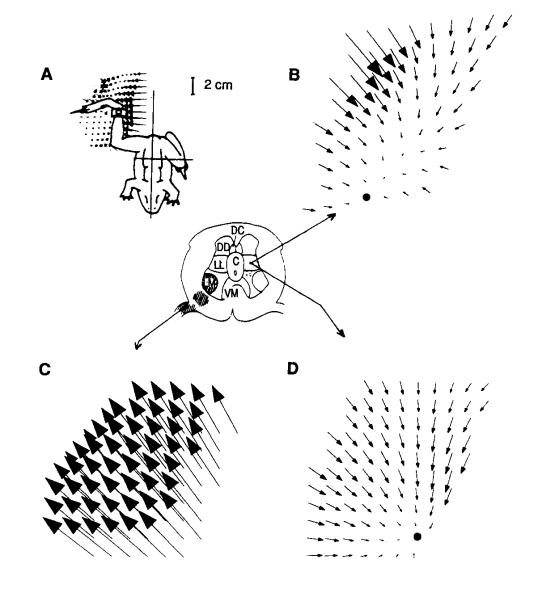
- Notion that neural networks in the brain and spinal cord generated a limited set of temporal templates
- whose weighted superposition is used to generate any given movement

- electrical simulation in premotor spinal cord
- measure forces of resulted muscle activation pattern at different postures of limb
- interpolate force-field

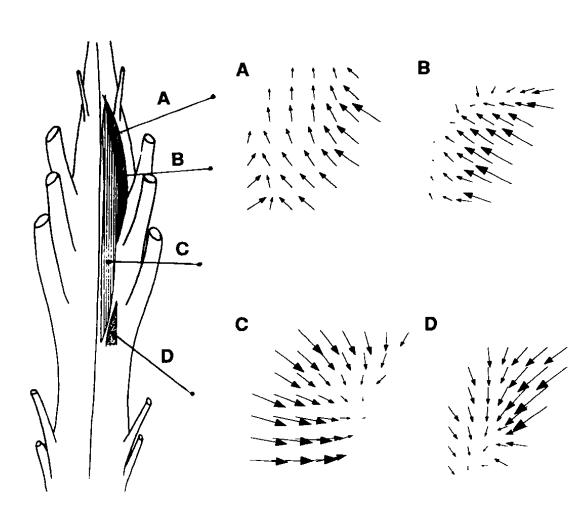


[Bizzi, Mussa-Ivaldi, Gizter, 1991]

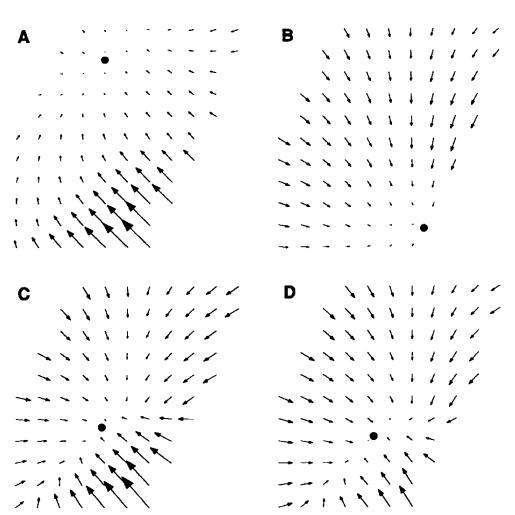
parallel force-fields in premotor ares vs. convergent force fields from interneurons...



convergent force-fields occur more often than expected by chance



superposition of forcefields from joint stimulation



superposition stimulating both of A and B A and B locations

Mathematical abstraction

(we'll criticize later the lack of analogy to the cited neurophysiology)

Base oscillator

- damped harmonic oscillator
- written as two first order equations
- has fixed point attractor

$$\tau \ddot{y} = \alpha_z (\beta_z (g-y) - \dot{y}) + f,$$
 y: position

$$\tau \dot{z} = \alpha_z (\beta_z (g-y) - z) + f,$$

$$\tau \dot{y} = z,$$
 z: velocity

$$(z, y) = (0, g)$$
 g: goal point

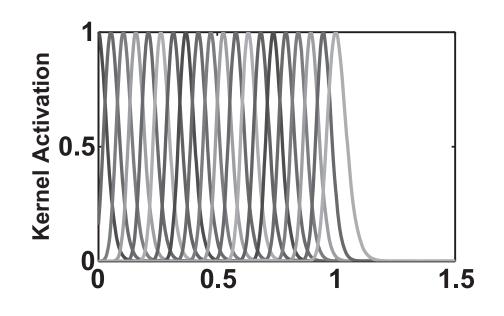
Forcing function

- base functions
- weighted superposition makes foreing function
- which are explicit functions of time!
- => non-autonomous
- and, through c_i, also staggered in time, so there is a "score" being kept in time

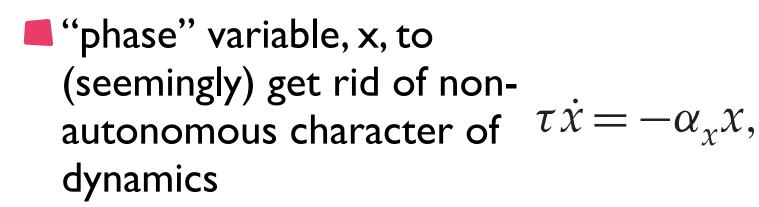
$$\Psi_i(x) = \exp\left(-\frac{1}{2\sigma_i^2}(x - c_i)^2\right),$$

$$f(t) = \sum_{i=1}^N \Psi_i(t) w_i$$

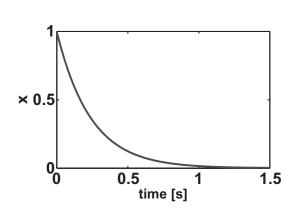
$$\sum_{i=1}^N \Psi_i(t)$$



"Canonical system"



$$\tau \dot{x} = -\alpha_{x} x,$$



- new movement initiation x(0) = 1
- new: scale forcing functions with amplitude and with temporal distance from end of mov

but: "fake".. as x is reset to an initial condition at each
$$f(x) = \frac{\sum_{i=1}^{N} \Psi_i(x) w_i}{\sum_{i=1}^{N} \Psi_i(x)} x(g - y_0)$$

