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Lecture 4 - Sequences Function Limits - Sequences

Sequences

Sequence Definition

Functions with the domain N are called sequence. A sequence with the
codomain R is called a sequence of real numbers: f : N — R, n — f(n)

Examples:

» Constant sequence: (3),eny = (3,3,3,3,3,...)

v

Sequence of natural numbers: (n),en = (1,2,3,4,5,...)
1 111 )

727374757"'

» Geometric sequence: (¢")nen = (4, 4% ¢, ¢ ¢, -+ -)

v

Harmonic sequence: (3 )nen = (1

\4

Alternating sequence: ((—1)")yeny = (—1,1,—1,1,—1,...)
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Lecture 4 - Sequences Function Limits - Sequences

Recursive Sequences

Recursive Sequence Definition

A sequence (a,),en may be recursively defined by:
1. The first sequence element : g;, called initial value

2. Arecursive rule defining element a,,; through previous elements a,

Example: The Fibonacci Sequence

Apy1 =y + ap—1 = (1,1,2,3,5,8,13,21,...),

witha; =landa, =1
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Lecture 4 - Sequences Function Limits - Sequences

Properties of Sequences

Boundedness

A sequence (ay )nen has

» an upper bound, if thereisa K € R, such thata, < Kforalln € N

» alowerbound, if thereisa K € R, such thata,, > Kforalln € N
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Lecture 4 - Sequences Function Limits - Sequences

Properties of Sequences

Boundedness

A sequence (ay)nen has

» an upper bound, if thereisa K € R, such thata, < Kforalln € N

» alowerbound, if thereisa K € R, such thata,, > Kforalln € N

Monotonicity

A sequence (ay)yen 1S :

» (strictly) monotonically increasing, if a,(<) < a,,41 foralln € N

» (strictly) monotonically decreasing, if a,(>) > a,; foralln € N
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Lecture 4 - Sequences Function Limits - Limit Definition

Convergence and Divergence

Definitions

» A sequence (ay,)nen of real numbers converges to a real number L, if for
all € > 0, there exists a natural number N:

la, — L| < eforalln > N
» Lis called the limit of a sequence
lim a, =1
n—oo

» A sequence that does not converge is called divergent
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Lecture 4 - Sequences Function Limits - Limit Definition

Convergence Example

: 1 _ 1 111
The harmonic sequence (, )neny = (1, 3,3, 45 55 - - - ) converges to Zero
- @
0.5= ®
- ® o
: M
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Convergence Example

The harmonic sequence (1 )yen = (I,

. 3.3+ 5,...) converges to Zero
- @
0.5= ®
: ®
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Lecture 4 - Sequences Function Limits - Limit Definition

Convergence Example

A sequence (ay)yen of real numbers converges to a real number L, if for all
€ > 0, there exists a natural number N : |a, — L| < eforalln > N

1~ °
0.5— o
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Convergence Example

A sequence (ay)yen of real numbers converges to a real number L, if for all
€ > 0, there exists a natural number N : |a, — L| < eforalln > N
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Lecture 4 - Sequences Function Limits - Limit Definition

Convergence Example

A sequence (ay)yen of real numbers converges to a real number L, if for all
€ > 0, there exists a natural number N : |a, — L| < eforalln > N

05+
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28.09.2018 10/32



Lecture 4 - Sequences Function Limits - Limit Definition

Properties of Limits

Calculating with Limits

For two converging sequences (X, )nen and (¥, )nen with limits
limy o0 % = Ly and lim,_, o y» = L, the following holds:

» Scalar multiplication: lim,_, (ax,) = aL, fora € R

v

Addition: limy, oo (%, +yn) = L + Ly

v

Multiplication: lim;, oo (X)) = LyLy

v

PN o L
Division: 11mn_,oo(y—:) =

v

Norm: limy,_, oo (|2,|) = | L]
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Lecture 4 - Sequences Differentiation

3. Differentiation
» Graphical Interpretation
» Formal Description
» Rules for Differentiation
» Numerical Differentiation
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Lecture 4 - Sequences Differentiation - Graphical Interpretation

A function and its derivative

flx) = fi(x) = 2x
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A function and its derivative
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A function and its derivative

flx) =05 fllx) =0
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Lecture 4 - Sequences Differentiation - Graphical Interpretation

A function and its derivative

fx) = sin(x) f'(x) = cos(x)
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Lecture 4 - Sequences Differentiation - Graphical Interpretation

Derivative as a Tangent

f(x) = sin(x)
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Derivative as a Tangent
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Lecture 4 - Sequences Differentiation - Formal Description

Formal Definition

Differentiable Function

» A function f with domain M is called differentiable at position x, if; if
the limit value
o )~ ()
X—rXo X — xo

exists.

v
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Lecture 4 - Sequences Differentiation - Formal Description

Formal Definition

Differentiable Function

» A function f with domain M is called differentiable at position x, if; if
the limit value
o )~ ()
X—rXo X — xo
exists.

