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Dynamical systems

fixed point = constant solution

neighboring initial conditions converge = attractor
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Bifurcations are instabilities

In families of dynamical systems, which depend 
(smoothly) on parameters, the solutions change 
qualitatively at bifurcations 

at which fixed points change stability 
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behavioral variables

time courses from dynamical system: 
attractors

tracking attractors

bifurcations for flexibility

Basic ideas of attractor dynamics 
approach
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vehicle moving in 
2D: heading 
direction

constraints: 
obstacle avoidance 
and target 
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behavioral constraint: target acquisition
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behavioral constraint: obstacle avoidance

Behavioral dynamics: example
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constraints not in conflict

Behavioral dynamics: bifurcations
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constraints in conflict

Behavioral dynamics
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transition from “constraints not in conflict” 
to “constraints in conflict” is a bifurcation
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obstacles need not be segmented

do not care if obstacles are one or multiple: 
avoid them anyway… 

Obstacle avoidance: sub-symbolic
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Figure 3. The range of the repulsive forcelet is limited based on sensor range
and on the constraint of passing next to the virtual obstacle without
contact.

Only the known and constant difference, φ − ψ� = −θ� enters
into this equation, so that the calibration of the external refer-
ence frame (the current value of φ itself) does not matter. The
strength of repulsion, λ�, from the virtual obstacle at direction
ψ�, is a decreasing function of the distance, �� sensed at the
sensor �:

λ� = β1 · exp
�
− ��

β2

�
(9)

The constant β1 is the maximum repulsion strength of this contri-
bution and β2 controls its rate of decay with increasing distance.
Thus, when no obstacle is within the range of the distance sen-
sor, the corresponding forcelet inside an attractive region and
the net contribution is zero.
The angular range over which the forcelet exerts its effect is
governed by σ� wich we define as a function:

σ� = arctan
�
tan

�
∆θ
2

�
+ Rrobot

Rrobot + ��

�
� (10)

where ∆θ = 30o is the angular sector at which the sensor is
sensitive, and �� is the sensed distance. The angle subtended
by half the vehicle’s width Rrobot at the sensed distance is added
on each side of the sensor sector to warrant clear passage.
Thus, the angular range over which a forcelet acts decreases
with increasing distance This is illustrated in Figure 3.
The contributions from all seven sensors are summed:

�φ
�� = �obs(φ) =

7�

�=1

�obs��(φ) (11)

In contrast to higher-level implementations where one obstacle
contribution in fact represents exactly one obstacle, we are in-
clined to ask whether extended obstacles that can appear on
more than one sensor in this low-level implementation will lead
to a sensible avoidance behavior: The extended obstacle ”bleeds

Figure 4. On the top: with respect to Figure 6 the robot turned left 5π/12 rad.
From this rotation results three virtual obstacles now at directions ψ2 ,
ψ3 and ψ4 . In this figure φ = 2π/3 rad, ψ2 = π/3 rad, ψ3 = π/2 rad
and ψ4 = 2π/3 rad. Distances are 40, 30 and 40 cm respectively. On
the bottom: three repulsive forcelets are erected at these directions.
The bold line represents the resultant obstacle avoidance dynamics.
attractor is near π/2.

Figure 5. Each sensor i (� = 1� � � � � 7), which is mounted at angle θ� from the
frontal direction, specifies an obstacle at direction ψ� = φ + θ� in
an external reference frame. In the Figure, sensors 5 and 6 specify
virtual obstacles at ψ5 and ψ6 respectively.

over” to other sensors with different distance values �� and an-
gular range coefficients σ� weighting the superposition in Equa-
tion 11 in a non-trivial manner. As a method to test this inquiry
we propose to analyze the superposition of Equation 11 under
rotation of the vehicle on the spot.
Figures 6 and 4 exemplarily illustrate that the summed obsta-
cle contributions depend little on the current orientation of the
vehicle. When the vehicle is oriented as shown in Figure 5, two

Figure 6. In the situation depicted in Figure ?? two virtual obstacles are
detected at directions ψ5 and ψ6 . In that figure φ = π/4 rad,
ψ5 = 5π/12 rad and ψ6 = 7π/12 rad, sensed distances are both
35 cm. Two repulsive forcelets centered at these directions are there-
fore erected (solid thin lines). The solid bold line shows the resultant
obstacle dynamics. The resultant repeller is at π/2 rad.
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over” to other sensors with different distance values �� and an-
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we propose to analyze the superposition of Equation 11 under
rotation of the vehicle on the spot.
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cle contributions depend little on the current orientation of the
vehicle. When the vehicle is oriented as shown in Figure 5, two
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Figure 3. The range of the repulsive forcelet is limited based on sensor range
and on the constraint of passing next to the virtual obstacle without
contact.
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2nd order attractor dynamics to 
explain human navigation

Dynamical Model of Steering 17

(a)

(b)

Figure 3 . Human trajectories for turning away from an obstacle
in Experiment 2 (turning rate (φ̇) vs. goal angle (φ − ψg)). Curves
correspond to (a) different initial obstacle angles in the 4 m condition
and (b) different initial obstacle distances in the 4◦ condition.

