
Lecture 7 - Object Oriented Programming

Lecture 7
Object Oriented Programming

Jan Tekülve
jan.tekuelve@ini.rub.de

Computer Science and Mathematics
Preparatory Course

04.10.2018

04.10.2018 1 / 30



Lecture 7 - Object Oriented Programming

Overview

1. Object Oriented Programming
ä What is OOP?
ä Classes vs. Instances
ä Example Project
ä Inheritance
ä Modules in Python

2. Tasks

3. Outlook: Scientific Programming
ä The Numpy Module
ä Matrix Calculation with Numpy

04.10.2018 2 / 30



Lecture 7 - Object Oriented Programming Object Oriented Programming - What is OOP?

Programming Paradigms

Procedural Programming

I A problem is solved by
manipulating data structures
through procedures

I The key is to write the right logic

I Efficiency is a main focus of
procedural programming

Object oriented Programming

I A problem is solved by modeling
it’s processes

I The key is to figure out the
relevant entities and their
relations

I Programming Logic is tightly
coupled to entities

04.10.2018 3 / 30



Lecture 7 - Object Oriented Programming Object Oriented Programming - What is OOP?

Programming Paradigms

Procedural Programming

I A problem is solved by
manipulating data structures
through procedures

I The key is to write the right logic

I Efficiency is a main focus of
procedural programming

Object oriented Programming

I A problem is solved by modeling
it’s processes

I The key is to figure out the
relevant entities and their
relations

I Programming Logic is tightly
coupled to entities

04.10.2018 3 / 30



Lecture 7 - Object Oriented Programming Object Oriented Programming - Classes vs. Instances

Classes vs. Objects

Person

first name
last name
age
email

Class

04.10.2018 4 / 30



Lecture 7 - Object Oriented Programming Object Oriented Programming - Classes vs. Instances

Classes vs. Objects

Person
first name
last name
age
email

Class Objects (Instances)

Alice
Anderson

28
a.anders@gmail.com

Rob
Robertson

17
cool_dude@aol.com

04.10.2018 4 / 30



Lecture 7 - Object Oriented Programming Object Oriented Programming - Classes vs. Instances

Classes Bind Variables Together

I Instead of writing something like this

#Alice’s attributes

alice_name = "Alice"

alice_last_name = "Anderson"

alice_age = 28

I Objects encapsulate multiple variables in one place

#A Person-object variable

alice = Person("Alice","Anderson",28)

04.10.2018 5 / 30



Lecture 7 - Object Oriented Programming Object Oriented Programming - Classes vs. Instances

Classes Bind Variables Together

I Instead of writing something like this

#Alice’s attributes

alice_name = "Alice"

alice_last_name = "Anderson"

alice_age = 28

I Objects encapsulate multiple variables in one place

#A Person-object variable

alice = Person("Alice","Anderson",28)

04.10.2018 5 / 30



Lecture 7 - Object Oriented Programming Object Oriented Programming - Classes vs. Instances

Classes are Advanced Data Types

I Object variables can be treated like simple types

#Two Person-object variables

alice = Person("Alice","Anderson",28)

rob = Person("Rob","Robertson",17)

#Objects can be stored in lists

myPersonList = [] #I want to manage persons

myPersonList.append(rob)

#Objects can be arguments of self-defined functions

calculate_year_of_birth(alice)

04.10.2018 6 / 30



Lecture 7 - Object Oriented Programming Object Oriented Programming - Classes vs. Instances

Class Definition

I A class needs to be defined

class Person: #This defines the class Name

#The __init__ function is responsible for class

↪→ creation and defines its’ attributes

def __init__(self, first_name,last_name,age):

#The passed values are stored in the class

self.first_name = first_name

self.last_name = last_name

self.age = age

I This is enough to create a class-object

robby = Person("Rob","Robertson",17)

04.10.2018 7 / 30



Lecture 7 - Object Oriented Programming Object Oriented Programming - Classes vs. Instances

Accessing Class Attributes

I Class attributes can be accessed via the ‘.’ operator

robby = Person("Rob","Robertson",17)

f_name = robby.first_name #"Rob"

l_name = robby.last_name #"Robertson"

age = robby.age #17

I They can also be assigned after initialization

robby.age = 18 #As he gets older

robby.l_name = "Peterson" #If he marries

04.10.2018 8 / 30



Lecture 7 - Object Oriented Programming Object Oriented Programming - Classes vs. Instances

