Generation of Natural Traffic Sign Images Using Domain Translation
with Cycle-Consistent Generative Adversarial Networks

Dominic Spata, Daniela Horn, Sebastian Houben

Abstract— Video-based traffic sign recognition poses a highly
challenging problem due to the significant number of possible
classes and large variances of recording conditions in natural
environments. Gathering an appropriate amount of data to
solve this task with machine learning techniques remains an
overall issue.

In this study, we assess the suitability of automatically
generated traffic sign images for training corresponding image
classifiers. To this end, we adapt the recently proposed cycle-
consistent generative adversarial networks in order to transfer
automatically rendered prototypical traffic sign images for
which we control type, pose, and—to a degree—background
into their true-to-life counterparts. We test the proposed system
by extensive experiments on the German Traffic Sign Recog-
nition Benchmark dataset [1] and learn that both a HOG-
feature-based SVM classifier and a state-of-the-art CNN exhibit
reasonable performance when solely trained on artificial data.
Consequently, it is well suited as data augmentation method
and allows for covering uncommon cases and classes.

I. INTRODUCTION

The detection and recognition of road signs in natural
traffic scenes is a crucial ability for both advanced driver as-
sistance systems and autonomous vehicles. Although video-
based recognition is concerned with rigid, clearly defined
objects designed for visual noticeability, in particular

o the high number of possible classes,

o their unbalanced distribution,

« the variance in diverting background, as well as

o numerous recording artefacts due to natural lighting and

camera motion

pose unsolved challenges to be handled in today’s research.

To complicate things further, it appears that most nations
do not only own a number of unique traffic signs, but also at
times very different versions of internationally used signs,
including varying colors and even shapes. Consequently,
the number of possible classes within given traffic sign
categories, such as warning signs, is vast and the data acqui-
sition, in particular when tending to appropriate variances
regarding recording conditions and intra-class changes, is,
hence, extensive.

However, over the past decades an increasing number
of countries around the globe have agreed to align the
visual appearance of traffic signs according to the Vienna
Convention. The treaty encompasses, inter alia, a number
of traffic sign designs for categories like danger, prohibitive,
or mandatory signs. This uniformity enables us to straight-
forwardly render artificial images of classes from predefined
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Fig. 1. A schematic of the generative process. Simple traffic sign diagrams
are algorithmically transformed into prototype images, which are then
translated into the final generated photograph by the CycleGAN’s mapping
network.

categories by choosing the outer appearance, inserting the
pictogram and transforming the resulting prototype with a
random homography that mimics natural perspective and
slight rotation.

Recent advances in deep learning have produced a number
of techniques to automatically generate life-like images. For
these purposes the defining characteristics of the respective
image domains are learned from example data. In particular,
so called cycle-consistent generative adversarial networks
allow for a style transfer between two image domains. We
adapt this technique to translate the rendered images to true-
to-life ones while preserving category, pose, pictogram, and,
hence, the class identity of the traffic sign to generate.

We detail the predominant methods in traffic sign recog-
nition and real-life image generation in Sec. II and describe
prototype rendering and our adaptations to cycle-consistent
generative adversarial networks in Sec. III. Sections IV and
V focus on verifying the aptitude of the artificially generated
training examples for well-established traffic sign classifiers.
Sec. VI briefly summarizes our findings.

II. RELATED WORK

Lifelike image generation has gained a lot of interest
and inspired an entire body of literature initiated by the
work of Goodfellow who introduced Generative Adversarial
Networks [2] (GANs) which, when combined with the then
established deep convolutional architectures [3], are capable
of creating already highly convincing images. For these pur-
poses, GANs relinquish modeling the underlying generative
probability density but create example images that share
dominant features with the training examples from which
they emerge.

Image generation in GANs is based on white noise fed
into the network. Gaining some control over the result has
since been a vivid topic of research [4]. Class-consistency [5]
is a predominant procedure for both creating only instances
from one specific image category and stabilizing the overall
training process. We, instead, make use of cycle-consistent
GANSs [6] (or CycleGANs for short), which enforce visual



and geometric similarity of an input image and its respective
generated output. Thus, CycleGANSs can be likened to other
methods of style transfer such as [7], [8], [9], [10].