Likewise, the obstacle function fo(φ − ψo, do) was
chosen to reflect the findings that the influence of the
obstacle on angular acceleration decreases with both
obstacle angle and distance:

fo(φ − ψo, do) = ko(φ − ψo)
(

e−c3|φ−ψo|
)

(e−c4do ) (3)

In this case, the obstacle’s influence decreases expo-
nentially with obstacle angle (see Fig. 4(c)) as well as
with obstacle distance (see Fig. 4(d)). The parameter
ko is a gain term for the obstacle component, c3 sets the
rate of decay with obstacle angle, and c4 sets the rate
of decay with obstacle distance. Note that for small
obstacle angles, acceleration away from the obstacle

increases with obstacle angle, such that the function is
continuous and there is a repellor at an obstacle angle
of zero. Unlike the goal component, the obstacle influ-
ence decreases to zero as distance goes to infinity. When
parameterized to fit the human data, these two exponen-
tials imply that only obstacles within ± 30 ◦ of the head-
ing direction and less than 4 m ahead exert an appre-
ciable influence on steering behavior. Note that the ex-
ponential terms introduce nonlinearity into the system.

Thus, the full model is:

φ̈ = −b φ̇ − kg(φ − ψg)(e−c1dg + c2)

+ ko(φ − ψo)
(

e−c3|φ−ψo|
)

(e−c4do ) (4)

In principle, additional obstacles in the environment
can be included by simply adding terms to the equa-
tion. The model thus scales linearly with the complex-
ity of the scene, and doesn’t blow up in complicated
environments (Large et al., 1999). Furthermore, only
obstacles near the heading direction and a few meters
ahead need to be evaluated, making the model compu-
tationally quite tractable. The agent therefore does not
need a memory representation of the entire scene; as
long as the goal location is available to the agent’s sen-
sors, route selection is performed simply on the basis
of the obstacles within a small spatial window ahead.

Simulations

We simulated the model under a variety of conditions
to test its success in steering toward goals, avoiding
obstacles and selecting routes. The conditions used for
the first two sets of simulations were identical to those
used in the two preceding human experiments, and their
purpose was to test the adequacy of Eq. (4) as a model
of human behavior. The next step was to test the model
in more complex scenes containing one or more ob-
stacles in which multiple routes around the obstacle(s)
are possible. These simulations were intended to reveal
how goal and obstacle components interact to perform
route selection.

Simulation #1: Steering Toward a Goal

We simulated the model under the same conditions used
in Experiment 1 on steering toward a goal, to identify
the single set of parameters for the goal component
that best fit the data. Simulations were compared with
the mean time series of goal angle in the human data

attractor goal heading

repellor obstacle heading

damping term 18 Fajen et al.

Figure 4 . Plots of (a) goal angle term, (b) goal distance term, (c) obstacle angle term, and (d) obstacle distance term from Eq. (4).

using a least-squares analysis, as the four parameters
were systematically varied. The best fit (r2 = 0.982)
was found with parameter values of b = 3.25, kg =
7.50, c1 = 0.40, and c2 = 0.40. Using these settings,
the model produced paths to the goal that were virtu-
ally identical with human subjects (Fig. 5), turning at
a rate that depended on goal angle and distance in a
similar manner. Specifically, turning rate and angular
acceleration increased with goal angle (Fig. 6(a)) and
decreased with goal distance (Fig. 6(b)).

Simulation #2: Avoiding an Obstacle

Adding a single obstacle component, we simulated the
model under the conditions used in Experiment 2. We
used the parameter settings found in the previous sim-
ulation for the goal component, and fit the three pa-
rameters for the obstacle component in the same man-
ner as before. The best fitting obstacle values (mean
r2 = 0.975) were ko = 198.0, c3 = 6.5, and c4 = 0.8.
Using these settings, the model successfully detoured
around the obstacle to the goal on paths very similar to
those of human subjects (Fig. 7). The turning rate and
acceleration away from the obstacle decreased with ob-
stacle angle (see Fig. 8(a)) and decreased with obstacle
distance (see Fig. 8(b)), reproducing the characteris-
tics of human obstacle avoidance behavior. Thus, the

model exhibits both a good quantitative and qualitative
fit to the human behavior observed in Experiments 1
and 2.

Simulation #3: Route Selection

To see whether the model could predict the routes hu-
mans would select through somewhat more complex
scenes, we performed simulations with a variety of
other goal and obstacle configurations. Because the
model functions in real-time, behavior is determined
entirely by the interaction of goal and obstacle compo-
nents, whose influence changes with the position, head-
ing and turning rate of the agent. How might goal and
obstacle components interact to determine the route?

