
Lecture 3 - Coordinate Systems

Lecture 3
Coordinate Systems and Trigonometry

Jan Tekülve
jan.tekuelve@ini.rub.de

Computer Science and Mathematics
Preparatory Course

27.09.2018

27.09.2018 1 / 34

Lecture 3 - Coordinate Systems Motivation

Motivation - Coordinate Systems

How far is the source away?

27.09.2018 2 / 34

Lecture 3 - Coordinate Systems Motivation

Motivation - Coordinate Systems

1 2 3 4 5 60

1

2
3

4
5

6
0

How far is the source away?

27.09.2018 2 / 34

Lecture 3 - Coordinate Systems Motivation

Motivation - Coordinate Systems

1 2 3 4 5 60

1

2
3

4
5

6
0

How far is the source away?

27.09.2018 2 / 34

Lecture 3 - Coordinate Systems Motivation

Motivation - Coordinate Systems

1 2 3 4 5 60

1

2
3

4
5

6
0

How much do I need to turn
to face the source?

α

27.09.2018 2 / 34

Lecture 3 - Coordinate Systems Motivation

Motivation - Coordinate Systems

1 2 3 4 5 60

1

2
3

4
5

6
0

How much do I need to turn
to face the source?

α

β

27.09.2018 2 / 34

Lecture 3 - Coordinate Systems Motivation

Motivation - Coordinate Systems

1 2 3 4 5 60

1

2
3

4
5

6
0

How much do I need to turn
to face the source?

α

β

new allocentric orientation: α-β

27.09.2018 2 / 34

Lecture 3 - Coordinate Systems Math

1. Motivation

2. Math
ä Vector Calculation
ä Trigonometry

3. Programming
ä Installing Python Modules
ä The Matplotlib Module
ä The Pygame Module

4. Tasks
ä Pygame Tasks
ä Pyplot Tasks

27.09.2018 3 / 34

Lecture 3 - Coordinate Systems Math - Vector Calculation

Vectors in the Cartesian Coordinate System

A vector v =

(
vx
vy

)
is defined as an arrow from the origin to the point (vx, vy)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 1 2 3 4 5

(2,3)

(4,1)

y

x

27.09.2018 4 / 34

Lecture 3 - Coordinate Systems Math - Vector Calculation

Vector Norm
The norm or length |v| =

√
vx2 + vy2 of a vector v =

(
vx
vy

)
is calculated

using the Pythagorean theorem

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 0.5 1 1.5 2 2.5

(2,3)

y

x

27.09.2018 5 / 34

Lecture 3 - Coordinate Systems Math - Vector Calculation

Vector Addition
(

ax
ay

)
+

(
bx
by

)
=

(
ax + bx
ay + by

)
=

(
cx
cy

)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 1 2 3 4 5

(2,3)

(4,1)

c

a

b
(2,-2)y

x

27.09.2018 6 / 34

Lecture 3 - Coordinate Systems Math - Vector Calculation

Scalar Multiplication

sa = s
(

ax
ay

)
=

(
sax
say

)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.5 1 1.5 2 2.5 3

(2,3)

(1,1.5)

b

a

a=2b

y

x

27.09.2018 7 / 34

Lecture 3 - Coordinate Systems Math - Vector Calculation

Scalar Product

I The scalar product< a, b > or a · b or aTb between two vectors

< a, b >=<
(

ax
ay

)
,

(
bx
by

)
>= axbx + ayby

results in a scalar value.

I It can be used to calculate an angle between two vectors:

< a, b >= |a||b|cos(α) ⇐⇒ α = arccos
(
< a, b >
|a||b|

)
I If< a, b >= 0 the angle between both vectors is 90◦ and they are

considered orthogonal to each other

27.09.2018 8 / 34

Lecture 3 - Coordinate Systems Math - Vector Calculation

Orthogonal Vectors

(1,1)(-1,1)

(1,0)

(0,-1)

y

x

27.09.2018 9 / 34

Lecture 3 - Coordinate Systems Math - Vector Calculation

Angle between Vectors

(1,1)

(1,0)

y

x

α =arccos
(
< a, b >
|a||b|

)
α =arccos

(
1 ∗ 1 + 1 ∗ 0√

2 ∗ 1

)
α =arccos

(
1√
2

)
α =

π

4
= 45◦

27.09.2018 10 / 34

Lecture 3 - Coordinate Systems Math - Trigonometry

Measuring Angles

I Defining a full angle as 360◦ is
common but actually arbitrary

I The length of the circumference
of a circle is given by 2πr or 2π
for the unit circle

