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Inspired by Slow Feature Analysis (SFA, [8]), PFA extracts features
by predictability rather than slowness.

This way, we prepare to handle interactive scenarios that involve no-
tions of control, planning and decision-making. In order to perform
any kind of planning or intelligent control, it is crucial to have a model
that is capable of estimating the consequences of possible actions
(cf. [1]). Since predictability is a desired property of such a model
by definition, the PFA-setup is well suited for this purpose. While in
control theory the involved models are usually formulated as a set of
(partial) differential equations in a problem specific manner, with PFA
we preserve the main advantages of SFA — namely its unsupervised
nature and the ability to build a model in a self-organizing fashion.

Slow Feature Analysis (SFA)

On a given signal, Slow Feature Analysis (SFA, [8]) performs di-
mensionality reduction by selecting the slowest subsignals avail-
able under decorrelation and unit-variance constraints. Typical data-
analysis and recognition tasks like regression and classification be-
come much more feasible on the reduced signal. SFA was demon-
strated to be capable of object recognition invariant to spatial trans-
formations, self-organization of complex cell receptive fields, nonlin-
ear blind source separation ([6, 5, 4, 2]) and other tasks of this kind.
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Predictable Feature Analysis (PFA)

While there exist model-independent notions from information theory
(cf. information bottleneck approach [3], ForeCA [7]), we consider
predictability with respect to a certain prediction model. In the cur-
rent setup, we consider signal components as predictable if they can
be predicted by a linear autoregressive model after an optional, non-
linear preprocessing. The desired property of the extracted model
function m can be expressed as follows:
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The problem of finding optimal vectors a; and b; arises. We formal-
ize it In least-squares-sense and include the constraints from SFA to
avoid trivial or repeated solutions:
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The extracted features must be optimized for predictability, but judg-
Ing their predictability is an optimization problem by itself: If a; or b;
IS fixed, the other one can be obtained efficiently, but optimizing In
turns runs into local optima. The following sketch illustrates a relax-
ation that allows efficient computation of near-optimal a; and b;:
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We extract those signals that have the lowest error after an iterated
linear extrapolation of the entire input signal. As a side-effect, m
results in a signal that can be well predicted independently from z:

m(t)

Future work: PFA using external information

An experimental variant of PFA allows to optimize predictability re-
garding to an additional stream of information.
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This way we attempt to model problems that involve analysis of the

relationship between two signals — typically representing control and

sensor components — action and outcome. Planned tasks:

e let an agent explore an environment, learning the relation be-
tween its movement commands and the resulting position

e Uuse the learned relation to reach any desired feasible state

e apply this to various scenarios (e.g. pendulum/pole swing up,
moving blocks around, multi-room navigation, visual homing)
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