Movement generation for robot arms

Kinematics and Attractor Dynamics for manipulators
Robotic arms

They aren't vehicles
movement generation for vehicles

• the floor is a 2D environment

• vehicle treated as point

• task: reach goal

• task: avoid obstacles

• not much more vehicles can do
arms: what changes?

• where we move: environment: 3D

• what we do: more tasks are possible at the same time or in sequence: e.g. manipulation

• an interesting point on the arm is the end-effector

• what we move: chain-of-links or segments geometry (**kinematic chain**)

• but moving a link can affect other links. complication.
arms: what changes?

• different tasks active at different times: system needs to combine tasks that switch on/off all the time

• does Attractor Dynamics approach scale-up? what happens when multiple tasks are active at the same time? does it work? why?
rigid bodies

• cannot treat robot as single point in space, anymore

• connected links

• orientation and translation for each link: two times 3 dimensions

• we need a way to relate our task to the links translation and orientation

• note: not always require specific orientation and specific translation for link at the same time
kinematics and kinetics

- **kinematics**: movement *without* forces

- **kinetics**: (dynamics, not in the mathematical sense) movement *with* forces

- important acting forces: gravitation, interaction of links

- we push kinetics out to low-level controller. modern robots know their own dynamics.
how does the arm move?

- joints: revolute, spherical, cylindrical, prismatic
- how many DoF and what kind of joints does the human arm have?
- typically position controlled servo-motors
formal constraints

• **workspace**: either the environment or sometimes space of reachable positions \(p \) or \(x \) (vectors) of the end-effector. Euclidian.

• **configuration space**: space of all possible (here:) joint positions \(\theta \) (vectors). Also **joint space**.

• task **constraints**: equations (equalities or inequalities) that need to be successfully satisfied for the task. can be vector-valued.

• **holonomic** constraints: expressible purely via configuration (and time). Reduces dimension of workspace.

• **non-holonomic** constraints: Velocity-based constraints. Introduces path-dependency. Typically vehicles are non-holonomic robots (can’t move side-ways).

• **Degrees of Freedom**: dimensionality of configuration space.

• **Redundancy**: Compare DoF and dimensions of task contraints. More DoF than necessary? Infinite solutions to constraints possible.
Kinematics
where is the hand?

- **forward kinematics**
- example: single revolute joint
- \[p(\theta_1) = \begin{pmatrix} l_1 \cos \theta_1 \\ l_1 \sin \theta_1 \end{pmatrix} \]
- generally: \(p \) is a function of \(\theta \)
where is the hand?

- forward kinematics
- example: revolute joint and prismatic joint

\[p(\theta) = p(\theta_1, \theta_2) = \begin{pmatrix} l_1 + \theta_1 + l_2 \cos \theta_2 \\ l_2 \sin \theta_2 \end{pmatrix} \]
what happens if I move a joint?

- differential (forward) kinematics \(\dot{\mathbf{p}} = J\dot{\theta} \)

- (kinematic) Jacobian matrix \(J \)

\[
J = \begin{pmatrix}
\frac{\partial p_1(\theta)}{\partial \theta_1} & \frac{\partial p_1(\theta)}{\partial \theta_2} \\
\frac{\partial p_2(\theta)}{\partial \theta_1} & \frac{\partial p_2(\theta)}{\partial \theta_2}
\end{pmatrix}
\]

\[
= \begin{pmatrix}
1 & -l_2 \sin \theta_2 \\
0 & l_2 \cos \theta_2
\end{pmatrix}
\]
what happens if I move a joint?

(the first joint is the prismatic ‘slider’ joint)

\[
J = \begin{pmatrix}
\frac{\partial p_1(\theta)}{\partial \theta_1} & \frac{\partial p_1(\theta)}{\partial \theta_2} \\
\frac{\partial p_2(\theta)}{\partial \theta_1} & \frac{\partial p_2(\theta)}{\partial \theta_2}
\end{pmatrix}
\]

\[
= \begin{pmatrix}
1 & -l_2 \sin \theta_2 \\
0 & l_2 \cos \theta_2
\end{pmatrix}
\]

\[
\dot{p} = J\dot{\theta}
\]
what happens if I move a joint?

\[J = \begin{pmatrix} \frac{\partial p_1(\theta)}{\partial \theta_1} & \frac{\partial p_1(\theta)}{\partial \theta_2} \\ \frac{\partial p_2(\theta)}{\partial \theta_1} & \frac{\partial p_2(\theta)}{\partial \theta_2} \end{pmatrix} \]

\[= \begin{pmatrix} 1 & -l_2 \sin \theta_2 \\ 0 & l_2 \cos \theta_2 \end{pmatrix} \]

\[\dot{p} = J \dot{\theta} \]
what happens if I move a joint?