 y_0 initial position

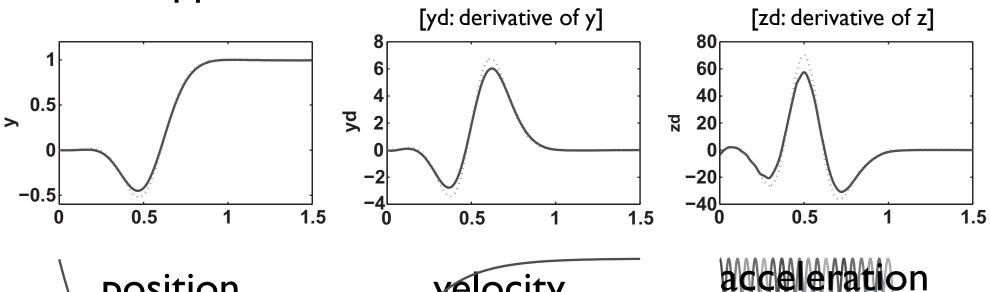
 $g - y_0$ amplitude

Example ID

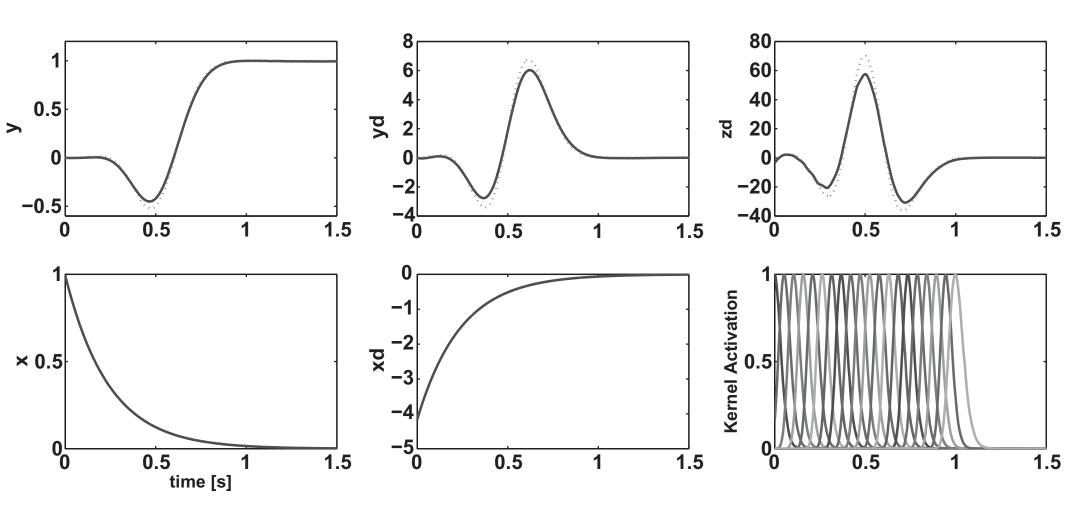
- weights fitted to track dotted trajectory (=5th order polynomial)... with first goes in the negative direction
- 20 kernels...

dotted: target

solid: approximation



Example ID



The planning problem

- is to make sure the movement plan arrives at the target in a given time...
- the spatial goal is implemented by setting an attractor at the goal state
- the movement time is implicitly encoded in the tau/time scale of the "timing" variable...
 - but that relies on cutting off the timing variable, x, as some threshold level... as exponential time course never reaches zero...
 - quite sensitive to that threshold...

Periodic movement

- \blacksquare trivial phase oscillator (cycle time, tau) $\tau \phi = 1$,
- trivial amplitude, r (constant), can be modulated by explicit time dependence
- forcing-function are functions of phase and amplitude

$$f(\phi, r) = \frac{\sum_{i=1}^{N} \Psi_i w_i}{\sum_{i=1}^{N} \Psi_i} r,$$

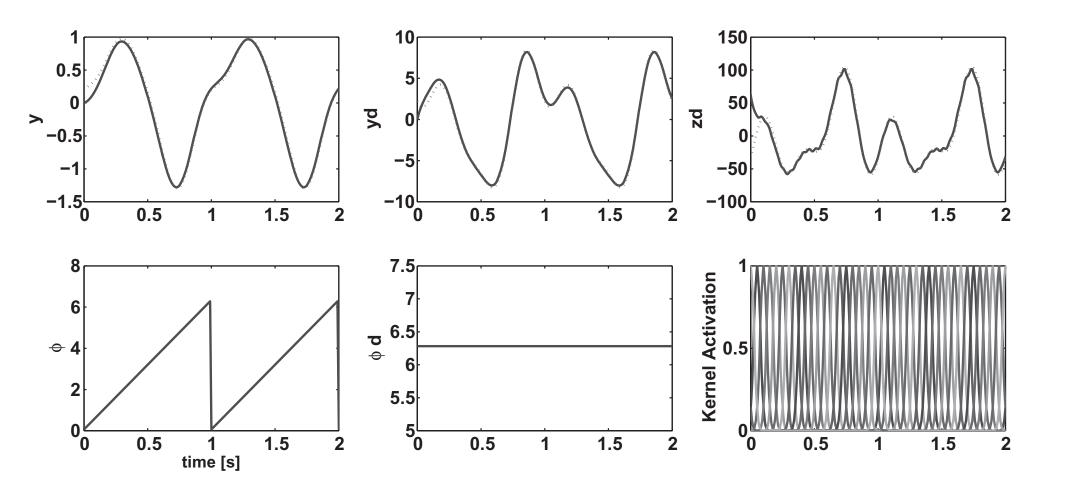
$$\Psi_i = \exp(h_i (\cos(\phi - c_i) - 1))$$

