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Lecture 5 - Integration Motivation

Reverting Differentiation

I started at 0.
I drove 3o for 3 timesteps

then 40 for 5 timesteps
then 10 for 2 timesteps.

Where am I?
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Lecture 5 - Integration Motivation

From Velocity to position
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Lecture 5 - Integration Mathematics - Graphical Interpretation of the Integral

Overview

1. Motivation

2. Mathematics
ä Graphical Interpretation of the Integral
ä Improper Integrals
ä Numerical Integration

3. Programming
ä Reading Files

4. Tasks
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Lecture 5 - Integration Mathematics - Graphical Interpretation of the Integral

Integral as Area

f (x) = cos(x)
∫ 2π

0 cos(x)

0 2π
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Lecture 5 - Integration Mathematics - Graphical Interpretation of the Integral

Integral as Function

f (x) = cos(x)
∫ 2π

0 cos(x)= sin(2π)

0 2π

0 2π
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Lecture 5 - Integration Mathematics - Graphical Interpretation of the Integral

Geometric Definition

Definite Integral

The definite integral of a function f (x) between the lower boundary a and
the upper boundary b ∫ b

a
f (x)

is defined as the size of the area between f and the x-axis inside the
boundaries. Areas above the x-Axis are considered positive and areas below
negative.
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Lecture 5 - Integration Mathematics - Graphical Interpretation of the Integral

The Antiderivative
Definition

If f is a function with domain [a, b]→ R and there is a function F, which is
differentiable in the interval [a, b] with the property that

F′(x) = f (x),

then F is considered the antiderivative of f

Properties of the antiderivative

I Differentiation removes constants, because of that an antiderivative is
described by a family of functions F(x) + c

I Unlike with differentiation there are no fixed rules to compute an
antiderivative from a given f
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Lecture 5 - Integration Mathematics - Graphical Interpretation of the Integral

A function and its antiderivative

f (x) = x F(x) = 1
2 x2

y

x

y

x
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Lecture 5 - Integration Mathematics - Graphical Interpretation of the Integral

Calculating the Integral

Calculating the area in an interval
If f is integrable and continuous in [a, b]. Then the following holds for each
antiderivative F of f∫ b

a
f (x)dx =

∫ b

a
F′(x)dx = [F(x)]ba = F(b)− F(a)

Example:

I Area under f (x) between values 1 and 2∫ 2

1
xdx =

[
1
2

x2
]2

1
=

1
2

22 − 1
2

12 = 1.5
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Lecture 5 - Integration Mathematics - Graphical Interpretation of the Integral

Integral as area underneath a function

f (x) = x F(x) = 1
2 x2 ∫ 2

1 f (x)dx = F(2)− F(1)

1 2

y

x

1 2

2.0

0.5

y

x
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Lecture 5 - Integration Mathematics - Graphical Interpretation of the Integral

The Integral as Linear Operator

Integration Rules

I Summation ∫ b

a
f (x) + g(x) =

∫ b

a
f (x) +

∫ b

a
g(x)

I Scalar Multiplication ∫ b

a
cf (x) = c

∫ b

a
f (x)

I Boundary Transformations∫ b

a
f (x) +

∫ c

b
f (x) =

∫ c

a
f (x) ∧

∫ b

a
f (x) = −

∫ a

b
f (x)
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Lecture 5 - Integration Mathematics - Improper Integrals

Improper Integrals

Infinite Intervals
It is possible to calculate the area in infinitely large intervals. Intervals with
an infinite boundary are called Improper Integrals∫ ∞

a
f (x)dx = lim

b→∞

∫ b

a
f (x)dx

Example:

I Convergent improper integral∫ ∞
1

x−2dx = lim
b→∞

∫ b

1
x−2dx = lim

b→∞

[
−x−1]b

1 = lim
b→∞

(−b−1 + 1) = 1
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Lecture 5 - Integration Mathematics - Numerical Integration

Numerical Approximation

I It is not trivial to find the antiderivative to a given function or a given
dataset

I Instead of calculating the Integral the area beneath a curve may be
approximated, by splitting the area into sub-areas

Partioning an Interval
Let (xi)i∈[a,b] be a sequence of n increasing numbers in [a, b] with fixed
distance h between xi and xi + 1 for all xi.

a = x0 < x1 < x2 < · · · < xn−1 < xn = b
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Lecture 5 - Integration Mathematics - Numerical Integration

Riemann Sums

Left Sum
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Lecture 5 - Integration Mathematics - Numerical Integration

Riemann Sums

Left and Right Sum

I For an interval [xi, xi+1] and a function f the functions

Left(f , [xi, xi+1[) = f (xi) and Right(f , [xi, xi+1]) = f (xi+1)

are defined to return the leftmost or rightmost value of the function in
the interval.

