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so far… 
… we have studied the generation of 
movement in vehicles… 

through a “behavioral dynamics” that is in 
closed loop with the environment

as it takes (possibly time varying) constraints 
from the perceived environment

and expresses these as contributions to the 
dynamics… 

whose attractor solutions then generate 
movement plans… 



.. now we will look at

how movements can be generated in open 
loop, that is, from from an internal “neural” 
dynamics

this serves primarily to generate movements 
that are “timed”, that is,

they arrive “on time”

the are coordinated across different effectors 

the are coordinated with moving objects (e.g., catching)

timing implies some form of anticipation… 



How is timing done in 
conventional robotics?

classical fixed control: fixed templates of 
timing encoded in digital computers… 
determined from trajectory planning 
algorithms that a purely kinematic, and are 
realized by servo-controllers that “track” 
the time plan 

advanced control: the planning takes the 
physical dynamics into account (e.g. 
optimizing a cost function)



Timing in autonomous robotics

Koditschek’s juggling robot: 

physical dynamics of bouncing ball modeled… actuator inserts a 
term into that dynamics so that a periodic solution (limit cycle) 
results

ball is kept within reach by conventional P control from contact 
to contact
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Fig. 5. The Bühgler Arm. The three joint values, q1, q2, and q3 are referred to as φ, θ , and ψ , respectively, in this paper (a).
The horizontalworkspacewith obstacles: the beam, inner andouter paddle limits, and the boundary of the visibleworkspace (b).

Estimated ball states, T b̂, are passed through amemoryless
transformation, m : T B̂ → Q, to produce reference robot
positions, r = m(T b̂). Since m is analytic, this block also
produces ṙ and r̈ for use by the control system. Following
the work of Buehler, Koditschek, and Kindlmann (1990a),
the m used for juggling leads to robot motion that appears to
be a distorted reflection of the ball’s motion, and we call it a
mirror law. The juggling mirror law used in this paper was
developed by Rizzi, and a detailed description is available
(Rizzi 1994). The mirror law uses nine key parameters that
prescribe the spatial location and feedback gains for the juggle
behavior. In this work, we are mostly interested in modifying
the location of the set point, G (denoting the three parameters
used to prescribe horizontal position and the apex height of the
ball’s desired periodic vertical trajectory), thereby defining
juggling control strategies that are active in different regions
of the workspace. We also modify the vertical energy gains
to create the palming behavior. The juggling mirror law is
discussed in more detail in Section 2.5, and we introduce
control laws for other behaviors in Section 2.6.
The reference robot states created by the mirror law are

fed to an inverse-dynamics joint-space controller (Whitcomb
1992; Whitcomb, Rizzi, and Koditschek 1993), C, which
produces torque values, τ . The torques are used by the ac-
tuator block, A (amplifiers, motors, etc.), which generates
true robot-joint states, T q ∈ T Q. The robot states are
sensed and returned to C for feedback control. The C–A
control/actuation loop has been shown to be globally asymp-
totically stable, so that T q → T r whenever r̈ is continuous.
As for the sensor block, V –O, we have assumed that the
transients of the C–A loop have died out by the time of any
robot–ball interaction, and, hence, that T q = T r . Again,
in practice, the transients are generally rapid enough to sup-

Fig. 6. Flow chart showing the various functional blocks of
the system: vision, V ; observer, O; mirror law, m; control,
C; and actuation, A. The parameters of interest to this paper
all reside in m.

port this simplified reasoning; however, in some situations we
inevitably pay a price in performance. This topic is further
explored in Section 4.4.3.
Together, all the blocks depicted in Figure 6 form a dy-

namical plant, or filter, relating inputs T b to outputs T q. We
denote this filter by%, and loosely refer to it as a “controller.”

2.3. The Closed-Loop System

Figure 7 depicts the interconnected robot-environment (ball)
system that arises when a falling ball excites the visual field of
the hardware and software system just described. We denote
the resulting closed-loop dynamics F%, where the subscript
reflects the dependence of the robot’s reactions, and hence
the evolution of the coupled robot-environment states, on the
blocks of % depicted in Figure 6. It turns out that the repet-
itive continuous trajectories of this closed-loop system can
be much more readily understood by passage to an induced
discrete-event sampledmapping—the “returnmap,” of the pe-
riodic orbits, that we denote by f%. This map (more exactly,
its iteration considered as a dynamical system) represents the



Raibert’s hopping robots

dynamics bouncing robot 
modeled… actuator inserts a 
term into that dynamics so 
that a periodic solution (limit 
cycle) results

robot is kept upright by 
controlling leg angle to 
achieve particular horizontal 
position for Center of Mass

Timing in autonomous robotics



How is timing done in 
conventional robotics?

