Summary: main conceptual points

Gregor Schöner, INI, RUB

Dynamical system

present determines the future

dx/dt=f(x)

Dynamical systems

fixed point = constant solution

neighboring initial conditions converge = attractor

Bifurcations are instabilities

In families of dynamical systems, which depend (smoothly) on parameters, the solutions change qualitatively at bifurcations

at which fixed points change stability

Basic ideas of attractor dynamics 2 approach

behavioral variables

- time courses from dynamical system: attractors
- tracking attractors
- bifurcations for flexibility

Behavioral variables: example

2

vehicle moving in
2D: heading
direction

constraints: obstacle avoidance and target acquisition

behavioral constraint: target acquisition

obs

arbitrary, but fixed reference axis

robot

Behavioral dynamics

specified value

📕 strength

📕 range

Behavioral dynamics: bifurcations 2

constraints not in conflict

Behavioral dynamics

Constraints in conflict

Behavioral dynamics

transition from "constraints not in conflict" to "constraints in conflict" is a bifurcation

In a stable state at all times

2

Obstacle avoidance: sub-symbolic 4

obstacles need not be segmented

do not care if obstacles are one or multiple: avoid them anyway...

[from: Bicho, Jokeit, Schöner]

Bifurcations

2nd order attractor dynamics to explain human navigation

[Fajen Warren...]

model-experiment match: goal

30

20

10

-10

-20

-30└ -30

30

20

10

-10

-20

-30

-25

-20

-15

-10

¢ (deg/s)

-25 -20 -15

-20

2 m

4 m

8 m

∳ (deg/s)

model-experiment match: obstacle

model

Relative vs. absolute timing

Neural oscillator

relaxation oscillator

$$\tau \dot{u} = -u + h_u + w_{uu} f(u) - w_{uv} f(v)$$

$$\tau \dot{v} = -v + h_v + w_{vu} f(u),$$

[Amari 77]

Coordination from coupling

coordination=stable relative timing emerges from coupling of neural oscillators

[Schöner: Timing, Clocks, and Dynamical Systems. Brain and Cognition 48:31-51 (2002)]

Schöner, Kelso (Science, 1988)

Dynamics Movement Primitives

8

Spaces for robotic motion planning 9

kinematic model $\mathbf{x} = \mathbf{f}(\theta)$ $\dot{\mathbf{x}} = \mathbf{J}(\theta)\dot{\theta}$

inverse kinematic model $\theta = \mathbf{f}^{-1}(\mathbf{x})$ $\dot{\theta} = \mathbf{J}^{-1}(\theta)\dot{\mathbf{x}}$

- transform end-effector to configuration space through inverse kinematics
- problems of singularities and multiple "leafs" of inverse...

Degree of freedom problem in human movement

what is a DoF?

variable that can be independently varied

e.g. joint angles

muscles/muscle groups

but: assess to which extent they can be activated independently... x=

 $\begin{aligned} \mathsf{x} &= \mathsf{I}_1 \cos(\theta_1) + \mathsf{I}_2 \cos(\theta_1 + \theta_2) + \mathsf{I}_3 \cos(\theta_1 + \theta_2 + \theta_3) \\ \mathsf{y} &= \mathsf{I}_2 \sin(\theta_1) + \mathsf{I}_2 \sin(\theta_1 + \theta_2) + \mathsf{I}_3 \sin(\theta_1 + \theta_2 + \theta_3) \end{aligned}$

.. mode picture

Concept of the UnControlled Manifold 9

the many DoF are coordinated such that changes that affect the taskrelevant dimensions are resisted against more than changes that do not affect task relevant dimension

leading to compensation

UCM synergy: data analysis

- align trials in time
- hypothesis about task variable
- compute null-space (tangent to the UCM)
- predict more variance within null space than perpendicular to it

Example 2: shooting with 7 DoF arm at targets in 3D

[from Scholz, Schöner, Latash: EBR 135:382 (2000]

Example 2: shooting with 7 DoF arm at targets in 3D

UCM synergy: decoupling

motor commands

insert a perturbation here

compensatory change here

Example 3: posture

Inverted pendulum hypothesis predicts the opposite than UCM

x10⁻³

CM

but: find signature of UCM synergy

UCM synergy: from feedback

Reimann, Schöner, Biological Cybernetics 2017

Movement entails change of posture

- muscle-joint systems have an equilibrium point during posture that is stable against transient perturbation
- that equilibrium point is shifted during movement so that after the movement, the postural state exists around a new combination of muscle lengths/joint configurations

Architecture

[Zibner, Tekülve, Schöner, ICDL 2015]