RUHR-UNIVERSITÄT BOCHUM

A Simulated Car-Park Environment for the Evaluation of Video-Based On-Site Parking Guidance Systems

Marc Tschentscher, Ben Pruß, and Daniela Horn University of Bochum, Institute for Neural Computation, Germany

Motivation

(d) Afternoon snowfall

(c) Rainy afternoon

Experiments

- Development of image-processing algorithms requires huge amount of data
- Internet offers numerous tagged images for training and evaluation of classifiers for a number of standard problems
- <u>But:</u> For a more distinct problem it is extremely difficult to find representative images
- \rightarrow Simulated environment can overcome these problems by creating video data reproducing natural scenes

Simulated Environment

- Based on next-gen graphics engine Unreal Engine 4
- Replica of existing car park for direct comparison to real-world
- Goal: Real-time classification of vacant/occupied parking spaces
- Extraction of ground truth data on the fly
- PBR approach for highly realistic materials

- Evaluation of classifier previously trained on real-world samples of sunny and cloudy weather images
- Reproduction of real-world video material in simulated environment for direct comparison of classifier performance
- Evaluation of classifier on sequences of different weather and lighting conditions to test its robustness

 Implementation of 5 different weather/lighting conditions: sunny, cloudy, foggy, rain, and snow

Material layers used in PBR approach

Artificial Camera

- Generation of highly realistic camera images
- Translation of physical restrictions to virtual camera, such as depth of field, image noise, and motion blur
- Camera model modifies image generation
 process in UE4
- Model based on parameters of real-world modern camera systems
- Implemented parameters: focal length, aperture opening, film speed, exposure

Softwareframework YAF; used for image processing. *Left:* (Artificial camera image with lens undistortion applied, *Right:* Visualization of classification results

Results

- Comparable results for real-world video data and reconstruction
- Difficulties with untrained weather conditions due to underfitting
- Precipitation is challenging task
- Overall good performace on different weather conditions

	reconst	truction	real world			
	color	gray	color	gray		
row 1	93.68 %	99.53 %	96.68 %	99.96 %		
row 2	72.73 %	82.78 %	98.95 %	96.99%		
row 3	100.00%	100.00 %	91.83 %	92.33 %		

Outlook

- Train a classifier on a mixture of real-world and artificial video data, or purely on artificial images
- Use the resulting classifier in real-world scenarios

time, and focal distance

 \rightarrow Enabling more topics for image-processing algorithms

	sunny		cloudy		foggy		rain		snow	
	color	gray								
row 1	99.72 %	99.78 %	98.25 %	99.77 %	80.31 %	99.70 %	93.04 %	99.83 %	72.40 %	71.41 %
row 2	98.48%	93.17 %	77.20 %	88.74%	56.42 %	97.18 %	62.90 %	82.77 %	40.94 %	52.11 %
row 3	92.28 %	99.82 %	98.77 %	99.27 %	4.35 %	58.44%	65.01 %	43.11 %	25.02 %	25.75 %

WWW.INI.RUB.DE