Raibert’s bio-dog

expand that idea by coordination 
among limbs

https://
www.youtube.co

m/watch?
v=M8YjvHYbZ9w

https://www.youtube.com/watch?v=M8YjvHYbZ9w
https://www.youtube.com/watch?v=M8YjvHYbZ9w
https://www.youtube.com/watch?v=M8YjvHYbZ9w
https://www.youtube.com/watch?v=M8YjvHYbZ9w


Timing in nervous systems

coordination:
relative timing

absolute 
timing

biomechanical
contribution to
timing

external
mechanical
contribution
to timing

external 
perceptual 
contribution
to timing



Relative vs. absolute timing

threshold
activation

time

absolute timing
relative timing

DT

T

relative phase=DT/T



Absolute timing

examples: music, prediction, 
estimating time

typical task: tapping

self-paced vs. externally paced



human performance 

on absolute timing is 
impressive

smaller variance than 
5% of cycle time in 
continuation paradigm 
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FIG. 3. Variability of timing. At longer intervals, timekeeper variance (var(C)) increases but motor
implementation variance (var(M)) is relatively constant. (From Wing, 1980.)

tively increase timekeeper variance. Wing (1980a) showed that this was the case in
an experiment in which subjects tapped to different target intervals, T, in the range
220–490 ms on different trials (see Fig. 3). Tables 1 and 2 summarize a number of
other experiments partitioning timing variability into var(C) and var(M).
It is instructive to relate the partitioning of variability of timing into timekeeper

and motor implementation variance in repetitive responding to measures of timing
variability reported in a single interval production task studied by Rosenbaum and
Patashnik (1980a, 1980b). Subjects used R and L index finger responses to delimit
a single interresponse interval, I, to match a previously presented target, T. This was
varied in steps of 100 ms up to 1000 ms, with the shortest, T ! 0 ms, requiring
simultaneous movement of the index fingers. Instructions in different blocks of trials
emphasized either speed (produce the first response as quickly as possible) or accu-
racy (produce the interval as accurately as possible). As would be expected, reaction
time (RT) was faster in the speed condition. RT was also faster with larger values
of T. Later, we return to consider these RT effects, but here we focus on the interval
timing results. In both speed and accuracy conditions mean(I) matched the target.
For T ! 0 ms the variances were nonzero and equal in the two conditions. At larger
values of T, var(I) increased linearly with mean(I). The slope of the function relating
mean and variance of the intervals between left- and right-hand responses was less
steep in the accuracy condition than in the speeded condition (see Fig. 4).
There are two points to note arising from the results on variability of the time

intervals produced in this task. First, in the condition calling for simultaneous re-
sponses, the variability var(I) may be attributed to the motor system, since there is
no demand on timing (T ! 0). It is thus reassuring to note that Rosenbaum and
Patashnik reported equal intercepts (no difference in the variability at zero interval)

[Wing, 1980]



Theoretical account for absolute 
timing

(neural) oscillator autonomously 
generates timing signal, from which 
timing events emerge

=> limit cycle oscillators

Clocks=limit cycle oscillators



ṙ = ↵r � r3

�̇ = !

Limit cycle oscillator: Hopf

normal form

/dt

A

x

unstable

stable

ydF

dr/dt

F

r

A��
A=0A��

0

BBBB@

ẋ
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Neural oscillator

v

u

time

u (solid), v (dashed)

v

u

time

u (solid), v (dashed)
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FIG. 5. (Top) A periodic evolution of an activation variable cannot be obtained as a solution of a
single-variable dynamical system, because most levels of activation (here the zero level) are crossed in
two different directions, so that the future is not uniquely determined by the present state of the activation
variable. (Bottom) A second variable, here called ‘‘inhibition,’’ is needed to disambiguate these two
events.

