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Sequences

Mall actions in real life consist of sequences of
movements, perceptual acts, inferences

B often fixed by the logic of action

B often highly automated: routines

B but also flexible:

M serial order: arbitrary sequences



Challenge in DFT

Bbehaviors/representations are stable states

®in sequence: need to switch out of one
behavior to the next. How to do that!

®Manswer: induce an instability
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The problem of sequential processing
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Implementation as an imitation task

®|earn a serially ordered ® perform a serially ordered
sequence from a single sequence with new timing
demonstration
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Neural dynamics
of sequence generation
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[Sandamirskaya, Schoner: Neural Networks 23:1163 (2010)]



Neural dynamics
of sequential processing
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Generalization
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A DFT cognitive architecture for
sequence generation
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[Sandamirskaya, Zibner, Schneegans, Schoner: New Ideas in Psychology (2013)]



A DFT cognitive architecture for
sequence generation

tasklnputl
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[Sandamirskaya, Zibner, Schneegans, Schoner: New Ideas in Psychology (2013)]
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A DFT cognitive architecture for
sequence generation
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back to the DFT model

mthe DFT model we have so far clearly is an
instance of the positional model

®in which a positional context (ordinal node) is
associated with the contents of an item

®the generic mechanism makes this link more
explicitly as a neural (synaptic) association
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Ordinal nodes
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mechanism for transition
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activation

Ordinal nodes
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Autonomous sequence generation

Learning Production
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[Sandamirskaya, Schoner: Neural Networks 23:1163 (2010)]



Generalization
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Conclusions

® | reviewed the mechanism of transitions between
stable (intentional) state by the condition of
satisfaction and its underlying dynamical mechanism
of active transient generation

® This is a critical element that enables DFT to account
for complex sequential behaviors and autonomous
cognitive processes

® This key mechanism sets apart DFT architectures
from almost all other neural processing accounts