I The length of the arc-segment
enclosed by the angle is defined
as Radian

I Calculate the Radian x from
angle α in degree: x = απ

180◦

27.09.2018 11 / 34

Lecture 3 - Coordinate Systems Math - Trigonometry

Measuring Angles

I Defining a full angle as 360◦ is
common but actually arbitrary

I The length of the circumference
of a circle is given by 2πr or 2π
for the unit circle

I The length of the arc-segment
enclosed by the angle is defined
as Radian

I Calculate the Radian x from
angle α in degree: x = απ

180◦

27.09.2018 11 / 34

Lecture 3 - Coordinate Systems Math - Trigonometry

Measuring Angles

I Defining a full angle as 360◦ is
common but actually arbitrary

I The length of the circumference
of a circle is given by 2πr or 2π
for the unit circle

I The length of the arc-segment
enclosed by the angle is defined
as Radian

I Calculate the Radian x from
angle α in degree: x = απ

180◦

27.09.2018 11 / 34

Lecture 3 - Coordinate Systems Math - Trigonometry

Measuring Angles

I Defining a full angle as 360◦ is
common but actually arbitrary

I The length of the circumference
of a circle is given by 2πr or 2π
for the unit circle

I The length of the arc-segment
enclosed by the angle is defined
as Radian

I Calculate the Radian x from
angle α in degree: x = απ

180◦

27.09.2018 11 / 34

Lecture 3 - Coordinate Systems Math - Trigonometry

Angles in a Coordinate System

Vector orientation with respect to a coordinate system is defined by
translating the origin onto the vectors tail

27.09.2018 12 / 34

Lecture 3 - Coordinate Systems Math - Trigonometry

Calculating Angles in a Right triangle

I Sine and cosine are defined in
the unit circle.

a = cos(α) ⇐⇒ α = cos−1(a)
b = sin(α) ⇐⇒ α = sin−1(b)

I Click here for interactive demo.

I In the unit circle we can ignore
the hypothenuse c = 1

I For β the relation is reversed:

a = sin(β) ⇐⇒ β = sin−1(a)
b = cos(β) ⇐⇒ β = cos−1(b)

27.09.2018 13 / 34

https://www.geogebra.org/m/WHgHyG7Z

Lecture 3 - Coordinate Systems Math - Trigonometry

Calculating Angles in a Right triangle

I Sine and cosine are defined in
the unit circle.

a = cos(α) ⇐⇒ α = cos−1(a)
b = sin(α) ⇐⇒ α = sin−1(b)

I Click here for interactive demo.

I In the unit circle we can ignore
the hypothenuse c = 1

I For β the relation is reversed:

a = sin(β) ⇐⇒ β = sin−1(a)
b = cos(β) ⇐⇒ β = cos−1(b)

27.09.2018 13 / 34

https://www.geogebra.org/m/WHgHyG7Z

Lecture 3 - Coordinate Systems Math - Trigonometry

Calculating Angles in a Right triangle

I Sine and cosine are defined in
the unit circle.

a = cos(α) ⇐⇒ α = cos−1(a)
b = sin(α) ⇐⇒ α = sin−1(b)

I Click here for interactive demo.

I In the unit circle we can ignore
the hypothenuse c = 1

I For β the relation is reversed:

a = sin(β) ⇐⇒ β = sin−1(a)
b = cos(β) ⇐⇒ β = cos−1(b)

27.09.2018 13 / 34

https://www.geogebra.org/m/WHgHyG7Z

Lecture 3 - Coordinate Systems Math - Trigonometry

Rules for any Right Triangle

I a2 + b2 = c2

I sin(x) = b
c = opposite

hypothenuse

I cos(x) = a
c = adjacent

hypothenuse

I tan(x) = sin(x)
cos(x) =

b
a = opposite

adjacent

27.09.2018 14 / 34

Lecture 3 - Coordinate Systems Programming

1. Motivation

2. Math
ä Vector Calculation
ä Trigonometry

3. Programming
ä Installing Python Modules
ä The Matplotlib Module
ä The Pygame Module

4. Tasks
ä Pygame Tasks
ä Pyplot Tasks

27.09.2018 15 / 34

Lecture 3 - Coordinate Systems Programming - Installing Python Modules

PIP installs Packages

I Pip is a helper tool that downloads and installs additional python
modules. You need an internet connection.

