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Second order dynamics

source: Bicho, Schöner, Robotics and 
Autonomous Systems 21:23-35 (1997)



Second order dynamics

idea: go to even lower level 
sensory-motor systems: 

a sensor that only knows there is a 
target or an obstacle on the left vs. 
on the right…

but is not able to estimate the 
heading of either 

a motor system that is not calibrated 
well enough to steer into a given 
heading direction in the world 



dynamical variable
turning rate omega rather than heading 
direction

can be ``enacted’’ by setting set-points for 
velocity servo controllers of each motor 

target: information about target being to the 
left, to the right, or ahead, but no calibrated 
bearing, psi, to target

obstacle: turning rate 

to the right when obstacle close and to the left

to the left when obstacle close and to the right

zero when obstacle far



dynamics of turning rate: 
obstacle avoidance

pitch-fork normal form (to get left-right 
symmetry)

but symmetry potentially broken by additive 
constant: biases bifurcation toward left or 
toward right



obstacle avoidance



obstacle avoidance

in absence of obstacle in forward direction 
(distance large): alpha negative, constant zero



obstacle avoidance

in presence of obstacle in forward direction, 
symmetric bifurcation to desired avoidance 
rotations: alpha positive, constant zero



obstacle avoidance

in presence of obstacle to the right of current 
heading: tangent bifurcation removes attractor 
at negative omega, alpha negative, constant 
negative



mathematical form
compute constant and alpha from obstacle force lets



bifurcations as 
an obstacle is 
approached 



dynamics: target acquisition

a sensor for a target on the left sets an attractor at 
positive turning rate, strength graded with intensity

a sensor for a target on the right sets an attractor at 
negative turning rate, strength graded with intensity



mathematical formulation

force-let of 
each target 
sensor

summed to 
total dynamics



putting it to work on a simple 
platform

Rodinsky! 

circular platform with 
passive caster wheel

two (unservoed) 
motors

5 IR sensors

2 LDR’s

microcontroller 
MC68HCA11A0  
Motorola (32 K RAM), 
8 bit



example trajectories



video demonstration



why does it work?

here the dynamics exists instantaneously 
while vehicle is heading in a particular 
direction

while the vehicle is turning under the 
influence of the corresponding attractor for 
turning rate, the dynamics is changing! 

typically undergoing an instability as vehicle’s 
heading turns away from an obstacle… 



what is the benefit of using 
second order dynamics?

ability to integrate constraints which do not 
specify a particular heading direction, only 
turning direction

ability to impose a desired turning rate => 
enhances agility in turning 

ability to control the second derivative of 
heading direction=angular acceleration: 
enables taking into account vehicle dynamics



quantitative comparison

B. Metrics

We used two goal metrics to assess the performance: the
minimum distance to any obstacle (M2O) throughout the entire
simulation and the minimum distance to target (M2T). The
former was a safety measurement, as the larger M2O was, the
safer the path was. The latter indicated whether the goal had
been reached in the allocated time.

To analyze the control action, we introduced three metrics:
The average of angular acceleration (AAA), measured over
time. The standard deviation of angular acceleration (SDA),
where low values of AAA and SDA would imply smoothness
over the entire trajectory. And also the count of occurred
saturations (SAT) of the velocity command to capture the
capability of the hardware to enact the issued commands.

C. Parameter Estimation

A difficulty of comparisons of different approaches is that
performance and comparability relies heavily on the choice
of the parameters of the techniques, this being especially true
for systems of coupled dynamical equations. Here, one can
observe that the approaches do not have the same quantity of
parameters and that the parameters not even have the same
meaning or the same order of magnitude. Another difficulty is
the structure of the parameter space being sparse.

To tackle this issue, we first hand-tuned all the parameters
to a qualitatively satisfactory region of parameter space and
then applied an optimization using a score-based genetic algo-
rithm. The scores were based on the above mentioned metrics
and they were graded using a desired boxplot that express
the desired behavior. The truncation selection was chosen
with Arithmetic cross-over and small random pertubation as
mutation. After 3,200 trials for each technique, the parameters
chosen were as follows:

• FOAD: �t = 1.1, �3 = 3.2, �✓ = 0.59 and �4 = 0.5

• ADWD: Kg = 1.6, Ko = 5, b = 5.3, c1 = 0.23,
c2 = 0.3, �✓ = 0.45, �1 = 0.29

• CAPF: Kp = 1.1, Kv = 5, ⇢0 = 0.3, ⌘ = 0.008

• PFVS: Kp = 0.8, ⇢T = 1, ⌘ = 0.003, ⇢0 = 0.2

In the end, the four techniques did not present collisions,
they did not show saturations and they all reached the target
area. Thus, the performance metrics showed us that the algo-
rithms achieved with this parameter sets what was expected
from them based on the literature.

D. Experiment

We randomly generated 400 forest scenarios with different
difficulty levels, Fig. 1 illustrate an easy and hard scenario.

We ran the trials with small and large noises. Trials with
small noise served as a ground test. The chosen standard
deviations for small noise for the ultrasound and GPS were
1mm and 0.14m, respectively, and large noises were 2cm
and 0.7m, respectively. The value of the large noise was
determined by searching for the stability margin of the setup.
For noisy obstacle data, the stability margin was at a noise level
of 29% of the robot diameter, and for the localization of the

Fig. 1. Superposition of a example of hard scenario and easy scenario
generated.

robot itself, a noise with 10 times the robot diameter delimited
the stability margin. The noise in localization position also
affected the target representation, for instance, an initial target-
robot distance of 1m would erect a desired heading error of
0.6rad while when the distance would drop to 0.2m, the error
would rise to 1.3rad.

IV. RESULTS

As it postulated by the parameter design, we did not have
any collisions for the 800 runs. All achieved the target area and
no saturation cap occured. Moreover, all trials achieved similar
M2O and M2T metrics overall, with medians 0.08m± 0.02m
and 0.05m± 0.05m, respectively. The figures 2 to 3 show the
overall statistics for the control action metrics.
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Fig. 2. Boxplot comparison for the four techniques. For the AAA metric,
the desired position of the quartiles would be near zero for smoothness.

Note that the plots show the bias of the AAA towards
negative values, which comes from the initial orientation of
the robot in the experiments.

The ADWD shows the smoothest transitions in control
actions and with the lowest variation for the length of the
trajectories, even in the presence of noise. The Attractor

1st order 2nd order

[Hernandes, Becker, Jokeit, Schöner, 2014]



Other implementations

cooperative 
robot vehicles, 
by Estela 
Bicho, Portugal

autonomous 
wheel-chair by 
Pierre Mallet, 
Marseille


