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The problem

® move about in a
2D world, which
is occupied by
objects/stuff




The problem: components

B sense something about the environment
® know about the environment

B plan movement in the environment that is
collision-free

® control vehicle to achieve planned movement

B estimate what vehicle actually did



Concepts

B |ocal vs. global

B information only about the local environment of the
robot vs. global map information about the environment

B reactive vs. planning

B motion planning “on the fly” in response to sensory
inputs vs. motion planning for an entire action

B exact vs. heuristic

B guaranty a path is found when one exists that fulfills the
constraints. vs. generate a plan based on ad hoc
principles, likely to fulfill constraints



Concepts

B continuous vs. discrete:

B continuous state space variables vs. grid state spaces,
graph state spaces

B behavior-based vs. classical

B low-level sensory information vs. world representations



Approaches to vehicle path
planning

B classical planning approaches
B potential field approach
® Borenstein & Koren

® (dynamic window approach)



Classical global path planning

B Standard reference: Latombe: Robot motion
planning, 1991

® very good general review: LaValle: Planning
algorithms, 2006
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Classical global path planning

B mathematical theories of constraint
satisfaction and decision theory

B searching spaces, sampling approaches
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Classical local path planning

B reference: Cox,Wilfong: Autonomous Robot
Vehicles, 1990

® based on known world (e.g., as polygonial
representation of surfaces)

® taking into account vehicle model

B smoothness constraints



Potential field approach

® invented by Khatib, 1986 (similar earlier
formulation: Neville Hogan's impedance
control)

B the trajectory of a manipulator or robot
vehicle is generated by relaxing a point in a
potential field to an equilibrium point

® the manipulator 3D end-position or vehicle
2D position is updated by descending within
that potential field

B obstacle surfaces are potential hills; target
states are potential minima



Potential field approach




potential field approach

® as a heuristic planning approach

B jdea: have target and obstacle representation
B make potential minimum at target

® make potential maximum at obstacles

B compute downhill gradient descent for path
generation



potential field approach

Al

M obstacle
configuration

[Barranquand, Langlois, Latombe, 1989]



potential field approach

® contours of
associated
obstacle
potential field

[Barranquand, Langlois, Latombe, 1989]



® contours of

potential field approach
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potential field approach

2255

® contours of
improved
target potential
field (by adding
bubbles around
obstacles)
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[Barranquand, Langlois, Latombe, 1989]



potential field approach

® adding all
contributions
leads to
solution:
gradient
descent for
vehicle

[Barranquand, Langlois, Latombe, 1989]



potential field approach

B generalization
to higher-
dimensional
configuration
spaces
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comparison to human behavior

® Fajen/Warren compared fit of potential field
approach to fit of attractor dynamics
approach for human locomotion data

Graph of artifical potential fieldl
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comparison to human behavior

Graph of vector magnitudes

Vector magnitudes




comparison
potential field vs.
attractor
dynamics

® potential sharper
than distance
dependence of
repellor

(b)



comparison

potential field vs.

attractor
dynamics

B potential softer than
distance dependence
of repellor
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spurious attractors in potential
field approach
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potential fields: limitations

B spurious attractors and constraint violations

B solution: making potential field approach
exact and global: navigation functions

® potential computed such that it only has the
right maxima and minimal

® but: computational cost

® but: requires global information



Virtual force field: Borenstein &
Koren

B ultra-sound histograms: the virtual force
field concept

& vector-field histogram concept: polar
histogram (heading direction!); height
(strength) depends on both certainty and
distance

B threshold: determine free sectors

B select free direction closest to target



Virtual force field: Borenstein & Koren
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Virtual force field:
Borenstein & Koren
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Vector field histogram: Borenstein & Koren

® transform active window in world grid into
polar histogram
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Vector field histogram:

Borenstein & Koren
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Vector field histogram:

. B Select safe direction algorithmica
Borenstein & Koren
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Vector field
histogram:
Borenstein &
Koren

B works
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Conclusions

® powerful approaches exist for motion
planning

B the best/exact approaches make strong
demands on world representations and
computation

B the fast/heuristic approaches have limitations

B in practice, the attractor dynamics approach
IS competitive