• differential (or instantaneous) kinematics provide a relationship between velocities

\[\dot{p} = J \dot{\theta} \quad J = \frac{\partial p(\theta)}{\partial \theta} \]

• note: J changes when \(\theta \) changes

• what happens when J is singular? kinematic **singularity**. rank changes

• since J changes, these singularities can appear and disappear (at certain configurations) while moving

• **nullspace** of J: space of all \(\dot{\theta} \) that project to a \(\dot{p} \) of 0.
how do I get the hand to where I want it?

- we now need to look at the inverse problem: what joints do I need to set to what values to reach a certain point in workspace?

- **closed form** solution (inverse of the forward kinematics)

- the forward kinematics $p(\theta)$ can in general not be analytically inverted

- geometrical construction. depends on geometry of robot!
how do I get the hand to where I want it?

\[\theta_1 = \arctan_2(y, x) \pm \beta \]
\[\theta_2 = \pi \pm \alpha \]
\[\alpha = \cos^{-1} \left(\frac{l_1^2 + l_2^2 - r^2}{2l_1 l_2} \right) \]
\[\beta = \cos^{-1} \left(\frac{r^2 + l_1^2 - l_2^2}{2l_1 l_2} \right) \]
how do I get the hand to where I want it?

- the differential kinematics may be simpler to invert?

\[\dot{p} = \frac{dp}{dt} = \frac{dp}{d\theta} \frac{d\theta}{dt} = J \dot{\theta} \]

- ... if \(J \) is invertible.

- is \(J \) singular?

- is \(J \) even quadratic?

- iff invertible: \(\dot{\theta} = J^{-1} \dot{p} \)

 we can calculate a commanded joint velocity

- integrate \(\dot{\theta} \) to \(\theta \) to send commands
inverse of differential kinematics

- if J is not invertible we can use the **Moore-Penrose pseudoinverse** J^+ instead of J^{-1}

- defined as:

 $$J^+ = (JJ^T)^{-1}J^T$$

- to invert the equation:

 $$\dot{p} = J\dot{\theta}$$

- (apply from the left) to get:

 $$\dot{\theta} = J^+ \dot{p}$$

- this is a commonly used generalized matrix inverse
inverse of differential kinematics

- J^+ in $\dot{\theta} = J^+ \dot{p}$ has useful properties:
 - if there are many solutions (typically yes) it minimizes:
 \[
 |\dot{\theta}|
 \]
 - net effect: this prefers lower speeds over all joints than one joint with high speed. Good!
 - if there is no solution it finds the solution with the smallest error

- if J is not invertible, we can use the Moore-Penrose pseudo-inverse

- a generalized matrix inverse
 - property: minimizes $J^+ J + \dot{\theta} = J^T \dot{p} |\dot{\theta}|$
inverse of differential kinematics

- not implemented in this manner, though:
 \[J^+ = (JJ^T)^{-1} J^T \]
- but as singular value decomposition
 \[J = U \Sigma V^T \]
 \[J^+ = V \Sigma^+ U^T \]
- where U and D are specific orthogonal matrices and \(\Sigma \) is a diag matrix of ‘singular values’ - all based on the Eigenvalues and Eigenvectors of \(JJ^T \) and \(J^T J \)
more on the Moore Penrose Pseudo-Inverse

- if Σ is a matrix of ‘singular values’ σ in the diagonal entries

- then Σ^+ is the transposed matrix of the reciprocal values: \[\frac{1}{\sigma} \]

- PROBLEM: the singular values become very small when we get close to singularities (directions in which we cannot move)

- workaround: use the damped pseudo-inverse with the corresponding entries: \[\frac{1}{\sigma + \epsilon} \]
Attractor Dynamics for robot arms
recap: tasks in Attractor Dynamics

• task as differential equation
 \[\dot{\phi} = f(\phi) \]
 \[\dot{\phi} = 0 \]

• task is adhered-to if system is in a fixed-point

• move quickly into attractor state

• in reality: near attractor suffices

• avoidance: repellors

• task akin “forcelet”
generating complex movements
different tasks

- reach bottle
- grasp bottle
- pour the drink
- put bottle on table
- avoid obstacles
- hand position, bottle position
- hand orientation, hand opening, hand closing
- bottle orientation, glass position, glass filling
- obstacle positions, if any
different tasks

• different variables “”φ”” are relevant for different tasks

• a task can be expressed as constraint on that variable (stable fixed-point in a dynamical system)

• but how do φ and ˙φ relate to θ and ˙θ in joints?