Simulation #3a: Relative Position of Goal and One
Obstacle. Consider the situation in which the direc-
tion of the obstacle lies in between the direction of
heading and the direction of the goal (see Fig. 9). In
this case, the agent could take either an outside (left)
path or an inside (right) path around an obstacle. If
the agent’s behavior is determined by the interaction
of goal and obstacle components, and if the relative
“attraction” of the goal and “repulsion” of the obstacle
depend on their locations, then the offset angle between
the obstacle and goal and the goal distance should in-
fluence the agent’s route.

inertial term

[Fajen Warren…]
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model-experiment match: goal
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(a)

(b)

Figure 5. Paths produced by model to goals located at (a) 5◦, 10◦,
15◦, 20◦, and 25◦ and 4 m and (b) 2, 4, and 8 m in the 20◦ condition
in Simulation #1.

We tested the model using configurations of goals
and obstacles similar to those in Fig. 9. Keeping the
initial goal angle constant at 15◦ and the initial obsta-
cle distance constant at 4 m, we varied the initial goal
distance between 5 m and 9 m, and the initial offset an-
gle between 1◦ and 15◦. We found effects of both initial
goal distance and initial offset angle. Using the fixed
parameters determined in Simulations #1 and #2, the
agent selects an outside route for offset angles ≤7◦, and
an inside path for angles ≥10◦. For angles between 7◦

and 10◦, the agent takes an outside route for larger goal
distances and switches to an inside route for smaller
goal distances (Fig. 10).

(a)

(b)

Figure 6. Model trajectories in Simulation #1 (turning rate (φ̇) vs.
goal angle (φ − ψg)). Curves correspond to (a) initial goal angle in
the 4 m condition and (b) initial goal distance in the 20◦ condition.

The effect of initial goal distance is a consequence
of the fact that the attractive strength of the goal, and
hence angular acceleration toward the goal, increases
as the goal gets nearer. The effect of offset angle is
a consequence of the trade-off between the attractive
strength of the goal, which increases with angle, and the
repulsive strength of the obstacle, which decreases with
angle. Initially, the goal component dominates, turning
the agent in the direction of the goal. The resulting de-
crease in both goal and obstacle angle decreases the
attractive strength of the goal and increases the repul-
sive strength of the obstacle. Whether the agent follows
an inside or outside route depends on which component
dominates as the agent heads toward the obstacle. For
large offset angles, the goal angle is relatively large

16 Fajen et al.

Human Experiments

Three experiments were designed to reveal the fac-
tors that influence how humans turn toward goals and
away from obstacles during walking (see Fajen and
Warren, 2003), for details). The studies were con-
ducted in the Virtual Environment Navigation Lab
(VENLab) at Brown University. The VENLab consists
of a 12 m × 12 m room in which subjects are able to
walk around freely while wearing a head-mounted dis-
play (HMD). A hybrid inertial and ultrasonic tracker
mounted in the ceiling tracks the position and orien-
tation of the HMD. This information is fed back to a
high-performance graphics workstation, which updates
the visual display presented in the HMD. This facility
allows us to manipulate both the structure of the en-
vironment and the visual information presented to the
observer in real-time, while simultaneously recording
ongoing behavior in naturalistic tasks.

The first experiment examined the simple case of
walking toward a goal, while the second examined
avoiding a single obstacle en route to a goal. In
Experiment 1, observers began each trial by walking
in a specified direction. After walking 1 m, a goal
appeared at an angle of φ − ψg = 5◦, 10◦, 15◦, 20◦,
or 25◦ from the heading direction and a distance of
dg = 2, 4, or 8 m. Observers were simply asked to
walk to the goal. The major findings of Experiment 1
were that the turning rate and angular acceleration to-
ward goals increased with goal angle (see Fig. 2(a))
but decreased with goal distance (see Fig. 2(b)). In
Experiment 2, observers began walking toward a goal
located straight ahead at a distance of 10 m. After
walking 1 m, the obstacle appeared at an angle of
φ − ψo = 1◦, 2◦, 4◦, or 8◦ from the heading direction
and a distance of do = 3, 4, or 5 m. The major findings
of Experiment 2 were that the turning rate and angular
acceleration away from obstacles decreased with both
obstacle angle (see Fig. 3(a)) and obstacle distance (see
Fig. 3(b)).