To see this, imagine a periodic time course of activation (Fig. 5). All levels of activa-
tion (except at the turning points) are then passed through in two directions, once at
increasing and once at decreasing activation. Thus, such activation values do not
uniquely specify the future. A second variable, here called ‘‘inhibition,’’ is needed,
to disambiguate the future: each activation level is passed through once at a smaller
and once at a larger level of this second variable. Thus, clocks cannot be built as
dynamical systems in terms of activation alone!
Stable periodic solutions, to which the system is attracted from nearby states are

called limit cycle attractors. An example of a dynamical system supporting limit
cycle attractors of an activation–inhibition pair of variables is

τu̇ ! "u # hu # wuu f (u) " wuv f (v) (6)

τv̇ ! "v # hv # wvu f (u), (7)

equations first analyzed by Amari (1977). The first two terms of each equation de-
scribe two linear uncoupled dynamical systems, each with a stable fixed point at the
resting levels of activation, hu, and of inhibition, hv. A sigmoid function,

f (u) !
1

1 # exp["βu]
, (8)

makes the system nonlinear in terms of ‘‘self-excitation’’ (wuu) and of coupling be-
tween activation and inhibition variables (wuv, wvu). For appropriate choices of these
parameters, a limit cycle attractor emerges (Fig. 6). The stability of the periodic solu-
tion manifests itself by attraction of neighboring states toward the limit cycle. The
activation-based stochastic timer model emerges as the limit case, in which the vector
field is structured such that a period of graded activation growth is followed by a
more rapid phase of activation decay (Fig. 6b). In fact, abstractly speaking, any clock
is a limit cycle attractor of a dynamical system (see, e.g., Andronov, Vitt, & Khaikin,

[Amari 77]

relaxation 
oscillator



Neural oscillator 
accounts for variance 
of absolute timing 

5

SD(T)

T2 43 5

0.5

clock 
variability

T2 43 5
0.0

motor
variability

0

[Schöner 2002]



Clocks

hour glasses are also oscillators

but: it is critical to include the “resetting”

activation 

time 

event 1 event 3event 2

threshold

[from: Schöner, Brain & Cogn 48:31 (2002)]

a clock



Reduced timing variance for 
bimanual movement

observed by Ivry 
and colleagues

accounted for by 
averaging of two 
times

but: requires 
coupling

time 

time time 

threshold
2

u 2threshold
1

u 1

 + u 2u 1
 + threshold 2

threshold 1
resetsum



locomotion, interlimb and intralimb

speaking

mastication 

music production 

... approximately rhythmic

Relative timing: movement 
coordination 



reaching and grasping

bimanual manipulation 

coordination among fingers during 
grasp

catching, intercepting

Examples of coordination of 
temporally discrete acts:



Coordination is the maintenance of 
stable timing relationships between 
components of voluntary movement. 

Operationalization: recovery of 
coordination after perturbations

Example: speech articulatory work 
(Gracco, Abbs, 84; Kelso et al, 84)

Example: action-perception patterns 

Definition of coordination



No, for example:

locomotion: whole body 
displacement in the plane

in the presence of obstacles takes longer

delay does not lead to compensatory acceleration

but coordination is pervasive... 
e.g., coordinating grasp with reach 

Is movement always timed/
coordinated? 



Relative vs. absolute timing

threshold
activation

time

absolute timing
relative timing

DT

T

relative phase=DT/T



in-phase
synchronization, moving through like phases 
simultaneously

e.g., gallop (approximately)

anti-phase or phase alternation
syncopation

e.g., trott 

Two basic patterns of 
coordination



An instability in rhythmic 
movement coordination

switch from 
anti-phase to 
in-phase as 
rhythm gets 
faster

time/frequency

relative phase 

anti-phase

time/frequency

finger trajectories

anti-phase in-phase

in-phase

Kelso, 1984



Instability

experiment 
involves finger 
movement

why fingers?
no mechanical coupling

constraint of maximal 
frequency irrelevant

=> pure neurallly based 
coordination 

Schöner, Kelso (Science, 1988)



Instability

frequency imposed by metronomes 
and  varied in steps

either start out in-phase or anti-
phase



data example (Scholz, 1990)



computation 
of continuous 
relative phase 
(Scholz, 1990)



Pattern stability
instability: anti-phase pattern no 
longer persists

thus: even though mean pattern is 
unchanged up to transition, its 
stability is lost

=> stability is an important property 
of coordination patterns, that is not 
captured by the mean performance 
alone



Measures of stability

variance: fluctuations in time are an 
index of degree of stability

stochastic perturbations drive system away from the 
coordinated movement 

the less resistance to such perturbations, the larger 
the variance 



Measures of stability

relaxation time
time need to recover from an outside perturbation

e.g., mechanically perturb one of the limbs, so that 
relative phase moves away from the mean value, then 
look how long it takes to go back to the mean pattern

the less stable, the longer relaxation time 
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Fig. 1. Sample relaxation time estimates in the anti-phase (top) 

and the in-phase (bottom) mode. In each part are shown (from 

above): the finger displacements (RF: right finger, LF: left fin- 

ger), the finger velocities, the continuous estimate of relative phase 

and the torque pulse. 

adjacent frequency plateaus. Perturbations were ran- 

domly distributed over a block of trials such that each 

of the nine frequency plateaus was perturbed a total 

of ten times. 