Accessing Class Attributes

I Class attributes can be accessed via the ‘.’ operator

robby = Person("Rob","Robertson",17)

f_name = robby.first_name #"Rob"

l_name = robby.last_name #"Robertson"

age = robby.age #17

I They can also be assigned after initialization

robby.age = 18 #As he gets older

robby.l_name = "Peterson" #If he marries

04.10.2018 8 / 30



Lecture 7 - Object Oriented Programming Object Oriented Programming - Classes vs. Instances

Objects and Functions

I We can use objects as function arguments

#Definition

def print_info(person):

print(person.first_name +" " +person.last_name +

↪→ " is " +str(person.age) +" years old.")

I Usage:

robby = Person("Rob","Robertson",17)

print_info(robby)

#This prints: "Rob Robertson is 17 years old"

alice = Person("Alice","Anderson",28)

print_info(alice)

#This prints: "Alice Anderson is 28 years old"

04.10.2018 9 / 30



Lecture 7 - Object Oriented Programming Object Oriented Programming - Classes vs. Instances

Objects and Functions

I We can use objects as function arguments

#Definition

def print_info(person):

print(person.first_name +" " +person.last_name +

↪→ " is " +str(person.age) +" years old.")

I Usage:

robby = Person("Rob","Robertson",17)

print_info(robby)

#This prints: "Rob Robertson is 17 years old"

alice = Person("Alice","Anderson",28)

print_info(alice)

#This prints: "Alice Anderson is 28 years old"

04.10.2018 9 / 30



Lecture 7 - Object Oriented Programming Object Oriented Programming - Classes vs. Instances

Function Encapsulation

I Functions can even be defined inside classes

class Person: #This defines the class Name

#The __init__ function

def __init__(self, first_name,last_name,age):

#The passed values are stored in the class

self.first_name = first_name

self.last_name = last_name

self.age = age

#Our print_info function

def print_info(self): #Note how the argument changed

print(self.first_name +" " +self.last_name +" is

↪→ " +str(self.age) +" years old.")

04.10.2018 10 / 30



Lecture 7 - Object Oriented Programming Object Oriented Programming - Classes vs. Instances

Function Encapsulation

I A function can be called directly from the object

robby = Person("Rob","Robertson",17)

robby.print_info()

#This prints: "Rob Robertson is 17 years old"

alice = Person("Alice","Anderson",28)

alice.print_info()

#This prints: "Alice Anderson is 28 years old"

I This way a potential programmer/user does not need to know the
internal structure of the particular class, e.g. list.append().

04.10.2018 10 / 30



Lecture 7 - Object Oriented Programming Object Oriented Programming - Classes vs. Instances

Function Encapsulation

I A function can be called directly from the object

robby = Person("Rob","Robertson",17)

robby.print_info()

#This prints: "Rob Robertson is 17 years old"

alice = Person("Alice","Anderson",28)

alice.print_info()

#This prints: "Alice Anderson is 28 years old"

I This way a potential programmer/user does not need to know the
internal structure of the particular class, e.g. list.append().

04.10.2018 10 / 30



Lecture 7 - Object Oriented Programming Object Oriented Programming - Example Project

Course Management Program

I We want to write a program for the university

I It should give an overview over the different courses

I It should track each course, its lecturer and its students

How would an OOP model look like?

04.10.2018 11 / 30



Lecture 7 - Object Oriented Programming Object Oriented Programming - Example Project

Course Management Program

I We want to write a program for the university

I It should give an overview over the different courses

I It should track each course, its lecturer and its students

How would an OOP model look like?

04.10.2018 11 / 30



Lecture 7 - Object Oriented Programming Object Oriented Programming - Example Project

Course Management Program

Course

name
year
id_number
lecturer
student_list

04.10.2018 11 / 30



Lecture 7 - Object Oriented Programming Object Oriented Programming - Example Project

Course Management Program

Course

name
year
id_number
lecturer
student_list

Lecturer

first name
last name
age
email
bank_account

04.10.2018 11 / 30



Lecture 7 - Object Oriented Programming Object Oriented Programming - Example Project

Course Management Program

Course

name
year
id_number
lecturer
student_list

Lecturer

first name
last name
age
email
bank_account

Student

first name
last name
age
email
student_id
grade

04.10.2018 11 / 30



Lecture 7 - Object Oriented Programming Object Oriented Programming - Example Project

