Summary: main
conceptual points

Gregor Schoner, INI, RUB



Dynamical systems 3

AU time, t
B functional link between state and its .
time, t
rate of change
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Dynamical system

B present determines the future

dx/dt=f(x)

A
predicts

future initial
evolution condition




Dynamical systems

B fixed point = constant solution

B neighboring initial conditions converge = attractor

dx/dt=f(x)

A

attractor



Bifurcations are instabilities

B In families of dynamical systems, which depend
(smoothly) on parameters, the solutions change
qualitatively at bifurcations

M at which fixed points change stability

b= o — 2 AdX/d’[

o positive
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Basic ideas of attractor dynamics 2
approach

B behavioral variables

B time courses from dynamical system:
attractors

B tracking attractors

B bifurcations for flexibility



Behavioral variables: example 2

B vehicle moving in

2D: heading
direction
target
& constraints: g O
obstacle avoidance A o v
and target L L tar
acquisition arbitrary, but fixed

reference axis

robot



Behavioral dynamics: example 2

B behavioral constraint: target acquisition

A do/dt

attractor

vehicle



Behavioral dynamics: example 2

B behavioral constraint: obstacle avoidance

2 dordt

: obstacle

arbitrary, but fixed
reference axis

robot \|I




Behavioral dynamics

pdoidt

tar

B each constribution
is a “force-let” with

becified value

B specified value

B strength
B range




Behavioral dynamics: bifurcations 2

B constraints not in conflict

obstacle ' .
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Behavioral dynamics

Bconstraints in conflict

® .o dovdt
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Behavioral dynamics

B transition from “constraints not in conflict”
to “‘constraints in conflict” is a bifurcation

bifurcation
)
\\ attractor
\ 4
I// attractor

4
)

increasing distance
between obstacles




In a stable state at all times )
heading direction " A d¢/dt

X4
" "¢
obstacle . ',
L 4
0"2',
¢
L4 4

4
¢ target

vehicle

do/dt




Obstacle avoidance: sub-symbolic 4

B obstacles need not be segmented

B do not care if obstacles are one or multiple:
avoid them anyway...

A do/dt

obstacle

repellor




4

resultant
repeller

Obstacle

do/d

31/2 2
L——at

resultant
repeller

37Ic/2 én A

d/dt]

B => dynamics invariant!
[from: Bicho, Jokeit, Schoner]



Bifurcations




2nd order attractor dynamics to 5
explain human navigation

inertial term

damping term

attractor goal heading £,

b= —bd — ky(d — V) (e % + c)
IR (e [ N

repellor obstacle heading

[Fajen Warren...]



4 (deg/s)

$ (deg/s)

model-experiment match: goal

experiment model
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model-experiment match: obstacle

experiment model

4 m condition

4 m condition
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Alternative 2nd oder approach

w= (x + %?T)CngFDbS +ow — yw

(a) dynamics of turning rate {b) dynamics of turning rate
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[Bicho, Schoner, 97]



Timing in nervous systems 7

/ / external
perceptual

absolute
timing

contribution

to timing

coordination:
relative timing

external
mechanical
contributio
to timing

biomechanical
contribution to
timing




Relative vs. absolute timing

activation

threshold A

relative phase=DT/T



Neural oscillator ]/

B relaxation TU = —u -+ hu T+ Wuuf(u) o Wuvf(v)
oscillator W= —v+ h, + w,f),
AU (solid), v (dashed) A u (solid), v (dashed)
[Amari 77]
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Coordination from coupling

A
activation

|
®m coordination=stable relative /‘
. . . / |
timing emerges from coupling ; | /,
. t’
of neural oscillators K \/'me

L do/dt = ()

Ty = —uy + hy, + we fu) — w,f(vy)

S L = v b [+ g |

e Ty = —tr + by + W f() — W f(0)
by coupling Wy, = —v, + b, + w, f(uz)[i-l- cf(ul)]

[Schoner:Timing, Clocks, and Dynamical Systems. Brain and Cognition 48:31-51 (2002)]
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Instabilities of relative timing
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Instabilities of relative timing
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Dynamics Movement Primitives 8



Spaces for robotic motion planning §

kinematic model x = f(0) x = J(0)0

inverse kinematic model ¢ =f"!(x) §=J'10x

B transform end-effector
to configuration space
through inverse
kinematics

B problems of singularities
and multiple “leafs” of
Inverse...