• task defines submanifold on configuration space

• different tasks live on different sub- manifolds of configuration space. how can this work?
independent stabilization

- independent forcelets
- each a (possibly different) relevant variable
- constraints expressed as attractors/repellors in dynamical system over that relevant variable only
- find joint space changes that realize this task (independently)
reintegration of independent tasks

• superposition of independent forcelets

• now new vector field realizes compromise of tasks
reintegration of independent tasks

joint angles that realize

task 1 (hand position)
reintegration of independent tasks

joint angles that realize

task 2

(hand orientation)
reintegration of independent tasks

joint angles that realize task 1 and task 2
reaching

• deviation angle dynamics, analogously to heading angle dynamics (define a plane M)

\[\dot{\phi} = f_{dir} = -\alpha \phi \sin \phi \]

• angle: \(\phi = \angle(\dot{x}, k) \)

• insert a step: In workspace, what vector would realize the change?
• from geometry we can find:

\[\mathbf{v}_\perp = \left(\mathbf{k} - \frac{\langle \mathbf{k}, \mathbf{v} \rangle}{\langle \mathbf{v}, \mathbf{v} \rangle} \mathbf{v} \right) \frac{\left| \mathbf{v} \right|}{\left| \mathbf{k} - \frac{\langle \mathbf{k}, \mathbf{v} \rangle}{\langle \mathbf{v}, \mathbf{v} \rangle} \mathbf{v} \right|} \]

• transformation of forcelet into workspace:

\[\mathbf{f}_{dir} = \mathbf{f}_{dir} \cdot \mathbf{v}_\perp = -\alpha \phi \sin \phi \cdot \mathbf{v}_\perp \]
reaching

• transformation from workspace into joint-space:

• per inverse differential kinematics:

\[J^+ = J^T (J J^T)^{-1} \]

\[F_{dir} = J^+ \cdot f_{dir} = -\alpha \phi \sin \phi \cdot J^+ \cdot v_\perp \]

• we now have a “forcelet” in joint space
speed

- analogous to the vehicle scenario, speed treated as independent task:

 - \(v = |\mathbf{v}| \)

 - select a desired speed: \(v_{des} \)

 - \(\hat{\mathbf{v}} = \frac{\mathbf{v}}{|\mathbf{v}|} \)

\[
\begin{align*}
 f_{vel} &= -\alpha_{vel}(v - v_{des}) \\
 \mathbf{f}_{vel} &= \mathbf{f}_{vel} \cdot \hat{\mathbf{v}} \\
 \mathbf{F}_{vel} &= J^+ \cdot \mathbf{f}_{vel}
\end{align*}
\]
obstacle avoidance
obstacle avoidance

- finding a instantaneous joint change that enacts the required (instantaneous) task change: find direction that moves the relevant task variable into its attractor

- other take on it: find direction that moves the relevant task variable away from its repellor

- problem: all links must be able to avoid. but moving proximal links also moves distal ones (kinematic chain)
for every link:

- find closest points o on obstacle and s on link
- in what direction does link point s currently move?
- in what direction should it move?

note: s does not have the same forward kinematics and not the same Jacobian as the end-effector!
construction on normal plane

“shadow of obstacle” on plane N
avoidance with upwards bias (rotated)

direct avoidance
other parameters

- distance range
- angular range
gripper orientation

- angle dynamics
- different geometrical construction and Jacobian but same principle
- requires one DoF of the system, thus preferable only enforce when necessary. NOT ALWAYS ON

\[f_{ori} = -\alpha \gamma \sin \gamma \]
superposition of tasks

• finally, superpose all independently stabilizing vector fields:

\[\mathbf{F} = \mathbf{F}_{dir} + \mathbf{F}_{vel} + \sum_{obs,seg} \mathbf{F}_{obs} \]

• interpret the vector-field as acceleration command:

\[\ddot{\theta} = \mathbf{F} \]