
Lecture 1 - Introduction

Lecture 1

Introduction to Variables and Control Statements

Jan Tekülve
jan.tekuelve@ini.rub.de

Computer Science and Mathematics
Preparatory Course

21.09.2018

21.09.2018 1 / 31

Lecture 1 - Introduction

Course Formalities

Goals:

I Learning Basic-Programming with Python

I Refreshing Elementary Mathematical Concepts

Concept:

I Each lecture will be split into a theoretical explanation and a
programming session

I On the last day (05.10.) there will be an ungraded “test”

21.09.2018 2 / 31

Lecture 1 - Introduction Motivation

Overview

1. Motivation

2. Programming
ä Set up
ä Data Types
ä Control Statements
ä Utilities

3. Math
ä Number Systems

4. Tasks

21.09.2018 3 / 31

Lecture 1 - Introduction Motivation

Motivation: Modeling a cognitive agent

Braitenberg Vehicles

21.09.2018 4 / 31

Lecture 1 - Introduction Motivation

Motivation: Modeling a cognitive agent

Environmental Factors

(Numbers)

Braitenberg Vehicles

21.09.2018 4 / 31

Lecture 1 - Introduction Motivation

Motivation: Modeling a cognitive agent

Environmental Factors

(Numbers)

Relationships

(Functions)

Braitenberg Vehicles

21.09.2018 4 / 31

Lecture 1 - Introduction Motivation

Motivation: Modeling a cognitive agent

Environmental Factors

(Numbers)

Relationships

(Functions)

α

Distance and

Orientation

(Trigonometry)

Braitenberg Vehicles

21.09.2018 4 / 31

Lecture 1 - Introduction Motivation

Motivation: Modeling a cognitive agent

Environmental Factors

(Numbers)

Relationships

(Functions)

α

Distance and

Orientation

(Trigonometry)

Velocity and

Position

(Differentiation

and Integration)

Braitenberg Vehicles

21.09.2018 4 / 31

Lecture 1 - Introduction Motivation

Motivation: Modeling a cognitive agent
Environmental Factors

(Numbers)

Relationships

(Functions)

α

Distance and

Orientation

(Trigonometry)

Velocity and

Position

(Differentiation

and Integration)

Behavior (Differential Equations)

Braitenberg Vehicles

21.09.2018 4 / 31

Lecture 1 - Introduction Motivation

Motivation: Modeling a cognitive agent

Environmental Factors

(Numbers)

Relationships

(Functions)

α

Distance and

Orientation

(Trigonometry)

Velocity and

Position

(Differentiation

and Integration)

Behavior (Differential Equations)

Connections

(Matrices)

Braitenberg Vehicles

21.09.2018 4 / 31

Lecture 1 - Introduction Motivation

Programming Goal

21.09.2018 5 / 31

Lecture 1 - Introduction Motivation

Course Structure

Date Title Topics
1 21.09. Variables and Control State-

ments
Number Systems, Data Types, Con-
trol Statements

2 24.09. Functions in Math and Pro-
gramming

Function Types and Properties,
Plotting Functions,Lists

3 25.09. Coordinate Systems Vectors, Trigonometry, The Pygame
Module

4 26.09. Sequences Sequences and Series, Limits, Re-
cursiveness

5 27.09. Differentiation Derivative Definition, Calculating
Derivatives, Numerical Differentia-
tion, File-Input/Output

21.09.2018 6 / 31

Lecture 1 - Introduction Motivation

Course Structure

Date Title Topics
6 28.09. Integration Geometrical Definition, Calculat-

ing Integrals, Numerical Integra-
tion

7 01.10. Differential Equations Properties of Differential Equa-
tions, Euler Approximation,
Braitenberg Vehicle

8 02.10. Matrices Matrix Addition, Matrix Multipli-
cation, Basic Neural Networks

03.10. HOLIDAY
9 04.10. Make a Wish Lecture Individual Wishes, Finish Pro-

gramming
10 05.10. Repetition Lecture and

“Test”
Repetition of Core Concepts and
Ungraded Test

21.09.2018 6 / 31

Lecture 1 - Introduction Programming

1. Motivation

2. Programming
ä Set up
ä Data Types
ä Control Statements
ä Utilities

3. Math
ä Number Systems

4. Tasks

21.09.2018 7 / 31

Lecture 1 - Introduction Programming

Python

Why Python?

