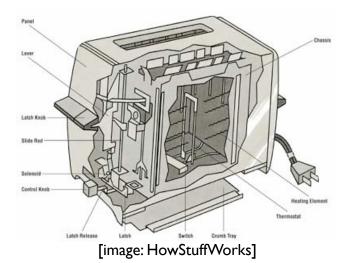
Computational Neuroscience: Neural Dynamics

What is this school about?

- embodiment
- neural dynamics
- autonomous behavior


Soccer as a form of cognition

- perception: recognize the ball and the other players, estimate their velocities, perceive the scene
- attention: select and track a visual target, controlling gaze
- working memory: to predict where you need to look to update your scene understanding
- plan and control own action, running, kicking, tackling, updating movement plans any time
- pursue goals, make decisions
- learning: get better at playing
- background knowledge: know the goal of the game/rules, know how hard the ball is, how fast players are

Much cognition contains

- perception: explore scene, recognize screws, while keeping track of spatial arrangement
- attention: fixate on relevant part, visually search tool
- working memory: use to efficiently find tools and places to act on, update with toaster pose
- plan: manipulating cover, taking it off, recognizing spring, re-attaching it, mounting cover back on, generating the correct action sequence
- pursue goals
- learning: get better at this
- background knowledge: know about cover, screws, how hard to turn or press

[image: mystery fandom theater 3000]

Embodied cognition

- Properties of sensorimotor processes
 - continuous link to the sensory and motor surfaces
 - temporal continuity in state
 - stabilization of states against sensor and motor noise
 - unfolding of processes in closed loop with the environment
 - sensitive to the structure of the environment

Embodied cognition

Embodied cognition emerges from sensorimotor processes

through decision making

working memory

autonomous sequence generation

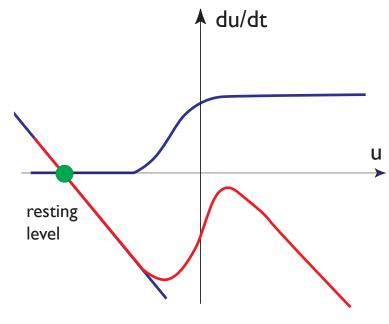
achieving invariance through coordinate transforms

Neural dynamics hypothesis

- embodied cognition
 - unfolds continuously in time

with internal closed loops: prediction/planning

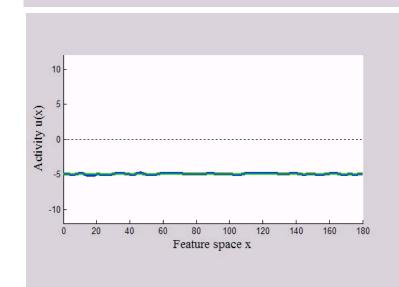
in closed loops with the environment


- => embodied cognition requires stability
- embodied cognitive processes must be characterized as dynamical systems

behavioral dynamics

neural dynamics


Neural dynamics hypothesis


- the theoretical language of neural dynamics captures the fundamental stability requirement of embodied cognitive systems...
- from instabilities in neural dynamics, new qualities emerge that go beyond the control theoretical aspects of dynamics

Dynamic Field Theory

- is a branch of neural dynamics that is particularly suited to understand neural cognitive architectures
- focusses on the functional significance of neuronal activity
- abstracting from the functionally insignificant discrete spatial and temporal structure of neuronal activity

The strong embodiment hypothesis

- embodied cognitive processes are characterized by the stability/instability and the link to sensorimotor processes
- Hypothesis: there is no particular boundary up to which, cognition is embodied, but beyond which cognition loses the properties of embodiment

Neural dynamics + strong embodiment hypotheses

=> all cognition processes have the properties of embodied cognition:

📕 stability

- potential link to sensorimotor processes
- instabilities at original of new qualitites
- => understanding cognition requires the theoretical framework of neural dynamics

Implications

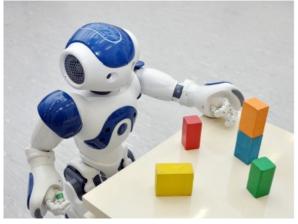
- when studying cognitive competences, keep the links to the sensorimotor domain in view, both experimentally and theoretically
- tasks create context, study behavior and cognition in naturalistic tasks that connect to elementary behaviors
- keep conceptual commitments made in one domain when studying other domains: stability

Theoretical research program

- develop a set of theoretical concepts that are necessary ... to fulfill constraints
- probe how the set is sufficient to account for behavior and cognition
- be conservative: only introduce new theoretical concepts when forced to ...
- be mindful of neural constraints

Experimental research program


look for metric effects


study role of time

look for online updating

Robotic research program

- autonomous robots: actively generate behavior, initiating, selecting, terminating actions based on the system's own perceptual processes
- use autonomous robots as heuristic devicdes
- the demonstrate that a link to the sensorimotor domain is possible
- they may uncover overlooked processes and constraints
- they may review that certain processes are not necessary

elements of embodied cognition

detection decisions

selection decisions

working memory for metric information

memory trace

theoretical concepts

behavioral dynamics

neural dynamics

dynamic neural fields

Dynamic Field Theory

neural foundations

Braitenberg vehicles

rate code

population code

mathematic concepts

dynamical systems

stability, attractors, instabilities

numerical solution of differential equations

theory-experiment relationships

accounting for neural and behavioral data

accounting for behavior in process models

robotic and simulated behavior

🔵 as a heuristic tool

to demonstrate function from neural dynamics

to uncover overlooked problems

What skills do you learn?

academic skills

read and understand scientific texts

write technical texts, using mathematical concepts and illustrations

What skills do you learn?

mathematical skills

conceptual understanding of dynamical systems

capacity to read differential equations and illustrate them

perform "mental simulation" of differential equations

use numerical simulation to test ideas about an equation

What skills do you learn?

interdisciplinary skills

- handle concepts from a different discipline
- handle things that you don't understand
- sharpen sense of what you understand and what not