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Recall from last lecture ...
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® homologous to sensory surfaces, e.g., visual or ez space, movement
parameters, feature

auditory space (retinal, allocentric, ...) dimensions, viewing

parameters, ...

® homologous to motor surfaces, e.g., saccadic
end-points or direction of movement of the end-
effector in outer space

B feature spaces, e.g., localized visual orientations,
color, impedance, ...

Habstract spaces, e.g., ordinal space, along which
serial order is represented



Example motion perception:
space of possible percepts
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Example: movement planning:
space of possible actions
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Distribution of Population Activation (DPA)

esponse to composite mcreasmg distance between the two squares of light
stimuli
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superposition of responses to each
elemental stimulus




Distribution of Population Activation (DPA)

Distribution of population activation =
2 tuning curve * current firing rate
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mathematical formalization

Amari equation
ri(z, ) = —u(z,t) + h+ Sz, 1) + / w(z — 2o (u(@', 1)) do’

where
e time scale is 7
e resting level is h < 0
e input is S(x,1)

e interaction kernel is




=> simulations



Solutions and instabilities

Hinput driven solution (sub-threshold) vs. self-
stabilized solution (peak, supra-threshold)

Edetection instability
HEreverse detection instability
Hselection

Eselection instability
Ememory instability

mdetection instability from boost



Detection
instability
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the detection instability helps
stabilize decisions
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the detection instability helps
stabilize decisions

Mself-stabilized peaks are macroscopic neuronal
states, capable of impacting on down-stream
neuronal systems

M (unlike the microscopic neuronal activation that
just exceeds a threshold)



emergence of time-discrete events

Bthe detection instability also explains how a
time-continuous neuronal dynamics may create
macroscopic, time-discrete events



behavioral signatures of
detection decisions

Bl detection in psychophysical paradigms is rife with
hysteresis

B but: minimize response bias



Detection instability

B in the detection
of Generalized
Apparent Motion
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Detection instability

Frame 1
Lm = L1 + L2
2
B varying R
Frame 2 ackgrouna-nelative L1 - L2
BRLC Luminance Change =
(BRLC) Lm - Lb
Frame 3




Detection instability

B hysteresis of motion detection as BRLC is varied

B (while response bias is minimized)

Proportion of Ascending Trials with
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instability
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stabilizing selection decisions
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behavioral signatures
of selection decisions

Bin most experimental situations, the correct selection
decision is cued by an “imperative signal” leaving no
actual freedom of “choice” to the participant (only the
freedom of “error™)

B reasons are experimental

Bwhen performance approaches chance level, then close
to “free choice”

Bbecause task set plays a major role in such tasks, | will
discuss these only a little later



one system of “free choice”

B selecting a new saccadic location

[O’Reagan et al., 2000]



saccade generation
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[after: Ottes et al., Vis.

Res. 25:825 (85)]
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[after Kopecz, Schbner: Biol Cybern 73:49 (95)]



... heXxt

® how decisions are normally observed in the
lab

H detections and decisions
B boost driven detections...

® evidence for time continuous decisions