I It is simple but high level

I It is interpreted “on the fly”

I It is the state of the art scripting language

Setting up Python

I Download Python3 from: https://www.python.org/downloads/

I To code you will need a simple text editor (e.g. Notepad)

I For further info look here: https://docs.python.org/3/

21.09.2018 8 / 31

https://www.python.org/downloads/
https://docs.python.org/3/

Lecture 1 - Introduction Programming - Set up

Excursion: Terminal/Command Prompt

The Terminal/Command Prompt offers a simple Input/Output Interface

21.09.2018 9 / 31

Lecture 1 - Introduction Programming - Set up

Excursion: Terminal/Command Prompt

Open the Terminal/Prompt:

Windows Mac OS
Click on Start and type cmd Click on the Spotlight Icon and type

terminal
Starting Python

I Type python --version into the terminal and press return
I If you have version 3: You are fine!
I If you have version 2: You are fine, but be aware!
I If an error message pops up: Follow me along in the next steps!

21.09.2018 10 / 31

Lecture 1 - Introduction Programming - Set up

Setting up the Path variable

Windows
1. Find out the

/path/where/python/is/located/
2. Access ‘System Settings’ from

your Control Panel.
3. Click on the ‘Advanced’ tab.
4. Click on the ‘Environmental

Variables’ button on the bottom
of the screen

5. Locate ‘Path’ under the ‘System
Variables’ section and Click on
‘Edit’

6. At the end type ‘;’ followed by the
python installation path

Mac
1. Open ‘/etc/paths’
2. Add the line at the end:

/usr/local/bin

3. Save the file

If it does not work:
1. Let’s fix this later
2. For now open:

https://trinket.io/features/python3

21.09.2018 11 / 31

https://trinket.io/features/python3

Lecture 1 - Introduction Programming - Set up

Setting Up

Set up your personal environment

I Create a folder for your python projects

I Open the terminal/command-prompt and navigate to folder using the
cd command

cd /path/to/your/created/folder

I Inside the folder create a file called helloworld.py and open it

21.09.2018 12 / 31

Lecture 1 - Introduction Programming - Set up

Hello World

I Write the following line into the file:

print("Hello World!")

I Type the following in the terminal/command prompt

python helloworld.py

and press return to execute the script

21.09.2018 13 / 31

Lecture 1 - Introduction Programming - Data Types

Variables

I Variables are the elementary building block of every program

I Variables store information of various type:

greeting = "Hello, Hello!" # String Type

print(greeting) # prints "Hello, Hello!"

#Comments can be written after a leading #

I Variables are assigned via ’=’

a = 5 # Integer Type

b = 3.0 # Float Type

c = a # c is 5

d = b + c # d is 8.0

21.09.2018 14 / 31

Lecture 1 - Introduction Programming - Data Types

Variables

I Variables are the elementary building block of every program

I Variables store information of various type:

greeting = "Hello, Hello!" # String Type

print(greeting) # prints "Hello, Hello!"

#Comments can be written after a leading #

I Variables are assigned via ’=’

a = 5 # Integer Type

b = 3.0 # Float Type

c = a # c is 5

d = b + c # d is 8.0

21.09.2018 14 / 31

Lecture 1 - Introduction Programming - Data Types

Variables

I Variables are the elementary building block of every program

I Variables store information of various type:

greeting = "Hello, Hello!" # String Type

print(greeting) # prints "Hello, Hello!"

#Comments can be written after a leading #

I Variables are assigned via ’=’

a = 5 # Integer Type

b = 3.0 # Float Type

c = a # c is 5

d = b + c # d is 8.0

21.09.2018 14 / 31

Lecture 1 - Introduction Programming - Data Types

Operations on Data Types

I Operations on Numbers

2+2 #4

50-5*6 #20

(50-5*6)/4 #5.0

8/5 #1.6

17/3 #5.666666666666667

17//3 #5 Integer Division

17%3 #2 Rest of the Division

I Operations on Strings

'Wo' + 'rd' #'Word' or "Word"

'Isn't' # This results in an error!

