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Abstract

In this thesis the problem of spatiotemporal integration of haptic information dur-
ing manual object exploration is analysed and a biologically plausible neurodynamic
model for this process is proposed. Integrating haptic information over time and space
is required in order to build a representation of the object shape. Haptic exploration
of objects may occur in one of two settings, the first is a pure mapping problem, where
the object pose with respect to the body remains fixed. In the second setting, the
object pose may change during the exploration, leading to a simultaneous localization
and mapping problem (SLAM). This thesis focuses on haptic spatiotemporal integra-
tion in this second, SLAM scenario. In particular, the aim is to contribute to the
understanding of how the nervous system solves this task by proposing a biologically
plausible model. This model is designed as a dynamical system with dynamic neural
fields (DNF) and is evaluated in experiments with a robotic hand rotating and mapping
several objects. The capabilities and limitations of the model are discussed, together
with the implications. In a side track of this thesis, the autonomous adaptation of
DNFs with intrinsic plasticity is introduced.
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Chapter 1

Introduction

1.1 Motivation

Humans and primates in general have highly sophisticated manipulation skills with
their hands. These hands are not only a complex and interwoven composition of mus-
cles, bones, joints and tendons – implying the necessity of an intelligent motor control,
but are also a sensory masterpiece. Deformable tissue, fingerprints, fingernails and
skin influence the stimulation of several types of mechanoreceptors, giving the organ-
ism rich feedback about the things touched. Humans rely on their haptic feedback
system when manipulating objects and when using them as tools [Johansson & Flana-

gan 2009, Augurelle et al. 2003]. Furthermore, after manually exploring objects by
manipulating these with haptic feedback alone, humans are capable to discriminate
and recognise objects [Davidson et al. 1974, Klatzky et al. 1985, Norman et al. 2008].
These capabilities imply that humans and primates in general perform spatiotemporal
integration of haptic sensations, i.e. they are able to combine several haptic sensations
from different locations and different points in time into a single percept of the object.
This raises the question of how in particular they do this. How in particular does
the brain realize this spatiotemporal integration, how robust is it, how precise? The
answers to these questions are currently unknown. This thesis contributes to the field
of research by giving a theoretical analysis of the problem and a biologically plausible
implementation by a neurodynamic model for the process of haptic spatiotemporal
integration.

In the next section the problem of haptic spatio-temporal integration will be dis-
cussed and specified. For interested readers, details and background information rel-
evant for this section are given in the next chapter Ch. 2. Finally a motivation for a
neurodynamic approach to this problem concludes this introductory chapter.

1.2 Problem Identification

Haptic sensing gives information of structure in space which is inherently three di-
mensional. Extracting knowledge about this three dimensional structure out of the
(possibly) high dimensional haptic information can in principle be done in an implicit
or explicit way, as will be discussed in the following subsection. In the implicit ap-
proach, the tactile information is directly utilized for the task dependent behaviour,
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CHAPTER 1. INTRODUCTION

never having an explicit representation of the three dimensional structure. To the con-
trary, in the explicit approach the three dimensional structure is explicitly extracted
and represented (i.e. learned) as an intermediate step for goal directed behaviour (e.g.
recognition, discrimination, manipulation).

1.2.1 Implicit vs. Explicit Representation

With an implicit representation the learning problem is viewed as a sequence learn-
ing task, where a sequence of pairs containing tactile stimuli and proprioceptive in-
formation is used to learn an desired output value. More precisely, the problem is
formulated as learning a function f that maps a sequence of tactile and proprioceptive
inputs

(
Z(1 : t), U(1 : t)

)
to an action from an arbitrary action space A. This action

space might be a discrimination, a recognition or be in the space of motor commands.
Hence, the goal is to learn the function:

f
(
Z(1 : t), U(1 : t)

)
→ action ∈ A

with Z(t) holding the tactile information for time-step t and U(t) proprioceptive infor-
mation for time-step t. If the action depends on the object shape or pose, these must
be inferred from the past history by integrating proprioceptive and tactile information.

However, if the object pose changes as the object is manipulated during the move-
ments were tactile information is acquired, things get complicated. A change in the
objects pose corresponds to a change in the relationship between the tactile stimuli
Z(t) and the according proprioceptive information U(t). When viewing

(
Z(t), U(t)

)
tupels as input to the learner, a change in object pose would correspond to a change in
hidden underlying parameters controlling the structure of the input. This corresponds
to distinguishing the changes in the input into parts due to changes of hidden param-
eters underlying the input (object pose) and parts due to a static mapping defined by
the object shape. As this input parametrization is unknown to the learner, it has to
be additionally learned implicitly. This makes haptic information seem very irregular
and the learning very hard when viewed as a sequence learning problem.

Additionally to this theoretical problem, there is evidence from neurobiology, psy-
chophysics and developmental psychology that indicates explicit object shape repre-
sentations in primates (see Sec. 2.1 in the background information chapter for further
details).

This brings us to the alternative approach to the problem: an explicit represen-
tation. In the above formulation the coupling of proprioceptive U(t) and tactile Z(t)
information by the object shape and pose is implicit. The explicit formulation would
be to first split up the learning of the action:

f
(
m(t), X(t)

)
→ action ∈ A (1.2.1)

P
(
m(t), X(t) | Z(1 : t), U(1 : t)

)
, (1.2.2)

where m(t) and X(t) are the object shape (geometry) and pose (translation + ro-
tation) estimates at time-step t, respectively. P (·) denotes a conditional probability
distribution. The object shape and pose are formulated as a conditional probability
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1.2. PROBLEM IDENTIFICATION

distribution here because they have to be estimated from the haptic data. Thus P (·)
in (1.2.2) is the probability of an object shape m(t) (also termed “map”) and its
pose X(t), given all the observed tactile data Z(1 : t) and proprioceptive information
U(1 : t) (i.e. joint angles). Using the object shape and pose expressions of (1.2.2),
the relationship of tactile to proprioceptive information can be made explicit:

P
(
Z(t) | m(t), X(t), U(t)

)
(1.2.3)

In expression (1.2.3) the probability of sensing the current tactile information is
conditionally dependent on the estimate of the object location X(t) and shape m(t)
as well as the current proprioceptive information U(t). The problem of computing
expression (1.2.2) is well known and in the robotic’s community and is referred to
as the SLAM problem, Simultaneous Localization and Mapping. The slight difference
with respect to the conventional formulation of the SLAM problem in this case is that
localization and mapping is with respect to the object and not with respect to the
environment. This conceptual difference is explained in the following subsection.

1.2.2 SLAM of an Object

The object based analogy to the SLAM formulation the mobile robot navigation lit-
erature (see Sec. 2.3 in the background information chapter for further details) can be
viewed as following:

In Object manipulation, the role that a mobile robot has in the SLAM for navi-
gation is now taken by a “mobile” robot gripper. The role of the environment which
has to be mapped in SLAM for navigation now is an unknown object. Hence, every
interaction of the robot with the object is viewed as a manipulation of the robot pose
with respect to the object coordinate system. In mobile robotics the odometry of the
robot is used to predict changes in the robots pose from motor commands. In object
manipulation this role is taken by a forward model predicting the consequences of the
robot-object interaction by taking the object kinematics into account. Although the
location of the robot gripper is always known in the robot coordinate system, it is
not known in the object coordinate system. Hence, the task is to build a map of the
unknown (static) object while simultaneously localizing the robot with respect to the
object.

However, in the context of manipulating an unknown object there is an SLAM
problem with respect to the object, if and only if all of the following conditions are
met:

(I) A “mobile” object and the possibility of interaction. The agent can change the
orientation and / or position (i.e. the pose) of an object, i.e. manipulate or
interact with it.

(II) The object shape is unknown. There is no prior information about the particular
object available i.e. no shape, friction, weight, etc.

(III) Inability to directly measure the object location. The position and orientation
of the object can not be measured directly, but must be inferred from temporal
sequences of sensory measurements or matching these with an object map.

3



CHAPTER 1. INTRODUCTION

(IV) Inability to directly build a map of the object. The object is only partial observ-
able by sensory measurements and mapping the object requires manipulation of
it, i.e. interacting with it. Hence it is not possible to directly build a complete
map of the object without using actuators to change the object pose.

(V) Uncertainty in interaction outcomes and in sensory measurements. Note, that
uncertainty in the interaction outcome is not the same as uncertainty in the
sensory measurements, as the first leads to an integration of errors by the for-
ward / motion model which in turn, induces a statistical dependency on sensory
measurement errors and thus causes a drift of the map [Thrun et al. 2002] [Mon-

temerlo & Thrun 2007]. In contrast, measurement noise alone merely affects
the map precision and may be compensated by successive measurements, as the
errors of each measurement are uncorrelated.

1.2.3 Haptic SLAM of an Object

A special case of SLAM of an object, discussed in the previous subsection, is when the
only sensory modality used for this is haptics. For solving the SLAM problem the key
are growing correlations between measured features (“landmarks”) in the map. These
correlations are induced by measuring multiple landmarks in a single measurement
step, which are then correlated by the same location error (see Sec. 2.3 for further
details). Successive measurements of the same landmark enables localization with
respect to these, decreasing the uncertainty in the pose estimate and further increasing
the landmark correlations. As correlations between the mapped landmarks grow, the
map converges.

In haptic SLAM the major problem is the constraint of only being able to measure
very small spatial extents of the object at a time. The contact area of each sensor with
the object is rather small for rigid, non-deformable sensors and objects, therefore the
contact may only be characterised by features at one object location. In the mobile
navigation context, this would correspond to exploring and mapping the environment
by only using the bumpers of a robot as sensors. The low spatial extent of a tactile
contact often only allows for features of limited complexity to be extracted for each
contact made. Examples might be the position of contact, its classification into edges,
corners and surfaces, and their orientation. At the very best an estimate of the object
curvature can be made. The problem with these features is, that they are often repet-
itive and ambiguous in space, making them hard to use for mapping and localization
in space. This makes it very hard to decide, whether a measured feature corresponds
to a feature previously mapped or not (correspondence problem) [Fox et al. 2012].

Furthermore, as the feature (vector) of a tactile contact describes the contact at-
tributes at the corresponding location on the object, this implies that most contact fea-
tures (object landmarks) are only measured once. Features would only be re-measured
when re-touching the same object location (loop closure), limiting information for ob-
ject localization to these incidents. In contrast, with range sensors localization can be
performed in the vicinity of mapped features.

Last, the major insight into solving the SLAM problem are the growing correlations
between mapped features due to simultaneous measurement of multiple features, which
lead to a convergence of the map. Multiple tactile contacts are needed, e.g. from
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multiple fingers, in order to simultaneously measure features from multiple locations
of the object at a time, which also makes the data association easier.

Summing up, SLAM with haptic sensors is hard because the small spatial extent of
sensory information makes the localization hard, the low feature complexity makes the
correspondence problem hard and the low number of simultaneously measured features
fails to induce growing correlations between mapped features. These challenges make
most of the approaches to SLAM in mobile navigation not directly applicable to the
equivalent problem in haptic learning.

1.3 The Approach: Why Neural Dynamics?

From the previous section it becomes apparent, that the task of spatiotemporal inte-
gration of haptic sensations during object manipulation is a non-trivial task. Never-
theless, the primate nervous system is capable of successfully building object shape
representations which may be used for task specific actions. The exact mechanisms
of this process of haptic spatiotemporal integration are unknown (see Sec. 2.1). How-
ever, modelling this process gives insight into how the primate brain could perform
this. The particular challenges, necessary assumptions and the resulting capabilities
and limitations give rise to new scientific questions for experimental research. Hence,
modelling a solution helps to better understand the underlying problem and thus aids
the research on the mechanisms of neural processing of haptic information.

The aim of building a biological plausible model requires the information processing
to be consistent with neural principles of computation. Choosing the right level of neu-
ronal description may reveal structures of the process, enabling to identify constituents
and to perform a functional analysis. Since the process of spatiotemporal integration is
inherently continuous in time and space, a dynamical system is in particular suited as
a process model. The dynamics are constrained by neuronal computational principles
in order to meet the requirement of biological plausibility. Modelling the information
processing with a dynamical system implies an abstraction from the particular neural
substrate and its structure. This corresponds to a mean field approach where infor-
mation is encoded in population activities which are continuous in time and space.
This is in particular motivated from studies showing, that information encoding of
object shape in neurons of the visual cortex (V4) may be interpreted as a population
coding of curvature over object space, e.g. see [Pasupathy & Connor 2002]. Mod-
elling neural information processing on this abstract jet biologically plausible level is
done within the dynamic field theory (DFT), which will be introduced in the methods
section Sec. 2.4.

Note, that information processing with dynamical systems in closed loops is con-
trasted by many classical machine learning approaches, which often times focus on
learning input-output mappings. Traditional neural networks may be trained either
by batch-, online-, or incremental / sequential learning algorithms. While batch learn-
ing is often the most efficient learning method, it requires distinct phases of data
acquisition and storage, learning, and exploitation – which is biologically implausible.
In online learning, each training example is immediately processed by the learning
algorithm and exploitation may take place at any time. However, most online learn-
ing algorithms require statistically independently and identically distributed inputs –
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CHAPTER 1. INTRODUCTION

which is often times violated in the context of sensory processing during space- and
time continuous behaviours. In incremental online learning (also termed sequential
learning) no assumption on the independence of the input data is imposed. This type
of learning is also referred to as autonomous learning, where data acquisition, learning,
and exploitation are highly interwoven. For being biologically plausible, the dynamic
process model needs to implement spatiotemporal integration in an autonomous, in-
cremental and online fashion.

Outline of the thesis
In this thesis the argument for an explicit shape representation is made, built from
haptic information during manual interaction with an object. A neurodynamic model
is proposed that enables building such representations and evaluated in robotic exper-
iments. This model is part of an architecture, comprising a object exploration with
a robot hand, processing the haptic sensory information, estimating changes in the
object pose and the localization and mapping by the model. Figure 1.3.1 shows an
overview of this architecture, as proposed in this theses. The Fig. 1.3.1 also gives an
visual overview of the according sections in the third and fifth chapters of this thesis.
The second chapter of this thesis gives background information on the state of the art
in haptic processing, on the SLAM problem in general and on the used methods and
hardware. The third chapter introduces the used experimental setup. This includes the
description of a forward model (object kinematics) for estimating changes in the ob-

Figure 1.3.1: Overwiew of the architecture. The two boxes at the very bottom (gray overlay)
comprise the neurodynamic model described in chapter Chp. 5. The remainder of the figure
is described in the experimental setup Chp. 3.
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ject pose from robot actions and explains how datasets of robot object manipulations
were recorded for evaluation the model. Furthermore the used features and coordinate
transformations are described. The fourth chapter introduces dynamic neural fields
with intrinsic plasticity, including a brief evaluation and discussion. The fifth chapter
is the core of this thesis, where a neurodynamic model is introduced for spatiotemporal
integration of haptic information. This model performs the object mapping as well as
the object localization with respect to the map, based on tactile features (highlighted
with a gray overlay in Figure 1.3.1). In chapter six the proposed model is evaluated
and the results are presented, based on the recorded robotic datasets. Finally, in chap-
ter seven the model itself is discussed and set into the context of related work. The
thesis is concluded by highlighting the scientific contribution and final remarks. The
appendix mainly features additional figures of the results for the sake of completeness.
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Chapter 2

Background Information

This chapter shall give background information, as far as it is relevant for the proposed
work in this thesis. First, the current knowledge on haptic shape processing and
representation in primates is reviewed, followed by exemplary approaches to haptic
shape representation in robotics. Here the earlier work of e.g. [El Saddik et al. 2011,
Van Erp et al. 2010] is followed in defining haptics as an overall term including tactile
and proprioceptive perception. The term tactile is used to denote any type of pressure
sensors, proprioceptive to refer to any type of body posture sensors, e.g. measuring
joint angles (also termed kinesthetic).