The Model

These empirical observations were used to specify
the dynamical model of steering and obstacle avoid-
ance. First, for purposes of simplicity, we assumed that
damping would be proportional to turning rate, such
that fd (φ̇) = b φ̇, for some constant b > 0. The goal
function fg(φ−ψg , dg) was chosen to reflect the find-
ings that the influence of the goal on angular accelera-

(a)

(b)

Figure 2 . Human trajectories for turning toward a goal in
Experiment 1 (turning rate (φ̇) vs. goal angle (φ − ψg)). Curves
correspond to (a) different initial goal angles in the 4 m condition
and (b) different initial goal distances in the 20◦ condition.

tion increases with goal angle and decreases with goal
distance:

fg(φ − ψg, dg) = kg(φ − ψg)(e−c1dg + c2) (2)

Thus, in the model the goal’s influence increases lin-
early with goal angle up to 180◦ (see Fig. 4(a)) and de-
creases exponentially with goal distance (see Fig. 4(b)).
Note that this influence asymptotes to some minimum
non-zero value as goal distance increases, enabling the
agent to steer toward distant goals. The “stiffness” pa-
rameter kg is a gain term for the goal component, c1 sets
the rate of exponential decay with goal distance, and c2

scales the minimum acceleration toward distant goals.

experiment model
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model-experiment match: obstacle

experiment model

20 Fajen et al.

Figure 7 . Paths produced by model around obstacles located at 4◦

and 3, 4 or 5 m in Simulation #2.

(a)

(b)

Figure 8 . Model trajectories in Simulation #2 (turning rate (φ̇) vs.
goal angle (φ− ψg)). Curves correspond to (a) initial obstacle angle in
the 4 m condition and (b) initial obstacle distance in the 4◦ condition.

Figure 9 . Configuration of goal and obstacle used in Simulation
#3a.

as the agent turns toward the obstacle. Hence, goal at-
traction overcomes obstacle repulsion resulting in an
inside route. For small offset angles, the goal angle is
relatively small as the agent turns toward the obstacle.
Hence, obstacle repulsion overcomes goal attraction,
forcing the agent along an outside route. Thus, the deep
structure of the observed route selection is represented
in the behavioral dynamics.

To evaluate the model’s predictive ability, we tested
for these effects of initial offset angle and initial goal
distance in humans. As in Experiments 1 and 2, subjects
began walking in a specified direction. After walking

Figure 10 . Paths produced by the model to goals located at 15◦ and
5, 7, or 9 m. Goal-obstacle offset angle is 8◦ and obstacle distance is
4 m.
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(a)

(b)

Figure 3 . Human trajectories for turning away from an obstacle
in Experiment 2 (turning rate (φ̇) vs. goal angle (φ − ψg)). Curves
correspond to (a) different initial obstacle angles in the 4 m condition
and (b) different initial obstacle distances in the 4◦ condition.

Likewise, the obstacle function fo(φ − ψo, do) was
chosen to reflect the findings that the influence of the
obstacle on angular acceleration decreases with both
obstacle angle and distance:

fo(φ − ψo, do) = ko(φ − ψo)
(

e−c3|φ−ψo|
)

(e−c4do ) (3)

In this case, the obstacle’s influence decreases expo-
nentially with obstacle angle (see Fig. 4(c)) as well as
with obstacle distance (see Fig. 4(d)). The parameter
ko is a gain term for the obstacle component, c3 sets the
rate of decay with obstacle angle, and c4 sets the rate
of decay with obstacle distance. Note that for small
obstacle angles, acceleration away from the obstacle

increases with obstacle angle, such that the function is
continuous and there is a repellor at an obstacle angle
of zero. Unlike the goal component, the obstacle influ-
ence decreases to zero as distance goes to infinity. When
parameterized to fit the human data, these two exponen-
tials imply that only obstacles within ± 30 ◦ of the head-
ing direction and less than 4 m ahead exert an appre-
ciable influence on steering behavior. Note that the ex-
ponential terms introduce nonlinearity into the system.

Thus, the full model is:

φ̈ = −b φ̇ − kg(φ − ψg)(e−c1dg + c2)

+ ko(φ − ψo)
(

e−c3|φ−ψo|
)

(e−c4do ) (4)

In principle, additional obstacles in the environment
can be included by simply adding terms to the equa-
tion. The model thus scales linearly with the complex-
ity of the scene, and doesn’t blow up in complicated
environments (Large et al., 1999). Furthermore, only
obstacles near the heading direction and a few meters
ahead need to be evaluated, making the model compu-
tationally quite tractable. The agent therefore does not
need a memory representation of the entire scene; as
long as the goal location is available to the agent’s sen-
sors, route selection is performed simply on the basis
of the obstacles within a small spatial window ahead.

Simulations

We simulated the model under a variety of conditions
to test its success in steering toward goals, avoiding
obstacles and selecting routes. The conditions used for
the first two sets of simulations were identical to those
used in the two preceding human experiments, and their
purpose was to test the adequacy of Eq. (4) as a model
of human behavior. The next step was to test the model
in more complex scenes containing one or more ob-
stacles in which multiple routes around the obstacle(s)
are possible. These simulations were intended to reveal
how goal and obstacle components interact to perform
route selection.