Example Code

I The course class

class Course: #This defines the class Name

#The __init__ function

def __init__(self, name,year,id_number,lecturer):

#The passed values are stored in the class

self.name = name

self.year = year

self.id_number = id_number

self.lecturer = lecturer

self.student_list = [] #empty upon creation

04.10.2018 12 / 30



Lecture 7 - Object Oriented Programming Object Oriented Programming - Example Project

Example Code

I The lecturer class

class Lecturer: #This defines the class Name

#The __init__ function

def __init__(self, first_name,last_name,age,email,

↪→ bank_account):

#The passed values are stored in the class

self.first_name = first_name

self.last_name = last_name

self.age = age

self.email = email

self.bank_account = bank_account

04.10.2018 12 / 30



Lecture 7 - Object Oriented Programming Object Oriented Programming - Example Project

Example Code

I Create the Course

lecturer_jan = Lecturer("Jan","Tekuelve",29,"jan.

↪→ tekuelve@ini.rub.de",1234567)

cscience_course = Course("Computer Science and

↪→ Mathematics",2018,1234,lecturer_jan)

I At the end of the year access the bank account:

c_bank_account = cscience_course.lecturer.bank_account

I This works independent of course and lecturer

04.10.2018 12 / 30



Lecture 7 - Object Oriented Programming Object Oriented Programming - Example Project

Example Code

I Create the Course

lecturer_jan = Lecturer("Jan","Tekuelve",29,"jan.

↪→ tekuelve@ini.rub.de",1234567)

cscience_course = Course("Computer Science and

↪→ Mathematics",2018,1234,lecturer_jan)

I At the end of the year access the bank account:

c_bank_account = cscience_course.lecturer.bank_account

I This works independent of course and lecturer

04.10.2018 12 / 30



Lecture 7 - Object Oriented Programming Object Oriented Programming - Example Project

Example Code

I Create the Course

lecturer_jan = Lecturer("Jan","Tekuelve",29,"jan.

↪→ tekuelve@ini.rub.de",1234567)

cscience_course = Course("Computer Science and

↪→ Mathematics",2018,1234,lecturer_jan)

I At the end of the year access the bank account:

c_bank_account = cscience_course.lecturer.bank_account

I This works independent of course and lecturer

04.10.2018 12 / 30



Lecture 7 - Object Oriented Programming Object Oriented Programming - Inheritance

The Student Class

I This class looks similar to the lecturer

class Student: #This defines the class Name

#The __init__ function

def __init__(self, first_name,last_name,age,email,

↪→ student_id):

#The passed values are stored in the class

self.first_name = first_name

self.last_name = last_name

self.age = age

self.email = email

self.student_id = student_id

self.grade = -1

04.10.2018 13 / 30



Lecture 7 - Object Oriented Programming Object Oriented Programming - Inheritance

Code Redundancy

Course

name
year
id_number
lecturer
student_list

Lecturer

first name
last name
age
email
bank_account

Student

first name
last name
age
email
student_id
grade

04.10.2018 14 / 30



Lecture 7 - Object Oriented Programming Object Oriented Programming - Inheritance

Code Redundancy

Course
name
year
id_number
lecturer
student_list

Lecturer
first name
last name
age
email
bank_account

Student
first name
last name
age
email
student_id
grade

04.10.2018 14 / 30



Lecture 7 - Object Oriented Programming Object Oriented Programming - Inheritance

Code Redundancy

Course
name
year
id_number
lecturer
student_list

Lecturer
first name
last name
age
email
bank_account

Student
first name
last name
age
email
student_id
grade

Person
first name
last name
age
email

04.10.2018 14 / 30



Lecture 7 - Object Oriented Programming Object Oriented Programming - Inheritance

Code Redundancy

Course
name
year
id_number
lecturer
student_list

Lecturer
first name
last name
age
email
bank_account

Student
first name
last name
age
email
student_id
grade

Person
first name
last name
age
email

04.10.2018 14 / 30



Lecture 7 - Object Oriented Programming Object Oriented Programming - Inheritance

Code Redundancy

Course
name
year
id_number
lecturer
student_list

Lecturer
bank_account

Student
student_id
grade

Person
first name
last name
age
email

04.10.2018 14 / 30



Lecture 7 - Object Oriented Programming Object Oriented Programming - Inheritance