Second, a very brief and coarse introduction to the problem of simultaneous map-
ping and localization is given, without any details on particular solutions. In the scope
of this thesis, only some pointers to publications in this field can be given, as there is a
wealth of literature, books and in particular research papers on this topic. This chap-
ter is concluded by sections introducing the used methods of dynamic neural fields,
intrinsic plasticity and the natural gradient.

2.1 Haptic Shape Processing

in the Primate Nervous System

This section will give an overview of haptic shape processing in the nervous system, fol-
lowed by a section on approaches of haptic shape processing in robotics. The proposed
neurodynamic model is inspired from what is known about haptic sensing, processing
and shape representations in humans and primates (i.e. macaques). Here a brief re-
view of the extensive literature shall be given. After mentioning haptic sensing, the
processing of haptic information is described, focusing on four brain regions in partic-
ular: the primary and secondary somatosensory cortices, the intraparietal suculus and
the lateral occipital complex.

Haptic Sensors
Besides the proprioceptive information from joint angles, muscle lengths, etc. the
hands and in particular the fingertips give a rich sensory feedback from tactile con-
tacts [Louw et al. 2000,Johansson & Flanagan 2009,Saal & Bensmaia 2014]. The sensed
information includes temperature, texture, curvature, edge orientation and higher or-

9



CHAPTER 2. BACKGROUND INFORMATION

der moments, stiffness and temporal information such as vibrations [Goodwin et al.

1997,Johnson 2002,Hsiao & Gomez-Ramirez 2011,Pruszynski & Johansson 2014]. The
dense distribution of mechanoreceptors in combination with the deformable tissue
results in complex spatio-temporal patterns of force distributions with respect to am-
plitudes as well as force directions [Johansson & Flanagan 2009]. Sensing vibrations
on multiple frequency bands enables rapid object slip detection necessary for sta-
ble grasping and gives feedback of vibrations that are transmitted form the working
end of tools [Hsiao & Gomez-Ramirez 2011]. For a more detailed introduction to the
mechanoreceptors and their specific functions, see [Johnson 2002].

Tactile information from sensory neurons is first processed in subcortical brain
areas as the brainstem and the thalamus [Hsiao & Gomez-Ramirez 2011]. From there,
the information is processed in several regions of the primary somatosensory cortex
(SI), described next.

SI: primary somatosensory cortex
In SI the tatile information is processed while segregating signals from different types
of mechanoreceptors. Local, two dimensional features are computed, which include
curvature and orientation of edges [Yau et al. 2013] and are largely comparable to
features observed in the primary visual cortex (V1) [Yau et al. 2009, Masson et al.

2015]. Additionally, global features are computed comprising information from several
digits [Hsiao & Gomez-Ramirez 2011] which are fused with proprioceptive information
into features in three dimensional space, i.e. adding a positional information [Hsiao

2008,Azañón et al. 2010]. Furthermore, there is evidence indicating that SI also serves
as working memory for tactile features [Harris et al. 2002].

From here it is increasingly unclear which information is processed where. In
[James et al. 2007] two distinct pathways are proposed for further processing: one
containing textural and material information, termed “microgeometry” and a separate
pathway containing information about the form and geometry (“macrogeometry”).
This distinction is similar to the distinction of the ventral and dorsal pathways in
visual processing [Kravitz et al. 2013,Kravitz et al. 2011]. However, a clear distinction
of pathways is disputed [Cichy et al. 2011, Theys et al. 2015, Dijkerman & De Haan

2007](in particular the open peer commentary of the last article).
It has been shown, that information from SI is passed to the superior temporal

gyrus (STG) for temporal tactile processing in the auditory cortex [Bolognini et al.

2010]. Another human brain region critical for spatio-temporal integration of tactile
information is the inferior parietal lobule (IPL) [Kitada et al. 2003] and in the supra-
marginal gyrus (ASM) in particular [Bodeg̊ard et al. 2001]. Furthermore, there is a
high multisensory interaction on multiple processing stages, e.g. SI receives input from
the visual cortex V1 and is directly connected to V2 and the medial temporal cortex
(MT) [Hsiao & Gomez-Ramirez 2011]. SI also projects information to one of the two
major multisensory processing areas: the intraparietal suculus (IPS).

IPS / AIP: intraparietal suculus / anterior intrapariatel area
A major brain region involved in object shape representation is the human intraparietal
suculus (IPS), which is thought of to correspond to the monkey anterior intrapariatel
area (AIP) [Oliver et al. 2009]. The IPS recieves information from SI [Bodeg̊ard et al.
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2001] and is involved in haptic and visual processing (e.g. mental rotations, shape
discrimination) [James et al. 2007] and is in particular relevant for integrating sensory
information from several fingers [Kitada et al. 2003]. Additionally, the IPS is relevant
for temporally integrating tactile information and is crucial for determining whether
information is fused into a single object representation or if multiple representations
are constructed [Kitada et al. 2003]. Information from the IPS are passed on to anterior
supramarginal gyrus (ASM), another area where object shape might be integrated into
a holistic object [Bodeg̊ard et al. 2001].

Recent evidence from intracellular recordings in macaques showed that the shape
coding in the AIP is based on selectivity for small line fragments (similar as neurons in
V2 and V4) which is sensitive to location. Neuronal preference tuning is very depen-
dent on location and thus the neural activation on a population level may be entirely
different for small changes in object position [Romero et al. 2014]. In combination
with low response latencies to stimuli, it is not clear where in a processing hierarchy
the AIP is located, in particular as the boundaries to other brain aeras, e.g. the an-
terior lateral intraparietal (LIP) are unclear [Romero et al. 2014]. In [Romero et al.

2013] the encoding of aspect ratio and orientation was shown for populations of AIP
neurons. The shape representation in AIP is known to project to the ventral pre-
motor cortex (F5) and is a crucial step with respect to grasping objects [Theys et al.

2013,Srivastava et al. 2009].

SII: secondary somatosensory cortex
From SI information is passed to the secondary somatosensory cortex (SII) which addi-
tionally might also independently sythesize tactile features as e.g. curvature [Yau et al.

2013]. SII seems also to integrate sensory information from multiple digits of both
hands and shows position invariant features [Hsiao 2008]. The role of the tactile in-
formation processing in SII is mostly assumed to be of integrating geometric features
into a holistic object shape representation relevant for object recognition [Miquée et al.

2008] and conscious detection of somatosensory stimuli as e.g. object size and shape
[Reed et al. 2004,Hsiao & Gomez-Ramirez 2011].

Information from is SII is (amongst others) projected to V4 [Hsiao & Gomez-

Ramirez 2011], which is thought to have a similar shape encoding [Yau et al. 2009].
In V4, and thus presumably in SII, the boundary of the object shape is encoded in
the population activity of the neurons [Pasupathy & Connor 2002]. In general, vision
and haptic pathways for constructing an object representation are highly interleaved,
multi sensory processing and integration takes place at a variety of stages [James et al.

2007, Hsiao & Gomez-Ramirez 2011, Snow et al. 2013, Miquée et al. 2008, Theys et al.

2013]. This is supplemented by experiments in psychophysics showing that metric
knowledge of objects is transferred from vision to haptics and vice versa, also indicat-
ing shared, multisensory object representation(s) [Wallraven et al. 2014]. From SII
there are also projections to the second major multisensory shape processing areas:
the lateral occipital complex (LOC).

LOC / IT: lateral occipital complex / inferotemporal lobe
The lateral occipital complex (LOC) which presumably corresponds to the inferotem-
poral lobe (IT) in macaques, receives information amongst others from SII [Hsiao &
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Gomez-Ramirez 2011] and from the IPS / AIP [Srivastava et al. 2009]. The LOC is a
multisensory brain region critical for geometric object shape representation [Janssen et al.

2000, James et al. 2007, Hung et al. 2012, Yamane et al. 2008, Oliver et al. 2009] and
interacts with the hippocampus which might store object representations [Hsiao &

Gomez-Ramirez 2011]. It is assumed that the LOC is an convergence point for visaul
and haptic shape representation [Amedi et al. 2002, Masson et al. 2015] which not
only contains information of the geometry (ventral “what” pathway) but also infor-
mation about the location of objects (dorsal “where” pathway) [Cichy et al. 2011].
The information processed in the human LOC is presumably more about the object
shape then on the level of specific features or contours, as indicated by fMRI stud-
ies [Grill-Spector et al. 2001]. Despite robust involvement of the LOC in haptic
object recognition tasks, the LOC is not absolutely necessary for this, as a brain lesion
study showed [Snow et al. 2015]. The subject with lesions in the occipitotemporal lobe
was unable to identify familiar objects by vision, but had unimpaired performance in
haptic object recognition.

Furthermore, intracellular recordings in the macaque IT reveal that shape repre-
sentation is a composite of neurons encoding the position, orientation and curvature
of local surfaces. This representation in invariant with respect to the position, size
and orientation of the object. The neurons in IT not only encode surface features, but
also the skeleton of object parts, i.e. the medial axis [Yamane et al. 2008, Hung et al.

2012].

Differences between IT and AIP
In [Theys et al. 2013] the shape representation in the macaque brain regions AIP
and F5a is analysed, highlighting that IT holds a more detailed object representation,
utilized for object categorization, while AIP / F5a has a rather coarse object repre-
sentation used for grasping. The AIP region is said do be more boundary-coded, i.e.
having little information about surfaces. The region F5a is assumed to transform the
AIP representation into an intermediate representation used by the primary motor
cortex (M1). Another study comparing these brain regions revealed that AIP has a
more metric shape representation then IT, although IT is more sensitive to disconti-
nuities, i.e. sharp edges [Srivastava et al. 2009]. However, it is not straight forward
how the brain regions in the macaque brain link to the human brain and if the results
are transferable [Theys et al. 2013, Bodeg̊ard et al. 2001]. This is partly due to the
fact, that most of the studies on information representation in the AIP and IT are
done with intracellular neural recordings, while the research on the human analogous
brain regions is mostly restricted to fMRI.

Summary
Summing up, the processing of haptic information into object shape representations
is a nontrivial process which is highly distributed and multimodal. This is reflected in
fMRI studies of haptic shape exploration which lead to activations in multiple brain
regions across the whole brain, involving prefrontal, parietal, occipital and temporal
regions [Miquée et al. 2008]. The exact mechanisms of object shape representation
can therefore not jet be determined in particular as there are several distributed rep-
resentations of object shape in the brain. The object shape is rather represented in
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a conglomerate of task and function specific shape representations (e.g. for grasping,
affections, decision making and reward, motor feedback) interacting with one another,
partly sharing the same neural substrates [Hsiao & Gomez-Ramirez 2011,Norman et al.

2008]. However the evidence from multiple stages (in particular SI, AIP and IT) of
(amongst others) haptic sensory processing show prominent haptic features similar to
the ones in the primary visual cortex. In particular these tactile features are zero-,
1st, and 2nd order moments, which correspond to position, orientation, and curvature,
respectively. Furthermore, there is strong neurobiological evidence that at least some
object representations are invariant to the pose, which holds for vision [Hung et al.

2012] as well as for haptics [Hsiao 2008]. This separation of an objects shape repre-
sentation from its pose representation is also indicated by developmental psychology
studies [Smith 2009, Spelke et al. 2010]. In [Spelke et al. 2010] it is pointed to the
possibility that the pose is represented in the hippocampus, e.g. by place cells. Alto-
gether, there is a lot of research on where and how haptic information are processed
and on spatial integration in the brain. However, how in particular spatiotemporal
integration is achieved currently remains unknown.

2.2 Haptic Shape Processing in Robotics

In this section a brief review of the current state of the art of haptic sensing in robotics
shall be given.

Sensors
There are multiple approaches for tactile sensors in robotics, some general types include
capacitive-, piezoresistive-, piezoelectric-, inductive-, optoelectric- and strain gauges
tactile sensors, for details see [Tiwana et al. 2012, Girão et al. 2013, Kappassov et al.

2015]. Measuring the joint positions in robotic systems can be done directly with built
in encoders.

In the robotics community there is no common convention on how tactile data
should be processed or how shape should be represented.

Tactile feedback is often only considered for determining whether the manipu-
lator has contact to the object and to control the force of the grasp [Platt et al.

2011, Popović et al. 2010]. Additionally, tactile feedback is used for slip detection
by analysing vibration frequencies [Schürmann et al. 2012]. Research in the fields of
robot grasping and manipulation where haptic feedback is used beyond direct motor
feedback frequently circumvents the SLAM problem by either fixing the object pose,
using prior knowledge (e.g. of the shape) or by incorporating other sensors (e.g. vi-
sion) to estimate and track the pose. Thus, research focusing on haptic feedback has
mainly considered: (1) learning the shape and geometry of a rigidly mounted object,
e.g. [Meier et al. 2011, Dragiev et al. 2011]; (2) localizing objects where the shape
is assumed to be known, e.g. [Pezzementi et al. 2011, Chalon et al. 2013, Koval et al.

2013,Luo et al. 2015].
In order to learn the object geometry with haptics, a spatiotemporal integration

into a shape representation is required. In principal, shape processing and represen-
tations greatly differ in their complexity. Here only some examples for different levels
of object representation complexity shall be given.
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Point cloud and occupancy grid representations
On the raw-, sensory near side are the group of point cloud and occupancy grid ap-
proaches. Here the tactile contacts are either directly stored as 3D contact points
or more sophisticated methods for preventing the linear growth of required memory
are used. An example for an elaborate point cloud approach is given in [Meier et al.

2011]. The authors probe contacts with fixated, three dimensional objects and use
a kd-tree of tactile contact positions as object shape representation. For preventing
the tree from linear growth in the number of nodes, each node does not store the raw
contact position but is a Kalman filter representing the mean contact position with
the according covariance. New tactile contacts are fused to the nearest neighbour filter
or, if supra threshold, a new Kalman filter is added to the kd-tree. An example for
the occupancy grid approaches is given in [Pezzementi et al. 2011], where a fixated,
two dimensional object is sampled with a tactile sensor array. The environment is
initially represented by an empty two-dimensional grid. For each sensor measurement,
the positional information is related to the according cell in the grid and the grid value
is increased. As there are successive tactile measurements, more and more cells in the
grid are activated and thus ensemble the object representation.

Feature based representations
A second group of shape representations can be categorized as feature based. Techni-
cally speaking, the computation of a 3D position from a tactile sensor array activation
could already be regarded as feature computation (like in the previous group). How-
ever, in this group the focus is primarily on the extraction of features for encoding
shape information. For example, in [Navarro et al. 2012] the information from tactile
sensors first undergoes a linear dimension reduction with principal component analysis
(PCA) and is then fed into a nonlinear dimension reduction by a self organizing map
(SOM). The resulting SOM coordinates after learning of an object are stored together
with joint configurations (also encoded in a SOM) in a bag of keypoints descriptor for
a further classification by a multi layer perceptron (MLP).