'Isn\'t' #'Isn't' Use \ to escape characters

21.09.2018 15 / 31

Lecture 1 - Introduction Programming - Control Statements

Control Statements

I if-Statement

x = 3.5

if x > 0 : #Indentation organizes blocks

print("x is positive!")#Indent with 4 spaces

print("Program is finished!")

I else-statement

x = 3.5

if x > 0 : #Indentation organizes blocks

print("x is positive!")#Indent with 4 spaces

else :

print("x is not positive!")

print("Program is finished!")

21.09.2018 16 / 31

Lecture 1 - Introduction Programming - Control Statements

Control Statements

I if-Statement

x = 3.5

if x > 0 : #Indentation organizes blocks

print("x is positive!")#Indent with 4 spaces

print("Program is finished!")

I else-statement

x = 3.5

if x > 0 : #Indentation organizes blocks

print("x is positive!")#Indent with 4 spaces

else :

print("x is not positive!")

print("Program is finished!")

21.09.2018 16 / 31

Lecture 1 - Introduction Programming - Control Statements

Control Statements

I else if-statement

x = 3.5

if x > 0 : #Indentation organizes blocks

print("x is positive!") #Indent with 4 spaces

elif x < 0 :

print("x is negative!")

else:

print("x is zero!")

print("Program is finished!")

21.09.2018 17 / 31

Lecture 1 - Introduction Programming - Control Statements

Variable Scope

I Python code is organized in
blocks by indentation (4 spaces)

I Variables defined in the global
scope are available at all positions
in the code below its definition

I Variables defined in a block are
available in the block and all
blocks inside it

a = 3

b = 4

if a > 2:

c = a + b

b = 1

if c > 5:

print(a)

else:

print(a)

print(c)

print(b)

21.09.2018 18 / 31

Lecture 1 - Introduction Programming - Control Statements

Variable Scope

I Python code is organized in
blocks by indentation (4 spaces)

I Variables defined in the global
scope are available at all positions
in the code below its definition

I Variables defined in a block are
available in the block and all
blocks inside it

Global

a = 3

b = 4

if a > 2:

c = a + b

b = 1

if c > 5:

print(a)

else:

print(a)

print(c)

print(b)

Global

Global

21.09.2018 18 / 31

Lecture 1 - Introduction Programming - Control Statements

Variable Scope

I Python code is organized in
blocks by indentation (4 spaces)

I Variables defined in the global
scope are available at all positions
in the code below its definition

I Variables defined in a block are
available in the block and all
blocks inside it

Block 1

Block 2

Block 3

Global

a = 3

b = 4

if a > 2:

c = a + b

b = 1

if c > 5:

print(a)

else:

print(a)

print(c)

print(b)

Global

Global

21.09.2018 18 / 31

Lecture 1 - Introduction Programming - Control Statements

Variable Scope

I Example

a = 3 # Global Scope

b = 4

if a > 2 :

c = a + b # Block 1

b = 1

if c > 5:

print(a) # Block 2

else : # Global

print(a) # Block 3

print(c) # If a <= 2 this will result in an error

print(b) # '1' or '4' if a <= 2

21.09.2018 19 / 31

Lecture 1 - Introduction Programming - Control Statements

While Loops

I Print the numbers from 1 to 10

a = 0

while a < 10 :

a = a +1 # Increase a by 1

print(a)

I Be careful with the exit condition

a = 0

while a < 10 :

print(a) # Prints 0 until the end of time

You can kill the running program by pressing Ctrl+C

21.09.2018 20 / 31

Lecture 1 - Introduction Programming - Control Statements

Boolean Statements
I Examples

3 > 2 #True, greater than

3 < 3 #False, less than

3 <= 3 # True, equal or less than

4 == 5 # False, == checks equality

4 != 5 # True, != is the opposite of ==

"ello" in "Hello" # True, only works for sequence types

"hel" not in "Hello" # True, "in" is case sensitive

I Boolean Variables

test = 7

isGreaterThanOne = test > 1

if isGreaterThanOne:

print("The number is Greater than 1!")