The Person Class

I We will use the Class Person as Super-Class

class Person: #This defines the class Name

#The __init__ function

def __init__(self, first_name,last_name,age,email):

#The passed values are stored in the class

self.first_name = first_name

self.last_name = last_name

self.age = age

self.email = email

04.10.2018 15 / 30



Lecture 7 - Object Oriented Programming Object Oriented Programming - Inheritance

Inheritance
I Lecturer and Student will inherit from Person

class Lecturer(Person): #Brackets declare inheritance

#The __init__ function is overrriden

def __init__(self,f_name,l_name,age,email,b_acc):

#The super() calls the parent function

super().__init__(f_name,l_name,age,email)

self.bank_account = b_acc

class Student(Person): #Brackets declare inheritance

#The __init__ function is overrriden

def __init__(self,f_name,l_name,age,email,stud_id):

super().__init__(f_name,l_name,age,email)

self.student_id = stud_id

self.grade = -1

04.10.2018 16 / 30



Lecture 7 - Object Oriented Programming Object Oriented Programming - Inheritance

Modifiying the Parent Class

I Functions of the parent class are available to child classes

class Person: #This defines the class Name

def __init__(self, first_name,last_name,age,email):

#The passed values are stored in the class

self.first_name = first_name

self.last_name = last_name

self.age = age

self.email = email

#Our print_info function

def print_info(self): #Note how the argument changed

print(self.first_name +" " +self.last_name +" is

↪→ " +str(self.age) +" years old.")

04.10.2018 17 / 30



Lecture 7 - Object Oriented Programming Object Oriented Programming - Inheritance

Using Parent Functions

I Functions of the parent class are available to child classes

student_rob = Student("Rob","Robertson",25,"rob.

↪→ robson@rub.de","108001024")

lecturer_jan = Lecturer("Jan","Tekuelve",29,"jan.

↪→ tekuelve@ini.rub.de",1234567)

student_rob.print_info()

lecturer_jan.print_info()

#Prints:

#Rob Robertson is 25 years old.

#Jan Tekuelve is 29 years old.

04.10.2018 18 / 30



Lecture 7 - Object Oriented Programming Object Oriented Programming - Inheritance

Completing the Example

I The course needs to be able to add students

#Inside the Course class

def enroll(self,student):

self.student_list.append(student)

#Enroll adds them to the course internal list

I Minimal example:

cscience_course = Course("Computer Science and

↪→ Mathematics",2018,1234,lecturer_jan)

student_rob = Student("Rob","Robertson",25,"rob.

↪→ robson@rub.de","108001024")

cscience_course.enroll(student_rob)

04.10.2018 19 / 30



Lecture 7 - Object Oriented Programming Object Oriented Programming - Modules in Python

Creating your own Python Modules

I Class definitions can be stored in separate module

I E.g. if you save the above class definitions in a file unimanager.py

I You can access the definitions in another script from the same folder:

import unimanager

student_rob = unimanager.Student("Rob","Robertson",25,"

↪→ rob.robson@rub.de","108001024")

I This allows for flexible re-usability of code

04.10.2018 20 / 30



Lecture 7 - Object Oriented Programming Object Oriented Programming - Modules in Python

Creating your own Python Modules

I Class definitions can be stored in separate module

I E.g. if you save the above class definitions in a file unimanager.py

I You can access the definitions in another script from the same folder:

import unimanager

student_rob = unimanager.Student("Rob","Robertson",25,"

↪→ rob.robson@rub.de","108001024")

I This allows for flexible re-usability of code

04.10.2018 20 / 30



Lecture 7 - Object Oriented Programming Object Oriented Programming - Modules in Python

Creating your own Python Modules

I Class definitions can be stored in separate module

I E.g. if you save the above class definitions in a file unimanager.py

I You can access the definitions in another script from the same folder:

import unimanager

student_rob = unimanager.Student("Rob","Robertson",25,"

↪→ rob.robson@rub.de","108001024")

I This allows for flexible re-usability of code

04.10.2018 20 / 30



Lecture 7 - Object Oriented Programming Object Oriented Programming - Modules in Python

Advantages/Disadvantages of OOP

Advantages:

I Design Benefit: Real/World processes are easily transferable in code

I Modularity: Extending and reusing software is easy

I Software Maintenance: Modular code is easier to debug

Disadvantages:

I Desing Overhead: Modeling requires longer initial development time

I Originally OOP required more “coding”

04.10.2018 21 / 30



Lecture 7 - Object Oriented Programming Object Oriented Programming - Modules in Python

Advantages/Disadvantages of OOP

Advantages:

I Design Benefit: Real/World processes are easily transferable in code

I Modularity: Extending and reusing software is easy

I Software Maintenance: Modular code is easier to debug

Disadvantages:

I Desing Overhead: Modeling requires longer initial development time

I Originally OOP required more “coding”

04.10.2018 21 / 30



Lecture 7 - Object Oriented Programming Tasks

Tasks

1. Download todays class definitions unimanager.py and create a separate
script that uses this module to create a course, a lecturer and three
sample students.

I Enroll all students to the course.
I After enrolling iterate through the student list to print the info of all

enrolled students. You can access the student list via the course object.
I In the loop use the print info() function.

2. Add a print info() function to the class definition of Course in
unimanager.py. This function should print the course name, its lecturer
and each student of the course with his/her student ID.

I The function should be defined in the Course class and its only argument
should be self

I The course name, the lecturer and its student list can be accessed via the
self keyword.

04.10.2018 22 / 30



Lecture 7 - Object Oriented Programming Outlook: Scientific Programming - The Numpy Module

The Numpy Module

I Numpy is part of SciPy the module for scientific programming

I It should have been installed with matplotlib

I It is usually imported like this:

import numpy as np

04.10.2018 23 / 30



Lecture 7 - Object Oriented Programming Outlook: Scientific Programming - The Numpy Module

The Numpy Array

I Numpy brings its own data structure the numpy array

import numpy as np

#Arrays can be created from lists

array_example = np.array([1,6,7,9])

#Arrays can be created with arange

#An array with numbers from 4 to 5 and step size 0.2

array2 = np.arange(4,5,0.2) #5 is not in the array

print(array2) # [4.0 4.2 4.4 4.6 4.8]

I Elements of an array can be manipulated simultaneously

array3 = array2*array2 #For example with multiplication

print(array3)# [16.0 16.64 19.36 21.16 23.04]

04.10.2018 24 / 30



Lecture 7 - Object Oriented Programming Outlook: Scientific Programming - The Numpy Module

Matplotlib and Numpy
I Plotting sin(x) from 0 to π with lists

listX=[]

listY=[]

step_size = 0.5

for i in range(0,math.pi/step_size) ;

xValue = i*step_size

listX.append(xValue)

listY.append(math.sin(xValue))

plt.plot(listX,listY)

I Plotting sin(x) from 0 to π with numpy

xValues = np.arange(0,math.pi,0.5)

yValues = np.sin(xValues)

plt.plot(xValues,yValues)

04.10.2018 25 / 30



Lecture 7 - Object Oriented Programming Outlook: Scientific Programming - Matrix Calculation with Numpy

Numpy Arrays as Matrices

I Creating the following matrix: A =

1 2 3 4
5 6 7 8
9 10 11 12



I In numpy a matrix can be created from a multi-dimensional list

#This creates a 3x4 Matrix

A = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])

I Numpy treats such an array as a matrix

arr_dim = A.shape #Gives you the shape of your matrix

print(arr_dim) #Prints (3,4)

#Access elements with indexing

single_number = A[1,3] #8, 2nd list,4th element

num2 = A[0,1] #2, 1st list, 2nd element

04.10.2018 26 / 30



Lecture 7 - Object Oriented Programming Outlook: Scientific Programming - Matrix Calculation with Numpy

Numpy Arrays as Matrices

I Creating the following matrix: A =

1 2 3 4
5 6 7 8
9 10 11 12


I In numpy a matrix can be created from a multi-dimensional list

#This creates a 3x4 Matrix

A = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])

I Numpy treats such an array as a matrix

arr_dim = A.shape #Gives you the shape of your matrix

print(arr_dim) #Prints (3,4)

#Access elements with indexing

single_number = A[1,3] #8, 2nd list,4th element

num2 = A[0,1] #2, 1st list, 2nd element

04.10.2018 26 / 30



Lecture 7 - Object Oriented Programming Outlook: Scientific Programming - Matrix Calculation with Numpy

Numpy Arrays as Matrices

I Creating the following matrix: A =

1 2 3 4
5 6 7 8
9 10 11 12


I In numpy a matrix can be created from a multi-dimensional list

#This creates a 3x4 Matrix

A = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])