Parametric representations
Last, the category of parametric object shape representations shall be mentioned. The
idea here is to use the tactile information to learn a parametric model of the shape. An
example is given in [Dragiev et al. 2011], where the authors map a fixated three dimen-
sional object by successive probing with a tactile sensor. For each sensor measuremnt
the three dimensional position and the according surface normal vector of a tactile
contact is computed and stored together with all previously recorded features. The
necessity of storage of all datapoints technically disqualifies this approach as a para-
metric one, however, this is only due to the inability of online (incremental) learning
of the particular parametric model. The stored features are used to (repeatedly) train
a Gaussian process, modelling implicit surfaces of the object for shape estimating and
grasping. Other examples for parametric object representations are [Bierbaum et al.

2008] (superquadric functions) and [Faion et al. 2015] (transformed plane curves).

14



2.3. SIMULTANEOUS LOCALIZATION AND MAPPING

2.3 Simultaneous Localization and Mapping

The classic example for simultaneous mapping and localization (SLAM) is a robot
which is driving through an office building with a laser scanner. After each movement
the robot has to determine its new position (localization) by comparing laser measure-
ments of the office environment with respect to its map of the office. Simultaneously,
after each measurement of the office with the laser scanner, it has to fuse the laser
measurements into the office map dependent on its current position. If there is an
error in the localization, i.e. the robot assumes it is at a wrong location, this error
will propagate to the map as the new measurements are fused at wrong locations.
Errors in the map will lead to successive wrong localizations, and so on. The robot
will get lost as the robot map of the office will increasingly deviate from the true office
environment.

More generally speaking: an agent which senses parts of an unknown environment
and acts upon it with the intention of achieving an environment related goal not
directly measurable by the sensors is confronted with simultaneously localizing and
mapping.

This SLAM becomes a problem as soon as there is uncertainty in the sensing
and acting with the environment, as in any “real world” scenario. The uncertainty
comes from two sources: uncertainty in sensory measurements and uncertainty in
the interaction outcomes with the environment. The first transfers directly to the
mapping, the other to the localization. Ignoring one of these uncertainties will lead
to a divergence of the map (and location) from the ground truth and furthermore
will lead to an inconsistent map. Therefore these two problems cannot be coped with
separately, but must be solved simultaneously: Continuous localization with respect
to an uncertain map and mapping with respect to an uncertain location.

The correspondence problem
Solving SLAM involves to solve the data association problem, also termed correspon-
dence problem: do (parts of) the currently sensed data correspond to previously
mapped data? If so, then they may be used to reduce the uncertainty in the lo-
cation (localization). If not, they should be added to the map (mapping), where the
uncertainty of the measurements is systematically influenced by the uncertainty in
localization. This systematic impact of the localization error to the mapping leads
the map to drift away from the true environment, as the map is used for the next
localization. This correspondence problem becomes increasingly hard to decide, as

• the amount of uncertainty in location or sensory measurements rises.

• the amount of uncertainty in anticipated action outcome rises.

• sensory data decreases in frequency (spatial or temporal), i.e. is sparse.

• sensory data increases in ambiguity, i.e. from complex features (unique) to binary
features.
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The formal SLAM definition
The SLAM problem of localizing a mobile robot with respect to a (static) environment
and simultaneously building a map of it has received great attention in the robotic
navigation community and a rich amount of research has been conducted on how to
solve this issue [Thrun et al. 2002,Durrant-Whyte & Bailey 2006,Bailey & Durrant-

Whyte 2006].
In [Durrant-Whyte & Bailey 2006], solving the SLAM problem is mathematically

described as computing:
P (xk,m|Z0:k, U0:k, x0) (2.3.1)

where xk is the state x at time k, m is the map conditioned on all the past sensory
measurements Z0:k; and U0:k is the sequence of all the past actions of the agent which
started at state x0. The P (·) denotes that the solution is a probability distribution.
The chosen action u of the agent is assumed to be known with certainty.

Estimating the solution of Eq. (2.3.1) is done in three steps: First, a probabilistic
action model is defined for predicting the outcomes of an action:

P (xk|xk−1, uk) (2.3.2)

describes the probability of being in state xk conditioned on having been in state xk−1
and applying action uk. Incorporating the predicted action outcome is then done by
computing:

P (xk,m|Z0:k−1, U0:k, x0) =

∫
P (xk|xk−1, uk)P (xk−1,m|Z0:k−1, U0:k−1, x0)dxk−1

(2.3.3)
Second, a probabilistic observation model is defined for prediction and rating of sensory
measurements:

P (zk|xk,m) (2.3.4)

describes the probability of measuring zk conditioned on being in state xk and having
a map m. Thus, computing Eq. (2.3.4) requires to solve the correspondence problem.
This implies that successive measurements z are conditionally independent of one
another, given the location x and the map m. The fusing of the sensor measurements
into the joint SLAM equation is then given by:

P (xk,m|Z0:k, U0:k, x0) =
P (zk|xk,m)P (xk,m|Z0:k−1, U0:k, x0)

P (zk|Z0:k−1, U0:k)
(2.3.5)

This is now the joint estimate of the current agent state x and the map m, computed
by estimating the state based on the last state and a performed action, and corrected
by observed measurements.

Approaches to the SLAM problem
Now, the general ideas for solving the SLAM problem and the associated correspon-
dence problem shall be introduced. There are several approaches to the correspon-
dence problem, which are often combined. Typically first a validation gating [Bar-

Shalom 1987, Bailey et al. 2006] is applied to measured features. This checks the
distance of a measured feature to the previously mapped features with respect to the
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estimated location and rejects a data association for unlikely (large) distances. The
distance measure usually incorporates the estimated variance / covariance of the sen-
sors. All measured features within the validation gate remain to be associated with
features in the map. The second important ingredient for robust data association is
either measuring multiple features at a time (laser scan) or having “rich” feature mea-
surements (e.g. camera image) as both enhance the reliability of an association [Bai-

ley & Durrant-Whyte 2006]. Last, the option of maintaining multiple hypothesis, i.e.
multiple possible maps is a possibility to revert wrong associations. However, this is
usually only done in particle filter approaches [Bailey & Durrant-Whyte 2006].

The core insight to cope with the uncertainties in SLAM is to exploit the growing
correlations between measured features [Bailey & Durrant-Whyte 2006,Smith &

Cheeseman 1986, Durrant-Whyte 1988]. Multiple features which are simultaneously
measured will be correlated in the map and correlation increases for each measurement
of these features in successive action sequence steps, as the knowledge of the relative
locations of the features with respect to one another is improved. Thus, the corre-
lation between two features in the map grows monotonically for each simultaneous
measurement of these two features. This increase of correlations creates a network of
correlated features (i.e. a map), including the agent itself. Due to this correlation,
reductions in positional uncertainty of one feature also propagates to all correlated
features, which in turn reduces the next localization uncertainty, reducing the next
measured feature location uncertainty, ... and so on. This property leads to the con-
traction of the probability distribution width for each feature mj of the map m and
thus, to an effective solution to the SLAM problem.

There are many implementations of SLAM solutions, most of them representing
and computing with uncertainties in measurements (Eq. (2.3.1)) and in the location
estimates [Thrun et al. 2002]. While this is considered to be mandatory for an optimal
solution to SLAM, it requires an explicit formulation of a motion model (Eq. (2.3.2))
and an observation model (Eq. (2.3.4)). Two major approaches have been established,
the extended Kalman filter (EKF) and the particle filter (FastSLAM) approach, see
[Montemerlo & Thrun 2003,Durrant-Whyte & Bailey 2006,Bailey & Durrant-Whyte

2006] for details.

However, there have also been several biologically motivated approaches to the
SLAM problem, not modelling the distribution probabilities explicitly. Here three
examples are mentioned, just to give a brief impression.

For example in [Li et al. 2012] the authors represent the map of the environment in
a dynamical system (shunting short term memory), similar to a DNF. Into this map
the relative locations from a laser scan are fused. A scan matching algorithm then
determines the maximum likelihood robot location for new data after a movement,
conditioned on the predicted pose location. The exponential fading of the map entries
serves as a feature for coping with dynamic environments.

In [Milford et al. 2004] a dynamic neural field (DNF) is used for representing the
robots pose. Additionally, there are view cells which encode distance, relative bearing
and color of detected objects in the robot environment. The connections between the
activated pose and the currently activated view cell is learned by Hebbian learning. As
the view cells project back into the pose DNF, re-localization is possible. The critical
part here is the tuning of parameters of when to re-localize (e.g. ambiguous objects).
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Furthermore, map drifts are only partially avoided.
In [Antonelo & Schrauwen 2012] a combination of a reservoir network (a nonlin-

ear recurrent neural network at the edge of stability), slow feature analysis (extracting
components of signals that change slowly in time) and independent component anal-
ysis (transforming a signal in statistically independent components) are used to au-
tonomously build an implicit mapping of the environment without any motion model.
Only eight infra-red sensors are used. However, the motion of the robot is required to
be smooth and continuous for enabling the computation of slow features.
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2.4 Dynamic Neural Fields

In the remainder of this chapter, the used methods are introduced, starting with dy-
namic neural fields (DNF). When the aim is to process information in a biologically
plausible way, this raises the question on what level the processing should be biologi-
cally plausible [Schöner 2008]. There are multiple approaches of modelling information
processing in the nervous system, on different levels of abstraction. These range form
detailed cellular models of neurons, to simplified spiking and non-spiking neuron mod-
els, to abstract descriptions of information processing in neural networks by mean field
approaches. Dynamic neural fields are on the rather abstract end of this spectrum,
encoding neural information in time and space continuous population activity. The
processing of this information is then described by a differential equation which incor-
porates lateral interactions and external inputs into the temporal development of the
system state. DNFs have been proposed in [Amari 1977,Wilson & Cowan 1973,Gross-

berg 1988] where also a neural inspired derivation and an analysis of the dynamics is
presented. Research has been conducted to model various processes with DNFs, such
as object recognition [Faubel & Schöner 2008], scene representation [Zibner et al. 2011],
sequence generation [Richter et al. 2012], saccadic eye movements [Sandamirskaya &

Storck 2015] and spatial language [Richter et al. 2014].

Neural Dynamics

DNFs are dynamical systems which model the processing of information in recurrent
neural networks, where the input information is explicitly encoded in a population
representation (space encoding). This input may be a perceptual feature, location
in space, or a motor control variable. The input feature is encoded along a feature
dimension x, and the activation u(x, t) at position x encodes the confidence that the
feature has value x. This enables to encode multiple possible values of the feature as
well as uncertainty. In contrast, traditional artificial neural networks encode a feature
value in only one neuronal unit, where the value of the feature is represented by the
activity of the unit (rate coding).

The equation for the DNFs used in the proposed model is described by Eq. (2.4.1),
which defines the rate of change in activation u(x, t) of the field:

τ u̇(x, t) = −u(x, t) + h+ S(x, t) +

∫
ω(|x− x′|)f

(
u(x′, t)

)
dx′. (2.4.1)

In Eq. (2.4.1), u(x, t) is the activation of the DNF at time step t and position x.
The position x describes a feature dimension and may be multi-dimensional: ~x ∈ Rn.
Typically the dimensionality of x is in the range of [0, 4]. In particular, in this thesis
one and two dimensional fields are used.

The term −u(x, t) stabilizes an attractor for the activation function at values,
defined by the last three terms in the equation. The time constant τ determines how
fast activation u(x, t) relaxes to the attractor. The negative resting level h ensures
that the DNF produces no output without any external input S(x, t), driving the DNF.
The convolution term models lateral interactions between locations of activity in the
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Low-stable Bi-stable High-stable

Figure 2.4.1: Phase plot for different regimes in the simplified DNF equation. Black dots
indicate stable fixed points, empty circles unstable fixed point attractors.

DNF, shaped by the interaction kernel:

ω(|x− x′|) = cexc exp

[
−(x− x′)2

2σ2
exc

]
− cinh exp

[
−(x− x′)2

2σ2
inh

]
, (2.4.2)

with a short-range excitation (strength cexc, width σexc) and a long-range inhibition
(strength cinh, width σinh). A sigmoidal non-linearity, f

(
u(x, t)

)
= 1

1+exp[−βu(x,t)] de-
fines the output of the DNF with which the DNF impacts on other dynamics in the
model, as well as on its own dynamics through the lateral interactions.

The −u(x, t) in Eq. (2.4.1) guarantees the existence of at least one stable fixed
point (attractor). Dependent on the parametrization of the lateral interaction ω, the
DNF may undergo saddle-node bifurcations. The phase plot depicted in Fig. 2.4.1
(”Low-state”) qualitatively shows Eq. (2.4.1), when the state x is zero-dimensional
(i.e. a point). The black dot denotes a stable fixed point (attractor), while empty
circles denote unstable fixed points (repeller). Loosley speaking, the resting level
h together with the input S of the DNF shift the function up and down, while ω
determines the non-linearity of the function. For example, assume a system as in the
phase plot in Fig. 2.4.1, where the system state is stable at (a) (Low-stable). For a
appropriate parametrization of the DNF, input S may cause a bifurcation, creating two
new fixed points, a stable (c) and an unstable one (b) (labelled with “Bi-stable”). If
the input further increases, a second bifurcation occurs, where the unstable fixed point
(b) collides with the stable fixed point (a). Now the system state at the former fixed
point (a) has lost its stability and the system will converge to the remaining stable
fixed point (c) (“High-state”). This second bifurcation, where the current system state
looses stability is termed detection instability. If the input now decreases again, it will
induce a bifurcation, leading back to the bi-stable regime, however the system will
remain at the stable fixed point (c) (hysteresis). Only if the input decreases enough
to induce the second bifurcation, where the stable fixed point (c) collides with the
unstable fixed point (b), the system will return to the stable fixed point (a) (i.e. from
right to left in Fig. 2.4.1). Thus, the lateral interactions by the kernel ω stabilize the
system in its state, even though the input may fluctuate.

For very strong lateral interactions ω, these may become sufficient to sustain the
activity, even in the absence of external input. The dynamic system then has a line
attractor as long as the interaction kernel ω(|x − x′|) is symmetric. For asymmetric
kernels the system may enter into a limit cycle.
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Memory Trace

Memory traces (MT) are described by dynamical systems without lateral interactions,
which preserve memories of past activities in a DNF. The dynamics of a MT is given
by Eq. (2.4.3) [Sandamirskaya 2013]:

τ Ṗ (x, t) = λbuild
(
−P (x, t) + u(x, t)

)
f(u(x, t))−λdecayP (x, t)

(
1− f(u(x, t))

)
. (2.4.3)

Here, P (x, t) is the strength of the memory trace at position x of the DNF activity
u(x, t) and the sigmoided DNF output f

(
u(x, t)

)
. The rates λbuild and λdecay regulate

the build-up and decay of the memory trace. The build-up of the memory trace is
active at positions with a high positive activation in the DNF f

(
u(x, t)

)
, the decay is

active at positions with a low DNF activation.

Projections

DNFs with different dimensions may be connected with each other, therefore these
connections are defined here. In order to pass activity from one DNF to a DNF of dif-
ferent dimensionality, several types of projections are used. These types of projections
are illustrated in Fig. 2.4.2.

