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... toward fields

Sl¢ 52¢ 53¢
®where do “inputs” come from...!

M from sensory systems

B from other neurons

B => activation variables gain their meaning from
the connections from the sensory surfaces or to
the motor surfaces



... toward fields

® there is no behavioral evidence for discrete
sampling...

B => abstract from discrete sampling...



... toward fields

mdefine field is over the continuous stimulus
dimension

H... as dictated by input/output connectivity...
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activation fields

® define activation fields over continuous spaces

information, probability, certainty

A
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» metric contents

e.g., space, movement
parameters, feature
dimensions, viewing

parameters, ...

B homologous to sensory surfaces, e.g., visual or auditory space

(retinal, allocentric, ...)

B homologous to motor surfaces, e.g., saccadic end-points or
direction of movement of the end-effector in outer space

M feature spaces, e.g., localized visual orientations, color,

impedance, ...

M abstract spaces, e.g., ordinal space, along which serial order is

represented



Example motion perception:
space of possible percepts
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Activation patterns representing
different percepts
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Example: movement planning:
space of possible actions
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Activation patterns representing
states of motor decision making

® bi-modal distribution of activation over movement
direction in pre-motor cortex before a selection
decision is made

B mono-modal distribution once the decision is made
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[Cisek, Kalaska: Neuron 2005]



Summary: activation fields

information, probability, certainty
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On the link between DFT and
neurophysiology

® What do neurons represent!?

M notion of a tuning curve that links
something outside the nervous system
to the state of a neuron (e.g. through
firing rate)

>

M based on the forward picture in which

Spike rate

B the connectivity from the sensory

surface S
Feature dimension

B or the connectivity from the neuron
to the motor surface

B determine the activity of the neuron



Example tuning curve in primary
visual cortex (monkey)

S (orientation angle in degrees)

[Hubel,Wiesel, 1962]



Example: tuning curve in primary
motor cortex (monkey)
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What do ensembles of
neurons represent?

M the pattern of neural
activity across multiple
neurons represents a
feature value much more
precisely than individual

nheurons do
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Do all activated neurons contribute?
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Population code

Bsimilar work in MT

B Purushothaman, G., & Bradley, Da. C. (2005). Neural population
code for fine perceptual decisions in area MT. Nature
Neuroscience, 8(1), 99—-106.

® consensus, that localized populations of neurons
best correlated with behavior

M there are subtle issues of noise and correlation in populations

M e.g, Cohen, Newsome | Neurosci 2009: about 1000 neurons
needed to match behavioral performance

B review: Shamir, M. (2014). Emerging principles of population coding:
In search for the neural code. Current Opinion in Neurobiology, 25,
140—148.



Neurophysiological grounding of DFT

B Example |: primary visual cortex Al7 in the cat,
population representation of retinal location

Jancke, Erlhagen, Dinse, Akhavan, Giese, Steinhage, Schoner JNsci 19:9016 (99)



B determine RF profile for each cell

Mit’s center determines what that
neuron codes for

® compute a distribution of
population activation by
superposing RF profiles weighted
with current neural firing rate

response plane




B The current response refers to a
stimulus experienced by all
neurons

M Reference condition: localized

points of light elementary stimuli
_
—
_
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nasal temporal



M result: population distribution of
activation defined over retinal
space = representation of visual
location




B => does a decent job estimating retinal position

current stimulus: range of retinal field
square of light sampled by neurons

0.4°




M Extrapolate measurement device to new
conditions

Be.g., time resolved

two
different time
stimulus
locations

30 - 40 ms 40 - 50 ms 50 - 60 ms 60 - 70 ms 70 - 80 ms




B or when complex stimuli are presented (here:
two spots of light)

stimuli

Bl
-5 33108 3B

1 superposition of responses to each B N
elemental stimulus

‘esponse to composite increasing distance between the two squares of light




B by comparing DPA of composite stimuli to
superposition of DPAs of the two elementary
stimuil obtain evidence for interaction

B early excitation

B late inhibition



activation level in DPA
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model by dynamic field:
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Neurophysiological grounding of DFT

® Example 2: primary motor cortex (M), population
representation of movement direction of the hand

Bastian, Riehle, Schoner, 2003



Task

B center-out movement
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Bastian, Riehle, Schoner, 2003



Tuning of neurons in Ml to
movement direction

| trials aligned by go signals, ordered by reaction time

Complete Information

lili O3 -1

\\ hand lands on target
hand lifts off start button



Distribution of Population Activation

(DPA)

Distribution of population activation =
2 tuning curve * current firing rate
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Blook at temporal
evolution of DPA

Bor DPAs in new
conditions, here: DPA
reflects prior
information
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Theory-Experiment
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Distributions of Population
Activation are abstract

Eneurons are not localized within DPA!

Ecortical neurons really are sensitive to many
dimensions

B motor: arm configuration, force direction

Myvisual: many feature dimensions such as spatial frequency,
orientation, direction...

m=> DPA is a projection from that high-
dimensional space onto a single dimension



... back to the activation fields

® that are “defined” over the
appropriate dimension just as
population code is...

®in building DFT models, we

must ensure that this is actually

true by setting up the
appropriate input/output
connectivity
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mathematical formalization

Amari equation
ri(z, ) = —u(z,t) + h+ Sz, 1) + / w(z — 2o (u(@', 1)) do’

where
e time scale is 7
e resting level is h < 0
e input is S(x,1)

e interaction kernel is




Interaction: convolution
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Relationship to the dynamics of
discrete activation variables

self-
excitation

mutual
inhibition
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=> simulations



Solutions and instabilities

Hinput driven solution (sub-threshold) vs. self-
stabilized solution (peak, supra-threshold)

Edetection instability
HEreverse detection instability
Hselection

Eselection instability
Ememory instability

mdetection instability from boost