base oscillator

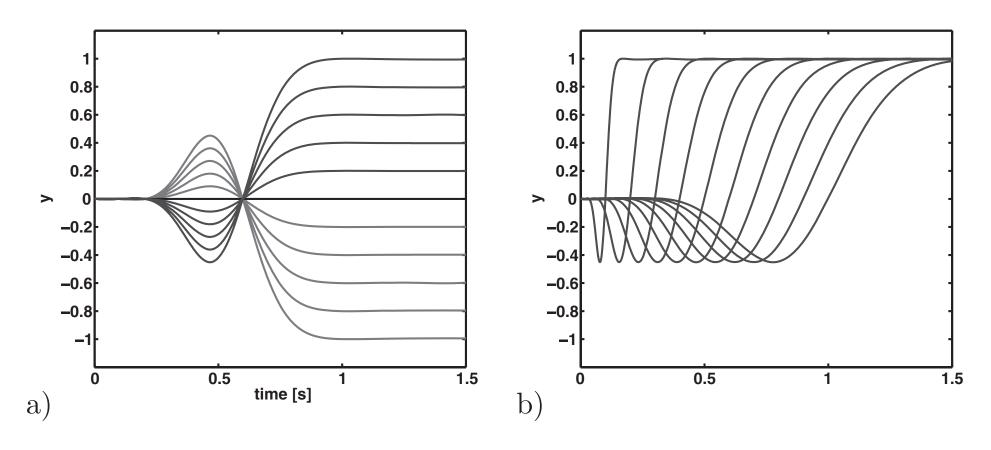
$$\tau \dot{z} = \alpha_z (\beta_z (g - y) - z) + f,$$

$$\tau \dot{y} = z,$$

Example: rhythmic movement



Scaling primitives



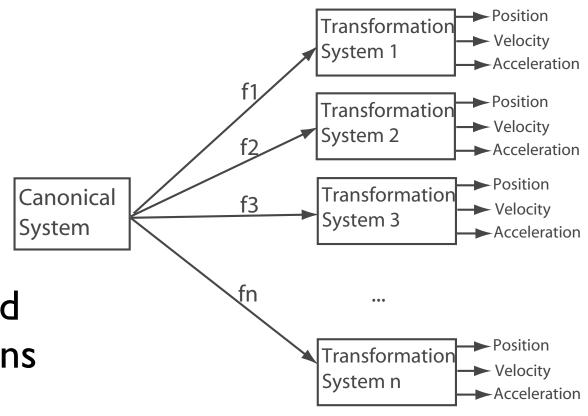
scale in space from -I to I

scale time from 0.15 to 1.7 but: not trivially right

Multi-dimensional trajectories

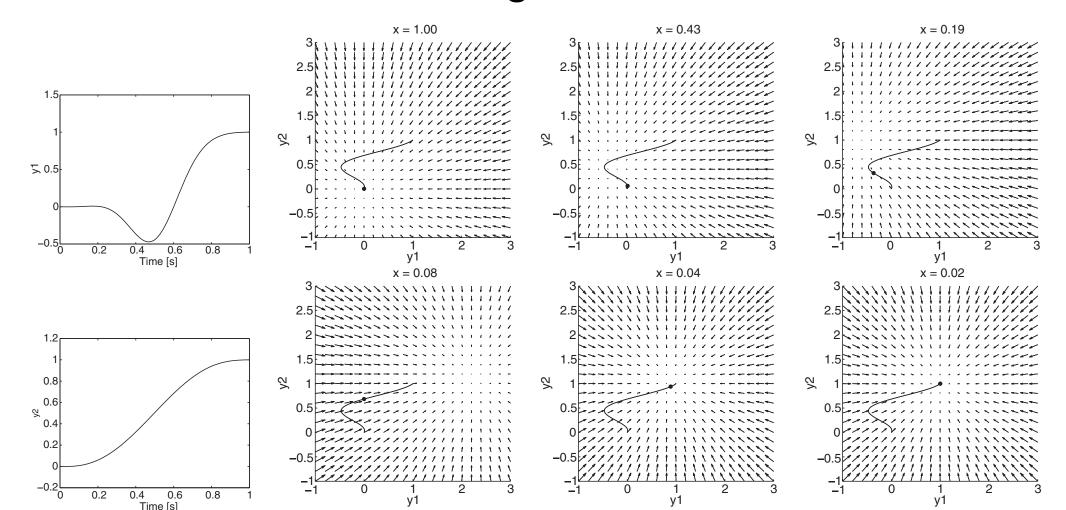
rather than couple multiple movement generator (deemed "complicated")...

only one central harmonic oscillator and multiple transformations of that...



Example 2D

- single "phase" x
- two base oscillator systems y1, y2
- with two sets of forcing functions



Learning the weights

$$[\tau \ddot{y} = \alpha_z(\beta_z(g-y) - \dot{y}) + f,]$$

base oscillator

$$f_{target} = \tau^2 \ddot{y}_{demo} - \alpha_z (\beta_z (g - y_{demo}) - \tau \dot{y}_{demo}).$$

forcing function from sample trajectory

[
$$f(x) = \frac{\sum_{i=1}^{N} \Psi_i(x) w_i}{\sum_{i=1}^{N} \Psi_i(x)} x(g - y_0)$$
]

weights by minimizing error J

$$J_{i} = \sum_{t=1}^{P} \Psi_{i}(t) (f_{target}(t) - w_{i}\xi(t))^{2},$$

$$\xi(t) = x(t)(g - y_0) \quad \text{for discrete mov}$$

$$\xi(t) = r \quad \text{for rhythmic mov}$$

Learning the weights

can be solved analytically

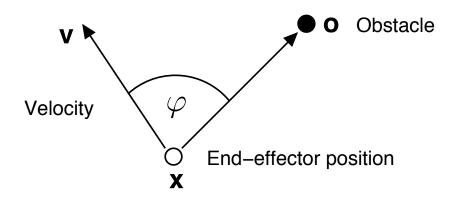
$$\begin{split} & \underset{t=1}{\text{minimum of}} \\ & J_i = \sum_{t=1}^P \Psi_i(t) (f_{target}(t) - w_i \xi(t))^2, \\ & \text{is} \\ & \xi(t) = x(t) (g - y_0) \\ & \text{is} \\ & \psi_i = \frac{\mathbf{s}^T \mathbf{\Gamma}_i \mathbf{f}_{target}}{\mathbf{s}^T \mathbf{\Gamma} \cdot \mathbf{s}}, \end{split}$$

where (P=# sample times in demo trajectories):

$$\mathbf{s} = \begin{pmatrix} \xi(1) \\ \xi(2) \\ \dots \\ \xi(P) \end{pmatrix} \qquad \mathbf{\Gamma}_i = \begin{pmatrix} \Psi_i(1) & 0 \\ \Psi_i(2) & \\ 0 & \Psi_i(P) \end{pmatrix} \qquad \mathbf{f}_{target} = \begin{pmatrix} f_{target}(1) \\ f_{target}(2) \\ \dots \\ f_{target}(P) \end{pmatrix}$$