1D→2D For projecting the activity in a DNF with one feature dimension to a DNF
with two feature dimensions, the DNF with one dimension projects its output activity
f
(
u(x, t)

)
along the second feature dimension of the other DNF. Thus, the activity is

“copied” along the new feature dimension.

2D→1D For projecting activity from a DNF with two feature dimensions to a DNF
with one feature dimension there are several possible options. The most intuitive is
to perform a marginalization of the DNF activity along one of the feature dimensions.
This corresponds to integrating the activity along one dimension. Alternatively, the
maximum activity in the dimension along which the activity is projected (i.e. the
dimension which is marginalized) can be used to obtain a projection which remains
in the same activity range, i.e. [0, 1]. Furthermore, a projection along a rotated
dimension can be made, typically a rotation of 45◦ is used. This is in particular useful,

1D→2D 2D→1D (max) 2D→1D (sum) 2D→1D (diagonal)

Figure 2.4.2: The types of projections used to connect DNFs with feature spaces of different
dimensionality.
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when the activity in the DNF feature dimensions is obtained from a superposition
of two projections from DNFs with one dimensional feature spaces (see the sketch
at the right of Fig. 2.4.2). This “diagonal projection” results in an activity peak
in a relative feature dimension, encoding the activity of one of the two initial DNF
feature spaces (one dimensional) relative to the other. This procedure implements a
coordinate transformation and is described in detail in [Schneegans & Schöner 2012].

In principal, all of these projection techniques can be generalized to DNFs with
higher dimensional feature spaces. However, in this thesis only DNFs with one or two
feature dimensions are used.

Discretization

The DNF equation is continuous in time- and space. The discretized version of the
DNF equation with the Euler method for the temporal discretization, and the rectangle
method for the spatial discretization is equivalent to the standard recurrent neural
network equation:

u(k + 1) = (1−∆t)u(k) + ∆t
(
WinpS(k) +Wrecf

(
u(k)

))
. (2.4.4)

The Euler step width ∆t defines the temporal resolution of the discetized time variable
k̂ = k∆t. For small ∆t the dynamics approximate the time continuous case, for ∆t = 1
the standard discrete case for neural networks is obtained. The input S(k) and the
state (i.e. activation) u(k) are now vectors (for one dimensional feature dimensions) or
matrices (for two dimensional feature spaces), holding all the midpoints of the sampled
rectangles along the feature and network state dimensions, respectively. Characteristic
for a DNF are the particular structures of the input weight matrix Winp and the
recurrent weight matrix Wrec. These matrices are both square band matrices, typically
symmetric. The input weight matrix Winp is nonnegative with the values on the
diagonal defined by a Gaussian distribution with mean of zero and width σ. The
recurrent weight matrix Wrec is a square band matrix which typically has a central
positive band enclosed by two negative bands, defined by a Mexican-hat distribution.
The parameters of the distributions are typically tuned manually.

An framework for simulation of DNFs is described in the next subsection.

cedar Software Framework

A software framework for simulating dynamical systems, in particular DNFs was im-
plemented in [Lomp et al. 2013] and is termed cedar1.

The software is available for linux and windows an enables to design neurodynamic
models with a graphical user interface where all parameters can be tuned interactively.
A screenshot of the cedar graphical user interface is shown in Fig. 2.4.3.

The DNFs simulated in cedar have an additive activation noise to the state u(x, t)
with zero mean and the sigma is set to σnoise = 0.01. For computational optimization,
global interactions in the DNF activity like e.g. global inhibition are not realized by
defining kernels of large width, i.e. interaction range. Instead, these are implemented

1Source code available from: http://cedar.ini.rub.de/
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2.4. DYNAMIC NEURAL FIELDS

by integrating the activity in the entire DNF and multiplying it by a parameter termed
“global inhibition”, which is added to the kernel function output. The according
equation will be defined in Eq. (5.0.4) in Chp. 5. While this mechanism increases the
computational efficiency without any functional relevance, it leads to an additional,
distinct parameter.

Figure 2.4.3: Parts of a screenshot of the cedar GUI. On the top the simulation controls and
a selection of components are visible. In the lower part of the screenshot an example with a
Gaussian input and a DNF with one dimensional feature space is shown. On the right the
panel with the parameters is shown, which can be adapted while the simulation is running.
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2.5 Intrinsic Plasticity

In this section the computational method of intrinsic plasticity is introduced. The
description in this section and the following about the natural gradient are adapted
from my master thesis [Strub 2012].

Neurons in biological organisms have a large spectrum of plasticity mechanisms,
implementing a board range of functions. One functional class of neuronal plasticity
mechanisms is termed “homeostatic plasticity”, optimizing the information processing
within a neuron by taking into account its metabolic costs. For reviews on forms
and types of homeostatic plasticities see [Desai 2003, Pozo & Goda 2010, Turrigiano

2011,Turrigiano 2012].
Non-synaptic, i.e. intrinsic forms of homeostatic plasticity are termed “intrin-

sic homeostatic plasticity” (IP), which adapt the intrinsic excitability of a neuron
[Frick & Johnston 2005, Schulz 2006]. Plasticity of excitability has also been discov-
ered in compartmentalised dendritic structures of biological neuron’s [Frick & John-

ston 2005, Losonczy et al. 2008, Makara et al. 2009]. Recent reviews on the roles of
dendritic structures and their forms of plasticity with respect to the neural information
processing and storage are given in [Remy et al. 2010,Branco & Häusser 2010].

In the context of artificial neural networks IP has been introduced as a mechanism
which modifies the excitability of a neuron in order to achieve a specified output
distribution for a given input distribution [Stemmler & Koch 1999, Triesch 2005].
This is done by manipulating the parameters of a transfer function, transforming the
internal neural state to an output. A commonly used transfer function is the Fermi
function, also called logistic function, defined in Eq. (2.5.1).

φa,b(x) =
(
1 + exp(−ax− b)

)−1
(2.5.1)

The a, b are termed gain and bias of the function φ and x is the input which is
transferred to the output space.

The IP learning rule for adapting the parameters of the transfer function is achieved
by minimising the Kullback-Leibler-divergence (KLD) [Kullback & Leibler 1951], such
that the output distribution of a neuron is close to an exponential distribution. For
Fermi functions (Eq. (2.5.1)) and the exponential as a target distribution this has been
done in [Triesch 2005], as will be described in the following. For neurons using the
tanh as transfer function, see [Schrauwen et al. 2008].

LKL(φ|| exp) = Ex[LKL(φa,b(x), ~θ|| expµ, µ)] (2.5.2)

=

∫
fφ(φa,b(x)|~θ) log

(
fφ(φa,b(x)|~θ)

fexp(φa,b(x)|~θ, µ)

)
dx

~θ = (a, b)T ,

In Eq. (2.5.2) the KLD is formulated with the probability distribution function fφ of
the outputs of the Fermi transfer function φ, with respect to the exponential target
distribution fexp. The output distribution of the Fermi function φ is conditioned on

the parameters ~θ, while the parameter of the exponential distribution is the mean µ.
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Minimising the KLD is done by taking the derivative with respect to ~θ, which leads to
the learning rules for adaptation of the parameters ~θ (i.e. the gain a and bias b) with
the learn rate η:

∆b = η

(
1−

(
2 +

1

µ

)
φa,b(x) +

1

µ
φa,b(x)2

)
(2.5.3)

∆a =
η

a
+ x∆b (2.5.4)

Besides this online adaptation rule introduced in [Triesch 2005], a batch version of IP
was derived in [Neumann & Steil 2011]. The application of IP has repeatedly been re-
ported to improve performances in reservoir computing – a particular form of comput-
ing with transients in dynamical systems – [Steil 2007a,Steil 2007b,Schrauwen et al.

2008, Wardermann & Steil 2007] as well as increasing the robustness with respect
to the parameter initialisation [Neumann & Steil 2011]. There have been a num-
ber of variations of IP learning with respect to the target distribution, for further
information see [Verstraeten et al. 2007, Schrauwen et al. 2008, Boedecker et al.

2009b,Boedecker et al. 2009a]. Furthermore, combinations of IP with other forms of
plasticity have been investigated, e.g. with Hebbian learning, which leads to identifi-
cation of independent components in the input [Triesch 2007].

Finally, it should be noted, that it has previously been reported that IP leads to
instability of recurrent neural networks (RNN). In [Marković & Gros 2010] the authors
claim that introduction of IP in RNN leads to the destruction of attractor stability,
resulting in spontaneous and continuously ongoing activity. For networks without and
with very small input amplitudes oscillatory, chaotic and bursting behaviour have been
reported [Marković & Gros 2012]. The result of RNN destabilisation by IP has also
been confirmed in spiking neural networks [Lazar et al. 2007]. These destabilizing ef-
fects on the dynamics are relevant for applying IP in dynamic neural fields as proposed
in Ch. 4, which will be discussed there.

2.6 Natural Gradient

The concept of a natural gradient was introduced in [Amari 1998]. It has been shown,
that the metric structure of the parametric space of neural networks has a Riemannian
character [Amari 1998]. Thus the relationship between the distance of two sets of
parameters and the distance in the output space of the neural network is non-linear.
Adapting the conventional gradient with respect to the Riemannian metric corrects
for this non-linearity, such that the distance of two parameter sets linearly transfers
to the output space. This change of the gradient is termed natural gradient and leads
to a substantial performance increase in the convergence rate for IP (discussed in
the previous section) [Neumann & Steil 2012, Neumann et al. 2013]. Therefore, the
natural gradient will be described in this section together with its application to the
IP gradient. The remainder of this section is adapted from my master thesis [Strub

2012].
The used notation is the following: parameters θ in parameter space Θ determine

a mapping f(·|θ) in the function space of all possible functions F . The function f(·|θ)
maps input · from RIn → ROut where In is the number of input dimensions and Out the
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number of output dimensions. A loss-function L(θ) = L
(
f(·|θ); g∗(·)

)
in the function

space of all possible loss-functions L defines a distance of a mapping f(·|θ) to a target
mapping g∗(·). For the sake of simplicity, it is assumed that the target mapping g∗(·) is
in the set of possible functions F , i.e. ∃ θ∗ : g∗(·) = f(·|θ∗) ∈ F with target parameters
θ∗. If g∗(·) is not in F , the optimal parameters and thus the optimal mapping are
given by θ∗ = arg min

θ
L(θ).

There is an important difference in considering distances between parameters θ
in Θ or in L(θ). Ideally the loss-function L(θ) = L

(
f(·|θ); f(·|θ∗)

)
represents the

Euclidean distance of a parameter θ to the optimal parameter θ∗. This is the case
if the mapping f(·|θ) is the identity I and thus, the loss-function is defined directly
on the parameter space. Then the gradient on L(θ) would point to the optimum θ∗

in parameter space. However a non-linear mapping f(·|θ) and the particular choice
of L(θ) induce a non-linear distance measure (metric) in Θ. This implies that the
direction of steepest descent in L(θ) is not necessarily the direction with the strongest
decrease in the Euclidean distance to the optimal parameter θ∗. If this distortion is
not taken into account, gradient descent on L(θ) will lead to suboptimal trajectories
in Θ, as illustrated on the right hand side in Fig. 2.6.1.

It has previously been noted that the metric in Θ of artificial neural networks with
sigmoid activation functions is not Euclidean but Riemannian [Amari 1998]. Therefore
the task is to find a non-linear metric in Θ, such that the distance dF (θ1; θ2), defined
as the geodesic distance of θ1 and θ2 with respect to a Riemannian metric tensor

Figure 2.6.1: Loss-function L visualised with Riemanian metric (left) and Euclidean metric
(right) in parameter space. Top: gradient descent with the Euclidean metric (∇E red dashed
lines) and natural gradient descent computed with the Riemannian metric tensor F (∇F blue
doted lines). The loss-function L(a, b) is schematically illustrated by the contour lines in the
top plots. Bottom: a slice out of the top sketches for fixed b and the loss-function L on the
y-axis. This figure is adapted from [Strub 2012].
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F (θ) corresponds to an Euclidean distance measure dE(L(θ1);L(θ2)) on L(θ). As this
Riemannian metric directly links distances in Θ with distances in L(θ), it ensures that
the steepest descent direction of the loss-function coincides with the direction in which
the error in the parameters decreases the fastest. Hence L(θ) encodes the distance
of the current to the optimal parameters, with respect to the Riemannian metric
tensor2. This is visualised on the left hand side in Fig. 2.6.1 where the potential field
of the loss-function is normalised to a cone by incorporating the Riemannian metric.
Gradient descent on L(θ) then directly points to the optimum in parameter space,
thus coinciding with the desired gradient in parameter space, resulting in a minimal
trajectory length. As the incorporation of the Riemannian metric normalises the slope
of the loss-function, the gradient magnitude is isotonic throughout parameter space.

Using gradient descent with the Riemannian mertic is termed natural gradient
[Amari 1998] and does not alter the optimum but gives an increased convergence rate.
Furthermore, it leads to an asymptotically Fisher-efficient estimator, i.e. the NG
reaches the Cramer-Rao bound for unbiased parameter estimators [Amari & Douglas

1998].
A natural gradient-based parameter adaptation for IP termed NIP has been derived

in [Neumann & Steil 2012]:

~θ = (a, b)T

∆~θ = −ηIP

(
F (~θ) + εI

)−1
∇ELKL

(
φa,b(x)|~θ

)
(2.6.1)

= −ηIP∇FLKL

(
φa,b(x)|~θ

)
F (~θ) = Ex

[
∇ELKL

(
φa,b(x)|~θ

)
· ∇T

ELKL

(
φa,b(x)|~θ

)]
(2.6.2)

The Matrix F (~θ) is the Fisher information, i.e. the Riemannian metric tensor and

LKL the KLD for neuron output φa,b(x) and parameters ~θ. As the needed expectation
value of the gradient with respect to the input in Eq. (2.6.2) is not available in an
online framework, the tensor is estimated online by:

F̂t+1 = (1− λ)F̂t + λ∇ELKL

(
φa,b(x)|~θ

)
· ∇T

ELKL

(
φa,b(x)|~θ

)
, (2.6.3)

with λ realising a low pass filter with exponential decay which is set to 0.01. For
computational efficacy the inversion of the tensor F in Eq. (2.6.1) can be circumvented
by directly estimating the inverse tensor F−1 as described in [Park et al. 2000].

Using NIP gives a good approximation of the gradient direction in parameter space
as the experiments in the evaluation in Sec. 4 confirm.

2Riemannian metric tensor field, to be exact.
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Chapter 3

Experimental Setup

This chapter will give an introduction to the experimental setting of the research in
this thesis. Two fingers of the robotic hand SDH2 (Sec. 3.2) are used to rotate different
n-gon objects (an extrusion of a convex polygon with n sides) supported by a table
surface. The goal of the experiments is then to autonomously build a representation of
the object shape in an online and incremental fashion, while simultaneously estimating
errors in the moment-to-moment localization of tactile features on the object surface.
How this may be achieved will be described in detail in Sec. 5, while this chapter deals
with the according experimental setup. This chapter gives

• an overview of the used objects and the used robot hand,

• the definition of several coordinate systems,

• a description of the feature extraction from tactile sensor responses,

• the objects exploration via rotational manipulations with the robot SDH2,

• the introduction of a forward model for predicting the object kinematics from
robot manipulations,

• the procedure of recording datasets for further processing by the neurodynamic
model,

• and finally, the encountered challenges in this setup.