» This limit is called f” or derivative of f at position x,. If f’ is defined for
allx, € M, then f” becomes a new function called the derivative of f

v
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Lecture 4 - Sequences Differentiation - Formal Description

Formal Definition

Differentiable Function

» A function f with domain M is called differentiable at position x, if; if

the limit value
i F) = f(5o)
X—rXo X — xo

exists.

» This limit is called f” or derivative of f at position x,. If f’ is defined for
allx, € M, then f” becomes a new function called the derivative of f

» Alternate notations:

(50 = &L (1) = gy LR 1)

o dx x—0

v
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Lecture 4 - Sequences Differentiation - Formal Description

Differentiation as Limit Example

» Statement: The derivative of f (x) = x> is f’(x) = 2x
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Differentiation as Limit Example

» Statement: The derivative of f (x) = x> is f’(x) = 2x
» Applying the formula

_ 2 2
i T —flx0) _ % — %"
X—Xo X — Xo x—x0 X — Xp
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Lecture 4 - Sequences Differentiation - Formal Description

Differentiation as Limit Example

» Statement: The derivative of f (x) = x> is f’(x) = 2x
» Applying the formula

_ 2 2
i S —fl0) _ %" — %"
X—Xo X — Xo x—x0 X — Xp

» Simplifying

lim FoF)E+x0) o e w xR o

X—Xo X — Xo X—Xo X=X X—Xo
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Lecture 4 - Sequences Differentiation - Formal Description

Differentiation as Limit Example

» Statement: The derivative of f (x) = x> is f’(x) = 2x
» Applying the formula

_ 2 2
i S —fl0) _ %" — %"
X—Xo X — Xo x—x0 X — Xp

» Simplifying
lim ( = %0) (x + %o) = lim =) + %) = lim (x + xo)

X—Xo X — Xo X—Xo X=X X—Xo

» Applying the limit:

lim (x + x0) = 2x
X—rXo
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Lecture 4 - Sequences Differentiation - Rules for Differentiation

Differentiation is a linear operator

» Constant Factor P
d—(af) = “d—(f)
» Sums
i =L+ L)
Y YT ix 7
Example:
d, o d 5 B
a(4x ) = 45€(x ) = 4(2x) = 8x
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Lecture 4 - Sequences Differentiation - Rules for Differentiation

Differentiation is a linear operator

» Constant Factor

2 (af) = ai(f)
> Sums
_d d
d—(f'i‘g) a(f)‘i‘a(ﬂ)
Example:

dx
d 2 2y _ _
. — (4 + x*) = 4—(x )+a(x)—4(2x)+2x—10x

28.09.2018
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Lecture 4 - Sequences Differentiation - Rules for Differentiation

Differentiation for Products and Quotients

Rules

» Multiplication

» Exponentiation

» Division

28.09.2018
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Lecture 4 - Sequences Differentiation - Rules for Differentiation

Examples

» Multiplication

(zc(xzsin(x)) = di(xz)sin(x) + xz(;i(sin(x)) = 2xsin(x) + x*cos(x)
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Lecture 4 - Sequences Differentiation - Rules for Differentiation

Examples

» Multiplication

(zc(xzsin(x)) = di(xz)sin(x) + xz(;i(sin(x)) = 2xsin(x) + x*cos(x)

» Division

28.09.2018 22/32



Lecture 4 - Sequences Differentiation - Rules for Differentiation

Exponentiation Rule derives from Multiplication Rule

» Example f’(x®)
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Lecture 4 - Sequences Differentiation - Rules for Differentiation

Exponentiation Rule derives from Multiplication Rule

» Example f’(x®)

L N L .
dx( )_d (x QC)— dx(x )x+x dx(x)
= 200 + x* = 3x”
» Example f'(x*)
d 4\ 2.2\ __ d 2\ 2 Zd 2
28 =5 () = () 4o (o)
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Lecture 4 - Sequences Differentiation - Rules for Differentiation

Exponentiation Rule derives from Multiplication Rule

» Example f’(x®)

Aoy 4oy _ 4o ad
dx( )_d (x QC)— dx(x )x+x dx(x)
= 200 + x* = 3x”
» Example f'(x*)
d 4\ d 2.2\ d 2\ 2 Zd 2
&(x)_&(xx)_&(x)x +x %(x)