Degree of freedom problem g
in human movement

® what is a DoF!?

B variable that can be
independently varied

(Xy) \gg

B e.g. joint angles
B muscles/muscle groups

B but: assess to which extent they
can be activated

independently... x= 11 cos(61) + 12 cos(01+62) + 13 cos(81+62+63)
y= |2 sin(61 ) + |2 sin(61+62) + I3 sin(01+62463)

B .. mode picture



Concept of the UnControlled Manifold §

(X,y)
more flexed here —3p ¥ 63

less flexed here

® the many DoF are
coordinated such that
changes that affect the task-
relevant dimensions are
resisted against more than GW
changes that do not affect .
task relevant dimension

M |eading to compensation

[Scholz, Schoner, EBR 126:289 (99)]



UCM synergy: data analysis 9

M align trials in time 7
M hypothesis about task variable 6\@683

B compute null-space (tangentto  ° (r"fds)
the UCM) 03 -

® predict more variance within

null space than perpendicular to \%ﬂ

It 0.

0.6 9 1



Variance per DOF

Example |: pointing with 10 DoF

0.012

0.010

(.S

0.006 |
0.004 |
0.002 |

0.000 L

arm at targets in 3D

task variable: hand movement
direction in space

UCM
orthog UCM

Early Middle Late Termination



Example 2: shooting with 7 DoF 9
arm at targets in 3D

0.27
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[from Scholz, Schboner, Latash: EBR 135:382 (2000]



Example 2: shooting with 7 DoF
arm at targets in 3D

gun spatial position gun orientation to target

‘/K
0 |20 D4o 60 80 100 0 20 40 60 8 100
percent of trajectory percent of trajectory

[from Scholz, Schoner, Latash: EBR 135:382 (2000)]

variance
within &/ariance
UCM

perpendicular
to UCM



UCM synergy: decoupling

motor commands

T

insert a perturbation here e

compensatory change here

arm in space



Example 3: posture | 0

M Inverted pendulum hypothesis predicts the opposite than UCM

Bbut: find signature of UCM synergy X10° CM
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UCM synergy: from feedback 10

leads to change here —® 20

passes this to other DoF —% @

insert a perturbation here —
compensatory change here _—% .

RIY
Nais!

body in space

Reimann, Schoner, Biological Cybernetics 2017



Movement entails change of posture | |

® muscle-joint systems have an equilibrium point during
posture that is stable against transient perturbation

® that equilibrium point is shifted during movement so
that after the movement, the postural state exists
around a new combination of muscle lengths/joint

configurations
/ /equilibrium
/point
A
>
/2 joint angle, 0

T force




the world / visual scene

connections

M O d e I Y rr?ovement —» excitatory
....................E p ane
: ®goal —e inhibitory
—— behavioral
eef O organization
X, o
table X \%>
robot |¢ robot controller |«
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N > @
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/
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(F)current eef position | |52 A integrator
gg. dX2 = Upin
: dx =3 Upex Y
(o] O = . .
AN A 1 5§ forw. kinematics
X5 | including interneuron c3
o
X1 ] %
é intention move
— ® °
lud k detect
neluding peat detector CoD move CoS move
including match >O ¢ . .
detection field CoS reach intention reach

task readh

[Zibner, Tekulve, Schoner, ICDL 2015]



position x, [cm]
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Architecture

Internal Velocity Profiles

Trajectories

position x4 [cm]

Internal and End-Effector Velocity Profiles
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[Zibner, Tekulve, Schoner, ICDL 2015]