3.1 Objects

For the experiments, seven cylinder based n-gons were custom made from aluminium,
shown in Fig. 3.1.1.

The objects for the haptic spatiotemporal integration experiments consist of three
sets. The first set comprises two objects with a small (outer) diameter of 3.0cm, one
eight-sided and a six-sided object. The second set consists of three objects with a large
(outer) diameter of 4.0cm, one cylindrical, one eight-sided and a six-sided object. The
third set contained two objects with a large (outer) diameter of 4.0cm which, unlike
the previous two object sets, both did not have a repetitive pattern of surfaces. Instead
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Figure 3.1.1: Objects: the top row shows the custom made objects. The bottom row shows
the object shape from a top-view (black) including the outer diameter (orange), the inner
diameter (blue) and the underlying shape (gray) in the case of the asymmetric objects. Note
that in the image the tape of the two asymmetric objects on the right is still missing.

Figure 3.1.2: The ground plate with a bolt to fixate the position of objects.

the location and orientation of surfaces is asymmetric (see the two objects on the most
right of Fig. 3.1.1). The first asymmetric object has seven surfaces but only five edges,
due to smooth radial blending between neighbouring surfaces, as visible on the most
right in Fig. 3.1.1. The second asymmetric object has seven surfaces with seven edges
in between. From the seven surfaces of the asymmetric objects two surfaces have
comparably small spatial extent, shown in the last and second to the last on the right
in Fig. 3.1.1.

All objects had a height of 7.0cm. In order to facilitate the grip of the robot fingers
during object manipulation, the surface of the objects was roughened and partially
equipped with a double-faced (weakly) adhesive tape, see the photos in Fig. 3.1.1. All
the objects had a 6.0cm deep hole of 0.8cm diameter in the bottom, by which they
could be attached to a steel axis to prevent tipping of the objects and to control the
object Position. For this, an aluminium plate with a bolt in the middle (6.0cm height
and 0.75cm diameter) was manufactured, as shown in Fig. 3.1.2.
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3.2 Shunk Dexterous Hand 2

For the experiments a Shunk dexterous hand in the second version (SDH2) with seven
degrees of freedom (DoF) was used to manipulate objects. In Fig. 3.2.1 a picture of
the SDH2 is show. The SDH2 has three fingers, each with two phalanges connected by
a middle joint and a co-linear joint near the palm. Two of these fingers are attached
to the palm by an additional joint, enabling a coupled change in the orientation of the
two fingers. The third finger is directly attached to the palm, leaving it with only two
DoF to control the proximal and distal phalanx. A fingertip like, curved ending of the
distal phalanges including the sensor surface enhances the grasping capabilities of the
SDH2.

Each joint is equipped with a sensor to measure the current joint angle. Further-
more, each of the six phalanges is equipped with a tactile sensor array (DSA) with
250 kPa pressure measuring range. The tactile sensors on the distal phalanges have
a resolution of 6 × 13 pixels (texels) with a narrow section in the fingertips of only 4
texels. The tactile sensors on the proximal phalanges have a throughout resolution of
6 × 14 texels. All of the tactile sensors have a sampling rate of 230 frames per second
(fps).

The SDH2 comes mounted on a wooden base by default, but may be attached to
robotic arms as e.g. the KUKA LBR 4 lightweight robot arm.

Figure 3.2.1: A picture of the Shunk SDH2

.
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3.3 Coordinate Systems

When referring to tactile contacts from the SDH2 or extracted features from these
sensory data (as will be described in Sec. 3.4), several coordinate systems are distin-
guished. These are termed the sensory-, robot- and the object-space. In Fig. 3.3.1 an
illustration of these coordinate systems is given.

Figure 3.3.1: Overview of the three coordinate systems
used. Red: sensor space, green: robot space, blue: ob-
ject space. The dot in a coordinate system indicates an
upright axis pointing downwards. See text for the rela-
tionship between these systems.

Sensor Space
The sensor coordinate system is a two dimensional space rooted on the according
tactile sensor, thus a specification with respect to the tactile sensor must be made. As
a sensor coordinate system is directly linked to the tactile sensory array, its is only
defined with a restricted spacial extension.

Robot Space
When the kinematics of the robot is known and additional information from propri-
oceptive sensors are available, e.g. joint angle measurements, coordinates from the
sensory space can be transformed into three dimensional robot space. The system of
the robot coordinate system is fixated on the robot hand and the sensory information
of the sensor space now lies within two dimensional manifolds. While the robot space
is essentially three dimensional, the third dimension (height) is neglected in the pro-
posed setup, as the fingers and thus the sensors only move within a two dimensional
plane. In the following the z axis of the robot-centred coordinate system (green) in
Fig. 3.3.1 will be termed distal-proximal axis (DPA), while the x-axis is termed
lateral axis (LA).

Object Space
If the pose (i.e. position and orientation) of the object in robot space is known, i.e.
with respect to the robot hand, information from the robot space can be transformed
into the object space. Here, the coordinate system is rooted on the object. Just as in
the case of robot space, the object space is essentially three dimensional, but as the
object exploration only takes place in a two dimensional, planar “slice” of the object,
the third dimension is neglected here as well.

In the terms of the SLAM literature, this corresponds to the map coordinate system
of the object, i.e. the object representation. Building and maintaining this object
representation requires to transform contact information into object space.
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3.4 Feature Extraction

For further processing of tactile sensory information, several features are extracted.
The specific types of features are inspired from what is known about haptic shape
processing in humans and primates, briefly summarized in Sec. 2.1. Prominent features
in both – the visual and haptic systems – are zero-, 1st, and 2nd order moments, which
correspond to position, orientation, and curvature of the tactile contact, respectively.
In accordance with the findings in biological systems, these three features are used
as inputs to the neurodynamic model. The features are computed from tactile sensor
information in sensor space, and are then transformed into robot space using the
forward kinematics of the robot. Since there could be multiple tactile contacts of a
sensor with an object, the tactile responses are first clustered, such that neighbouring
active texels are appointed to the same cluster, i.e. contact area. This clustering was
performed with the openCV cluster algorithm cvblob1. For each detected contact
area three features are computed, described in the following subsections.

3.4.1 Position

The position of a contact area is defined as the cluster centroid as illustrated in
Fig. 3.4.1.

Figure 3.4.1: Sketch of a tactile sensor array of a dis-
tal phalanges of the sdh2 with a single contact area and
its centroid. Active texels are illustrated in green color
coding and the centroid is marked by a red cross.

The cluster centroid is computed by

~c =
1∑n
i=0 pi

n∑
i=0

pi~xi

with n the number of texels belonging to the contact area, pi the pressure value of
texel i and ~xi the position of texel i.

As this centroid is weighted with the pressure levels of each texel, the contact
position can be determined with a higher resolution and robustness compared to using
the texel coordinates of the maximum pressure level.

3.4.2 Orientation

For computation of the orientation feature the detected cluster of texels is approx-
imated with a two dimensional Gaussian. The orientation of a contact area is then
computed by determining the angle of the eigenvector with the largest eigenvalue. The
eigenvector with the larger eigenvalue corresponds to the major semiaxis of the ellipse,
defined by the covariance matrix of the Gaussian approximation. This is shown in
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Figure 3.4.2: Sketch of a tactile sensor array with a single
contact area and its orientation. Active texels are illus-
trated in green color coding and the orientation is marked
by the red major axis of the blue ellipse.

Fig. 3.4.2, where the covariance matrix is illustrated by an ellipse denoting an equidis-
tant line from the Gaussian kernel.
The computation of the covariance matrix Σ is given by:

Σ =
1

n− 1

n∑
i=0

(~xi − ~̄x) · (~xi − ~̄x)T

with n again denoting the number of texels belonging to the cluster, ~xi denoting the
position of texel i and x̄ denoting the arithmetic mean of all the cluster texel positions.

The eigenvalues e can be determined by using the quadratic formula to solve the
characteristic polynomial of Σ, which can be written as:

ei∈[1,2] =
Tr(Σ)

2
±

√(
Tr(Σ)

2

)2

−Det(Σ)

where ei∈[1,2] are the two eigenvalues, Tr(Σ) is the trace of Σ and Det(Σ) is the
determinant of Σ.

The according eigenvectors can be computed by exploiting the Cayley-Hamilton
theorem, resulting in the equation:

A1/2 = Σ− e1/2I

where A1/2 is a matrix which is composed of the according eigenvector and its multi-
plicatives (column wise, i.e. A1 = [~e1, a · ~e1] with ~e1 the first eigenvector) and I is the
identity matrix.

Note, the used experimental setup practically constrains the orientation of a contact
to one direction only. This is due to fact, that the shape of the object does not vary
along its height, i.e. is purely defined by its footprint.

The contact orientation of contacts with object edges, i.e. long and narrow contact
areas on the tactile sensor surface is well defined. On the other hand, the orientation
of circular contact areas, e.g. when making contact with flat object surfaces or corners,
is more limited in its information content. However, when the two dimensional sensor
surface is transformed into three dimensional robot space the kinematics determine
the orientation by the sensor geometry and pose, as shown in Fig. 3.4.3.
Here, the normal vector of the sensor surface at the contact position is given by
the robot kinematics. This normal vector determines the orientation of surfaces in
three dimensional space, while the orientation of the contact area in sensor space then
determines the orientation of edges in three dimensional space.

Note, that the normal of the object surface does not necessarily coincide with the
normal of the sensor surface, due to the rigid fingers and sensor surfaces.

1Source code available from: https://code.google.com/archive/p/cvblob/
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Figure 3.4.3: Sketch of a tactile sensor array with a single contact area
and its orientation in three dimensional robot space. Active texels are
illustrated in green color coding and the orientation is marked by the
red major axis of the blue ellipse and the red Sensor surface normal
vector.

3.4.3 Curvature

The curvature of a contact is computed by the ratio of the smaller eigenvalue λ of the
covariance of the tactile contact area to the larger one (EvR).

EvR =
λsmall

λlarge
∈ [0, 1] (3.4.1)

The eigenvalues are denoted in Fig. 3.4.4 as the norm of the major and minor semiaxis
of the ellipse.

Figure 3.4.4: Sketch of a tactile sensor array with a single
contact area and its curvature. Active texels are illus-
trated in green color coding and the curvature is com-
puted from the ratio of the minor to the major axis
(marked in red) of the blue ellipse.

For a circular contact area, the eigenvalues are approximately equal, hence the Eigen-
value ratio (EvR) is near one. For contacts with edges, leading to long and narrow
contact areas, the EvR decreases approaching a singularity at zero. However, the non-
zero spacial extension of the texels prevents the smaller eigenvalue from reaching zero.
In principle, this approach to estimate the curvature of contact surfaces is limited by
the tactile sensor resolution and the extent to which the sensor surface is compressible,
which is typically a foam cellular plastic or rubber material.

Alternative Approach for Curvature Estimation

Estimating the curvature of the object shape at the tactile contact can additionally
be done by estimating the distribution of sensor contact normal orientations in object
space within a temporal window. This approach requires a continuous movement of
the sensor surface along the object (i.e. maintaining contact) with a constant change
in the finger orientation. This is achieved e.g. by continuous rotational movement of
the object with the robot fingers. The second requirement is that the sensor surface
must be curved, as is the case with the fingertips of the SDH2. The curved sensor
surface enables several sensor measurements along a flat object surface, each having
the same contact normal orientation in object space. In contrast, a flat sensor surface
would lead to only one (very large) contact when sensor surface and object surface are
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Figure 3.4.5: Contact orientation normal for flat (top) and curved sensors (bottom) touching
a flat object surface. From the left to the right: first a sequence of tactile contacts of the
sensor with an object surface is depicted, resulting in a set of measured contact normal
orientations. The distribution of the contact normal orientations is sketched on the most
right.

exactly collinear. This is sketched in Fig. 3.4.5, the top row shows the sensor contacts
and their normals (in red) for a finger with a flat sensor surface. The bottom row
shows the according information for fingers with curved sensor surfaces. On the right
of the figure the contact orientation normals are plotted for the sequence of contacts,
respectively. This illustrates the benefit of curved sensor surfaces, as rotating contacts
with flat objects result in multiple contact normals with the same orientation. When
the finger rotates along an object surface the contact position moves along the sensor
surface, while the sensor normal orientation at the contact position remains stable.
Hence, the mass of the normal orientation distribution in object space will accumulate
at the according object surface orientation. In contrast, when rotating around object
edges the contact position remains stable on the sensor surface, while the according
sensor normal orientation changes. Thus, the orientation distribution will be broader
as the robot finger performs the rotational movement, as depicted on the most right
in Fig. 3.4.5.

In publications of previous versions of the model [Strub et al. 2014b] and [Strub et al.

2014a] this distribution estimate was explicitly used as a curvature feature. The ad-
vantage of estimating curvature from the orientation distribution is its robustness with
respect to sensor noise, as only the contact position in sensor space has to be deter-
mined in order to know the surface normal for temporal integration. On the other
hand, the delay in estimating contact curvature due to the temporal integration and
the necessity of an approximately constant change of the sensor surface orientation
are strong limitations. Furthermore, the evidence from biology suggest that curvature
is directly computed from tactile neuron responses in the skin and no transforma-
tion into an object coordinate system with additional temporal integration is required
(see Sec. 2.1 for further details). Therefore the curvature information from integrated
contact normal orientations is not used as a direct input to the revised version of
the model here. However, the principle of temporally integrating the normal orien-
tations of detected surfaces is achieved within the model by a short term memory
trace. Additionally, the temporal integration is also facilitated indirectly by the kernel
parametrization of the surface detection DNFs, as will be described in Sec. 5.1.
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3.5 Object Exploration

In our experimental setup a Shunk Dexterous Hand 2 is used and configured such
that only two of the three fingers are used, each having two degrees of freedom (i.e.
controlled joints). The two fingers each consist of a proximal and a distal phalanx,
both equipped with a tactile sensor (see Sec. 3.2 for further details). Figure 3.5.1
shows the robotic setup used in the experiments (on the right side) as well as the
manipulation behaviour used in these (left). For implementing the rotation behaviour,
first the mapping from joint angles to a parametric space and then the generation of the
behaviour based on these parameters will be described in the following two subsections.

Figure 3.5.1: Left: sketch of the rotation behaviour starting from the initial pose. a) ap-
proach, b) rotate, c) release, d) reverse; Right: picture of the experimental setup

3.5.1 Rotational movements from kinesthetic teaching

Learning of Robot movements can be achieved by kinesthetic teaching, which is a
form of “learning from demonstration” [Argall et al. 2009]. In this paradigm, the
robot is manually brought into a desired configuration (usually configurations are
sampled along a desired trajectory) and a ’snapshot’ of the entire system, i.e. all
the joint angles and values of other proprioceptive sensors is taken and stored. After
performing several iterations of this sampling process, the collected snapshots serve
as data points (“examples”) for a learning algorithm in order to extract underlying
structures and generalize to new data points. The rotational movements of the SDH2
to rotate cylindrical objects supported by a table was learned by kinesthetic teaching
combined with a Principal Component Analysis (PCA) on the retrieved data points
(i.e. joint angles).

