Lecture 5 Integration

Jan Tekülve

jan.tekuelve@ini.rub.de

Computer Science and Mathematics Preparatory Course

01.10.2018

Reverting Differentiation

From Velocity to position

From Velocity to position

Overview

1. Motivation

2. Mathematics

- > Graphical Interpretation of the Integral
- ► Improper Integrals
- > Numerical Integration

3. Programming

➤ Reading Files

4. Tasks

Integral as Area

Geometric Definition

Definite Integral

The **definite integral** of a function f(x) between the **lower boundary** a and the **upper boundary** b

$$\int_a^b f(x)$$

is defined as the size of the area between *f* and the *x*-axis inside the boundaries. Areas above the x-Axis are considered positive and areas below negative.

The Antiderivative

Definition

If f is a function with domain $[a, b] \to \mathbb{R}$ and there is a function F, which is differentiable in the interval [a, b] with the property that

F'(x)=f(x),

then F is considered the **antiderivative** of f

The Antiderivative

Definition

If f is a function with domain $[a, b] \to \mathbb{R}$ and there is a function F, which is differentiable in the interval [a, b] with the property that

F'(x)=f(x),

then F is considered the **antiderivative** of f

Properties of the antiderivative

- Differentiation removes constants, because of that an antiderivative is described by a family of functions F(x) + c
- Unlike with differentiation there are no fixed rules to compute an antiderivative from a given f

A function and its antiderivative

Calculating the Integral

Calculating the area in an interval

If f is integrable and continuous in [a, b]. Then the following holds for each antiderivative F of f

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} F'(x)dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

Example:

• Area under f(x) between values 1 and 2

J

$$\int_{1}^{2} x dx = \left[\frac{1}{2}x^{2}\right]_{1}^{2} = \frac{1}{2}2^{2} - \frac{1}{2}1^{2} = 1.5$$

Integral as area underneath a function

$$f(x) = x$$
 $F(x) = \frac{1}{2}x^2$ $\int_1^2 f(x)dx = F(2) - F(1)$

The Integral as Linear Operator

Integration Rules

Summation

$$\int_a^b f(x) + g(x) = \int_a^b f(x) + \int_a^b g(x)$$

The Integral as Linear Operator

Integration Rules

Summation

$$\int_a^b f(x) + g(x) = \int_a^b f(x) + \int_a^b g(x)$$

Scalar Multiplication

$$\int_{a}^{b} cf(x) = c \int_{a}^{b} f(x)$$

The Integral as Linear Operator

Integration Rules

Summation

$$\int_a^b f(x) + g(x) = \int_a^b f(x) + \int_a^b g(x)$$

Scalar Multiplication

$$\int_{a}^{b} cf(x) = c \int_{a}^{b} f(x)$$

Boundary Transformations

$$\int_{a}^{b} f(x) + \int_{b}^{c} f(x) = \int_{a}^{c} f(x) \quad \wedge \quad \int_{a}^{b} f(x) = -\int_{b}^{a} f(x)$$

Improper Integrals

Infinite Intervals

It is possible to calculate the area in infinitely large intervals. Intervals with an infinite boundary are called **Improper Integrals**

$$\int_{a}^{\infty} f(x) dx = \lim_{b \to \infty} \int_{a}^{b} f(x) dx$$

Example:

Convergent improper integral

$$\int_{1}^{\infty} x^{-2} dx = \lim_{b \to \infty} \int_{1}^{b} x^{-2} dx = \lim_{b \to \infty} \left[-x^{-1} \right]_{1}^{b} = \lim_{b \to \infty} \left(-b^{-1} + 1 \right) = 1$$

Numerical Approximation

 It is not trivial to find the antiderivative to a given function or a given dataset

Numerical Approximation

- It is not trivial to find the antiderivative to a given function or a given dataset
- Instead of calculating the Integral the area beneath a curve may be approximated, by splitting the area into sub-areas

Numerical Approximation

- It is not trivial to find the antiderivative to a given function or a given dataset
- Instead of calculating the Integral the area beneath a curve may be approximated, by splitting the area into sub-areas

Partioning an Interval

Let $(x_i)_{i \in [a,b]}$ be a sequence of *n* increasing numbers in [a, b] with fixed distance *h* between x_i and $x_i + 1$ for all x_i .

$$a = x_0 < x_1 < x_2 < \cdots < x_{n-1} < x_n = b$$

Riemann Sums

Riemann Sums

Riemann Sums

Left and Right Sum

▶ For an interval $[x_i, x_{i+1}]$ and a function f the functions

Left(f, [x_i , x_{i+1} [) = $f(x_i)$ and Right(f, [x_i , x_{i+1}]) = $f(x_{i+1})$

are defined to return the leftmost or rightmost value of the function in the interval.

