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Example 3: posture
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Example 3: posture

Bbut: find signature of
UCM synergy

Hsu, Scholz, Schoner, Jeka, Kiemel, 2007
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UCM synergy: from feedback

leads to change here —® 20

passes this to other DoF —% @

insert a perturbation here —
compensatory change here _—% .
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body in space

Reimann, Schoner, Biological Cybernetics 2017



Multi-segment postural control model

i - (on
estimates of the . neural dynamics o
body state acti- =1
) vation
y descending
motor commands
vision
G
vestibular O,
system stretch reflex 2
ot loops 3
roprioception =
05 prop P a
. ion
graviceptio motorneuron
activation
02 body configuration muscle =
in space contraction g
th

PhD thesis Hendrik Reimann
Reiman, Schoner, Biol Cybernetics 2017



Multi-segment postural control model

B bio-mechanical dynamics

M(0)0 +C(0,0)0+N(0) =T

[Reiman, Schoner, Biol Cybernetics 2017]



Multi-segment postural control model

B muscle model
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Multi-segment postural control model

B muscle model

_ozE (5—A+p—|—u(5—)\))]+ 1

EAG —c€t )
_ ~ S muscle

Ean =el %" (=2-pru6-3)| " _ 1. activation
FE = (—Fag + EAx) Om
T..=AE active

. . - &— muscle

9 _

TmTact _|_ 27_mtzﬂact _|_ Tact — Tact torque



Multi-segment postural control model

B muscle model
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Multi-segment postural control model

B sensor model



Multi-segment postural control model

B control model

AN=F, = RIAMIY (—aéE— %5)
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Results: model stands
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Results: model falls

B when the sensory feedback loop about the body
in space is removed
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Results: model falls

B when the spinal reflex loop within muscle
model is removed (constant activation level
of motor neurons)
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Results: model predicts joint
spectra
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Var. per DoF (rad?)

Signature

Results: model predicts
UCM signature
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Why does this work!?
AN=F =R IAMJ* (—aé?s— ozéé)

S

/C\(t) C(t) - motor commands

B model looks like a feed-
forward neural network

B => should not have a UCM
signature: classical synergy?

|
A = O O O
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Why does this work!?

B feedback loop through the
world stabilizes
configuration in ORT space

B DoF are effectively coupled
through that loop to
generate the compensatory
sighature




Motor equivalence

M Perturbation rather than noise:

B “following perturbation, different initial condition,
or changed conditions, the task achieved with a
new joint configuration”

M But: the task is never achieved 100 percent => how
much error at the task level compared to how
much error at the joint level?

B => error lies more within UCM than orthogonal
to it



Motor equivalence in quiet stance
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[Scholz, Schoner, Hsu, Jeka, Horak, Martin. Exp Brain Res (2007)]



Motor equivalence in quiet stance

Projection of
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[Scholz, Schoner, Hsu, Jeka, Horak, Martin. Exp Brain Res (2007)]



Length of Projection DOF

Motor equivalence in quiet stance
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Motor equivalence in reaching

UCM
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UCM synergy: back-coupling

yield here » > ‘ ‘ .‘
insert a perturbation here

motor equivalent state . . .

remains here —

arm in space

[Martin, Scholz, Schoner: Neural Computation 2009]



Self-motion

M Beyond variation or response to
perturbation...

B Does the mean movement trajectory reveal the
DoF problem and its solution?

M => self-motion



Self motion
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Reaching movement in 3D with |0 DoF shows
considerable amount of self-motion
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[Martin, Scholz, Schoner. Neural Computation 21, 1371-1414 (2009]



Conclusion: DoF problem

M Studying the structure of the end-effector path
and the variation of movement with task
through synergies is not informative about the
degree of freedom problem.

B The degree of freedom problem can be studied
directly through the structure of variance at
iso-task, iso-command conditions: the UCM
structure of variance.



Conclusion: DoF problem

M The degree of freedom problem can also be
studied by inserting perturbations and looking
for motor-equivalence

M Self-motion is a direct signature of the DoF
problem at the level of the mean trajectory.