Both video-based traffic sign recognition and detection
have been studied extensively in the past years [11], [12],
[13], [14], [15] — not least because of publicly available large-
scale datasets like the Swedish Traffic Sign Dataset [16],
the Belgian Traffic Sign Dataset [17], the LISA dataset [15]
presenting American traffic signs, and the Russian Traffic
Sign Dataset [18]. While these examples clearly cover the
variance in visual appearance and recording conditions as
well as intra-class variance, the number of traffic sign classes
(currently led by the Russian Traffic Sign Dataset with 157
classes) only represents a fraction of all traffic sign categories
presently deployed in streets worldwide.

The need for the augmentation of these datasets has there-
fore been studied, on the one hand in order to also handle
cases not present in the dataset and, on the other hand, as
a well-established regularization method, in particular when
training deep convolutional neural networks. Moiseev et al.
[19] present an extensive but purely algorithmic augmenta-
tion setup in which they vary the pose of traffic sign pic-
tograms and add motion blur, image noise, and background
from real images. Their approach shows on par results when
training convolutional neural networks on synthetic data only,
but falls short for feature-based classifiers.

A recent paper by Luo et al. [20] deploy a GAN that
transforms a pictogram into a lifelike traffic sign image in
front of a given background. Likewise, they show results on
a Spatial Transformer Network and achieve state-of-the-art
results, even with purely synthetic training data. However,
training the network requires a suited regularization term in
order to retain the class identity during image generation.

Our system uses a CycleGAN straightforwardly control-
ling the generation process. Furthermore, the background is
learned and created by the same GAN. For evaluation we
use a support vector machine (SVM) trained on Histogram-
of-Oriented-Gradients (HOG) features which, despite its
simplicity, showed good performance during the German
Traffic Sign Recognition Benchmark. We consider this the
most objective comparison: Using a fixed feature extraction
step, we can attribute the performance to the quality of
the generated data only and not to the ability of a deep
network to generalize and transfer possibly missing features
well. In order to compare against the state-of-the-art, we
also perform parallel experiments with a deep convolutional
neural network (CNN).

III. METHOD

In our approach, the data generation process is addressed
as an image-to-image translation problem, allowing for
a high degree of intermediate control over properties of
the generated images. Image-to-image translation systems
characteristically learn mappings that perform translation
between two domains of images. In the case at hand, one
domain consists of real-life image data, the other comprises a
form of image prototype that is simplistic enough as to allow

Fig. 2. Cyclic translations between image domains X and ). Each
image triplet shows the original source image, its translation, and the cyclic
reconstruction. Left: Translation from photos to icons. Right: Translation
from icons to photos.

for efficient sampling. For the latter, natural images are then
generated by a learned domain mapping of the previously
sampled prototype images, as depicted in Fig. 1.

This approach offers three distinct advantages over more
traditional data generation. Firstly, when the prototype do-
main is wisely chosen, its algorithmic sampling procedure
already provides much of the salient information required
for a natural image. The generative model then merely needs
to close the remaining textural and stylistic gap between
the prototype image and its natural counterpart, which is
a much simpler task than generation from scratch. This is
especially effective for a dataset of multiple classes with
standardized features, such as the German Traffic Sign
Recognition Benchmark (GTSRB) dataset.

Secondly, since the appearance of the generated image
is tightly coupled to the appearance and features of the
corresponding prototype image, it is possible to exert direct
control over the data generation via appropriate adjustments
to the sampling process for the prototype images. In partic-
ular, class distribution, scale and perspective of the traffic
sign within the image, and even certain background details
are easily customizable.

Lastly, the following approach allows image generation for
types of traffic signs which are not presented to the generative
model during training, provided that prototype images can be
created for them. This may be used to supplement natural
images of traffic signs for which no real photographs are
available. The following subsections outline some technical
specifics of our approach.