The two fingers of the SDH2 were manually moved such that an object rotation
behaviour was achieved while recording the joint angles, as sketched in Fig. 3.5.1-
left. For this four joints of the two used fingers are manipulated and the contact
with the object is manually enforced. With this procedure, 55 data points consisting
of four joint angles each were recorded, using n-gon objects with different diameters
(see Sec. 3.1 for further details). For further processing, the mean position of each
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joint in the data was calculated and subtracted in order to have mean-free data.
Analysing the principal components of the data revealed, that all data points in the
four dimensional joint space reside within a two dimensional subspace. The first of
these two dimensions corresponds to the rotation of the grasp, i.e. opposing finger
movements, and the other with the grasp diameter. The remaining two dimensions
did not hold any major information and were subsequently dropped. Accordingly, the
mapping between joint-space and parametric space was determined by Singular Value
Decomposition (SVD):

Mjoint = U · S · V ∗,

where Mjoint is the matrix of all the mean-corrected data points in joint space (Mjoint ∈
Rn×4), the orthogonal matrix U corresponds to the data points projected on the prin-
cipal component vectors, S is a diagonal matrix holding the singular values (i.e. a
scaling), the orthogonal matrix V is composed of the orthonormal principal compo-
nent vectors of Mjoint (i.e. PCA basis vectors) and V ∗ denotes the conjugate transpose
of V . Thus, the mapping of parametric- to joint-space is given by:

Mjoint ≈Mparametric · S · V ∗,

where V ∗ = V T and Mparametric ∈ Rn×2 holds the first two parameters (i.e. grasp angle
and radius) of the according data point in Mjoint. Since only the first two principal
components are used, (S · V ∗) is cropped to R2×4 dimensions. At last, the mean of
each joint from the recorded data has to be added to the according column of Mjoint

before it is sent to the SDH2 controller.
Likewise, the inverse mapping from joint-space to the parameter-space is given by:

Mparametric ≈Mjoint · V · S+,

where S+ is the Moore-Penrose pseudoinverse of S and the matrix (V ·S+) is cropped
to R4×2 dimensions. The two dimensions of Mparametric then correspond to grasp-angle
and grasp-radius, respectively, and were used to directly control the SDH2 rotation
behaviour during the experiments.

3.5.2 Generating a rotational behaviour

This section describes the rotation behaviour performed by the SDH2, which leads to
the rotation of the n-gon objects in the experiments. In Fig. 3.5.1 on the left side
the the different stages of the rotational behaviour are illustrated. The starting pose
is a position where the two used fingers are positioned in a symmetric way with the
grasp-angle parameter ∈ [0.0, 1.0] is set to 0.5, as in step a) of the figure. The grasp-
radius is set such that there is no contact to the object located in the centre between
the two distal phalanges of the fingers. First, in the approaching phase depicted as a)
on the left part of Fig. 3.5.1, the fingers are moved towards each other until tactile
feedback signals sufficient contact with the object by continuously reducing the grasp-
radius. The contact of both fingers triggers the rotation phase (b) in Fig. 3.5.1), were
an opposing movement parallel to the object’s surface of each finger while controlling
the contact force with the object is performed. This finger movement is achieved by
continuously increasing (or decreasing) the grasp-angle and controlling for the desired

38



3.6. THE KINEMATICS OF OBJECT MANIPULATION

contact pressure by adapting the grasp-radius accordingly. Thus the grasp rotation
speed is constant in the joint angle space of the SDH2, but not in the actual angular ro-
tation of the object for which the grasp-radius is also relevant. When one of the tactile
contacts reaches the edge of a tactile sensor array (i.e. the edge of the corresponding
phalanx), the release phase is entered (c) in Fig. 3.5.1). Here, the fingers are moved
apart from each other by increasing the grasp-radius by a predefined value (here 2.0).
When the desired grasp-radius is reached, the reverse phase resets the grasp-angle to
a predefined value opposing to the step direction, i.e. if the grasp-angle is increased
each step, the grasp-angle is reset to a value near zero and is set to a value near one
if it is decreased each step (d) in Fig. 3.5.1). From there, the behaviour enters the
approaching phase again and the cycle begins anew. The rotation behaviour was im-
plemented via a simple C++ routine controlling the movement parameters grasp-angle
and grasp-radius.

3.5.3 A Note on Translation

In the used setup, the induced object motion is primarily in one degree of freedom:
rotation along it’s z-axis. Nevertheless, there is an initial error in the estimate of the
object’s position which the model needs to compensate for as well as small translations
due to object motions from grasping and releasing the object with the robot SDH2.

The object translation in the lateral axis (i.e. between the two fingers) is necessarily
constrained by the fingers, in particular when the object is grasped. Translations on
the proximal-distal-axis (DPA) may become increasingly large for successive object
release and re-grasping, as the rotation behaviour does not detect nor compensate for
these. For too large translations along the DPA, the object eventually slips out of the
grasp and the rotation behaviour stops. In order to prevent this, the translation along
the DPA was mechanically constrained by limiting the movement capabilities of the
aluminium plate (see Sec. 3.1) to an area where object rotation could be performed
successfully. This was approximately a range of ± 1.0cm along the DPA. The rotation
behaviour typically lead to a drift of the object position towards the proximal end of
this working space (i.e. near to the palm).

3.6 The Kinematics of Object Manipulation

When the robot hand performs a manipulation of a grasped object, proprioceptive
sensors (e.g. joint angles) can be combined with tactile sensory information in order
to estimate the rotation and translation induced by this manipulation to the object,
assuming that the robot kinematics is known. This estimation of changes in orientation
and position of the object is done by a forward model, based on changes in joint
angles and hand-object contact positions retrieved from the tactile sensors. For this,
an initial estimation of the object position is needed. In the context of this work the
initial grasp determines the starting orientation (i.e. zero) and position (i.e. the centre
of the contact points). The assumption that the objects are convex implies that there
is only one contact point for each finger with the object. Hence, there are two contact
points at each considered point in time, one for each of the two used fingers. Before
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Sensor space Robot space

Figure 3.6.1: Left: Contact movement in sensor space and robot space from two snapshots
in time during the rotation of an object with two fingers of the SDH2. Sensor space: In
the Top row the tactile sensor surface of finger F1 with its corresponding pressure activation
(blue ellipse) is shown, for finger F2 the same is shown in the bottom row (red). The joint
angles are stored in θ, the object rotation is ϕ; Robot space: the movement of contact points
in robot space derived by transforming the contact points from the sensor space via the
kinematics, for finger F1 (~r1) and finger F2 (~r2), respectively.

and after each small movement of the robot hand these two contact points are recorded
and their change gives insight into the movement of the object.

First, the contact points in the sensory coordinate frame (sensor space) are trans-
formed into a robot centred coordinate frame (robot space) using the known kine-
matics and the joint angle information. Second, the movement of contact points in
two-dimensional sensor and robot space are combined to determine the rotation and
translation of the object. In Fig. 3.6.1 the movement of contact points from two
consecutive points in time is depicted for both fingers in sensor and robot space, re-
spectively. In order to compute the rotation and translation of the object from these
contact point movements, first the processing in robot space will be discussed, followed
by including information from sensor space.

The contact movement vectors in robot space ~r of both fingers are decomposed into
a component tangential to the sensor surface and an orthogonal part. For computing
the part of the movement vector which is tangential to the sensor surface (i.e. ≈
object surface) several methods are feasible. Here the tangential part is computed via
trigonometric functions starting with the elevation angle of the sensor surface normal
at the contact point. In Fig. 3.6.2 the according angles are depicted.

The angle β1 is computed by β1 = atan2(rx, rz), γ1 is computed by γ1 = 3
4
π+δ1−β1

and then r‖ is given by r‖ = sin γ1||~r1||. The orthogonal part of the movement vector
~r is analogously given by r⊥ = cos γ1||~r1|| and contributes to the translational part of
the object movement.

In order to compute the rotation of the object, the contact movement in sensor
space has to be included. The distance each contact has moved on the sensor surface
is computed from tactile data incorporating the known sensor geometry and is then
added to the tangential part of the contact movement in robot space. This is necessary
as rotating e.g. a cylindrical object does not necessary lead to a movement of contact
points in robot space, although the contact points do move in sensory space. Thus,
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Figure 3.6.2: Computing the tangential parts of the movement vectors ~r1 and ~r2. The
normal vector ~n is given by the angle δ, relative to the coordinate axis x. See text for further
description.

Figure 3.6.3: Left: sketch of the rotation induced by the movement of the contact points
~c1/2. The grasp diameter d is assumed to be constant throughout the movement, r is the
radius by which the contact point of finger one is rotated by angle α. Right: sketch showing
the translation ~t induced by the rotation with the rotation centre given by ~a, of the object
centre ~x.

finger movement and contact movement on the finger (i.e. sensor) might cancel each
other in robot space.

The sum of the contact movements b = s + r‖ is considered as a circular arc,
where s is in sensor space and r‖ is in robot space. The underlying assumption is that
the diameter of the grasp, i.e. the distance d between the contact point s is constant
during small movements. On the left part of Fig. 3.6.3 the circular arcs b are shown for

both fingers, respectively. The radius r of the rotation is computed by r = d
(

b1
b1+b2

)
.

Then the rotation angle α is given by α = b1/r (α is measured in radian).

Hence, the object is rotated by the angle α , which holds for small object manipu-
lations and approximately cylindrical objects. Note, that the distance between ~c and
~c′ is not b. The contact vectors ~c and ~c′ may be identical in robot space, but through
the contact movement in sensor space b can be non-zero.

The rotation of the object induces a translation of the object centre, as illustrated
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on the right in Fig. 3.6.3. The translation vector ~t is computed by first determining
the centre of rotation: ~a = ~c1 + ~c2−~c1

d
· r. Then the object centre ~x is rotated by the

angle α around the rotation centre ~a, such that the new object centre is computed
by ~x′ = R(α)(~x − ~a) + ~a, where R(α) is the two dimensional rotation matrix and ~x′

is the translated object centre. Thus, the total object translation is composed of the
orthogonal parts of the contact movement vectors (orthogonal to the sensor surfaces)
of both fingers ~n1 · r1⊥ + ~n2 · r2⊥ added to the translation vector resulting from the
object rotation ~t.

Note, that in order to incorporate the translation due to rotation of the object, its
current centre has to be known. This is in contrast to the contributions from contact
movements orthogonal to the sensor surface, as these indicate a change of object pose
independent of the current pose.

Altogether, provided that the forward model has access to the current position
estimate, it can predict the change of the object orientation and position from changes
in joint angles and tactile sensory information. However, these predicted object pose
changes are error prune, due to slippage of the object, movements while only one of
the fingers has contacts (especially when object is grasped / released) and accumulat-
ing and potentially magnifying past errors. Therefore, an additional mechanisms of
detecting and correcting the pose estimate of the object is required.

3.7 Recording Datasets

For testing and evaluating the proposed model, datasets were recorded while the robot
SDH2 performed the rotation behaviour described in the previous section Sec. 3.5. Five
datasets were recorded from each of the objects: the six and eight sided objects from
the small set and the large set, and the two asymmetric objects. The round cylindrical
object was only used for training the rotational behaviour. Each dataset consists of
recordings during an estimated total object rotation of four times 360 degrees. Hence,
30 datasets were collected, in which the tactile patterns and joint angles were sampled
with approximately 2-3 Hz and the features described in Sec. 3.4 were computed and
stored. All datasets consist of 1020 up to 1500 samples. The objects were mounted on
the plate as described in Sec. 3.1 to prevent them from tipping. Object translations
along the DPA were manually constrained in the experimental setup to a maximum of
± 1cm, i.e. object movements of a maximum of 25% of its diameter are possible during
the rotations. Due to slight differences in the realization of the translation limitation
the translational movements for the large six and eight sided object was larger then
for the objects with small diameter and the asymmetric objects. This is visible when
comparing the raw data in the appendix section Fig. B.0.23 and the following figures.

An exemplary subset of two rotations is visualized in Fig. 3.7.1 from the first
dataset of the large six sided object, where finger one corresponds to the upper finger
of the sketch in Fig. 3.5.1 in Sec. 3.5.

It is clearly visible that there is a drift in the object rotation estimate as the data
points do not align for consecutive full rotations of the object (note the temporal color-
coding in Fig. 3.7.1). Furthermore the impact of the error in the position estimate is
visible in the “bump-like” shifts between two consecutive surfaces. These distortions
of the object corners are a systematic effect resulting from the rotation of the contact
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Figure 3.7.1: Raw, uncorrected data of the last two full rotations for a six-sided object. The
position and orientation of the tactile contacts in the object coordinate system is shown.
The color-code shows the temporal order from start (teal) to end (pink) of the two rotations,
the object rotation direction is indicated by the arrows.

points with respect to a wrong estimate of the object centre when transforming these
from the robot to the object space. An illustration of this effect is given in Fig. 3.7.2,
showing the data for finger one. The errors in the object rotation have been compen-
sated by the proposed model which will be introduced in the following subsections.
Here, the effects of errors only in the position estimate is shown, dependent on the
direction of deviation. The blue object estimate is further away from the palm while
the red one is closer to it. Note, that the the wrong position estimate in Fig. 3.7.2
is fixed during the object rotation, while normally the wrong position estimate would
be rotated around the rotation centre for each object rotation step. Due to the as-
sumption of convex objects and practical constraints of the SDH2, the object centre
along the lateral axis (roughly orthogonal to the finger surfaces) is limited to positions
approximately in the middle of the contact points.

Therefore, the position estimate will always converge to the centre of the object
rotation, as the object is continuously rotated. In order to prevent this degeneration,
the translation estimate resulting form the object rotation of the forward model is
ignored. Thus, the forward model only updates the orientation estimate of the object.
The position estimate is only corrected by the model.

Nevertheless, if the objects true position deviates form the estimated position, the
caracteristic distortions showed in Fig. 3.7.2 in object space will occur, depending on
the direction of the error. For an position error closer to the palm, the edges of the
object tend to drift towards the object centre, while for an position estimate error
further away from the palm, the edges drift away from the object centre.

In the appendix the raw data of all datasets are shown in figures Fig. B.0.23 and
Fig. B.0.24. It can be seen that the amount of accumulated orientation estimate errors
during rotation has large variations across the datasets. For evaluation the datasets
were looped, i.e. after the last sample of a dataset was represented to the model, the
dataset was repeatedly represented, starting with the first sample. Note, that there is
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Figure 3.7.2: Impact of errors in the object position estimate. The middle object between
the robot fingers (depicted in grey) is the true position, the red and blue objects are two
error prone position estimates. The bottom row of plots shows the according contact points
in object-space (data form finger one), accumulated during one full rotation of the object
with a clamped wrong position estimate, but corrections for errors in the rotation estimate.
The color of the contact points encodes the EvR: black denotes a low value, i.e. edge; bright
values a high value, i.e. surface.

no smooth transition between the loops and thus this re-presentation of the dataset
implies a re-localization of the object. The consequences of this effect will be discussed
in the results chapter of the model, Chp. 6.