21.09.2018 21 / 31

Lecture 1 - Introduction Programming - Control Statements

Boolean Statements
I Examples

3 > 2 #True, greater than

3 < 3 #False, less than

3 <= 3 # True, equal or less than

4 == 5 # False, == checks equality

4 != 5 # True, != is the opposite of ==

"ello" in "Hello" # True, only works for sequence types

"hel" not in "Hello" # True, "in" is case sensitive

I Boolean Variables

test = 7

isGreaterThanOne = test > 1

if isGreaterThanOne:

print("The number is Greater than 1!")

21.09.2018 21 / 31

Lecture 1 - Introduction Programming - Utilities

User Input

I Use input to prompt the user

person = input('Enter your name: ')
print('Hello ' + person)

I Invalid Data Types

inputValue = input('Please enter a number: ')
result = 5 + inputValue # This results in an error!

I Variables might need to be type casted

result = 5 + float(inputValue)

#This works if an actual number was typed

21.09.2018 22 / 31

Lecture 1 - Introduction Programming - Utilities

User Input

I Use input to prompt the user

person = input('Enter your name: ')
print('Hello ' + person)

I Invalid Data Types

inputValue = input('Please enter a number: ')
result = 5 + inputValue # This results in an error!

I Variables might need to be type casted

result = 5 + float(inputValue)

#This works if an actual number was typed

21.09.2018 22 / 31

Lecture 1 - Introduction Programming - Utilities

User Input

I Use input to prompt the user

person = input('Enter your name: ')
print('Hello ' + person)

I Invalid Data Types

inputValue = input('Please enter a number: ')
result = 5 + inputValue # This results in an error!

I Variables might need to be type casted

result = 5 + float(inputValue)

#This works if an actual number was typed

21.09.2018 22 / 31

Lecture 1 - Introduction Programming - Utilities

Type Casting

I Implicit Typecast

a = 1.0 #float

b = 2 #int

c = a + b #3.0 float

I Explicit Typecasts

d = float(b) #2.0

e = 3.7

f = int(3.7) #3 Any floating point is cut off

g = str(e) #String '3.7'
h = int(g) # This results in an error!

i = float(g) # 3.7

print('Variable i is: ' +str(i)) #Print expects strings

21.09.2018 23 / 31

Lecture 1 - Introduction Programming - Utilities

Type Casting

I Implicit Typecast

a = 1.0 #float

b = 2 #int

c = a + b #3.0 float

I Explicit Typecasts

d = float(b) #2.0

e = 3.7

f = int(3.7) #3 Any floating point is cut off

g = str(e) #String '3.7'
h = int(g) # This results in an error!