Simulation #1: Steering Toward a Goal

We simulated the model under the same conditions used
in Experiment 1 on steering toward a goal, to identify
the single set of parameters for the goal component
that best fit the data. Simulations were compared with
the mean time series of goal angle in the human data

5
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FIG. 5. (Top) A periodic evolution of an activation variable cannot be obtained as a solution of a
single-variable dynamical system, because most levels of activation (here the zero level) are crossed in
two different directions, so that the future is not uniquely determined by the present state of the activation
variable. (Bottom) A second variable, here called ‘‘inhibition,’’ is needed to disambiguate these two
events.

To see this, imagine a periodic time course of activation (Fig. 5). All levels of activa-
tion (except at the turning points) are then passed through in two directions, once at
increasing and once at decreasing activation. Thus, such activation values do not
uniquely specify the future. A second variable, here called ‘‘inhibition,’’ is needed,
to disambiguate the future: each activation level is passed through once at a smaller
and once at a larger level of this second variable. Thus, clocks cannot be built as
dynamical systems in terms of activation alone!
Stable periodic solutions, to which the system is attracted from nearby states are

called limit cycle attractors. An example of a dynamical system supporting limit
cycle attractors of an activation–inhibition pair of variables is

τu̇ ! "u # hu # wuu f (u) " wuv f (v) (6)

τv̇ ! "v # hv # wvu f (u), (7)

equations first analyzed by Amari (1977). The first two terms of each equation de-
scribe two linear uncoupled dynamical systems, each with a stable fixed point at the
resting levels of activation, hu, and of inhibition, hv. A sigmoid function,

f (u) !
1

1 # exp["βu]
, (8)

makes the system nonlinear in terms of ‘‘self-excitation’’ (wuu) and of coupling be-
tween activation and inhibition variables (wuv, wvu). For appropriate choices of these
parameters, a limit cycle attractor emerges (Fig. 6). The stability of the periodic solu-
tion manifests itself by attraction of neighboring states toward the limit cycle. The
activation-based stochastic timer model emerges as the limit case, in which the vector
field is structured such that a period of graded activation growth is followed by a
more rapid phase of activation decay (Fig. 6b). In fact, abstractly speaking, any clock
is a limit cycle attractor of a dynamical system (see, e.g., Andronov, Vitt, & Khaikin,

[Amari 77]

relaxation 
oscillator

7



coordination=stable relative 
timing emerges from coupling 
of neural oscillators time

activation

Coordination from coupling

[Schöner: Timing, Clocks, and Dynamical Systems. Brain and Cognition 48:31-51 (2002)]

TIMING, CLOCKS, AND DYNAMICAL SYSTEMS 41

(Engbert et al., 1997; Pressing, 1999; Semjen et al., 2000) deal explicitly with cou-
pling, albeit within the framework of delay or functional dynamical systems.

3.2. Dynamic Timing Models

Coupling is the central concept for understanding relative timing within dynamic
timing models. Mathematically, two dynamic timers, (u1, v1) and (u2, v2), are mutu-
ally coupled if the dynamic variables of one timer contribute to the dynamic equations
of the second and vice versa. For the Amari oscillator model presented earlier [Eqs.
(6) and (7)], for instance, a simple form of mutual coupling is generated by the terms
carrying the coefficient, c, in these equations:

τu̇1 ! "u1 # hu # wuu f (u1) " wuv f (v1) (11)

τv̇1 ! "v1 # hv # wvu f (u1) # cf (u2) (12)

τu̇2 ! "u2 # hu # wuu f (u2) " wuv f (v2) (13)

τv̇2 ! "v2 # hv # wvu f (u2) # cf (u1) (14)

These are only two out of a great variety of possible coupling terms. They generically
generate phase locking, so that the two oscillators adopt identical frequencies and
align matching parts of their activation trajectory (Fig. 11). This relative time order
is stable; that is, when the two oscillators start out with differently aligned trajectories
or are perturbed away from the stable alignment, then the dynamics drives the timers
back to the stable timing relationship.
A characterization of relative timing independently of the underlying activation

states is possible through the concept of relative phase. Its empirical definition is
based on reference events (here the moments in time when activation pierces a thresh-
old leading to a motor event such as a tap). The latency between matching events
of two activation functions divided by the current cycle time of either of the activation
functions is the relative phase, φ ! ∆T/T (Fig. 9). (Relative phase may be normalized

FIG. 11. Two coupled dynamic timers [Eqs. (11), (12), (13), (14)] generically adopt a stable pattern
of relative timing called phase-locking (here near in-phase). Activation variables are in solid black,
inhibition variables in dashed gray. (Bottom) The two activation variables are plotted against each other.
Except for noise-induced fluctuations, the two variables covary, indicating phase-locking.
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Instabilities of relative timing

Schöner, Kelso (Science, 1988)
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Instabilities of relative timing

Schöner, Kelso (Science, 1988)
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Fig. 1. Sample relaxation time estimates in the anti-phase (top) 

and the in-phase (bottom) mode. In each part are shown (from 

above): the finger displacements (RF: right finger, LF: left fin- 

ger), the finger velocities, the continuous estimate of relative phase 

and the torque pulse. 

adjacent frequency plateaus. Perturbations were ran- 

domly distributed over a block of trials such that each 

of the nine frequency plateaus was perturbed a total 

of ten times. 