Obstacle avoidance

- inspired by Schöner/ Dose (in Fajen Warren form)
- obstacle avoidance force-let



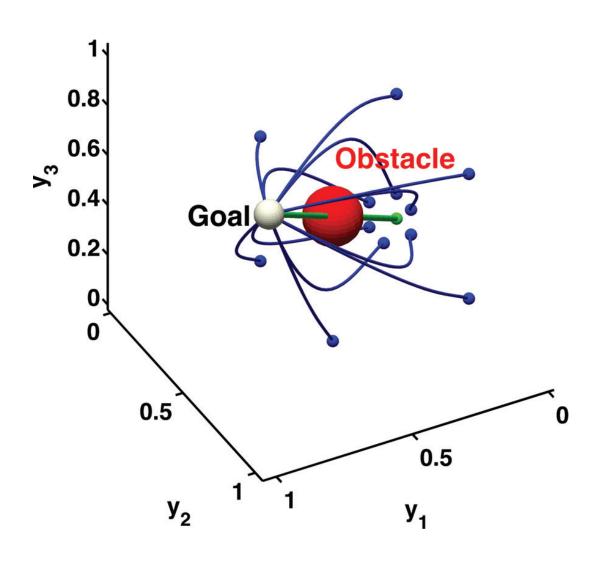
$$\tau \dot{z} = \alpha_z (\beta_z (g - y) - z) + f + C_t,$$

$$\tau \dot{y} = z.$$

$$\mathbf{C}_t = \gamma \mathbf{R} \dot{\mathbf{y}} \, \theta \exp(-\beta \theta),$$
 where

$$\theta = \arccos\left(\frac{(\mathbf{o} - \mathbf{y})^T \dot{\mathbf{y}}}{|\mathbf{o} - \mathbf{y}||\dot{\mathbf{y}}|}\right),$$
$$\mathbf{r} = (\mathbf{o} - \mathbf{y}) \times \dot{\mathbf{y}}.$$

Obstacle avoidance

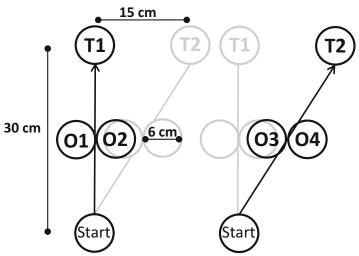


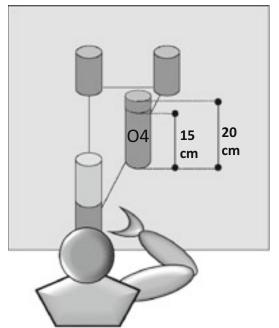
But: human obstacle avoidance is not really like that...

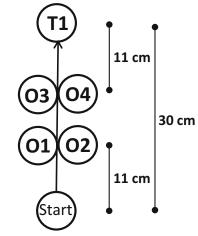
=> Grimme, Lipinski, Schöner, 2012

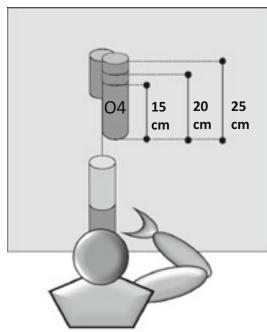
Experiment

- naturalistic movements: hand moving objects to targets while avoiding obstacles
- spatial arrangement of obstacles is varied...
- may that apparent complexity of movements emerge from simple invariant elementary movements?









[Grimme, Lipinski, Schöner, EBR 2012]

paths

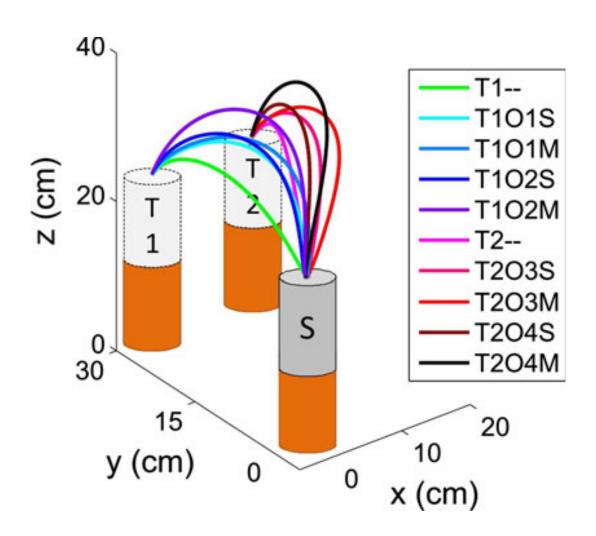
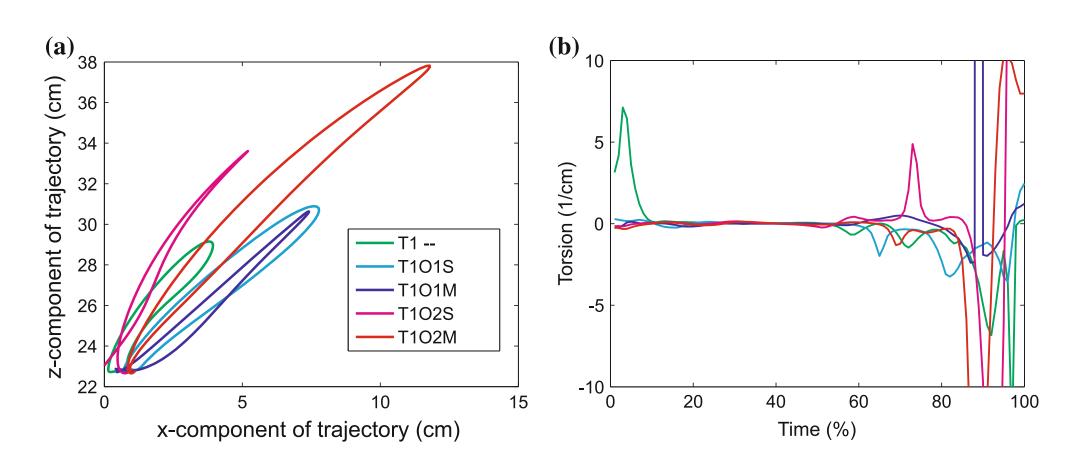