3.8 Post-processing of the Curvature Feature

The curvature feature based on the EvR is postprocessed with a non-linear normal-
ization. The non-linearity is chosen such that it amplifies the distance of the “surface
values”, i.e. high values, from the “edge values”, i.e. low values. The curvature of
the sensor surface increases the number of sensor measurements of flat object surfaces
but nevertheless, the majority of all sensor contact measurements result from contacts
with object edges. A method termed intrinsic plasticity (IP, introduced in Sec. 2.5)
is chosen as a normalization method in order to incorporate this observation. Here
the “surfaceness” is the information passed by the abstract neuron (i.e. a non-linear
function), which is then maximised with IP by setting an exponential distribution of
surfaceness responses as a desired output distribution. This implies the assumption
of frequent low amplitude EvRs (i.e. edges) and infrequent high EvRs (i.e. surfaces).
The quantitative impact of IP on the distribution of eigenvalue ratios is shown in
Fig. 3.8.1. It is visible that the EvRs computed from the tactile sensor information
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Figure 3.8.1: Impact of IP: example of the distribution of the eigenvalue ratio before and
after the application of IP. The data is from dataset #10, finger one of the SDH2 - see
Sec. 3.7 for details.

do not fill the range [0, 1] but are clustered around the values 0.25, 0.45 and 0.55.
Normalization with IP results in a shift of the first two clusters towards zero and a
separation from the last cluster.

A qualitative analysis of the normalization with IP is shown in Fig. 3.8.2. Here
the curvature (EvR) is visualized according to its orientation in object space over
time, dark color indicating flat surfaces (EvR near one). In the first row the EvR
computed from Eq. (3.4.1) is shown, in the second the EvR normalized with IP and
a desired output mean of µ = 0.2. The top plot shows that there are regularly high
EvR measurements with similar orientation (the shallow ends of the “concatenated
sigmoids”). This corresponds to the effect of accumulating tactile contacts with similar
normal orientations when rotating along object surfaces, i.e. high EvR.

In the second plot, it is clearly visible that the distinction of surfaces is increased
by the normalization with IP and the remaining feature values mostly cluster into
small groups. These clusters show the error in the object pose estimate, as successive
clusters do not align in their orientation value but drift over time.

For the evaluation of the model the curvature feature (EvR) was normalized online
with IP (Eq. (2.5.3) in Sec. 2.5). The initial IP parameters were set to the mean batch
solution ( [Neumann & Steil 2011]) over the datasets. The optimal IP parameters
retrieved from the batch solution are shown for each dataset of the large six and eight
sided object in Fig. 3.8.3.
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EvR Normalization with IP
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Figure 3.8.2: Surface detection in Dataset # 10 (large six sided object). Top: The ratio
of the two eigenvalues (EvR) of the contact area. High (dark) values indicate a surface,
low values an edge. Bottom: The EvR normalized via intrinsic plasticity (IP). See text for
discussion.
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Figure 3.8.3: IP parameters from batch learning: the IP gain and bias for the recorded
datasets of the large six and eight sided objects.
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3.9 Implementation

The implementation of the robot SDH2 rotation behaviour (Sec. 3.5) together with the
feature extraction in Sec. 3.4 were implemented in C++ libraries. The interface be-
tween the cedar software framework (Sec. 2.4) and the C++ libraries was implemented
via a cedar plug-in. The neurodynamic model, including all the transformations be-
tween object and robot space was implemented using cedar. This implementation
is capable of building the object shape representation from previously recorded data
from rotational object manipulations (Sec. 3.7), just as processing haptic data from
real-time robot object manipulations. All DNFs in cedar have an additive activation
noise to the state u(x, t) with zero mean and a sigma of σnoise of 0.01. During the pro-
cessing of haptic data, i.e. spatio-temporal integration of haptic sensory information,
the activation of relevant DNFs and MTs is recorded and stored on the hard drive.

For evaluation of the recorded activations in the model while processing haptic
data is then done in Matlab, e.g. all the plots in Sec. 6.

3.10 Challenges of the Setup

In this concluding section of the experimental setup chapter some remarks on the
challenges and problems of the used setup shall be mentioned. Due to only having
two joints per finger, there are not only forces orthogonal to the object surface, but
also tangential components. These lead to an uncontrolled movement when the object
is released, which cannot be detected nor prevented in the proposed setup. Together
with the unintended slight shift and rotation of the object when the grasp is closed
again, these are the main sources of noise in the pose estimate. In general, these
unintended movements should be systematic and indeed, there is a strong tendency of
systematically underestimating the object rotation. Errors in the translation estimate
are partly due to not perfectly centred objects during the initial grasps and partly
due to a systematic shift of the objects towards the proximal side of the robot palm.
This leads to a systematic offset between the true object position and the position
estimate, as the object has only minor translations as soon as the object plate reaches
the maximally possible translation during the manipulation (limited by mechanical
constraints).

Furthermore the tangential shear forces lead to “ghost contacts”, activation of
tactile sensor elements due to changes in conductivity of the material covering the
sensor surface. The conductivity of the cellular plastic is a function of the deformation
of the material, which is usually due to mechanical compression from contact with the
environment. However, as the shear forces increase the tactile sensor reports pressure
in areas with no mechanical contact to the environment (i.e. the object). This may
lead to a deformation of the sensed pressure patterns, e.g. contact with an object edge
may lead to a circular pressure pattern, or even to the formation pressure areas distinct
from the area of contact. In the former case the EvR will be wrong, reporting contact
to flat surfaces while there is actually only a very sharp contact to an object edge.
This happens occasionally and is a source for false detection of surfaces (especially in
the datasets #4, #5 and #24). In the latter case, two contact areas will be reported
by the tactile sensor, while there is only mechanical contact at one location, requiring
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to select one of the pressure areas for further processing. In this case the heuristic to
select the larger contact area was chosen.
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Chapter 4

Dynamic Neural Fields with
Intrinsic Plasticity

In this section a novel mechanism for adaptation of a DNF with IP (described in
Sec. 2.5) is described and discussed. The proposed adaptation is based on a coupled
gain and bias for the entire DNF. This is motivated from accumulating biological
evidence of neuronal mechanisms that perform a multiplicative normalization of entire
populations of neurons, for a review see [Carandini & Heeger 2012]. The existence
of global, network-wide activity regulation in addition to single neuron and synaptic
adaptations is also proposed in [Slomowitz et al. 2015] based on recordings of cultured
hippocampal networks. In particular, the existence of a coupled gain and bias among
neuronal populations has been proposed as an explanation for results from large-scale
recordings in the primary visual cortex (V1) [Lin et al. 2015].

In this thesis, the adaptation of a coupled gain and bias for the population of
neurons in a DNF is proposed as a homoeostatic mechanism to control the activation
of the field. Qualitatively speaking, a global sensitivity and resting level for all neurons
of a population is autonomously adapted in order to regulate the overall activity of
the population. This adaptation ensures that the information encoding in the DNF
remains stable for changes in the input mean or amplitude, which will be relevant in
the model proposed in the next chapter Ch. 5. While this regulation is supported by
research from computational neuroscience, the coupled adaptation also ensures that
the encoding of the input remains stable. In population coding, the value of a feature
is encoded by the activity of neurons in the population which represent this value. If
there are any feature values which are represented in the neuronal population but do
not actually occur (frequently), the according neurons will only sporadically be active.
If the gain and bias of each neuron in the population would be adapted individually,
every neuron would be tuned such that it achieves the desired target distribution. This
would have a destructive impact on the information encoding, as the input weights
of the neurons are not altered and thus the tuning curve of the neuron cannot be
changed. For a neuron representing feature values which are not required, i.e. do not
occur in the input, the gain parameter of the neuron would be adapted by IP in order
to amplify noise, e.g. intrinsic or background noise. Therefore, the population output
would converge to an uniform distribution of feature values in the population code,
independent of the input distribution – i.e. destroying the encoding.
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In the following subsections the derivation of DNF with IP will be outlined and
then evaluated.

4.1 Derivation

For implementation of IP in a DNF the field equation needs to be slightly reformulated.
The standard formula of a DNF is given in Eq. (2.4.1) in Sec. 2.4:

τ u̇(x, t) = −u(x, t) + h+ S(x, t) +

∫
f
(
u(x′, t)

)
ω(|x− x′|)dx′.

Here, u(x, t) is the activation at time t and position x, h is the negative resting
level, S(x, t) is the input and f(·) is the logistic function. The lateral interaction is
determined by the convolution with a kernel ω(·).

Here, the logistic transfer function f(·) is used in the parametric version:

fa,b(x) =
1

1 + exp (−ax+ b)
(4.1.1)

where a is the gain of the function controlling the steepness of the sigmoid and b is the
bias controlling the position of the sigmoid. The bias corresponds to a gain dependent
resting level b = ah which replaces the former resting level h in Eq. (2.4.1).

Furthermore, three design choices have to be made for deriving the IP learning
rules:

(I) Define a scalar measure z for the input of the field.

(II) Define a scalar measure y for the output of the field.

(III) Chose the desired target output distribution.

Concerning the first two points, the output measure of the field y(t) is defined to
be the maximum output of the neural field

y(t) = max
x

(
fa,b
(
u(x, t)

))
. (4.1.2)

and accordingly, the input measure to the field z(t) is then given by the field activation
at the position of the maximum output

z(t) = u
(

arg max
x

(
fa,b (u(x, t))

)
, t
)
. (4.1.3)

Hence, the input for IP is a composition of the actual field input and lateral field
interactions, i.e. recurrent components. The main advantage of this measure is that
it does not alter the output range, e.g. if the field output activity is in the range
of (0, 1)n, the max(·) is too. This prevents an additional normalization / parameter
tuning.

Two alternative definitions would be the integrated (i.e. summed) or the mean
of the field output activity. In contrast to the maximum, these are sensitive to the
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field size with respect to the peak size, i.e. the lateral interaction kernel width and
strength. The mean activity of the field strongly depends on the field size, while the
integrated activity is dependent on the kernel width. Hence, both of these alternative
measures require a tuning of the target distribution parameters with respect to the
particular DNF parametrization and are therefore neglected.

The target output distribution of y is set to the exponential distribution with the
mean µ set to 0.2, implying a sparseness constraint on the field output (see Sec. 2.5
for details). The exponential distribution is particularly suitable as the DNF output
is desired to be near zero for the majority of inputs (i.e. most of the time) and output
activity is only required for matched features, as will be described in Sec. 5.3. With
these design choices, the learning rules for adapting the gain a and bias b are given by

∆a

∆t
=

η

a
+

∆b

∆t
z(t) (4.1.4)

∆b

∆t
= η

(
1−

(
2 +

1

µ

)
y(t) +

1

µ
y(t)2

)
(4.1.5)

derived in [Triesch 2005] (see Sec. 2.5 for further details). The learn rate η is set to
0.001.

To prevent IP from overestimating the variance of the input signal, the gradient
direction of ∆a and ∆b is corrected by the metric tensor imposing a Riemannian
structure in parameter space, i.e. the natural gradient is computed as described in
[Neumann et al. 2013] (see Sec.2.6 for further details). The tensor decay parameter λ
in Eq. (2.6.3) is set to (1/1000)τ where τ is the time constant of the DNF equation in
Eq. (2.4.1). The regularization parameter ε in Eq. (2.6.1) of the tensor inversion is set
to 0.0001.

4.2 Evaluation

It is expected that introducing IP to a DNF leads to an autonomous adaptation of
the resting level and input gain such that the information encoding in the DNF is
an optimal representation of the input, i.e. a maximum of input information with a
minimum of DNF activity. For evaluating the DNF with IP, an input time series was
constructed from the recorded datasets (see Sec. 3) in order to mimic real tactile data.
A one dimensional population code is generated from the two features contact normal
orientation and eigenvalue ratio (EvR), as depicted in Fig. 4.2.1. At each recorded
time step the EvR is the amplitude at the position of the contact normal orientation
for both fingers, respectively. The EvR is smoothed with a Gaussian filter across the
contact normal orientation dimension. The contact normal orientation is then sampled
with 360◦/100 degree resolution, leading to a 100 dimensional time series. Finally, the
time series was looped in order to present it for arbitrarily long periods. Filtering along
the temporal dimension is not necessary, as the features were sampled at a sufficient
rate to ensure smooth transitions. This time series is fed into a one dimensional DNF
with IP, sampled at 100 points (i.e. a size of [1,100]). The setup is run with presenting
the input time series based on recorded data in realtime (3fps) and the DNF with IP
has a τ of 100ms and is updated with an Euler step width of 10ms.
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Figure 4.2.1: Sketch of the input en-
coding used for evaluation of DNFs
with IP. Top: the original EvRs (blue)
and the Gaussian filter across the nor-
mal orientation (red). Bottom: sam-
pling the high dimensional vector for
the input time series S(t).

With this setup the following cases are evaluated:

(I) input with very low amplitude

(II) input with very high amplitude

(III) input with very high bias

In all cases the DNF with IP is run until the parameter adaptation by IP did not
change qualitatively, i.e. converged. The results of this evaluation are shown in the
following figures (e.g. Fig. 4.2.2).

These figures show the input distribution (A) and the final output distribution
(B) (i.e. after the learning experiment was stopped). Furthermore, the output dis-
tribution is plotted (y axis) over time (x axis) with a 5min sliding time window to
estimate the distribution in (C). The size of the time window was adjusted such that
it contained one full input period (approximately 5:15min with 3.33fps) representative
for the input distribution. For an enhanced visualization the output distribution over
time is plotted on a logarithmic color scale in (D). The development of the gain over
time is plotted in (E), and the bias in (F). The correlation of the input with the output
of the DNF is shown in (G), computed for a sliding time window located at t:

corr(t) =

t∑
ti=t−l

(
z(ti)− z̄

)(
y(ti)− ȳ

)
√

t∑
ti=t−l

(
z(ti)− z̄

)2 t∑
ti=t−l

(
y(ti)− ȳ

)2 (4.2.1)

z̄ =
1

l

t∑
ti=t−l

z(t) (4.2.2)

The length of the time window l is set to 5min, just as for the computation of the
sliding output distribution plots mentioned above. In the following the results of the
evaluation with different input amplitudes and initial bias settings are presented.

4.2.1 Low Amplitude

The results of the test with input of low amplitude between [0, 0.2] are shown in
Fig. 4.2.2. The DNF is initialized with a resting level (i.e. bias) of -5 and a gain of
1. The output distribution plots in the middle (C) and bottom (D) rows of the left
column show that initially the DNF has no output activity as the activity induced by
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Figure 4.2.2: IP in a DNF with low amplitude input, see text for description.

the input is too low. The gain (E) is continiously increased by IP until it converges
around the value 38 (see the top right plot in Fig. 4.2.2). Simultaneously the resting
level (F) (i.e. bias) is shifted towards -2 and is corrected to -3 when the gain amplifies
the signal strong enough to induce some output activity around the 13th minute,
visible in the left (C) and right (F) plots of the middle row. The 13th minute is also
the point, where the input-output correlation (G) reaches nearly one, as input activity
now influences the output of the DNF, shown in the bottom right plot of Fig. 4.2.2.
The gain and bias converge approximately in the 30th minute, where the input-output
correlation reaches its final maximum. Note, that the correlation is near one as the
output with the maximal amplitude is chosen for each step in time, making it very
likely to use input output pairs in the near-to linear regime of the transfer function.
The final output distribution in the second plot of the top row (B) is similar to the
exponential distribution.

4.2.2 High Amplitude

In Fig. 4.2.3 the impact of IP for inputs with very high amplitude [0, 40] is shown. The
DNF is again initialized with a bias of -5 and a gain of 1. In the output distribution
plots (C-D) clearly show that the DNF output initially is in the saturated regime of the
transfer function. As gain (E) and bias (F) converge to the final values at around the
30th minute the output distribution is changed towards an exponential distribution,
visible in (C) and (D). The correlation (G) continuously increases with a final boost
just before the IP parameters converge.
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Figure 4.2.3: IP in a DNF with high amplitude input, see text for description.