Using interactive computer displays, an estimate 

of the relaxation time was obtained from the time of 

torque pulse offset until the relative phase time series 

stabilized at its pre-perturbation mean value. Fig. 1 

illustrates this procedure for two typical runs - at the 

same pacing frequency (2 Hz) - in the two modes 

of coordination. 

Interactive computer displays were also used to 

measure the switching time on frequency plateaus in 

which a transition occurred. Here the estimate was 

determined as the time from the beginning of the fre- 

quency plateau to the point where the relative phase 

time series stabilized at a 0 ° (or 360 ° ) mean value 

PHYSICS LETTERS A 31 August 1987 

corresponding to the completion of the transition. 

The results of these experiments for the relaxation 

time estimate are shown in fig. 2 for all five subjects. 

We note the following features: (1) Except for the 

lowest frequencies, the relaxation time in the anti- 

phase mode is consistently higher than in the in-phase 

mode. (2) As the frequency approaches the transi- 

tion frequency, the relaxation time in the anti-phase 

mode increases yet remains constant or decreases in 

the in-phase mode. A mode by pacing frequency 

analysis of variance performed individually for each 

subject's data showed that this difference was statis- 

tically significant in all but one case. Even for this 

subject (BK), who showed an overall decrease of 

relaxation time in both modes, a sharp increase 

occurs in the anti-phase mode immediately prior (2.2 

Hz) to the transition. 

Overall pre-transitional increases in relaxation time 

thus prove the presence of critical slowing down in 

this biological coordination problem and are consis- 

tent with earlier theoretical predictions [7,8] and 

experimental studies of relative phase fluctuations 

[9,10] showing that: (1) The anti-phase mode is 

dynamically less stable than the in-phase mode; and 

(2) the transition from anti-phase to in-phase mode 

is connected with a loss of stability. Specifically, in 

the theoretical model for the stochastic dynamics of 

relative phase ¢ [7,8]: 

~= - a sin(C) - 2b sin(2¢) +,jrQ ~,,  (1) 

with ~, as gaussian white noise of unit variance, and 

model parameters a, b and Q. The relaxation times, 

rrel, were predicted as: 

1 1 

ZreLO-- 4b+a'  Zrel.~-- 4 b - a '  (2) 

where 0 refers to the in-phase mode and n to the anti- 

phase mode. When we determine the parameters a 

and b from the measured relaxation times in the two 

modes, we find that a/4b~0.39 on the last pre-tran- 

sition frequency plateau for all subjects. This is much 

further from the critical point (a/4b= 1.0) than found 

in earlier studies of relative phase fluctuations (in 

ref. [ 10]: a/4b.~0.64). Consequently the critical 

fluctuations predicted [ 8 ] 

/ \ I/2 

SD,~ (T~e,,,~) ~1.50 (3) 
-- \ Trel,O f 

392 
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Fig. 1. The cooperative robotic assistant, CoRA.

peaks of activation through mutual excitation of neighboring field
sites and global inhibition among all field sites (Amari, 1977). These
peaks are attractor states of the neuronal dynamics, which may
coexist bistably with subthreshold distributions of activation and
may go through instabilities. Localized peaks lay down a dynamic
memory trace, which in turn provides input preactivating the field
when new sensory inputs are supplied (Erlhagen & Schöner, 2002;
Thelen, Schöner, Scheier, & Smith, 2001). The memory trace thus
preshapes the field, making it easier to induce localized peaks in
those locations where such peaks had previously been generated.
The dynamic field concept was first applied to robotics by Engels
and Schöner (1995) and Schöner, Dose, and Engels (1995) as a way
to implement a subsymbolic formofmemory and later as amethod
to stabilize decisions about movement targets and stabilize these
in the face of fluctuating sensory input (Bicho, Mallet, & Schöner,
2000).

In this paper, we show how the framework of dynamic
field theory can be used to develop solutions for parts of the
scene representation problem. Specifically, we build a system in
which a small number of very simple feature dimensions are
represented by dynamic fields. These fields interact to build a
simple feature representation of visual objects. In an ongoing
learning process, memory traces are accumulated for different
objects under interactive guidance by the human user. The system
is capable of recognizing objects in new poses after a very small
number of views have been acquired. The system lends itself
to integration into a user-centered service robotics scenario as
we demonstrate through an implementation on the service robot
CoRA, which is equipped with an active stereo camera system and
shares a workspace with the human user (Iossifidis, Theis, Grote,
Faubel, & Schöner, 2003).