Using interactive computer displays, an estimate 

of the relaxation time was obtained from the time of 

torque pulse offset until the relative phase time series 

stabilized at its pre-perturbation mean value. Fig. 1 

illustrates this procedure for two typical runs - at the 

same pacing frequency (2 Hz) - in the two modes 

of coordination. 

Interactive computer displays were also used to 

measure the switching time on frequency plateaus in 

which a transition occurred. Here the estimate was 

determined as the time from the beginning of the fre- 

quency plateau to the point where the relative phase 

time series stabilized at a 0 ° (or 360 ° ) mean value 
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corresponding to the completion of the transition. 

The results of these experiments for the relaxation 

time estimate are shown in fig. 2 for all five subjects. 

We note the following features: (1) Except for the 

lowest frequencies, the relaxation time in the anti- 

phase mode is consistently higher than in the in-phase 

mode. (2) As the frequency approaches the transi- 

tion frequency, the relaxation time in the anti-phase 

mode increases yet remains constant or decreases in 

the in-phase mode. A mode by pacing frequency 

analysis of variance performed individually for each 

subject's data showed that this difference was statis- 

tically significant in all but one case. Even for this 

subject (BK), who showed an overall decrease of 

relaxation time in both modes, a sharp increase 

occurs in the anti-phase mode immediately prior (2.2 

Hz) to the transition. 

Overall pre-transitional increases in relaxation time 

thus prove the presence of critical slowing down in 

this biological coordination problem and are consis- 

tent with earlier theoretical predictions [7,8] and 

experimental studies of relative phase fluctuations 

[9,10] showing that: (1) The anti-phase mode is 

dynamically less stable than the in-phase mode; and 

(2) the transition from anti-phase to in-phase mode 

is connected with a loss of stability. Specifically, in 

the theoretical model for the stochastic dynamics of 

relative phase ¢ [7,8]: 

~= - a sin(C) - 2b sin(2¢) +,jrQ ~,,  (1) 

with ~, as gaussian white noise of unit variance, and 

model parameters a, b and Q. The relaxation times, 

rrel, were predicted as: 

1 1 

ZreLO-- 4b+a'  Zrel.~-- 4 b - a '  (2) 

where 0 refers to the in-phase mode and n to the anti- 

phase mode. When we determine the parameters a 

and b from the measured relaxation times in the two 

modes, we find that a/4b~0.39 on the last pre-tran- 

sition frequency plateau for all subjects. This is much 

further from the critical point (a/4b= 1.0) than found 

in earlier studies of relative phase fluctuations (in 

ref. [ 10]: a/4b.~0.64). Consequently the critical 

fluctuations predicted [ 8 ] 

/ \ I/2 

SD,~ (T~e,,,~) ~1.50 (3) 
-- \ Trel,O f 

392 

data example 
perturbation of 

fingers and 
relative phase

Scholz, Kelso, Schöner, 1987



Signatures of instability

loss of 
stability 
indexed by 
measures of 
stability 

frequency

variability of relative phase

frequency

relaxation time

ANTIPHASE

ANTIPHASE

INPHASE

INPHASE
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Fig. 2. The mean relaxation times as a function of pacing frequency for the five subjects (EB, GS, DT, JB and BK). The open triangles 

refer to the anti-phase mode, the closed triangles to the in-phase mode. The mean transition frequencies for the five subjects were: EB: 

2.02+0.15 Hz (N~ 34), GS: 2.27+0.15 Hz (N= 33), DT: 2.21 +0.17 Hz (N= 30), JB: 2.56+0.19 Hz (N=26)  and BK: 2.35+0.19 Hz 

(N= 28 ). In these imeans, transitions that were induced by a mechanical perturbation were discarded. Note that beyond the transition 

frequency trials started in either mode are in-phase. 

are comparatively small (cf0 ref. [10], where this 

ratio is 2 .13) . indeed in the present data the fluc- 

tuation enhancement on the pre-transition plateau 

in the anti-phase mode was not statistically signifi- 

cant. The SDs in both modes are at a level of 20 °, 

except for a tralasient enhancement on the transition 

plateau in the anti-phase mode. The parameter Q was 

estimated from I these data as 0.47 Hz. 

We can use these parameter estimates to test the 

consistency of  Our stochastic-dynamic modelling (1). 