A. Cycle-Consistent Generative Adversarial Networks

CycleGANSs naturally excel at textural and stylistic trans-
formation. However, the fact that they can also be trained
using unpaired datasets enforces their suitability for the given
task. This characteristic is critical in our application in order
to simplify the prototype sampling process, as it is sufficient
to create the prototype image training set independently from
the real image training set.

In CycleGANS, the mappings G : X — Yand F': Y — X
for image domains X', ) are trained via optimization of a
variant of the adversarial loss known from generative ad-
versarial networks [2]. G and F' each enter a minimax game
with a discriminator that aims to distinguish real images from
those created by the mapping. Optimization steps alternate
their modifications of mappings and discriminators, such
that the discriminators’ performance is either decreased or
increased to eventually produce plausible image results w.r.t.
their respective domain.



Fig. 3. A demonstration of the learned association that maps smoothly from
background colors in the image prototypes to background and illumination
styles in the generated images. Each image pair shows an image prototype
on the left and the corresponding generated image on the right.

In order to enforce the resulting mappings to be actual
translators rather than being arbitrary, CycleGANs are addi-
tionally constrained to be cycle-consistent, which requires
their mappings to be the inverse of one another. This is
formulated as an additional loss based on the L1-norm of
the difference between images from the training sets and
the result of running them through the chain of the two
mappings. Fig. 2 shows examples of cyclic translations
between the two domains in both directions.

B. Prototype Domain

The image prototypes used in our approach have been de-
rived from standardized traffic sign diagrams' by modifying
them in two significant ways. Firstly, we apply randomized
perspective transforms that supply the geometric information
required in a natural image. The CycleGAN is designed
primarily for stylistic and textural translations and therefore
cannot effectively contribute such information itself. Initial
tests showed that prototype images with blank background
tend to produce background which is highly dependent on
the traffic sign class and hardly varies for similar traffic signs.
We therefore, secondly, replaced the transparent background
with a random homogeneous color enriching the variations
oft he simplistic image domain ). In this manner we remove
the focus from the only source of variation present — the
traffic sign itself — to seed the generation of varied scenic
details. This is similar to conditioning the mapping on an
additional three-dimensional latent vector with the advantage
that the information is present locally where it is used in the
image. The model can learn an association between these
colors and certain realistic background styles. Fig. 3 shows
the smooth transitions of background colors in the prototype
images and their respectively changing background styles in
the generated images.

! Available in the public domain, for example from:
https://commons.wikimedia.org/wiki/Road_signs_of_Germany

IV. EXPERIMENTS

Our objective is to assess the ability of generated traffic
sign images to substitute for or supplement natural images in
the context of multi-class classification tasks. We therefore
conduct a range of experiments designed to determine the
influence of our generated data on classification accuracy
when used in the training set of a traffic sign classifier.
The classifier model we use is a simple multi-class SVM
as described in [21] trained on the HOG features [22] of
traffic sign images.

In order to establish a frame of reference for the classifi-
cation accuracy values we obtain, each experiment produces
and compares three SVM classifier models, which differ
in their data input. SVMp, is trained purely on real data
and provides the baseline accuracy for each experiment.
SVMge, is trained on generated images as resulting by our
CycleGAN. SVMp,, has prototype images as training input.
As these images are already high in information, we mean
to distinguish the individual influences of the prototype sam-
pling and CycleGAN translation on classification accuracy.

We mirror these experiments with a deep CNN, analo-
gously naming the models CNNp,se, CNNgen, and CNNpyo0-
For training we use batch normalization and dropout with a
rate of 0.5. Details on the used architecture can be found in
Table II.

The GTSRB dataset is provided with a predetermined split
into a training and a test set. We further subdivide the training
set into two halves, using one half for training the Cycle-
GAN model and the other for training the aforementioned
SVMgyee- This assures maximum independence between the
generated data and the real data used to obtain the accuracy
baseline. Likewise, the accuracy values reported in the next
section are calculated on one half of the GTSRB test set, as
the other half was used as a validation set to fine tune our
generative process.

Under this general protocol, we further distinguish two
types of experiments relative to the exact composition of
the training sets. Their nature and purpose is outlined in the
following.