2. Methods

2.1. The cooperative robotic assistant CoRA

The anthropomorphic service robot CoRA, depicted in Fig. 1,
was designed to facilitate interaction with human users. The
robotic arm has the same seven degrees of freedom as the human
arm and is controlled by a neuronally inspired attractor dynamics
which generates human-like trajectories that are easily predictable
by the human user (Iossifidis & Schöner, 2004). CoRA has multiple
sensory channels including artificial skin,moment sensing, gesture
recognition, and gaze tracking (Iossifidis et al., 2003), that provide
an intuitive user interface. Speech recognition (implemented
through a custom keyword recognition approach (Fink, 1999))

and speech synthesis enable discourse between user and robot.
The present work aims to extend this interface by providing
the capability to associate user keywords with objects to which
the user refers and to recognize these objects by activating the
keyword label when the object appears in new locations and
poses in the scene. For testing purposes, the speech interface was,
however, typically replaced by a keyboard interface as this speeds
up long test series.

2.2. Segmentation

The robotic arm is mounted on a white table, which is the
workspace shared between CoRA and the human user. Objects
on the table are segmented in two steps. First, all parts of the
image that do not belong to the table are masked based on the
known current geometry of the camera system relative to the
table. Second, pixels are categorized as belonging to objects vs.
to the table. Based on the assumption that the majority of pixels
belongs to the table, the maximum of the grayvalue distribution
is tracked and a Gaussian distribution of fixed width is centered
around it. All pixels within this Gaussian distribution are marked
as pixels belonging to the table. The tracking mechanism enables
correct object-table segmentation even under changing lighting
conditions. Having segmented the image into regions belonging
and not belonging to the table, we apply a cluster algorithm
that fuses connected components into object hypotheses, each
consisting of a blob of pixels (Born & Voelpel, 1995). In the current
implementation, the user selects an individual cluster through a
graphical user interface. More advanced interfaces will make user
of human gesture (Theis, Iossifidis, & Steinhage, 2001).

2.3. Feature extraction

From the color image in the segmented blob we extract
estimates of three feature dimension that describe the segment
as a whole: (a) color; (b) size; (c) aspect ratio (see Fig. 2). Color
is represented by the color histogram over the segment, which
provides directly the input to the label-color dynamic field. (a)
Color is represented in HSV space and only pixels with saturation
and intensity values above a threshold contribute. (b) The size of
the segment is computed from the number of pixels within the
segment. As the apparent size of objects in the image depends the
position of the object on the table, we transform the estimated
image size into an approximated object size based on an estimate
of the distance between the object and the focal plane of the
camera. This can be done by estimating the location of the object
(in terms of the center of the binary blob) on the table based
on the known camera-table geometry. Finally, (c) aspect ratio
is a simple form measure that is estimated by computing the
major axes of the binary blob and taking the ratio of the first two
eigenvalues. The major axes also provide information about the
orientation of the object on the table. We use this information to
approximately correct for perspective foreshortening. Note that
both the size and the shape estimates neglect the 3D form of
the object, so that the extracted measures are only approximately
invariant under view changes. Similarly, the color histogram is
not a true invariant because parts of the object surface will
typically occluded and may differ in color composition from the
visible portion. This leads to variance in all feature values as
view points are changed. The color histogram represents a form
of filtering. For the two scalar features, size and aspect ratio,
we compute 20 consecutive estimations in time, from which
histograms are generated, effectively suppressing outliers. These
histograms provide input to the corresponding label-feature fields.

x = f(θ)

θ = f−1(x)

kinematic model

inverse kinematic model

·x = J(θ) ·θ
·θ = J−1(θ) ·x
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Concept of the UnControlled Manifold
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insert a perturbation here

!

Figure 1 

UCM synergy: from feedback

leads to change here !

Figure 1 

passes this to other DoF

compensatory change here

Reimann, Schöner, Biological Cybernetics 2017
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Movement entails change of posture

muscle-joint systems have an equilibrium point during 
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Fig. 1. This figure shows the full movement generation architecture. Some details are hidden in connections for clarity’s sake, but are marked with text
stating “including . . . ”. See text for more details.