As discussed in refs. [2-8] ,  the system is predicted 

to switch as soon as the time scales relation: 

rf~,.~ <<Tp << z~q~ , (4) 

is violated. Here z~q~ is the equilibration (or global 

relaxation) time of (1) and zp is the time scale of  

parameter change which is identical here to the 

observed time scale, and is given by % =  10 s. An 

estimate of z~u can be obtained from the mean first 

passage time (MFPT) for the passage from 

¢ =  + 180 ° to ¢ = 0  °. Using model parameter esti- 

mates for the frequency plateau immediately before 

the transition we calculated the MFPT numerically 

from a standard formula (cf. ref. [8], eq. (4.26)) 

and found M F P T =  13.0 s. For critical parameters 

( a = l . 6  Hz, b=0.40 Hz, Q=0.47 Hz) we found 

MFPT = 5.35 s. Thus switching indeed occurs as ~qu 

becomes shorter than Tp, entirely consistent with the 

stochastic theory. In earlier experiments [ 9,10 ] which 

found critical fluctuations, rp was smaller (4s)  

allowing the system to come closer to the critical point 

before (4) was violated (MFPT=9.62  s pre-transi- 

tional and 5.28 s critical there). As we have empha- 

sized [2,8], and as the present observations clearly 
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relaxation times, individual data



data (averaged across subjects) Schöner, Kelso (Science, 1988)



Neuronal process for coordination

each component is driven by a 
neuronal oscillator

their excitatory coupling leads to in-
phase

their inhibitory coupling leads to 
anti-phase



coordination=stable relative 
timing emerges from coupling 
of neural oscillators time

activation

Coordination from coupling

[Schöner: Timing, Clocks, and Dynamical Systems. Brain and Cognition 48:31-51 (2002)]

TIMING, CLOCKS, AND DYNAMICAL SYSTEMS 41

(Engbert et al., 1997; Pressing, 1999; Semjen et al., 2000) deal explicitly with cou-
pling, albeit within the framework of delay or functional dynamical systems.

3.2. Dynamic Timing Models

Coupling is the central concept for understanding relative timing within dynamic
timing models. Mathematically, two dynamic timers, (u1, v1) and (u2, v2), are mutu-
ally coupled if the dynamic variables of one timer contribute to the dynamic equations
of the second and vice versa. For the Amari oscillator model presented earlier [Eqs.
(6) and (7)], for instance, a simple form of mutual coupling is generated by the terms
carrying the coefficient, c, in these equations:

τu̇1 ! "u1 # hu # wuu f (u1) " wuv f (v1) (11)

τv̇1 ! "v1 # hv # wvu f (u1) # cf (u2) (12)

τu̇2 ! "u2 # hu # wuu f (u2) " wuv f (v2) (13)

τv̇2 ! "v2 # hv # wvu f (u2) # cf (u1) (14)

These are only two out of a great variety of possible coupling terms. They generically
generate phase locking, so that the two oscillators adopt identical frequencies and
align matching parts of their activation trajectory (Fig. 11). This relative time order
is stable; that is, when the two oscillators start out with differently aligned trajectories
or are perturbed away from the stable alignment, then the dynamics drives the timers
back to the stable timing relationship.
A characterization of relative timing independently of the underlying activation

states is possible through the concept of relative phase. Its empirical definition is
based on reference events (here the moments in time when activation pierces a thresh-
old leading to a motor event such as a tap). The latency between matching events
of two activation functions divided by the current cycle time of either of the activation
functions is the relative phase, φ ! ∆T/T (Fig. 9). (Relative phase may be normalized

FIG. 11. Two coupled dynamic timers [Eqs. (11), (12), (13), (14)] generically adopt a stable pattern
of relative timing called phase-locking (here near in-phase). Activation variables are in solid black,
inhibition variables in dashed gray. (Bottom) The two activation variables are plotted against each other.
Except for noise-induced fluctuations, the two variables covary, indicating phase-locking.



marginal stability of phase 
enables stabilizing relative 
timing while keeping trajectory 
unaffected 

dF/dt = f(F)

F
phase neutrally 
stable

phase 
stabilized
by coupling

Movement timing

[Schöner: Timing, Clocks, and Dynamical Systems. Brain and Cognition 48:31-51 (2002)]



coordination patterns are stable 
states

stability may vary and may be lost

instability leads to pattern change

Dynamical systems account of 
instability



Dynamical systems account of 
instability

state of 
dynamical 
system 
x=relative 
phase

x

dx/dt=f(x)

dynamical system

fixed point, which is stable (attractor)



Dynamical systems account of 
instability

at low 
frequencie
s this 
system is 
bistable

in-phase anti-phase

x

dx/dt=f(x)