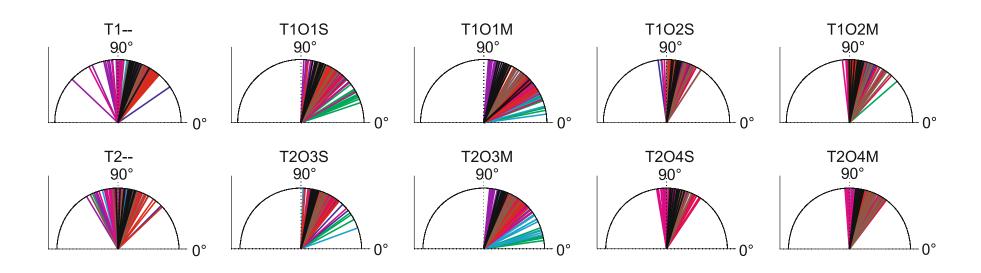
Fig. 3 Mean (over all participants) 3D obstacle avoidance paths from the starting position (S) to both target positions (T1 and T2)

paths are planar



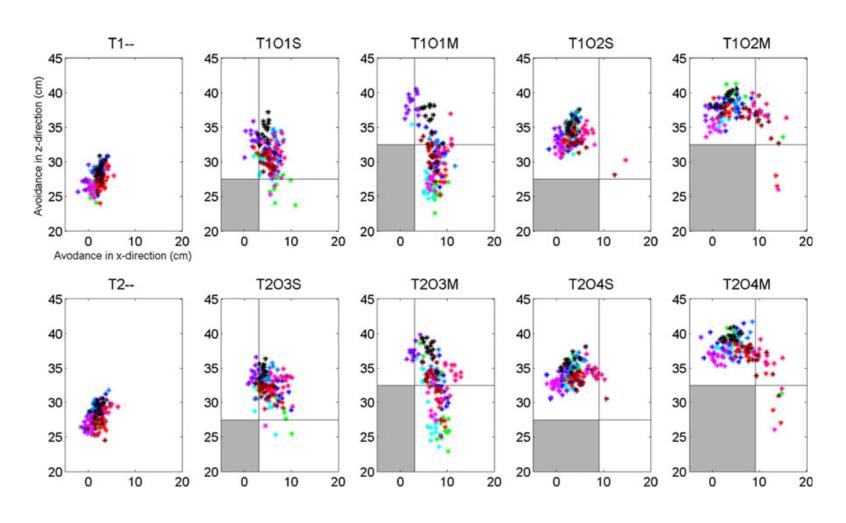
the plane of movement depends on the obstacle height

Author's personal copy



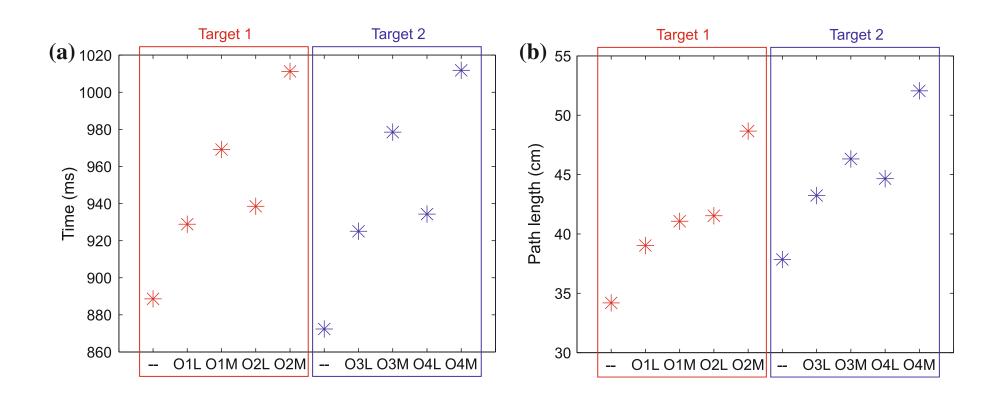
colors: participants...

the plane of movement depends on the obstacle height



colors: participants...