I Numpy treats such an array as a matrix

arr_dim = A.shape #Gives you the shape of your matrix

print(arr_dim) #Prints (3,4)

#Access elements with indexing

single_number = A[1,3] #8, 2nd list,4th element

num2 = A[0,1] #2, 1st list, 2nd element

04.10.2018 26 / 30



Lecture 7 - Object Oriented Programming Outlook: Scientific Programming - Matrix Calculation with Numpy

Matrix Operations in Numpy

I Matrix Addition:
(

1 2 3
5 6 7

)
+

(
3 5 1
5 −3 1

)
=

(
4 7 4

10 3 8

)
I In numpy code:

A = np.array([[1,2,3], [5,6,7]])

B = np.array([[3,5,1], [5,-3,1]])

C = A + B

D = A - B #Subtraction works analogously

print(D) #[[-2 -3 2],[0 9 6]]

04.10.2018 27 / 30



Lecture 7 - Object Oriented Programming Outlook: Scientific Programming - Matrix Calculation with Numpy

Matrix Operations in Numpy

I Matrix Multiplication:
(

1 2 3
5 6 7

)
∗

3 5
5 −3
1 1

 =

(
16 2
52 14

)

I In numpy code:

A = np.array([[1,2,3], [5,6,7]])

E = np.array([[3,5], [5,-3],[1,1]])

F = np.matmul(A,E)

print(F) # [[16,2],[52,14]]

I Do not confuse with element-wise multiplication

A = np.array([[1,2,3], [5,6,7]])

B = np.array([[3,5,1], [5,-3,1]])

G = A*B # [[3,10,3],[25,-18,7]]

04.10.2018 28 / 30



Lecture 7 - Object Oriented Programming Outlook: Scientific Programming - Matrix Calculation with Numpy

Matrix Operations in Numpy

I Matrix Multiplication:
(

1 2 3
5 6 7

)
∗

3 5
5 −3
1 1

 =

(
16 2
52 14

)

I In numpy code:

A = np.array([[1,2,3], [5,6,7]])

E = np.array([[3,5], [5,-3],[1,1]])

F = np.matmul(A,E)

print(F) # [[16,2],[52,14]]

I Do not confuse with element-wise multiplication

A = np.array([[1,2,3], [5,6,7]])

B = np.array([[3,5,1], [5,-3,1]])

G = A*B # [[3,10,3],[25,-18,7]]

04.10.2018 28 / 30



Lecture 7 - Object Oriented Programming Outlook: Scientific Programming - Matrix Calculation with Numpy

Matrix Operations in Numpy

I It also works for vectors:

< v1, v2 >= v1
Tv2 =

(
1 2 3

)
∗

3
5
1

 = 16

I In numpy code:

V1 = np.array([1,2,3])

V2 = np.array([3,5,1])

R = np.matmul(V1,V2)

print(R) # 16

I Or vectors and matrices if you want to

04.10.2018 29 / 30



Lecture 7 - Object Oriented Programming Outlook: Scientific Programming - Matrix Calculation with Numpy

Matrix Operations in Numpy

I It also works for vectors:

< v1, v2 >= v1
Tv2 =

(
1 2 3

)
∗

3
5
1

 = 16

I In numpy code:

V1 = np.array([1,2,3])

V2 = np.array([3,5,1])

R = np.matmul(V1,V2)

print(R) # 16

I Or vectors and matrices if you want to

04.10.2018 29 / 30



Lecture 7 - Object Oriented Programming Outlook: Scientific Programming - Matrix Calculation with Numpy

Other helpful Operations

I Transpose Matrices: A =

(
1 2 3
5 6 7

)
AT =

1 5
2 6
3 7


I In numpy:

A = np.array([[1,2,3], [5,6,7]])

H = A.T # [[1,5],[2,6],[3,7]]

I Element-wise summing across arrays:

sum = np.sum(H) #24,

V1 = np.array([1,2,3]) #works also for 1D-arrays

sum_v = np.sum(V1) # 6

04.10.2018 30 / 30


	Object Oriented Programming
	What is OOP?
	Classes vs. Instances
	Example Project
	Inheritance
	Modules in Python

	Tasks
	Outlook: Scientific Programming
	The Numpy Module
	Matrix Calculation with Numpy