Dynamical systems account of 
instability

at 
increasing 
frequency 
stability of 
anti-phase 
is lost

relative 
phase

rate of change of relative phase

low
frequency

mid-range
frequency

high
frequency

in-phase anti-phase



Predicts increase in variance

“critical 
fluctuations”

variance

increase in 
movement 
frequency

anti-
phase

relative phase

rate of change of relative phase

in-
phase

noise

variance

relative
phase

d(relative phase)/dt d(relative phase)/dt

noise

variance

relative
phase

movement 
frequency



Predicts increase in relaxation time

“critical 
slowing 
down”

relaxation time

movement 
frequencyincrease in 

movement 
frequency

anti-
phase

relative phase

rate of change of relative phase

in-
phase



 Conclusion

to understand coordination patterns, 
we need to understand the 
underlying coordination dynamics

= stabilization mechanisms

and their strength

from which the mean pattern 
emerges



What level does the instability of 
coordination come from? 

from peripheral motor control?

from central motor control? 

from perceptual representations of 
movement? 



What level does 
instability come 

from? 

Mechsner, Kerzel, Knoblich, Prinz, Nature 2001

Is the instability tied to the motor system? 



Mechsner, Kerzel, Knoblich, Prinz, Nature 2001



=> coordination in space

rather than in effector space

so coordinated oscillators are central

rather than peripheral



Coordination of discrete movement

coupling can account for 
coordination of discrete 
movement based on the idea that 
oscillator is “on” (stable) only for a 
cycle… 

back and forth components of 
rhythmic movement are driven by 
different neural populations

so even rhythmic movement coordination 
may exploit this mechanism of discrete 
movement coordination 

267 

individual movements differ more strongly in move- 
ment amplitude and hence movement time (top panel) 
and evidently their synchronization is less complete 
(bottom panel) than in the case of Fig. 6. This accounts 
for the gradual breakdown of synchronization reported 
in Marteniuk et al. (1984) and Corcos (1984), as the 
movement conditions for the two components were 
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Fig. 8a, b. The coordinated movements (with coupling) shown in Fig. 
6 are reproduced as solid hnes: the small amplitude component in the 
top, and the large amplitude component in the bottom panel. The 
dashed lines show simulations at the same parameter values in which 
one component was perturbed at t = 1.2 s. In panel a of  the figure the 
intrinsically faster component x~ (top) is perturbed to assist the 
movement (xl ~ 3 cm ~ 2 cm, v ~ - 2 cm/s ~ - 4 cm/s), leading to a 
speeding up of  the unperturbed component to restore synchroniza- 
tion. In panel b the intrinsically slower component x2 (bottom) is 
perturbed to delay its movement (v I ~ - 8  em/s--,  +50  cm/s) leading 
to a slowing down of  the unperturbed component again to restore 
synchronization 

made more dissimilar. A similar breakdown of synchro- 
nization was observed by Kelso et al. (1983), when they 
placed an obstacle in the movement path of one compo- 
nent so that its space curve and hence movement time 
became much longer than that of the other hand. 

In the present theoretical account the tendency to 
synchronize discrete movement is due to the formation 
of a stable coordination pattern between the two com- 
ponents. This leads to the prediction that a remote 
compensatory reaction occurs in one component, if the 
other component is perturbed. (In light of previous 
discussion it is clear that the perturbation must be 
sufficiently strong to affect the nervous system level of 
coordination modelled here.) Moreover, the remote 
compensatory responses are such as to restore the 
coordination pattern, that is, to restore synchroniza- 
tion. We demonstrate this phenomenon for the model 
in Fig. 8. The two components perform movements 
with different movement amplitudes, but identical 
movement times due to coupling (solid lines of Fig. 8 
are the same trajectories as shown before in the lower 
panel of Fig. 6). In Fig. 8a we perturb component x~ to 
assist its movement (top panel, dashed line). We ob- 
serve an effect in the unperturbed component (bottom 
panel, dashed line): this component is also advanced in 
its movement, that means, the compensatory response 
tries to restore synchronization. Figure 8b shows the 
same effect when we perturb the slower component, x2, 
delaying its movement (lower panel, dashed line). In 
this case the effect in the other component is to move 
more slowly (top panel, dashed line), again in the 
direction of restoring synchronization. 