i = float(g) # 3.7

print('Variable i is: ' +str(i)) #Print expects strings

21.09.2018 23 / 31

Lecture 1 - Introduction Programming - Utilities

Useful built-in Functions

I Rounding and Absolute Value

a = 3.898987897897

b = round(a,3) #3.899

c = abs(-3.2) #|-3.2| = 3.2

t = type(c) #t is <class 'float'>
test = t is float # True

I The math module

import math #Import makes a module available

squareTwo = math.sqrt(2) #
√

2
power = math.pow(3,4) # 34

exponential = math.exp(4) #e4

piNumber = math.pi #3.14159265359

21.09.2018 24 / 31

Lecture 1 - Introduction Math

1. Motivation

2. Programming
ä Set up
ä Data Types
ä Control Statements
ä Utilities

3. Math
ä Number Systems

4. Tasks

21.09.2018 25 / 31

Lecture 1 - Introduction Math - Number Systems

Definitions

Number Systems

I Natural Numbers: N = {0, 1, 2, 3, 4, . . . }

I Integer Numbers: Z =

{. . . ,−2,−1, 0, 1, 2, . . . }

I Rational Numbers: Q

= a
b , where a, b ∈ Z and b 6= 0

I Real Numbers: R

0 1 2 3 4

21.09.2018 26 / 31

Lecture 1 - Introduction Math - Number Systems

Definitions

Number Systems

I Natural Numbers: N = {0, 1, 2, 3, 4, . . . }

I Integer Numbers: Z = {. . . ,−2,−1, 0, 1, 2, . . . }

I Rational Numbers: Q

= a
b , where a, b ∈ Z and b 6= 0

I Real Numbers: R

0 1 2 3 4-1-2-3-4

21.09.2018 26 / 31

Lecture 1 - Introduction Math - Number Systems

Definitions

Number Systems

I Natural Numbers: N = {0, 1, 2, 3, 4, . . . }

I Integer Numbers: Z = {. . . ,−2,−1, 0, 1, 2, . . . }

I Rational Numbers: Q= a
b , where a, b ∈ Z and b 6= 0

I Real Numbers: R

0 1 2 3 4-1-2-3-4 7

4

3

4

1

2

10

4

21.09.2018 26 / 31

Lecture 1 - Introduction Math - Number Systems

Real Numbers

I Between two rational numbers is an infinite amount of rational
numbers

I However:
√

2 is not a rational number

I The irrational number
√

2 = 1.4142135 . . . is part of the real world:

21.09.2018 27 / 31

Lecture 1 - Introduction Math - Number Systems

Real Numbers

I Between two rational numbers is an infinite amount of rational
numbers

I However:
√

2 is not a rational number

I The irrational number
√

2 = 1.4142135 . . . is part of the real world:

21.09.2018 27 / 31

Lecture 1 - Introduction Math - Number Systems

Real Numbers

I Between two rational numbers is an infinite amount of rational
numbers

I However:
√

2 is not a rational number

I The irrational number
√

2 = 1.4142135 . . . is part of the real world:

21.09.2018 27 / 31

Lecture 1 - Introduction Math - Number Systems

Definitions
Number Systems

I Natural Numbers: N = {0, 1, 2, 3, 4, . . . }

I Integer Numbers: Z = {. . . ,−2,−1, 0, 1, 2, . . . }

I Rational Numbers: Q= a
b , where a, b ∈ Z and b 6= 0

I Real Numbers: R = Q+ irrational numbers

0 1 2 3 4-1-2-3-4 7

4

3

4

1

2

10

4
√2 π

Honorable Mention

I Complex Numbers: C = a + ib, where a, b ∈ R and i =
√
−1

21.09.2018 28 / 31

Lecture 1 - Introduction Math - Number Systems

Definitions

Number Systems

I Natural Numbers: N = {0, 1, 2, 3, 4, . . . }

I Integer Numbers: Z = {. . . ,−2,−1, 0, 1, 2, . . . }

I Rational Numbers: Q= a
b , where a, b ∈ Z and b 6= 0

I Real Numbers: R = Q+ irrational numbers

Honorable Mention

I Complex Numbers: C = a + ib, where a, b ∈ R and i =
√
−1

21.09.2018 28 / 31

Lecture 1 - Introduction Math - Number Systems

Number Systems

ℝ ℚ ℤ ℕ

21.09.2018 29 / 31

Lecture 1 - Introduction Tasks

Tasks

1. Write a Script that determines whether a given Input number is an
Integer or Rational Number. Print the result to the console.

I Use pythons input function to retrieve the input number. Assume that the
user types only numbers.

I Use type casting to convert into the correct data types
I Be aware that the rationals include all integers, but not the other way

round.

2. Write a Script that finds a fraction a
b , where a, b ∈ I that resembles the

first four digits of
√

2 = 1.4142. Use a Brute Force approach that tries out
possible values for a and b until a solution is found.

I Start with a = 1 and b = 1
I Use a loop that exits when the rounded a

b equals 1.4142
I In each loop iteration adapt the values for a and b by incrementing them

or setting them to 1.

21.09.2018 30 / 31

Lecture 1 - Introduction Tasks

Lecture Slides/Material

Type the following URL to access the lecture slides:

https://www.ini.rub.de/teaching/courses/c science math

21.09.2018 31 / 31

https://www.ini.rub.de/teaching/courses/c_science_math

	Motivation
	Programming
	Set up
	Data Types
	Control Statements
	Utilities

	Math
	Number Systems

	Tasks

