Summary

Gregor Schöner gregor.schoener@ini.rub.de

Embodied cognition

- Properties of sensorimotor processes
 - continuous link to the sensory and motor surfaces
 - temporal continuity in state
 - stabilization of states against sensor and motor noise
 - unfolding of processes in closed loop with the environment
 - sensitive to the structure of the environment

Embodied cognition

- Embodied cognition emerges from sensorimotor processes
 - through decision making
 - working memory
 - autonomous sequence generation
 - achieving invariance through coordinate transforms

Neural dynamics hypothesis

- embodied cognition
 - unfolds continuously in time
 - with internal closed loops: prediction/planning
 - in closed loops with the environment
- => embodied cognition requires stability
- embodied cognitive processes must be characterized as dynamical systems
 - behavioral dynamics
 - neural dynamics

Five things needed to generate behavior

motors

- linked by a nervous system
- linked physically by a body
- an appropriately structured environment

Emergent behavior: this is a dynamics

feedforward nervous system

- + closed loop through environment
- => (behavioral) dynamics

Internal loops generate neural dynamics

source
$$\swarrow$$
 source 2

- that generate cognition: internal decisions...
- bifurcations => different cognitive regimes

Activation

neural state variable activation

- Inked to membrane potential of neurons in some accounts
- Inked to spiking rate in our account
- through: population activation... (later)

Activation

- activation as a real number, abstracting from biophysical details
 - Iow levels of activation: not transmitted to other systems (e.g., to motor systems)
 - high levels of activation: transmitted to other systems
 - as described by sigmoidal threshold function
 - zero activation defined as threshold of that function

Activation dynamics

activation evolves in continuous time

no evidence for a discretization of time, for spike timing to matter for behavior

Neural dynamics

- stationary state=fixed point= constant solution
- stable fixed point: nearby solutions converge to the fixed point=attractor

Neural dynamics

attractor structures ensemble of solutions=flow

Neuronal dynamics

$$\tau \dot{u}(t) = -u(t) + h + \text{ inputs}(t)$$

Neuronal dynamics with self-excitation

$$\tau \dot{u}(t) = -u(t) + h + S(t) + c\sigma(u(t))$$

Neuronal dynamics with self-excitation

 $\tau \dot{u}(t) = -u(t) + h + S(t) + c\sigma(u(t))$

Neuronal dynamics with self-excitation

stimulus input

 $\tau \dot{u}(t) = -u(t) + h + S(t) + c\sigma(u(t))$

Neuronal dynamics with competition

Neuronal dynamics with competition =>biased competition

after input is presented

... toward fields

define field is over the continuous stimulus dimension

as dictated by input/output connectivity...

activation fields

information, probability, certainty

parameters, feature

dimensions, viewing

parameters, ...

define activation fields over continuous spaces

- homologous to sensory surfaces, e.g., visual or auditory space (retinal, allocentric, ...)
- homologous to motor surfaces, e.g., saccadic end-points or direction of movement of the end-effector in outer space
- feature spaces, e.g., localized visual orientations, color, impedance, ...
- abstract spaces, e.g., ordinal space, along which serial order is represented

Example motion perception: space of possible percepts

Example: movement planning: space of possible actions

Distribution of Population Activation (DPA)

Distribution of population activation = $\sum_{\text{neurons}} \text{tuning curve * current firing rate}$

Neural dynamics of activation fields is structured so that localized peaks are attractors

mathematical formalization

Amari equation

$$\tau \dot{u}(x,t) = -u(x,t) + h + S(x,t) + \int w(x-x')\sigma(u(x',t)) \, dx'$$

where

- time scale is τ
- resting level is h < 0
- input is S(x,t)
- interaction kernel is

$$w(x - x') = w_i + w_e \exp\left[-\frac{(x - x')^2}{2\sigma_i^2}\right]$$

• sigmoidal nonlinearity is

$$\sigma(u) = \frac{1}{1 + \exp[-\beta(u - u_0)]}$$

Relationship to the dynamics of discrete activation variables

Detection instability

the detection instability helps stabilize decisions

threshold piercing

detection instability

selection instability

stabilizing selection decisions

saccade generation

[after Kopecz, Schöner: Biol Cybern 73:49 (95)]

saccadic

end-point

bistable

saccadic

end-point

[after: Ottes et al., Vis. Res. 25:825 (85)]

reaction time (RT) paradigm

notion of preshape

movement parameter

metric effect

predict faster response times for metrically close than for metrically far choices

[from Schöner, Kopecz, Erlhagen, 1997]

experiment: metric effect

[McDowell, Jeka, Schöner]

categorical responding

based on strong preshape and boostdriven detection instability

Memory instability

The memory trace

- activation leaves a trace that may influence the activation dynamics later...
- a simplest form of learning
- relevant in DFT because the detection instability may amplify the slightly inhomogeneous activation patterns induced by the memory trace into peaks of activation

memory trace reflects history of decisions formation

[Thelen, et al., BBS (2001)]

[Dinveva, Schöner, Dev. Science 2007]

DFT of infant perseverative reaching

that is because reaches to B on A trials leave memory trace at B

[Dinveva, Schöner, Dev. Science 2007]

From neural to behavioral dynamics

From neural to behavioral dynamics

New functions from higherdimensional fields

visual search: combine ridge input with 2D input..

[Slides adapted from Sebastian Schneegans,

see Schneegans, Lins, Spencer, Chapter 5 of Dynamic Field Theory-A Primer, OUP, 2015]

New functions from higherdimensional fields

peaks at intersections of ridges: bind two dimensions

[Slides adapted from Sebastian Schneegans,

see Schneegans, Lins, Spencer, Chapter 5 of Dynamic Field Theory-A Primer, OUP, 2015]

New functions from higher-dimensional fields: coordinate transforms

Toward higher cognition: Grounding spatial concepts

(a)

bring objects into foreground make coordinate transformation apply comparison operators

green"

Sequences: Condition of Satisfaction

[Sandamirskaya, Schöner: Neural Networks 23:1163 (2010)]

Autonomous sequence generation

[Sandamirskaya, Schöner: Neural Networks 23:1163 (2010)]

What skills do you learn?

academic skills

read and understand scientific texts

write technical texts, using mathematical concepts and illustrations

What skills do you learn?

mathematical skills

conceptual understanding of dynamical systems

capacity to read differential equations and illustrate them

perform "mental simulation" of differential equations

use numerical simulation to test ideas about an equation

What skills do you learn?

interdisciplinary skills

handle concepts from a different discipline

handle things that you don't understand

sharpen sense of what you understand and what not