A. Training Scenarios

Two types of experiments were conducted in order to
validate our approach. The first one is intended to evaluate
the overall quality of the generated images. For this purpose,
we test the two classifiers SVMge, and SVMp,y, along the
previously described baseline classifier SVMp,e, as well as
CNNgen and CNNp;oo against CNNpgge, respectively.

In the second experiment, we remove examples for one
traffic sign class from the original CycleGAN training set
and use the resulting generative model to generate images
for that traffic sign class. We train two additional classi-
fier models on similar training sets of real-world images
in which all training samples for the previously selected
traffic sign class are completely replaced by generated
images (SVMgenclasss; CNNgenclass) and prototype images
(SVMpyotoctasss CNNpyotoclass)» TeSpectively. Finally, their per-
formances are compared to SVMp,se and CNNpge.



Category Characterization

Examples

Warning Signs
Restriction Signs
Derestriction Signs
Direction Signs

Miscellaneous Signs no common features

upright triangular shape, red border, white background, black content
circular shape, red border, white background, mostly black content
circular shape, white background, diagonal bars, gray content

circular shape, blue background, white arrows

TABLE I
CATEGORIZATION OF TRAFFIC SIGNS GIVEN IN THE GTSRB DATASET. EACH OF THE 43 TRAFFIC SIGN CLASSES WAS SORTED INTO ONE OF THE FIVE
CATEGORIES BASED ON THEIR SHARED VISUAL FEATURES.

Layer Type Filters  Size
Convolution 32 3x3
Convolution 32 1x1
Convolution 32 1x1
Strided MaxPooling 2x2
BatchNorm

Convolution 64 3x3
Convolution 64 1x1 4x
Convolution 64 1x1
BatchNorm

Fully Connected 256
Fully Connected 128
Fully Connected 43

TABLE 11
ARCHITECTURE OF THE CNN CLASSIFICATION NETWORK. EACH LAYER
IS FOLLOWED BY A RELU ACTIVATION FUNCTION, THE LAST LAYER BY
A SOFTMAX ACTIVATION.

B. Dataset Preparation

The GTSRB dataset consists of images with strongly
varying sizes and aspect ratios, which complicates the use
of mini-batches during the training of the generative model.
The CycleGAN training set is therefore preprocessed to yield
images of size 128 x 128. Firstly, we discard all images
below the size of 64 x 64. Afterwards, preserving aspect ratio,
we scale all images such that the smaller spatial dimension
has a size of 128 pixels and then centrally crop the larger
spatial dimension down to 128 pixels. We found that the
CycleGAN is sensitive to class distribution and tends to
introduce artefacts into generated images of underrepresented
classes. Hence we further resample the images of the dataset
to balance the class distribution. This creates a dataset of
12,212 examples.

Note that this preliminary selection of images skews the
distribution of geometric information, as smaller images
tend to possess a larger border around the traffic sign.
Both the CycleGAN and both classifiers are sensitive to the
distribution of geometric information, and we must therefore
account for this circumstance during the creation of the
prototype images. We choose the parameters of the ran-
domized perspective transforms differently for the prototype
images used during CycleGAN training and for those used

to generate images during our experiments, such that the
distribution roughly matches that of the preprocessed and
the original GTSRB data, respectively.

In the course of the experiments we will sometimes refer
to traffic sign “categories”, which organize traffic sign classes
into groups based on shared visual features. The 43 classes
of the GTSRB dataset were divided into five categories, as
shown in Table I.

C. Implementation Details

We adopt the implementation details in [6], using fully
convolutional neural networks for all learned functions of
the CycleGAN. All layers consist of a variant of convolu-
tion, instance normalization [23], and ReLU activation. The
discriminator networks use the leaky ReLU variant with a
slope of 0.2 and produce an output matrix of patchwise
classifications, rather than a single classification for the
entire image. We raise the power of the mapping networks
compared to the original implementation by increasing the
number of residual blocks and doubling the number of filters
in all layers in order to account for the highly multimodal
nature of our multi-class dataset. The resulting mapping
and discriminator architectures are displayed in Tables III
and IV. Note that for our experiments we require only the
mapping that translates prototype images into their real-to-
life counterparts, while the inverse mapping is kept purely
for regularization purposes during training.