I Pip can be called from the console with

python -m pip install <modulename>

I Example:

27.09.2018 16 / 34

Lecture 3 - Coordinate Systems Programming - Installing Python Modules

Modules for the Course

I We will need the pygame and matplotlib modules

I Make sure you have a working internet connection

I Execute the following commands one after another:

python -m pip install pygame

python -m pip install matplotlib

I A message like “Sucessfully installed . . . ” should be displayed after each
command terminated.

27.09.2018 17 / 34

Lecture 3 - Coordinate Systems Programming - The Matplotlib Module

The Matplotlib Module

I Matplotlib is the most prominent plotting library for Python

I It was originally developed to create Matlab-like plots for free

27.09.2018 18 / 34

Lecture 3 - Coordinate Systems Programming - The Matplotlib Module

Matplotlib.pyplot

I We will use the pyplot submodule

A submodule can be imported with the . operator

import matplotlib.pyplot as plt

The as operator allows renaming for convenience

numbers = [1,1,2,3,5,8,13]

It is assumed that the list is a list of y-values

plt.plot(numbers)

This generates the plot, but does not display

plt.ylabel('some numbers')
plt.xlabel('generic x axis')
plt.show()

An alternative to showing would be to save the image

27.09.2018 19 / 34

Lecture 3 - Coordinate Systems Programming - The Matplotlib Module

Result

27.09.2018 20 / 34

Lecture 3 - Coordinate Systems Programming - The Matplotlib Module

Pyplot

I Helpful Pyplot Commands

#Define the x and y arrays and the line appearance

#'ro' stands for red dots, 'b-' for blue lines

plt.plot([1,2,3,4], [1,4,9,16], linewidth=2.0, 'ro')
#Explicitly define the range of the axis

plt.axis([0, 6, 0, 20])

#Save the plot as an image with a desired resolution

plt.savefig('myplot.png',dpi=200)

I Find detailed examples here https://matplotlib.org/users/pyplot
tutorial.html

27.09.2018 21 / 34

https://matplotlib.org/users/pyplot tutorial.html
https://matplotlib.org/users/pyplot tutorial.html

Lecture 3 - Coordinate Systems Programming - The Matplotlib Module

Pyplot

I Multiple plots in one figure

x = [1,2,3,4,5]

y1 = [3,6,9,12,15]

y2 = [0.5,1,1.5,2,2.5]

plt.plot(x,y1,'ro',x,y2,'g^')

27.09.2018 22 / 34

Lecture 3 - Coordinate Systems Programming - The Pygame Module

The Pygame module

I Pygame contains a set of modules designed for video game writing

I It is an open-source project since 2000, latest update 2017

I Its classes allow high-level game programming

27.09.2018 23 / 34

Lecture 3 - Coordinate Systems Programming - The Pygame Module

Setting up an environment

I Every pygame script should contain this

import pygame, sys #Import pygame and system functions

from pygame.locals import * #Import all pygame modules

pygame.init() #Initialize all modules

I Set up a 800x600 frame

#Define the frame size

frame = pygame.display.set_mode((800, 600))

#Fill the frame with a R,G,B color

green = (0,255,0)

frame.fill(green)

pygame.display.flip() #!Important! Update the display

27.09.2018 24 / 34

Lecture 3 - Coordinate Systems Programming - The Pygame Module

Pygame Coordinate System

The Pygame coordinate System has its origin in the top left corner

0 800

0

600

Y

X

27.09.2018 25 / 34

Lecture 3 - Coordinate Systems Programming - The Pygame Module

The Game Loop

I A game should only end through user interaction

#This loop runs forever

while True:

#pygame.event catches user interaction in a list

for event in pygame.event.get():

#For example a click on the close-button

if event.type == QUIT:

#This exits the game appropriately

pygame.quit()

sys.exit()

I For simplicity the pygame.event for-loop will be omitted in future slides

27.09.2018 26 / 34

Lecture 3 - Coordinate Systems Programming - The Pygame Module

Positioning Objects

I pygame.Rect - object for storing rectangular coordinates

#pygame.Rect((left, top), (width, height))

#A square at Pos 500,200 with size 40

square = pygame.Rect((500,200),(40,40))

I Rects can be drawn on the screen

frame = pygame.display.set_mode((800, 600))

frame.fill((0,255,0))

#pygame.draw.rect(screen, color, pygame.rect)

pygame.draw.rect(frame, (0,0,255), square)

pygame.display.flip()