B. Generation of virtual trajectory

The movement plan feeds into a two-layer DNF, consisting
of upex and upin (see Figure 1, C),

⌧pexu̇pex(x, t) = �upex(x, t) + h+ spex(x, t) (6)
�[wpex,pin ⇤ ⇢(upin)](x, t)

⌧pinu̇pin(x, t) = �upin(x, t) + h+ spin(x, t), (7)

with spex(x, t) = spin(x, t) = spla(x, t) + cmov�(uint
mov(t))

and ⌧pex < ⌧pin. The two-layer structure of upex and upin

serves as a neural oscillator. Transient activation is created in
the excitatory layer, which the more slowly evolving inhibitory
layer suppresses over time. This dynamics thus performs a
one-shot active transient in response to input. The oscillation
is parameterized by the movement plan spla and is switched on
by the activation of a neural node uint

mov, which expresses the

intention to generate movement. Both layers use a semi-linear
output function ⇢(·) instead of �(·),

⇢(x, t) =

⇢
u(x, t) for u(x, t) > 0
0 else.

(8)

This assures that no movement is created as long as upex is
below threshold. Note that upex and upin cover a larger spatial
area than utar and uini, as their coordinate system expresses
relative distance to the end-effector. Consequently, if the end-
effector is at the target, the target appears in the center of upex

and upin with a distance of zero to the end-effector.
From the relative position of the target in upex, a velocity

vector v is extracted by integrating over the represented
domain X = {(x1, x2) 2 R2 : �50  x1, x2  50}:

v(t) =

ZZ

X
⇢(upex(x, t))!(x) dx1dx2. (9)

[Zibner, Tekülve, Schöner, ICDL 2015]
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Architecture

[Zibner, Tekülve, Schöner, ICDL 2015]

Impairing one or multiple of the components of the ar-
chitecture listed above should have a significant influence on
reaching behavior, leading to movements that feature multiple
distinct movement units and a longer, less straight trajectory.
Nevertheless, the autonomy of the architecture may bring the
end-effector to the target location at some point. Sensory
feedback about the achieved end-state may drive the learning
process that reduces movement units and increase movement
straightness over time. In this paper, we do not yet model this
process of autonomous learning, however.

IV. EXPERIMENTS

In this section, we will first evaluate a fully developed state
of our architecture in which the mappings and weights have
converged. Movement takes place in a 50 cm by 50 cm plane
placed 20 cm in front of the robot and to the left of the robot’s
body center (see also Figure 1).

For all experiments, we use artificial visual inputs in form of
fields of localized peaks of activation instead of real camera
input to have full control of stimulus strength and position
for reproducibility. We use the simulation solution Webots
(http://www.cyberbotics.com) to execute the movements with
the seven degrees-of-freedom arm. This ensures that the robot
does not damage itself during execution of the movement
commands using an impaired configuration of our architecture
(generated movement might be jerky and unpredictable). The
fully developed architecture was tested on hardware as well
(RGB camera, Kuka arm), but this will not be discussed here.

A. Reaching movements and on-line updating
We first let the “adult” architecture reach for static targets

in front of the robot. We vary starting position of the end-
effector and target position, resulting in reaching movements
in different directions and distances. The target positions
are reached with a single virtual movement and subsequent
movement of the end-effector. The velocity profiles of both
virtual and external trajectories are bell-shaped (see Figure 2),
with the virtual movement ending roughly at reaching peak
velocity of the end-effector. Movement time is constant and
does not depend on movement distance, which leads to a linear
dependency between distance to target and peak velocity. Due
to the transformation from Cartesian movement plan to joint
space, the resulting trajectories are not perfectly straight.

We conduct the following experiment to test on-line updat-
ing in the “adult” architecture. We choose a two-step paradigm
(see [33]) in which the end-effector starts in the center of an
imaginary cross and the first target is placed on one of the
four ends of the cross’ equally long arms. During movement
towards the first target, the target position switches, at varying
inter-stimulus intervals (ISI), to the end of a neighboring
cross arm. Sample trajectories for four different ISIs (600 ms,
700 ms, 800 ms, 900 ms) for this layout and one combination
of targets are shown on the top left in Figure 3. Inspired by
another experimental study of human on-line updating [8], we
position the first target again on one of the arms of a cross, but
then move the target perpendicular to the cross arm bearing
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Fig. 2. Exemplary trajectories (top left) and profiles of tangential velocity
for virtual movements (top right) and end-effector movements (bottom right)
for different movement targets. The bottom left plot shows a combination of
virtual and external profiles to show that the virtual movement ends roughly
at peak velocity of the end-effector movement.

the target. The distance between first and second target is
equal to the length of a cross arm. Sample trajectories of this
second layout for the same four ISIs and for one combination
of targets are shown on the top right in Figure 3. The resulting
tangential velocity profiles feature two distinct movement units
(see Figure 3, bottom row).
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Fig. 3. Top row: Trajectories for different on-line updating setups (see text
for details) and ISIs. The starting position of the hand is marked with the
letter H, the first target position with T and the final target position with
X. Bottom row: velocity profiles for the trajectories shown in the top row,
displaying two movement units with varying peak velocities.
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