The networks are trained using an L2-variant of the
adversarial loss [25] and an Adam optimizer [26] with
parameters 37 = 0.5,8; = 0.999. The learning rate is
set to 0.0002 for the first half of epochs and is linearly
decayed to zero over the second half. We train the CycleGAN
for a total of 24 epochs. The mini-batches for training the
discriminator networks are partly sampled from a buffer of
generated images to combat model oscillation [27]. Contrary
to the original implementation, we use mini-batches of size
five. We also adopt a slightly modified version of the data
augmentation scheme used in the original implementation.
Instead of upsampling the images to the static size 143 x 143
and randomly recropping them, we choose the upsample
size uniformly at random from the range [128,143], so
as to reduce the impact on the distribution of geometric



Layer Type Filters  Kernel Size
Convolution 64 TXT
Strided Convolution 128 3x3
Strided Convolution 256 3x3
9 X Residual Block 256 3x3
Fractionally Strided Convolution 128 3x3
Fractionally Strided Convolution 64 3x3
Convolution 3 77

TABLE III
ARCHITECTURE OF THE MAPPING NETWORKS. CONVOLUTION LAYERS
CONSIST OF CONVOLUTION, INSTANCE NORMALIZATION, AND RELU
ACTIVATION. RESIDUAL BLOCKS FOLLOW THE DESIGN RECOMMENDED
BY [24]. THE LAST LAYER USES NO NORMALIZATION STEP AND tanh
INSTEAD OF RELU AS ACTIVATION FUNCTION.

Layer Type Filters  Kernel Size

Strided Convolution 64 4 x4

Strided Convolution 128 4x4

Strided Convolution 256 4 x4

Convolution 512 4x4

Convolution 1 4x4
TABLE IV

ARCHITECTURE OF THE DISCRIMINATOR NETWORKS. CONVOLUTION
LAYERS CONSIST OF CONVOLUTION, INSTANCE NORMALIZATION, AND
LEAKY RELU ACTIVATION WITH A SLOPE OF 0.2. THE FIRST LAYER
DOES NOT USE A NORMALIZATION STEP AND THE LAST LAYER DOES
NOT USE AN ACTIVATION FUNCTION.

information. We further forgo random horizontal flips, as
they may produce images depicting nonexistent signs.

The method’s inherent cycle-consistency stabilizes the
training process, such that it hardly produces unusable Cy-
cleGANSs. The resulting models show an overall fairly small
variance. Losses alternately increase and decrease by design
and, thus, do not converge.

Our CycleGAN and CNN implementations are based
on Tensorflow?. Training our CycleGANs took 10 to 12
hours each on a GTX 1070. Furthermore, we use the SVM
implementation contained in scikit-learn® for all classifiers.
Our code is available online®.

V. RESULTS

The results of our experiments demonstrate that the gen-
erated images are reasonably, though not perfectly, realistic.
Fig. 4 depicts examples of generated traffic signs in direct
comparison to real-world samples. SVMge, und SVMgenclass
consistently show increased classification errors compared
to the real-data baseline. However, they significantly outper-
form SVMpyoto and SVMp;oiociass, respectively. These results
are in line with those of the CNN-based classifiers.

The results of the individual experiment types are dis-
cussed in greater detail below.