= 2xx% + x%2x = 208 + 20° = 4
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Lecture 4 - Sequences Differentiation - Rules for Differentiation

Special cases

» The derivative of f (x) = e*is f'(x) =
» The derivative of f (x) = In(x) is f'(x) = £

» The derivative of f (x) = sin(x) is f'(x) = cos(x)
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Lecture 4 - Sequences Differentiation - Rules for Differentiation

Composite functions

Chain Rule

» Function h is a composition of functions g and f

h(x) = (g o f)(x) = g(f(x))
» If gand f are differentiable, h is also differentiable

L) = 2 g0)) (), withy = (2

X

» Verbal rule: Inner derivative times outer derivative

28.09.2018
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Lecture 4 - Sequences Differentiation - Rules for Differentiation

Chain Rule Examples

> h(x) = 5(7x + 2)* = g(f (x))
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gx) =5x* Af(x) =7x+2
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Chain Rule Examples
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Chain Rule Examples

> h(x) = 5(7x + 2)* = g(f (x))
gx) =5x* Af(x) =7x+2
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Lecture 4 - Sequences Differentiation - Rules for Differentiation

Finding Local Extrema

fx) =sin(x)  f(x) = cos(x)
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Finding Local Extrema

fla) = flx) = 2x
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Lecture 4 - Sequences Differentiation - Rules for Differentiation

Calculation of Local Extrema

> f(x) = 4x® + 6x
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Calculation of Local Extrema
> f(x) = 4x® + 6x
flix)=8x+6
f(x) = 8x+6=0

28.09.2018 28/32



Lecture 4 - Sequences Differentiation - Rules for Differentiation

Calculation of Local Extrema
> f(x) = 4x® + 6x
flix)=8x+6

f(x) = 8x+6=0
<~ 8x = —6
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Lecture 4 - Sequences Differentiation - Rules for Differentiation

Calculation of Local Extrema

> f(x) = 4x® + 6x

flix)=8x+6
f(x) = 8x+6=0
<= 8x = —6
—6 -3
== — =
8 4
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Lecture 4 - Sequences Differentiation - Rules for Differentiation

Calculation of Local Extrema

> f(x) = 4x® + 6x

flix)=8x+6
f’(x):8x+6£o
<= 8x = —6
-6 -3
=Sx=—=—
8 4

> f(x) = sin(x)
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Calculation of Local Extrema
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Lecture 4 - Sequences Differentiation - Rules for Differentiation

Differentiability is not given

fla) =5 flix) =2

....................................................................
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Lecture 4 - Sequences Differentiation - Numerical Differentiation

Numerical Differentiation

» Problem: Only function values f (xo) of f (x) are known, but not the real
function f
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function f

» Instead of calculating the derivative of f analytically, it is possible to
approximate f’(x) using numerical differentiation
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Numerical Differentiation

» Problem: Only function values f (xo) of f (x) are known, but not the real
function f

» Instead of calculating the derivative of f analytically, it is possible to
approximate f’(x) using numerical differentiation

(Simple) Numerical Differentiation

The set I describes the computable domain of f in the given context. It is
possible to calculate function value f(x;), where x; € L.

() = lim L F W ZSG) ot 1) =)

h—o0 h ’

where x; + h is the smallest positive distance from x; in I.

V.
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Lecture 4 - Sequences Differentiation - Numerical Differentiation

Numerical Differentiation Example

» From a sensor we receive the following values:
X; 0 1 2 3 4 5 6 7 8 9
f) |31 29 24 14 16 3 31 33 35 42

» The derivative at x; equals:

) = Floes + h})l — () h1 ) If(ﬁ%)

=16—-14=0.2

» The change at position x3 is 0.2

28.09.2018
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Tasks

1. Write a script the calculates the Fibonacci sequence for an arbitrary
number N of elements. Print the numbers to the console.

» The first two elements of a; and a, are always 1

» Write a loop that runs N times and calculates the Fibonacci number
Ap+1 = Gy + Ap—1

» Tip: Use variables to store the values for the current value a,, and the
previous value a,_; and update them in each loop.

2. Download Task Template 5.2 from the course homepage. The template
assigns the Braitenberg vehicle a series of positions.

» Run the template and verify that the vehicle moves in x-direction

» Open the template and use the given list of positions to estimate the
vehicles velocity using numerical differentiation. Store the resulting
velocity values in a second list.

» Tip: Use a for-loop that runs through the position values and compares
the current list-entry to the preceding one.
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