It would be very interesting to try to observe such a 
phenomenon in experiment, because this prediction is 
due to the conceptual structure of the present theory 
rather than to the detailed modelling assumptions. Ex- 
periments on perturbations of the movements of articu- 
lators in repetitive speech contain hints at such an 
effect. For example, Kelso et al. (1984) perturbed the 
jaw during various utterances and observed fast com- 
pensatory reactions in the upper lip if it was function- 
ally necessary to achieve final lip closure. Recently, 
Gracco and Abbs (1988) showed, that in similar situa- 
tions the compensatory movement of the remote articu- 
lator is such as to restore the normal relative timing of 
different articulators. 

Finally, we examine the consequences of the nonlin- 
ear coupling measured by the coupling coefficient/, that 
was introduced to account for anti-phase locking in 
rhythmic movement (see Haken et al. 1985). What 
could anti-phase locking mean in the case of discrete 
movement? The attraction to a relative timing corre- 
sponding to anti-phase locking leads to a tendency to 
perform two movements sequentially. Thus, if two dis- 
crete movements are initiated with sufficient delay (in 
the model: to, ~ different from to. 2), the movement time 
of the delayed movement increases to make the move- 
ment occur with less temporal overlap. In Fig. 9 we 
show two components moving with the same amplitude 
(standard parameter set, (25)), either individually (i.e., 
uncoupled: solid lines) or together (i.e., coupled: dashed 

[Schöner, Biol Cybern 63:257 (1990)]



Robotic demonstration: timed 
movement with online updating



rolls down the inclined plane. It is stored in a neural
activation field, which serves as a low-pass filter and is
used to control the ‘approach’ ECU. The time-to-impact
is used to control the ‘hit’ ECU, activating it whenever
the time-to-impact falls below a threshold.
E. Motor system

The motor system (lower right box in Fig. 2) re-
ceives input from the dynamical systems that control the
robotic arm. The dynamical systems described in Eq. 5
generate trajectories for the racket movement variables
x, y and φ in task space that are defined in the coordinate
system of the inclined plane. They are first transformed
to a world reference frame centered at the base of the
robot and then converted into joint angles using an
inverse kinematics transformation. Those joint angles
drive joint servo-controllers for the robot arm.

IV. Evaluation & Results
We have implemented the architecture both on a

real robotic platform (see Fig. 1) and in a physically
realistic Matlab simulation.1 Experimental results from
the robotic implementation are demonstrated in the
video associated with this paper. We used the simulation
environment to evaluate the performance of the system
both quantitatively, for many trials, and qualitatively, in
single situations that demonstrate its core properties.

For a quantitative evaluation, we ran a trial in which
the robot had to drive the ball up the inclined plane
(without obstacles) as often as possible. The trial con-
sisted of 1000 hitting sequences, where a new sequence
was started after every failure to hit the ball. For each
such hitting sequence, the number of consecutive hits
was counted. At the beginning of each sequence, the ball
was reintroduced into the scene with a random speed
([0.6 m, 0.8 m]) and launching angle ([95◦, 120◦]). If the
ball landed inside safety margins at the left and right
borders of the inclined plane, which the real robotic arm
cannot reach due to safety provisions, the ball was re-
injected without restarting the hit counter.

For a plane inclination of 5◦, the success rate for
hitting is 95.44 percent, with a mean of 20.94 consecutive
hits among all sequences. For a steeper inclination of 10◦,
the success rate is 92.43 percent, with a mean of 12.21
hits.

In the remainder of this section, we will illustrate
the core properties of the proposed model using results
of characteristic individual simulations of the complete
robotic scenario.

The trajectories in Fig. 5 demonstrate that the robot is
able to hit the ball successfully. Detailed time courses of
the relevant variables and parameters are shown in Fig. 6.
At t = 0 s, the ball is launched upwards from the bottom
of the inclined plane. At t ≈ 2.56 s, the ball starts rolling
down and the vision system provides a prediction of the

1The source code of the simulation is freely available for down-
load at http://neuraldynamics.eu.
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Fig. 5: Trajectories of the ball and the racket for a
successful hit. The brown line shows the racket orien-
tation, φ, at the moment of the hit.

Fig. 6: Time courses of meaningful variables of the
architecture during a successful hit. From top to bottom,
the plots show (1) whether a prediction for the ball
hitting point is available, (2) the time-to-impact, (3) the
activation of the intention nodes of ECUs, (4,5) the x-
and y-positions of the racket, and (6) the orientation φ
of the racket.
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activation field, which serves as a low-pass filter and is
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is used to control the ‘hit’ ECU, activating it whenever
the time-to-impact falls below a threshold.
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robotic arm. The dynamical systems described in Eq. 5
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robot and then converted into joint angles using an
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real robotic platform (see Fig. 1) and in a physically
realistic Matlab simulation.1 Experimental results from
the robotic implementation are demonstrated in the
video associated with this paper. We used the simulation
environment to evaluate the performance of the system
both quantitatively, for many trials, and qualitatively, in
single situations that demonstrate its core properties.