2See: https://www.tensorflow.org/
3See: https://scikit-learn.org
4See: https://github.com/Spataner/trafficsign-cyclegan

Classification Accuracy (%)

Category SVMBgase SVMgGen SVMproto
Warning 78.08 75.76  (—2.32) 45.36
Restriction 87.40 72.21 (—15.19) 47.40
Derestriction 80.33 86.34 (+6.01) 84.70
Direction 94.37 85.86 (—8.51) 61.95
Miscellaneous 98.65 96.62 (—2.03) 84.82
Total 87.97 79.27 (—8.70) 56.17
TABLE V

PER-CATEGORY CLASSIFICATION ACCURACIES OF REAL, GENERATED,
AND PROTOTYPE TRAINING INPUT. NUMBERS IN PARENTHESES STATE
DIFFERENCES TO SVMgp sk

Classification Accuracy (%)

Category CNN3gage CNNgGen CNNpyoto
Warning 92.38 88.24 (—4.14) 16.33
Restriction 97.09 85.65 (—11.44) 6.00
Derestriction 95.08 88.52 (—6.56) 0.00
Direction 94.71 85.63 (—9.08) 20.34
Miscellaneous 95.55 93.42 (—2.13) 25.44
Total 95.42 87.57 (—7.85) 13.24
TABLE VI

PER-CATEGORY CLASSIFICATION ACCURACIES OF REAL, GENERATED,
AND PROTOTYPE TRAINING INPUT. NUMBERS IN PARENTHESES STATE
DIFFERENCES TO CNNp sk

Each classifier was trained with roughly 19,300 samples
of real-world, generated, and prototype images, respectively
(cf. Sec. V-A), or a mixture of real-world and synthetic image
data (see Sec. V-B). Initial tests on bigger sized synthetic
datasets showed no significant improvement on accuracy,
while being incommensurately time-consuming. Extensive
experiments are therefore postponed to future research.

A. Training on Fully Generated Data

Table V displays a comparison of the classification ac-
curacies of SVMgaee, SVMgGen, and SVMp,oo. The use of
generated data lowers the classification accuracy by almost
nine percentage points, revealing imperfections in our gener-
ation process. SVMp;qo, meanwhile, appears insufficient to
produce a useful traffic sign classifier.

An investigation into the per-class accuracies shows that
SVMgen performs better than SVMg,. for certain traffic sign
types. In rare cases, this is even true for SVMp;q,. The traffic
sign classes that appear to benefit most from the alternate
sources of data are those underrepresented in the GTSRB
dataset. Experiments attempting to create a classifier that
improves over the baseline in terms of overall classification
accuracy yielded only modest success.

Similarly, training a CNN classifier on an entirely gen-
erated dataset leads to a comparable drop in performance
(cf. Table VI). Using only prototype images instead inhibits
proper feature extraction during training and results in ex-
tremely poor performance.



Classification Accuracy (%)

Classification Accuracy (%)

Class SVMBgase SVMGenClass SVMprotoClass Class CNNBase CNNGenClass CNNprotoClass
Experiment 1: replacing class “no entry (trucks)” Experiment 1: replacing class “no entry (trucks)”
No entry (trucks) 97.18 88.73 (—8.45) 0.00 No Entry (Trucks) 100.0 100.0 (+0.00) 15.49
Speed limit 100 74.44 73.99 (—0.45) 74.44 Speed Limit 20 51.52 100.0 (+48.48) 96.97
Roundabout 70.46 7273  (+2.27) 70.46 Left Hand Curve 75.86 100.0 (+24.14) 100.0
Pass Left 78.18 94.55 (4+16.37) 96.36
Total 87.97 87.87 (—0.10) 86.86 Danger 90.06 71.93 (—18.13) 80.70
Caution Snow 91.43 70.00 (—21.43) 74.29
Experiment 2: replacing class “slippery road” Total 05.42 9441 (—1.01) 91.12
Slippery road 67.11 60.53 (—6.58) 0.00
(Non-substituted classes exhibited no performance change for SVMgencCiass) Experiment 2: replacing class “slippery road”
Total 87.97  87.89 (-0.08) 87.17 Slippery Road 98.68  98.68 (+0.00) 0.00
Speed Limit 20 51.52 93.94 (+42.42) 78.79
Experiment 3: replacing class “pass right” Left Hand Curve 75.86 100.0 (+24.14) 96.55
- Pedestrian Crossing 53.12 75.00 (4+21.88) 46.88
Pass right 95.87  78.47 (—17.40) 14.16 Pass Left 78.18  98.18 (+20.00) 100.0
Stop _ 92.36  93.06 (+0.70) 93.06 Caution Snow 91.43  44.29 (—47.14) 75.71
Forward or right 96.92 98.46  (+1.54) 98.46
Total 95.42 95.15 (—0.27) 92.49
Total 87.97 87.06 (—0.91) 83.61
TABLE VII Experiment 3: replacing class “pass right”
PER-CLASS CLASSIFICATION ACCURACIES FOR DIFFERENT SUBSTITUTE Pass Right 93.51 81.12 (—12.39) 42.18
CLASSES (HIGHLIGHTED). NUMBERS IN PARENTHESES STATE Speed Limit 20 51.52 96.97 (+45.45) 100.0
Left Hand . 100. 24.14 1
DIFFERENCES TO SVMpase. MOST CLASSES DO NOT EXHIBIT ANY Czutior?nSngv%rve g?ig 62?7(1] §t25.72; 3308
CHANGE IN CLASSIFICATION ACCURACY WHEN THE CHOSEN Pass Left 78.18 27.27 (—50.91) 69.09
SUBSTITUTE CLASS IS REPLACED WITH GENERATED IMAGES AND ARE, Derestrict Overtaking 100.0 27.27 (=72.73) 100.0
HENCE, NOT SHOWN. Total 95.42 93.65 (—1.77) 89.50
TABLE VIII

