Predictable Feature Analysis (PFA)

Stefan Richter, Laurenz Wiskott
stefan.richter@in.tum.de
laurenc.wiskott@in.tum.de

Inspired by Slow Feature Analysis (SFA, [6]), PFA extracts features by predictability rather than slowness.

This way, we prepare to handle interactive scenarios that involve notions of control, planning and decision-making. In order to perform any kind of planning or intelligent control, it is crucial to have a model that is capable of estimating the consequences of possible actions (cf. [1]). Since predictability is a desired property of such a model by definition, the PFA-setup is well suited for this purpose. While in control theory the involved models are usually formulated as a set of (partial) differential equations in a problem specific manner, with PFA we preserve the main advantages of SFA – namely its unsupervised nature and the ability to build a model in a self-organizing fashion.

Slow Feature Analysis (SFA)

On a given signal, Slow Feature Analysis (SFA, [6]) performs dimensionality reduction by selecting the slowest subsignals available under decorrelation and unit-variance constraints. Typical data-analysis and recognition tasks like regression and classification become much more feasible on the reduced signal. SFA was demonstrated to be capable of object recognition invariant to spatial transformations, self-organization of complex cell receptive fields, nonlinear blind source separation (BSS) and other tasks of this kind.

![SFA Diagram](image)

minimize \(a_i^T (z z^T)^{-1} a_j \)

subject to \(a_i^T (z z^T)^{-1} a_i = 1 \) (unit variance)

\(a_i^T (z z^T)^{-1} a_j = 0 \) ∀ \(j < i \) (uncorrelated)

Predictable Feature Analysis (PFA)

While there exist model-independent notions from information theory (cf. information bottleneck approach [3], ForeCA [7]), we consider predictability with respect to a certain prediction model. In the current setup, we consider signal components as predictable if they can be predicted by a linear autoregressive model after an optional, nonlinear preprocessing. The desired property of the extracted model function can be expressed as follows:

\[m(t) = A z(t) \]

![PFA Diagram](image)

The problem of finding optimal vectors \(a_i \) and \(b_i \) arises. We formalize it in least-squares-sense and include the constraints from SFA to avoid trivial or repeated solutions:

\[\begin{align*}
\text{minimize} & \quad a_i^T (z z^T)^{-1} a_j \\
\text{subject to} & \quad a_i^T (z z^T)^{-1} a_i = 1 \quad \text{(unit variance)} \\
& \quad a_i^T (z z^T)^{-1} a_j = 0 \quad \forall j < i \quad \text{(uncorrelated)}
\end{align*} \]

The extracted features must be optimized for predictability, but judging their predictability is an optimization problem by itself: If \(a_i \) or \(b_j \) is fixed, the other one can be obtained efficiently, but optimizing in turns runs into local optima. The following sketch illustrates a relaxation that allows efficient computation of near-optimal \(a_i \) and \(b_j \):

![PFA with External Information](image)

Future work: PFA using external information

An experimental variant of PFA allows to optimize predictability regarding to an additional stream of information.

This way we attempt to model problems that involve analysis of the relationship between two signals – typically representing control and sensor components – action and outcome. Planned tasks:

- let an agent explore an environment, learning the relation between its movement commands and the resulting position
- use the learned relation to reach any desired feasible state
- apply this to various scenarios (e.g. pendulum/pole swing up, moving blocks around, multi-room navigation, visual homing)

References

This work is funded by a grant from the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) to L. Wiskott (SFB 874, TP B1) and supported by the German Federal Ministry of Education and Research within the National Network Computational Neuroscience – Bernstein Focus, “Learning behavioral models: From human experiment to technical assistance”, grant FKZ 01GQ0901.