For a quantitative evaluation, we ran a trial in which
the robot had to drive the ball up the inclined plane
(without obstacles) as often as possible. The trial con-
sisted of 1000 hitting sequences, where a new sequence
was started after every failure to hit the ball. For each
such hitting sequence, the number of consecutive hits
was counted. At the beginning of each sequence, the ball
was reintroduced into the scene with a random speed
([0.6 m, 0.8 m]) and launching angle ([95◦, 120◦]). If the
ball landed inside safety margins at the left and right
borders of the inclined plane, which the real robotic arm
cannot reach due to safety provisions, the ball was re-
injected without restarting the hit counter.

For a plane inclination of 5◦, the success rate for
hitting is 95.44 percent, with a mean of 20.94 consecutive
hits among all sequences. For a steeper inclination of 10◦,
the success rate is 92.43 percent, with a mean of 12.21
hits.

In the remainder of this section, we will illustrate
the core properties of the proposed model using results
of characteristic individual simulations of the complete
robotic scenario.

The trajectories in Fig. 5 demonstrate that the robot is
able to hit the ball successfully. Detailed time courses of
the relevant variables and parameters are shown in Fig. 6.
At t = 0 s, the ball is launched upwards from the bottom
of the inclined plane. At t ≈ 2.56 s, the ball starts rolling
down and the vision system provides a prediction of the

1The source code of the simulation is freely available for down-
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Fig. 5: Trajectories of the ball and the racket for a
successful hit. The brown line shows the racket orien-
tation, φ, at the moment of the hit.

Fig. 6: Time courses of meaningful variables of the
architecture during a successful hit. From top to bottom,
the plots show (1) whether a prediction for the ball
hitting point is available, (2) the time-to-impact, (3) the
activation of the intention nodes of ECUs, (4,5) the x-
and y-positions of the racket, and (6) the orientation φ
of the racket.

(a) Trajectory of the racket when the ball is reflected by an
obstacle during the racket movement. The thin black lines
show the unperturbed trajectories of the ball and the racket.

(b) A new hitting movement sequence is initiated while the
end-effector is still moving back to the reference configuration.

(c) Trajectory of the racket when the ball is deviated by an
obstacle during the racket movement. The thin black lines
show the unperturbed trajectories of the ball and the racket.

(d) Trajectory of the racket when the ball is perturbed by
many obstacles during the racket movement.

Fig. 7: Trajectories of the ball and racket for characteristic individual simulations of the robotic scenario.

hitting point and the time-to-impact. The intention node
of the ‘approach’ ECU turns on and drives the end-
effector toward the predicted hitting point along the x-
axis and y-axis. As the ball approaches the hitting point
and the time-to-impact falls below the variable threshold
(at t ≈ 3.95 s), the intention node of the ‘hit’ ECU gets
activated. This initiates a timed hitting movement of
the racket orientation, φ, the racket hitting the ball at
t ≈ 4.42 s. The hit drives the ball back up the inclined
plane, removing the prediction of the hitting point of
the ball prediction. The intention nodes of the ECUs
‘return from hit’ and ‘return/track’ switch on and initiate
movements that drive the racket orientation, φ, back
to the initial orientation and the x- and y-position of
the end-effector back to the initial posture. At the same
time, the end-effector starts tracking the ball along the

horizontal axis.
We now demonstrate in four scenarios the character-

istics of our model in generating and flexibly organizing
sequences of timed movements. Each scenario consists of
a different kind of perturbations on the ball trajectory.

In the first scenario, shown in Fig. 7a, the ball is
reflected by an obstacle while the end-effector is mov-
ing toward the predicted hitting point. The model au-
tonomously reacts to this perturbation by aborting the
hitting movement sequence and initiating a movement
back to the initial posture, ready to initiate the next
hitting movement.

The second scenario (Fig. 7b) shows that the model is
able to activate a new hitting sequence even while still
moving back to the initial posture. This may for instance
occur after a successful hit that was however not strong
enough to drive the ball far enough up the incline.

[Oubbati, Richter, Schöner, 2013]



… deeper issue in timing…

contribution of the control level

muscles and biomechanics contribute to timing  

contribution of movement planning

on line updating 

arriving “just in time” 

contribution of movement organization 

timed movement sequences 

modulating timing in rhythms

coarticulation 