27.09.2018 27 / 34

Lecture 3 - Coordinate Systems Programming - The Pygame Module

Draw Rectangle Example

square = pygame.Rect((500,200),(40,40))

pygame.draw.rect(frame, (0,0,255), square)

(500,200)

(540,240)

27.09.2018 28 / 34

Lecture 3 - Coordinate Systems Programming - The Pygame Module

Loading Images

#Loads the Image

vehicle = pygame.image.load("braitenberg.png")

vehicle.convert() #Converts the image to game coordinates

frame.blit(vehicle,(600,300)) #Places it on the screen

27.09.2018 29 / 34

Lecture 3 - Coordinate Systems Programming - The Pygame Module

Using the Game-Loop

I Moving the vehicle across the screen

We loaded the image in vehicle

and set up a screen in frame

xPos = 100 #Start Position

frame.blit(vehicle,(xPos,300)) #Draw the vehicle

while True:

xPos = xPos +1 #Increase the xPos

frame.fill((0,255,0)) #Paint over the old canvas

frame.blit(vehicle,(xPos,300)) #Draw at the new pos

pygame.display.flip() #Show the Updates

I This draws all vehicles on top of another!

27.09.2018 30 / 34

Lecture 3 - Coordinate Systems Programming - The Pygame Module

Using the Game-Loop

I Moving the vehicle across the screen

We loaded the image in vehicle

and set up a screen in frame

xPos = 100 #Start Position

frame.blit(vehicle,(xPos,300)) #Draw the vehicle

while True:

xPos = xPos +1 #Increase the xPos

frame.fill((0,255,0)) #Paint over the old canvas

frame.blit(vehicle,(xPos,300)) #Draw at the new pos

pygame.display.flip() #Show the Updates

I This draws all vehicles on top of another!

27.09.2018 30 / 34

Lecture 3 - Coordinate Systems Programming - The Pygame Module

Using the Game-Loop

I Moving the vehicle across the screen

We loaded the image in vehicle

and set up a screen in frame

xPos = 100 #Start Position

frame.blit(vehicle,(xPos,300)) #Draw the vehicle

while True:

xPos = xPos +1 #Increase the xPos

frame.fill((0,255,0)) #Paint over the old canvas

frame.blit(vehicle,(xPos,300)) #Draw at the new pos

pygame.display.flip() #Show the Updates

I This draws all vehicles on top of another!

27.09.2018 30 / 34

Lecture 3 - Coordinate Systems Programming - The Pygame Module

Helpful Functions

I Pygame

#Introduces a pause between each game loop

pygame.time.delay(500)

#This rotates an image to angle degrees

rot_sprite = pygame.transform.rotozoom(player_image,

↪→ angle,1)

I Trigonometry:

math.pi #The number pi

math.asin(x) # sin−1(x)
math.acos(x) # cos−1(x)
math.degrees(radianValue) # radian to degree

27.09.2018 31 / 34

Lecture 3 - Coordinate Systems Tasks - Pygame Tasks

Pygame Task Template

Explain Task Template!

27.09.2018 32 / 34

Lecture 3 - Coordinate Systems Tasks - Pygame Tasks

Pygame Tasks

Download the files task 3 1 template.py and braitenberg.png from the course
website and put them in the same folder.

1. Familiarize yourself with the template and execute it. Vary the returned
angle in calculate angle to target and verify how the vehicle turns.

2. Fill in the missing code in the function calculate angle to target, which
calculates the angle between the player position and a given target.

I Start with a piece of paper first. Draw a triangle between the vehicle and
target position. Which angle of the triangle resembles the desired vehicle
orientation and how can you calculate it?

I Make drawings estimate formulas for each of the four different cases of
target positions

I Try your solution in the code. Run the script to verify your calculations.

27.09.2018 33 / 34

Lecture 3 - Coordinate Systems Tasks - Pyplot Tasks

Pyplot Task (optional)

Take your script from the previous lecture that stores function values in a
list.

1. Extend the script by also storing the x-values in a second list. Use the x
and f (x) list to plot your polynomial function.

2. Generate another f (x) list with the same x-values, but other coefficients
a0 to a4. Plot both functions in the same plot.

3. Save one of your plots as a ‘.png’ image with 300 dpi. Add labels at your
own discretion.

27.09.2018 34 / 34

	Motivation
	Math
	Vector Calculation
	Trigonometry

	Programming
	Installing Python Modules
	The Matplotlib Module
	The Pygame Module

	Tasks
	Pygame Tasks
	Pyplot Tasks