B. Training on Partially Generated Data

Several experiments have been conducted in which one
traffic sign class was replaced by either generated or proto-
type images. We show the results for one example traffic sign
class each from the categories of warning signs, restriction
signs, and direction signs. Table VII displays comparisons
between SVMBase, SVMgGenclasss and SVMproioclass When ex-
amples for traffic sign classes “no entry (truck)”, “slippery
road”, and “pass right” are substituted, respectively.

Performance on all untouched traffic classes is largely
unaffected by the example substitution conducted for the
chosen class. Classification accuracy for selected classes
mirror the findings of the previous experiment in that use
of generated data decreases performance, while use of
prototype data collapses it dramatically. Furthermore, the
corresponding per-class accuracy of the classifier from the
previous experiment correlates weakly with the accuracy on
the substituted class in this configuration.

When training CNN classifiers, the story is different.
While the replaced sign class is usually recognized with com-
parable performance, other, often unrelated, classes partly ex-
hibit strong deviations in classification performance (cf. Ta-
ble VIII). Obviously, the feature extraction during several
training sessions yields different filters, but at the time of
writing it is unclear whether this can be attributed to the
generated data that may obstruct the training or whether
the net has converged to a different local optimum. We will

PER-CLASS CLASSIFICATION ACCURACIES FOR DIFFERENT SUBSTITUTE
CLASSES (HIGHLIGHTED). NUMBERS IN PARENTHESES STATE
DIFFERENCES TO CNNp,sg. APART FROM THE SUBSTITUTE CLASS
ITSELF, THE 5 CLASSES WITH MOST DEVIATING ACCURACIES W.R.T.
CNNgasg ARE SHOWN.

therefore defer this examination to future research.

It is important to note that this experiment is only success-
ful for traffic sign types that belong to a broader traffic sign
category and thus share visual features with other classes. If
the traffic sign class whose examples are removed from the
CycleGAN training set is visually distinct to all remaining
traffic signs, then the generative model is unable to create
convincing images for that class.

VI. CONCLUSION

We have presented a flexible system for the generation of
traffic sign images in which the pose and, to a degree, the
background can be controlled by the user. This facilitates
data acquisition substantially. In a fair comparison, however,
it has become apparent that using real-world data results in
better and more stable classifiers. We advocate to use the
method as a data augmentation technique and, in particular,
for cases and classes in which no real data is available.
In future work our main focus will therefore be to extend
these cases by enriching the generation pipeline with further
characteristics and recording artefacts like motion blur, dirt,
damages and overexposure.
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Fig. 4. A side-by-side comparison of generated and real traffic sign images. Each image pair shows a generated image on the left and its nearest neighbor
in terms of Euclidean distance from the CycleGAN training set on the right, demonstrating that the generated images are both plausible and unique.
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