► Left and Right Sum are defined as the Sums of Left and Right across whole partitioned interval (x_i)_{i∈[a,b]}

$$I_L = \sum_{i=1}^{n} \text{Left}(f, x_i, x_{i+1}) \text{ and } I_R = \sum_{i=1}^{n} \text{Right}(f, x_i, x_{i+1})$$

Left and Right Sum

Left and Right Sum

Left and Right Sum

Estimation of the True Integral

▶ Left and Right Sums for a partition (x_i)_{i∈[a,b]} give us an estimate of the integral

$$I_L \leq \int_a^b f(x) dx \leq I_R,$$

if the function in the interval is increasing and

$$I_R \leq \int_a^b f(x) dx \leq I_L,$$

if the function in the interval is decreasing.

Midpoint Method

Calculating Midpoints

Another way of approximating an integral with finite sums is the **Midpoint Method**, which uses the function value in the middle of a given interval $[x_i, x_{i+1}]$

$$Mid(f, [x_i, x_{i+1}]) = f(\frac{x_i + x_{i+1}}{2})$$

The sum of Midpoints also yields an estimation of the area under the curve

$$I_M = \int_i^n Mid(f, [x_i, x_{i+1}])$$

(Simple) Numerical Integration

(Simple) Numerical Integration

A List of Datapoints

Integrating a List of Datapoints

From a sensor we receive the following velocity values $v(x_i)$:

Integrating a List of Datapoints

From a sensor we receive the following velocity values $v(x_i)$:

x_i	0	1	2	3	4	5	6
$v(x_i)$	3	2	-2	-4	-1	2	3

► The distance between each point is 1. The area underneath each point is therefore 1 * v(x_i)

Integrating a List of Datapoints

From a sensor we receive the following velocity values $v(x_i)$:

x_i	0	1	2	3	4	5	6
$v(x_i)$	3	2	-2	-4	-1	2	3

- ► The distance between each point is 1. The area underneath each point is therefore 1 * v(x_i)
- The integrated position for x_3 and startpoint s = 2 equals:

$$V(x_3) = s + x_0 + x_1 + x_2 + x_3 = 2 + 3 + 2 + (-2) + (-4) = 1$$

▶ The position at time-step x₃ is 1

1. Motivation

2. Mathematics

- Graphical Interpretation of the Integral
- Improper Integrals
- Numerical Integration

3. Programming▶ Reading Files

4. Tasks

Reading Files

Opening a file

```
fileObject = open('file.txt', 'r')
#The option r stands for read
```

Reading the file contents

```
#readlines creates a list containing each line
lines = fileObject.readlines()
for line in lines:
    print(line)
```

Close the file after usage:

fileObj.close()#This can be done right after readlines()

Details on Strings

Useful string operations

```
#Strip removes the new-line character '\n'
line = line.strip()
#Split tokenizes the string at the given character
line = line.split(' ')# 'Hello you' to ['Hello','you']
line = line.split('o')# 'Hello you' to ['Hell',' y','u']
line = line.replace('l','b')# 'Hello you' to 'Hebbo you'
```

Tasks

- 1. Download the file *velocity_series.txt* from the course page and write a script that reads its contents and stores them as a list of floating values. Plot the list with *Pyplot*.
 - Use *file.readlines*() to receive a list of strings containing each line
 - Extract the velocity in each line by applying the *split()* method in a for-loop
 - ▶ In the loop typecast the velocity into a float and append it to a second list
- **2.** Write a script that takes a list of velocities and uses simple numerical integration to calculate a list of positions. Assume a starting position of your choice.
 - Initialize a position variable with your starting position and create an empty position list.
 - Loop through your velocity list. In each loop add the current velocity to your position variable and append the result to your position list.
- 3. (Optional) Compute the numerical integral of cos(x) in the interval [0, 2π] using the midpoint method. Vary the number of subintervals. Plot your results together with sin(x) to verify your integrated data.