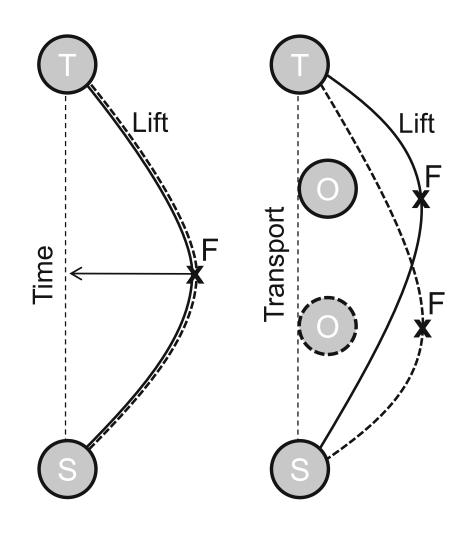
trajectories are isochronous



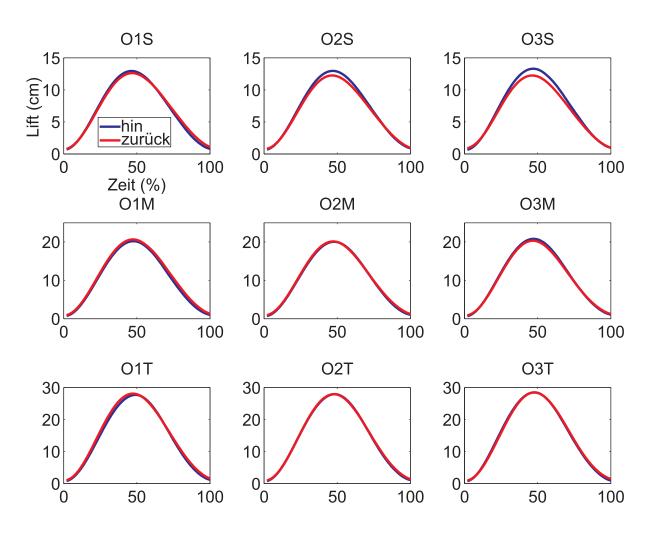
same movement time

different path length

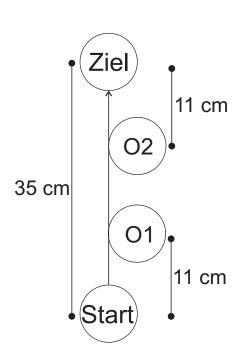
local isochrony

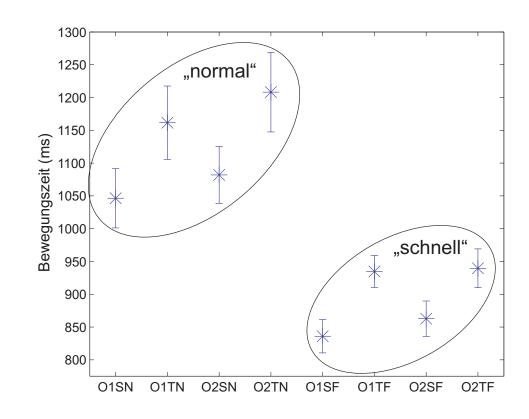


invariance of lift across space

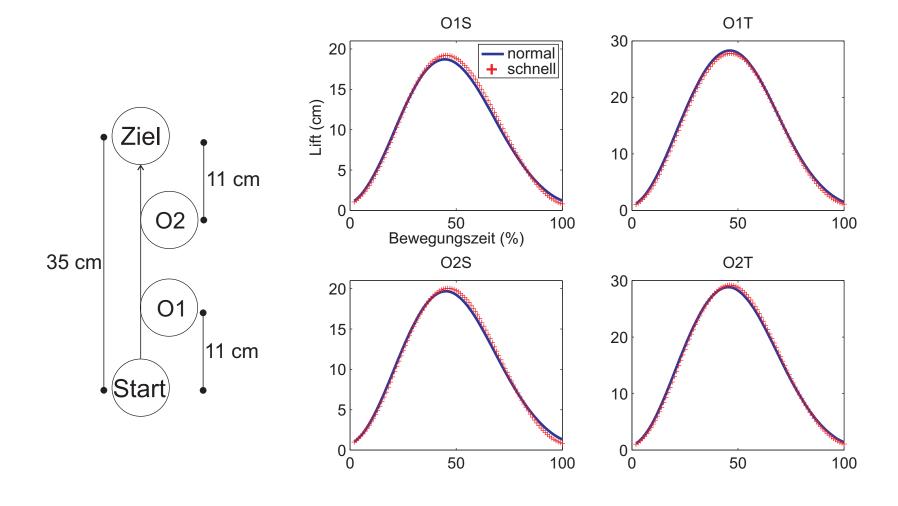


scaling with movement time



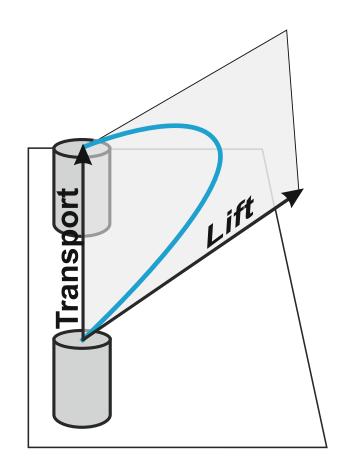


scaling with movement time

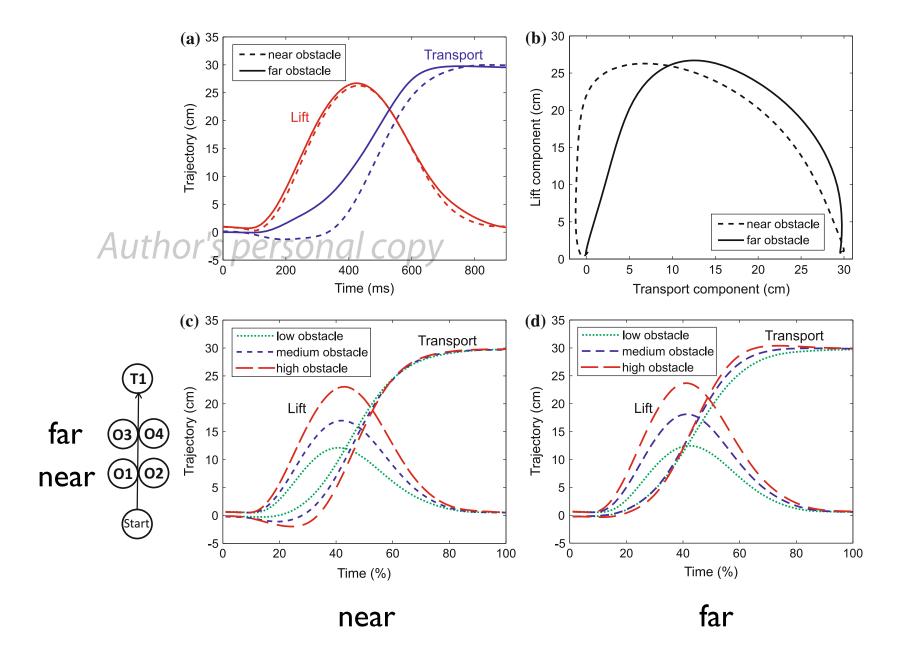


elementary behaviors

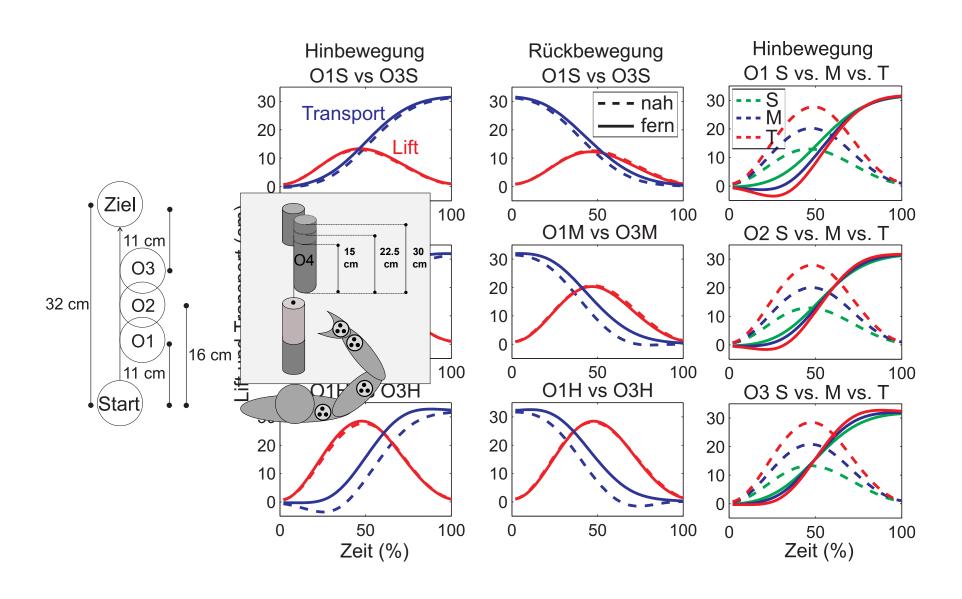
- based on planarity
- decompose movement into transport and lift component
- => a different sense of
 "primitives"...
 - not to span learning data/fitting movement
 - but to express different tasks/ constraints...



