RUHR-UNIVERSITÄT BOCHUM

Generation of Natural Traffic Sign Images Using Domain Translation with Cycle-Consistent Generative Adversarial Networks

Dominic Spata, Daniela Horn and Sebastian Houben Institute for Neural Computation, Ruhr University Bochum, Germany

Top: Generated traffic sign images. Bottom: Each image's nearest neighbor in terms of Euclidean distance from the training set of real traffic sign photographs.¹

Motivation

- Machine learning methods for traffic sign recognition require huge amounts of image data
- Challenges for data acquisition:
- -high number of possible classes
- unbalanced distribution of samples
- -variance in diverting background
- numerous recording artefacts

Idea:

- Automatic generation of life-like traffic sign images
- Use of artificial samples for image classifier training

Cycle-Consistent Generative Adversarial Networks

Experimental Setup

 Comparison of multi-class SVMs trained on HOG features • Baseline classifier (SVM_{Base}) trained solely on real-world data • Per experiment two further classifiers with varying training inputs

Training on Fully Generated Data

- SVM_{Gen} trained entirely on generated images
- SVM_{Proto} trained entirely on prototype images
- Results grouped into five traffic sign categories

- Image-to-image translation between two domains X and Y
- Cycle-consistency: mappings are the inverse of one another
- Can be trained using unpaired datasets
- Mappings are actual translators rather than being arbitrary
- Generated background style is influenced by simple prototype background color

Learned association from background color in prototype to background

Training on Partially Generated Data

- Replace one sign class from original dataset with synthetic data
- Compare against baseline classifier
- SVM_{GenClass} swaps real-world samples for generated images
- SVM_{ProtoClass} swaps real-world samples for prototype images

Contributions

- Generation method for traffic sign images
- High control over pose and background
- Facilitates data acquisition
- Real-world image data remains essential
- \implies Use for data augmentation and rare classes

Get the

and illumination style in generated image

source!

	Replacing Class "No Entry (Trucks)" Classification Accuracy [%]			Λ	Replacing Class "Slippery Road" Classification Accuracy [%]				Replacing Class "Pass Right" Classification Accuracy [%]		
				A CONTRACT OF A							
Class	SVM _{Base}	SVM _{GenClass}	SVM _{ProtoClass}	Class	SVM _{Base}	SVM _{GenClass}	SVM _{ProtoClass}	Class	SVM _{Base}	SVM _{GenClass}	SVM _{ProtoClass}
No entry (trucks)	97.18	88.73 (-8.45)	0.00	Slippery Road	67.11	60.53 (-6.58)	0.00	Pass right	95.87	78.47 (-17.40)	14.16
Speed limit 100	74.44	73.99 (-0.45)	74.44	Non substituted a	na parfarmanaa aha	rac for CV/M	Stop	92.36	93.06 (+0.70)	93.06	
Roundabout	70.46	72.73 (+2.27)	70.46	(Non-substituted classes show no performance change for SVM _{GenClass}) Forw					96.92	98.46 (+1.54)	98.46
Total	87.97	87.87 (-0.10)	86.86	Total	87.97	87.89 (-0.08)	87.17	Total	87.97	87.06 (-0.91)	83.61

Results for training on partially generated data. SVMs were trained on real-world data, with the exception of one class, which was replaced by either generated images (SVM_{GenClass}) or prototype images (SVM_{ProtoClass}). Numbers in parenthesis display difference to the baseline classifier.

WWW.INI.RUB.DE

¹Stallkamp, J., Schlipsing, M., Salmen, J., & Igel, C. (2011). The German Traffic Sign Recognition Benchmark: A multi-class classification competition. In *IEEE International Joint Conference on Neural Networks* (pp. 1453–1460).