I Left and Right Sum are defined as the Sums of Left and Right across
whole partitioned interval (xi)i∈[a,b]

IL =

n∑
i

Left(f , xi, xi+1) and IR =

n∑
i

Right(f , xi, xi+1)
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Left and Right Sum

Left Sum Right Sum
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Lecture 5 - Integration Mathematics - Numerical Integration

Estimation of the True Integral

I Left and Right Sums for a partition (xi)i∈[a,b] give us an estimate of the
integral

IL ≤
∫ b

a
f (x)dx ≤ IR,

if the function in the interval is increasing and

IR ≤
∫ b

a
f (x)dx ≤ IL,

if the function in the interval is decreasing.
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Lecture 5 - Integration Mathematics - Numerical Integration

Midpoint Method

Calculating Midpoints
Another way of approximating an integral with finite sums is the Midpoint
Method, which uses the function value in the middle of a given interval
[xi, xi+1]

Mid(f , [xi, xi+1]) = f (
xi + xi+1

2
)

The sum of Midpoints also yields an estimation of the area under the curve

IM =

∫ n

i
Mid(f , [xi, xi+1])
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Lecture 5 - Integration Mathematics - Numerical Integration

Midpoint Sums
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Midpoint Sums
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Lecture 5 - Integration Mathematics - Numerical Integration

(Simple) Numerical Integration

A List of Datapoints

 0  1  2  3  4  5  6
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(Simple) Numerical Integration

A List of Datapoints

 0  1  2  3  4  5  6  7
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Lecture 5 - Integration Mathematics - Numerical Integration

Integrating a List of Datapoints

I From a sensor we receive the following velocity values v(xi):
xi 0 1 2 3 4 5 6

v(xi) 3 2 -2 -4 -1 2 3

I The distance between each point is 1.
The area underneath each point is therefore 1 ∗ v(xi)

I The integrated position for x3 and startpoint s = 2 equals:

V(x3) = s + x0 + x1 + x2 + x3 = 2 + 3 + 2 + (−2) + (−4) = 1

I The position at time-step x3 is 1
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Lecture 5 - Integration Programming

1. Motivation

2. Mathematics
ä Graphical Interpretation of the Integral
ä Improper Integrals
ä Numerical Integration

3. Programming
ä Reading Files

4. Tasks
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Lecture 5 - Integration Programming - Reading Files

Reading Files

I Opening a file

fileObject = open(’file.txt’, ’r’)

#The option r stands for read

I Reading the file contents

#readlines creates a list containing each line

lines = fileObject.readlines()

for line in lines:

print(line)

I Close the file after usage:

fileObj.close()#This can be done right after readlines()
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Lecture 5 - Integration Programming - Reading Files

Details on Strings

I Useful string operations

#Strip removes the new-line character ’\n’

line = line.strip()

#Split tokenizes the string at the given character

line = line.split(’ ’)# ’Hello you’ to [’Hello’,’you’]

line = line.split(’o’)# ’Hello you’ to [’Hell’,’ y’,’u’]

line = line.replace(’l’,’b’)# ’Hello you’ to ’Hebbo you’
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Lecture 5 - Integration Tasks

Tasks
1. Download the file velocity series.txt from the course page and write a

script that reads its contents and stores them as a list of floating values.
Plot the list with Pyplot.

I Use file.readlines() to receive a list of strings containing each line
I Extract the velocity in each line by applying the split() method in a

for-loop
I In the loop typecast the velocity into a float and append it to a second list

2. Write a script that takes a list of velocities and uses simple numerical
integration to calculate a list of positions. Assume a starting position of
your choice.

I Initialize a position variable with your starting position and create an
empty position list.

I Loop through your velocity list. In each loop add the current velocity to
your position variable and append the result to your position list.

3. (Optional) Compute the numerical integral of cos(x) in the interval
[0, 2π] using the midpoint method. Vary the number of subintervals.
Plot your results together with sin(x) to verify your integrated data.
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