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Embodied cognition

B Properties of sensorimotor
processes

B continuous link to the sensory and motor
surfaces

B temporal continuity in state

B stabilization of states against sensor and
motor noise

B unfolding of processes in closed loop with
the environment

B sensitive to the structure of the
environment




Embodied cognition

B Embodied cognition emerges
from sensorimotor processes

B through decision making
M working memory
B autonomous sequence generation

B achieving invariance through coordinate
transforms



Neural dynamics
hypothesis

B embodied cognition

B unfolds continuously in time
B with internal closed loops: prediction/planning

B in closed loops with the environment
B => embodied cognition requires stability

B embodied cognitive processes must be
characterized as dynamical systems

B behavioral dynamics

M neural dynamics



Five things needed to generate behavior
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Emergent behavior: this
is a dynamics

B feedforward nervous system

M + closed loop through
environment

B => (behavioral) dynamics

A intensity

A differences in
intensity

N,

heading
direction

left-right /

A differences in
turning rate
left-right wheel

heading
direction

differences in

<

]

intensity
left-right )
Aturning rate
of vehicle
heading
source direction



Internal loops generate neural dynamics
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Activation

® neural state variable activation
M linked to membrane potential of neurons in some accounts
M linked to spiking rate in our account

M through: population activation... (later)



Activation

® activation as a real number,
abstracting from biophysical details

M low levels of activation: not transmitted to
other systems (e.g., to motor systems)

M high levels of activation: transmitted to other
systems

M as described by sigmoidal threshold function

B zero activation defined as threshold of that
function




Activation dynamics

® activation evolves in continuous time

M no evidence for a discretization of time, for spike timing to
matter for behavior



Neural dynamics

Mstationary state=fixed point= constant solution

Bstable fixed point: nearby solutions converge to the

fixed point=attractor
A du/dt = f(u)

vector-field

resting
level

—u(t) = —ult)+h  (h<0)




Neural dynamics

mattractor structures ensemble of solutions=flow

A du/dt = f(u)
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Neuronal dynamics

A du/dt
\put,s
N\
minputs=contributions to \T\ KT
the rate of change resting | \ hls
level, h
M positive: excitatory
A input, s
M negative: inhibitory u(t)
B => shifts the attractor
g(u(t))
Mactivation tracks this [/ -
. o e ’ )
shift (stability) . resting lovel, h

Tu(t) = —u(t) + h + inputs(t)



Neuronal dynamics with self-excitation

self-excitation C QO

output

Tu(t) = —u(t) + h+ S(t) + co(u(t))



Neuronal dynamics with self-excitation
A du/dt

resting
level, h




Neuronal dynamics with self-excitation

Bstimulus input

A du/dt
A input strength

N

resting
level, h

Tu(t) = —u(t) + h+ S(t) + co(u(t))



Neuronal dynamics with competition
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Neuronal dynamics with competition

=>biased competition

before input is presented after input is presented
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... toward fields

mdefine field is over the continuous stimulus
dimension

H... as dictated by input/output connectivity...
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activation fields

® define activation fields over continuous spaces

information, probability, certainty

A

A . .
activation

field

dimension
)

» metric contents

e.g., space, movement
parameters, feature
dimensions, viewing

parameters, ...

B homologous to sensory surfaces, e.g., visual or auditory space

(retinal, allocentric, ...)

B homologous to motor surfaces, e.g., saccadic end-points or
direction of movement of the end-effector in outer space

M feature spaces, e.g., localized visual orientations, color,

impedance, ...

M abstract spaces, e.g., ordinal space, along which serial order is

represented



Example motion perception:
space of possible percepts

/ motion
\ direction
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Example: movement planning:
space of possible actions

A activation

movement
amplitude

movement
direction




Distribution of Population Activation (DPA)

Distribution of population activation =
2. tuning curve * current firing rate

neurons
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mathematical formalization

Amari equation
ri(z, ) = —u(x,t) + h+ Sz, 1) + / w(z — 2o (u(x', 1)) do’

where
e time scale is 7
e resting level is h < 0
e input is S(x,1)

e interaction kernel is




Relationship to the dynamics of
discrete activation variables

self-
excitation

mutual
inhibition
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Detection
instability
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the detection instability helps
stabilize decisions
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selection
instability
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stabilizing selection decisions
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[Wilimzig, Schoner, 2006]
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saccade generation

+ 1

®
initial visual
fixation targets

[after: Ottes et al., Vis.

Res. 25:825 (85)]
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reaction time (RT) paradigm

Imperative
signal=
go signal

response

task set

time

RT
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metric effect
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experiment:

metric effect
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categorical responding

Bbased on strong
preshape and boost-
driven detection
instability

activation
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Memory instability
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The memory trace

— A Dynamic
L 2 field
Mactivation leaves a trace that *(;3’ \
may influence the activation 5
dynamics later... ©

M3 simplest form of learning

time

Brelevant in DFT because the stimulus
: : o Ce duration

detection instability may
amplify the slightly
inhomogeneous activation
patterns induced by the
memory trace into peaks of
activation
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activation field

A location

\

B location

\t\ [Thelen, et al., BBS (2001)]

task specific preshape
input input  nput

[Dinveva, Schoner, Dev. Science 2007]



DFT of infant perseverative reaching

spontaneous

correct on B!

mthat is because
reaches to B on A
trials leave memor
trace at B

‘ A6 Bl B
Al A2 A3 A4 A5 6 timeltrials

[Dinveva, Schoner, Dev. Science 2007]



From neural to behavioral dynamics

2 do/dt

attractor

v

vehicle



From neural to behavioral dynamics

N specified value N no value specified
activation activation
field field
dimension dimension
> >
.|

L dx/dt . dx/dt

. _ fd:zza:a( (x,1))
peak [dz o(u(z,t))

T = — /daza (x,1)) (w—ajpeak)

= r = — /d:z:a u(x,t))







New functions from higher-
dimensional fields

visual scene
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New functions from higher-
dimensional fields

visual scene
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New functions from higher-dimensional

| gazelﬁeld

fields: coordinate transforms
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Toward higher cognition:
Grounding spatial concepts

(a)

® bring objects into foreground ©

B make coordinate transformation

®apply comparison operators

Reference

“left”
“I'ight”
“above”

[Lipinski et al: JEP.LMC (201 1)] “below”
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Sequences: Condition of Satisfaction
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Ordinal nodes
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Autonomous sequence generation
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What skills do you learn?

Macademic skills

B read and understand scientific texts

B write technical texts, using mathematical concepts and
illustrations



What skills do you learn?

B mathematical skills

B conceptual understanding of dynamical systems
B capacity to read differential equations and illustrate them
B perform “mental simulation” of differential equations

B use numerical simulation to test ideas about an equation



What skills do you learn?

Minterdisciplinary skills

B handle concepts from a different discipline
B handle things that you don’t understand

B sharpen sense of what you understand and what not



H... any joy!