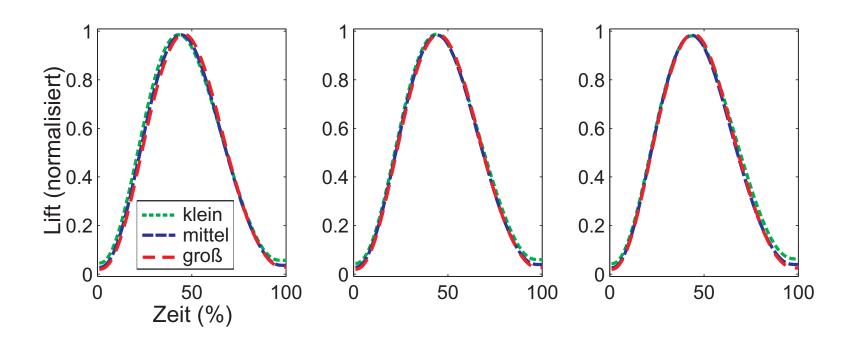
lift vs. transport



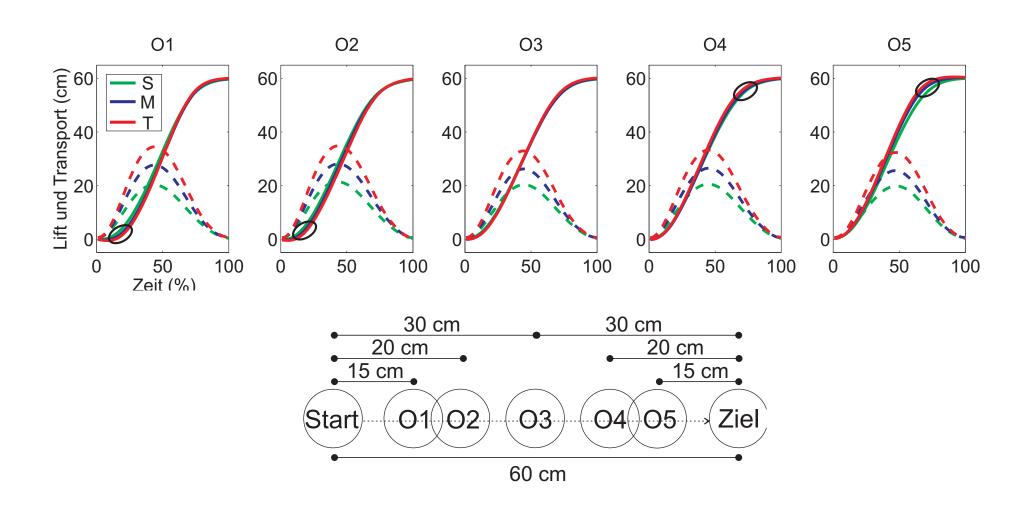
lift vs. transport



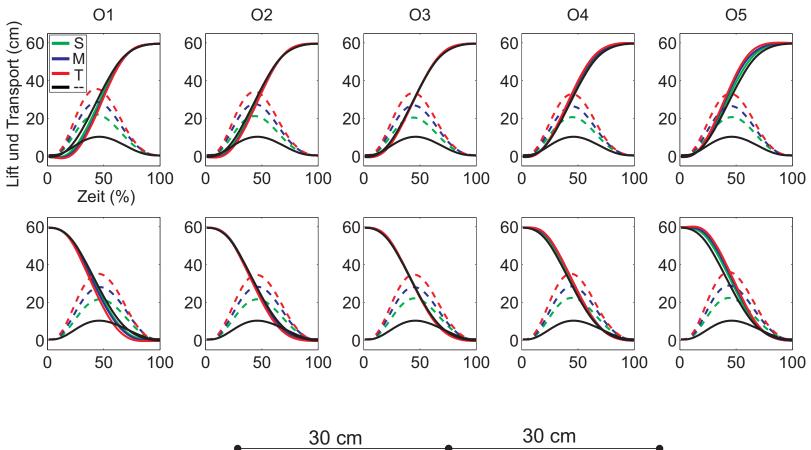
scaling lift to amplitude and time

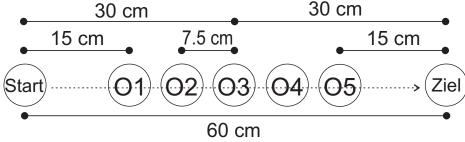


lift vs. transport



lift vs. transport

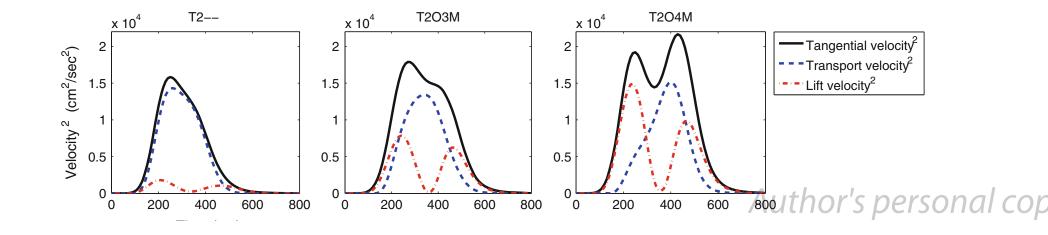


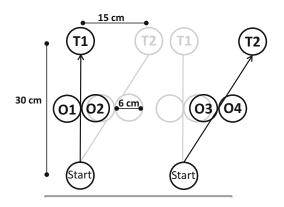


lift vs. transport

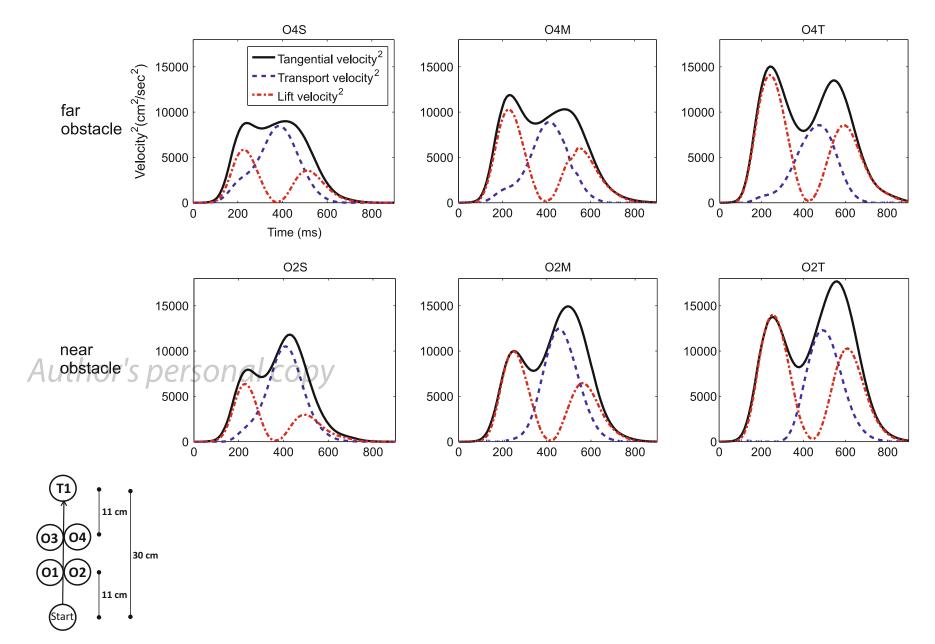
- invariance of lift under location of obstacle along transport
- approximate invariance of transport under height of obstacle
 - exact if obstacle is symmetrically half-way between start and target position of transport

complexity from simple "primitives"

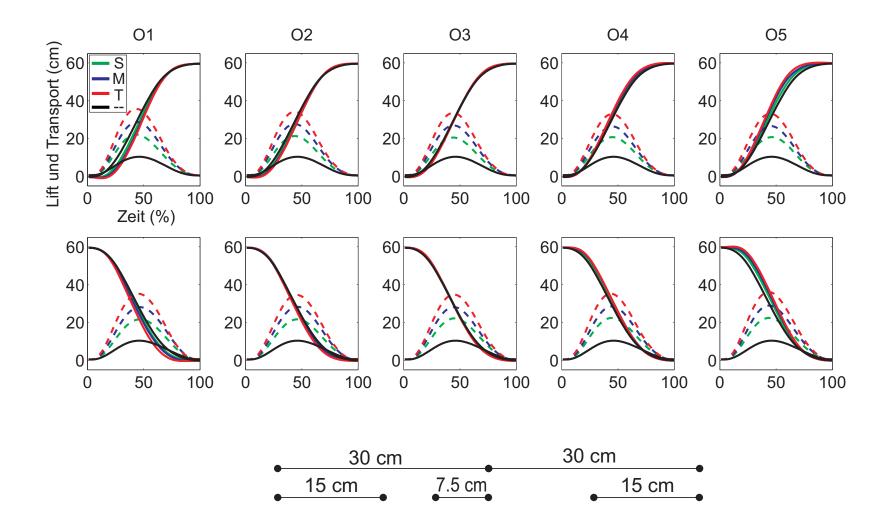




complexity from simple primitives



obstacle component



60 cm

Start

DMP and obstacle avoidance

- true nature of human movement
 - piecewise planar
 - isochronous
 - modulated in time to accomodate obstacle avoidance
- are not structural features of DMP

Coordination

- in phase dynamics: couple to external timers...
- but: issue of predicting such events and aligning the prediction to achieve synchronicity...

$$\tau \dot{x} = -\alpha_x x + C_c$$

$$\tau \dot{\phi} = 1 + C_c.$$

$$C_c = \alpha_c (\phi_{ext} - \phi).$$

Coordination

- coupling to spatial variables...
- unclear what is new over classical work... much remains open..

- Simple DMP approach enables learning "movement styles" while imposing movement amplitude.. enabling generalization to new movement targets
 - it isn't clear how DMPs impose other constraints
 - obstacle avoidance by the end-effect...
 - obstacle avoidance by other parts of the effector? (solved in Reimann, lossifidis, Schöner, 2010 etc.)
 - collision avoidance with a surface, avoidance only on the side of the arm.. etc..? (solved in lossifidis, Schöner, 2004)

- DMP is a purely kinematic account
 - that includes kinematic constraints in very simple form
- => DMP has nothing to do with actual force-fields, that is, with how movement is physically generated!
 - DMP is not part of control

- DMP's capacity to address timing is limited
 - movement time is not very well defined
 - the base oscillator is not a stable limit cycle oscillator, so the issue of decoupling timing from space is not addressed
 - DMP's account for coordination is limited/not new
 - timing dimension of obstacle avoidance is not captured

- task dependence of primitives is not part of DMP's framework
 - => DMPs doe not account how different task with associated primitives are combined and integrated
- a different notion of primitives: elementary behaviors
 - e.g. lift and transport