4.2.3 High Shift

In this subsection the evaluation of IP for inputs with moderate amplitudes but a
high offset (i.e. shift) to the range of [−25,−15] is shown. The DNF is initialized as
above with a bias of -5 and a gain of 1. Additional to the procedure in the previous
two subsections the impact of the natural gradient is analysed in Fig. 4.2.4. In the
following, first the IP adaptation with the natural gradient (NG) will be described as
before and then the case of adapting IP without the NG is compared. In the top three
rows of the left column in Fig. 4.2.4 the input (A) and output distributions (B-D) are
shown, analogous to the previous sections. While the output of the DNF is zero until
ca. the 29th minute, the gain is only initially decreased, visible in the blue gain plot
(I) in the 4th row of Fig. 4.2.4. The decrease of the gain for inputs with high bias (i.e.
shifts) is a variance overestimation problem of the IP algorithm [Neumann et al. 2013].
The input variance, i.e. the deviation of the input signal from zero, can be reduced by
lowering the gain, thereby reducing the error of the output distribution with respect
to the target exponential distribution. The standard gradient descent of IP learning
therefore drastically lowers the gain in order to increase it again when the bias has
been adapted such that the input mean is compensated, visible in the orange graph
in (I). Here the computation of the natural gradient, i.e. the transformation of the
gradient from the Euclidean space into the Riemannian space prevents the reduction
of the gain to nearly zero and only leads to a slight input variance overestimation,
visible in the small increase of the gain around the 35th minute, shown in the glue
graph in (I). At this point in time the bias reaches a regime where the input produces
output activity in the DNF and the gain starts to converge to the final value, reached
at approximately the 40th minute (J).

In this setup of inputs with a high bias, IP without the natural gradient correction
leads to an “overestimation” of the signal variance. This becomes apparent in the
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Figure 4.2.4: IP in a DNF with shifted input. Top, left three rows show input (A) and
output (B-D) distribution for IP with NG. The top three rows on the right (E-H) show the
same plot for IP without NG. The bottom three rows show the parameter adaptation (I-J)
and input-output correlation (K) for both procedures. See text for further description.
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bottom three rows (I-K) in Fig. 4.2.4. In contrast to the case with NG the gain
is decreased near to zero and only slowly converges back to a higher value as the
bias increases. Although the two learning algorithms have the same learning rate of
η = 0.001, the learning with NG is much faster. Furthermore, it is noticeable that the
input output correlation without the NG learning is much lower (K). This is due to
the still relative high learning rate for IP which also leads to the high gain fluctuations
visible in (I) in Fig. 4.2.4.

Altogether, the use of the NG leads to a significantly faster convergence with less
fluctuations in the parameter adaptation.

4.3 Discussion

In this subsection the results of applying intrinsic plasticity into a DNF is discussed.
Defining scalar measures of the global field input and output enables a procedure for
global adaptation of DNF parameters via IP, analogues to IP in single neuron models.
Altogether, the results show that the proposed implementation of IP in DNFs works
as expected, leading to an autonomous gain and bias (i.e. resting level) adaptation.

In the case of deprived input, i.e. no input at all, the gain will increase continuously
until system noise (if present) is sufficiently amplified in order to cause output activity.
As the DNF dynamics reacts inertial to input, white system noise causes outputs in
DNFs only for very high noise amplitudes. Adaptation of the gain in the absence of
input thus leads to increasingly high gain values (results not shown).

Choosing to use the maximum output activity of the DNF as field output for IP
makes the adaptation of gain and bias robust with respect to the question of whether
multiple simultaneous output peaks are desired or not. The possibility of multiple
peaks remains a question of the kernel parametrization (lateral interaction) and a
matter of global inhibition. In contrast, choosing the total output activity of a DNF
as field output would make the output distribution more sensitive to the simultaneous
occurrence of multiple peaks.

Concerning the impact of IP on the stability of the DNF dynamics, it should
be noted that IP drives the dynamics towards the detection instability, i.e. to the
edge of stability. There the distribution of the defined output measure is closest to
the exponential distribution, when the DNF only reaches the detection instability for
a subset of input amplitudes. When there is no input at all, IP will lead to the
destruction of the stable fixed point attractor in which the system state currently is.
This in turn leads to a oscillation between the two stable fixed point attractors, i.e.
drive the system permanently through the detection instability. Hence, IP prevents
the DNF from operating in a self-stabilizing regime where the recurrent interaction is
sufficient for self excitation in the absence of input. This also holds for DNFs with
parameters initialized in this self-stabilizing regime (results not shown). Therefore,
IP enforces the DNF to operate in a regime where the system state regularly runs
through the detection instability. The overall dynamics may be shaped by choosing the
target output distribution for IP. For example, the Kumaraswamy’s double bounded
distribution with a + b = 1.0 could be an interesting candidate, if the DNF should
spend more time in the activated state.

As already mentioned in Sec. 4.1, the introduction of IP for population codes on
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a local, single neuron based fashion is not straight forward. It is only for a neuron
encoding actual relevant feature values (i.e. having any input at all) that an adaptation
of intrinsic excitability makes sense. In order to realize an individual adaptation of
gains and biases of single neurons, there therefore needs to be an additional mechanism
in place to adapt the input weights of each neuron, i.e. to tune the neuron response to
represent a new feature value. This would correspond to an adaptive feature resolution
with fovea-like effects for feature value regimes with high probability. The originally
proposed algorithm of the self organizing maps (SOM) would be an example of such
an input weight tuning of a DNF [Kohonen 1982]. The problem here is the reliance on
stochastic, uncorrelated input required for training and maintaining the SOM, which
renders the SOM algorithm inapplicable in the proposed setup with highly correlated
input to the DNF.

Summarizing this section on intrinsic plasticity in dynamic neural fields, the adap-
tation of the DNF resting level and sensitivity works well in the tested cases. It ensures
an highly input sensitive operating regime for the DNF dynamics, independent of the
input amplitude and mean. This unsupervised adaptation of a DNF is in particu-
lar relevant for architectures where DNFs receive inputs from multiple sources with
unknown distributions.
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Chapter 5

A Neurodynamic Model for
Haptic Spatiotemporal Integration

This chapter describes a neurodynamic model for the process of haptic spatio-temporal
integration, i.e. the localization and simultaneous mapping of an object with tactile
sensors while manipulating it. Hence, the proposed model performs the tasks of ob-
ject mapping and object localization, as depiced in the two boxes at the bottom of
Fig. 1.3.1. In particular, the model makes use of biologically plausible tactile features
(Sec. 3.4) and is formulated using dynamic neural fields, introduced in Sec. 2.4. Based
on evidence in developmental psychology studies (e.g. [Smith 2009,Spelke et al. 2010])
the object shape representation is separated from the object’s pose representation, i.e.
the model uses an explicit object representation. This is also supported by neurobi-
ological work indicating that object representations are invariant to its pose, which
holds for vision [Hung et al. 2012] as well as for haptics [Hsiao 2008]. For more in-
formation on haptic processing and shape representation, see Sec. 2.1. Inspired from
these findings an initial version of the proposed model was published in [Strub et al.

2014b], focusing on the estimation of object orientation. This model was extended
in [Strub et al. 2014a] in order to additionally estimate the object position along one
translational axis. Since then, the model has undergone a major revision as will be
described in this chapter, and was reimplemented in cedar (Sec. 2.4).

The model is analysed and evaluated with data from robotic experiments (de-
scribed in Chp. 3), as it is very complicated to simulate tactile sensors that give an
adequate reproduction of the complexity of real sensory information from robotic ob-
ject manipulations. The perceived tactile features in robot space are transformed into
object space by shifting and rotating the features’ spatial representation according to
the current estimation of the object’s pose. These features in object space are then
used as inputs to the model, implemented in DNFs.

The theory of DNF has been described in Sec. 2.4. However, a brief recall of the
relevant equations used in the model is given here for convenience. In the according
sections of this chapter the parameters of the equations are given for each DNF. The
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DNF equation used in the model is:

τ∆u(x, t) = −u(x, t) + S(x, t) +
x∈X∑
xi

f
(
u(xi, t)

)
ω(|x− xi|) (5.0.1)

S(x, t) =
n∑
i=0

wiIi(x, t) (5.0.2)

f(x) =
1

1 + exp (−ax+ b)
(5.0.3)

ω(x) =
k∑
j=0

πj exp

(
−1

2

(
x

σj

)2
)
− πglob

x∈X∑
xi

u(xi, t) (5.0.4)

The resting level of the DNF is now encoded in the bias parameter b. The DNF has an
input from n inputs I, weighted by the factors wi. The lateral interaction is defined
by the kernel ω, which is a linear combination of k Gaussian kernels with widths of σj
and weights πj. Note, that the weights may be negative to represent lateral inhibition.
To enhance computational efficacy, a global inhibition parameter πglob is introduced
to implement an inhibitory kernel acting on the entire field. The MT equation used
in the model is given by:

∆P (x, t) =
1

τbuild

(
u(x, t)− P (x, t)

)
f(u(x, t))− 1

τdecay
P (x, t)

(
1− f(u(x, t))

)
(5.0.5)

with the parameters τbuild and τdecay, in addition to the gain and bias parameters of
f(x).

In the model the tactile features are classified into flat surfaces and edges, which
are processed in two distinct pathways. Each of these pathways has its own object
map, represented in the activity of a memory trace. The current detected features are
matched with this map and the differences are used to correct the estimated object
rotation and translation. While the object shape (map) is explicitly represented in the
activity of memory traces, the object pose (location) is not represented in the model.
The representation of the object orientation and position estimate are implemented as
linear integrators, integrating the estimated changes in orientation and position from
the forward model and the pose corrections from the model.

An overview of the model is given in Fig. 5.0.1, where the plots show the activation
u(x, t) for a temporal snapshot t.
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SPATIOTEMPORAL INTEGRATION

Figure 5.0.1: Overview of the neurodynamic model, see text for description.
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The DNFs and MTs in Fig. 5.0.1 are marked with colored boxes and labels, in-
dicating the functional category. Red boxes and labels (A) correspond to detection,
green (B) to mapping, blue (C) to matching (i.e. localizing) and cyan (D) to cor-
rection functions. The flow of information is depicted with arrows, where red arrows
correspond to orientation features, green to position angle and blue to the positional
radius feature dimension. For all feature dimensions the according amplitude is given
by the eigenvalue ratio (EvR). Arrows with solid lines correspond to information from
finger I and dashed arrows to information from finger II. The different stages of the
model will be described in detail in subsequent subsections.

The remainder of this chapter is structured as follows: First the tactile feature
representation and the detection of edges and surfaces is explained in Sec. 5.1, which
correspond to the seven boxes marked with a red border and labels starting with A
in Fig. 5.0.1 . Next, the object mapping is described in Sec. 5.2, which corresponds
to the two boxes marked with green borders (and B labels) in the figure. In Sec. 5.3
the core of the neurodynamic model is described, the localization of the object which
is done by matching the current tactile features with the object map, visualized by
the three boxes with blue borders and C labels in the figure. Finally, in Sec. 5.4 the
mechanism for correcting the current object pose estimate is described, corresponding
to the boxes marked with cyan borders and D labels in the bottom row of Fig. 5.0.1.

5.1 Feature Representation and Classification

The neurodynamic model has two distinct pathways, a surface and an edge pathway,
corresponding to the left half and the right half of Fig. 5.0.1, respectively. The sur-
face pathway processes flat object surfaces for localization with respect to the object
orientation, while the edge pathway detects and maps edges for localization with re-
spect to the position. In the edge pathway, features of each finger are partly processed
separately, i.e. some processing steps exist twice in the edge pathway. In the sur-
face pathway the features of both fingers are processed jointly. In the following, both
pathways are described in parallel, as the principals in each step are similar.

In the first stage of the neurodynamic model the features are encoded in population
coding. In particular the position of tactile contacts in object space (two dimensional)
is transformed into polar coordinates and serves as input to the detection DNFs in the
edge pathway. The angle of the position together with the contact normal orientation
in object space serve as feature dimensions to the detection DNFs in the surface
pathway.

Figure Fig. 5.1.1 gives an illustration of the edge- and surface detection fields, where
the activation for each of the feature dimensions of the detection DNFs is shown. For
a tactile contact between a finger and the object the features contact position, sensor
orientation and the EvR are computed. While contact position (i.e. position radius
and angle) and sensor orientation serve as feature dimensions for the DNFs in the
model, the EvR serves as feature amplitude. Hence, the input to the DNFs at a given
point in time is a circular Gaussian “blob” with the amplitude depending on the EvR
at the according feature values. The width σ of the Gaussian is set to n/50 with n being
the field size (in the according dimension). In the proposed model all fields have the
size 100 in each feature dimension, i.e. the dynamics is evaluated at 100 equidistant
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Figure 5.1.1: Overview of the surface and edge detection in the neurodynamic model, see
text for description.

locations along each dimension of the DNFs.

Furthermore, the detection DNFs can be categorized into fast and slow fields,
depending on how fast a detection is performed, i.e. how fast a peak is generated
for according input patterns. In general, the slow detection fields need more time
for the detection (i.e. classification) but have a lower false positive detection rate
compared to the fast detection fields. These two properties makes them especially
suited for mapping, i.e. storing the detections into the according object maps B1 and
B2 in Fig. 5.0.1. The fast detection fields are used for the localization, i.e. matching
detected features with the map. In the following subsections the detection of edges
and surfaces in the neurodynamic model will be described, concluding with a tabular
overview of the parameters of the DNFs and MTs.
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5.1. FEATURE REPRESENTATION AND CLASSIFICATION

5.1.1 Edge Detection

In the case of the edge pathway, the current tactile contact position in object space
is transformed into polar coordinates and the angle and radius are encoded in the
x and y axis of two dimensional edge detection DNFs (A5-A7 in Fig. 5.1.1). The
amplitude is given by the negative eigenvalue ratio (1 - EvR) of the according tactile
contact area, i.e. high input amplitudes for sharp and narrow contact areas. The
edge detection DNFs have standard Mexican hat kernels and no global inhibition to
generate activity peaks for high object curvature at stable contact positions. Only
stable inputs with respect to the position over time allow the field dynamics to reach
the detection instability due to the inertial dynamics. The DNF is parametrized such
that no self sustaining activity in the field is possible, the parameters are given in
Tab. 5.1.3. In particular, there are one “slow edge detection” DNF (A5) for the
mapping and two “fast edge detection” DNFs (A6 + A7) for localization of detected
edges in the edge pathway. In slow edge detection DNF information from both fingers
is processed, while the fast edge detection DNFs only process information of one finger,
respectively. The slow edge detection DNF primarily has a higher time constant and a
narrower kernel width, i.e. the lateral interaction is more locally, compared to the fast
edge detection DNF. Both of these differences contribute to the slower detection rate,
as the smaller kernel width and stronger inhibition impose a stronger requirement on
the input sequence to be tightly clustered with respect to the location.

Hence, the slow detection fields generate peaks with precise localizations of detected
edges, although more time is needed and the detection rates are more conservative
compared to the fast detection fields.

5.1.2 Surface Detection

In the surface pathway, the contact normal orientation is encoded together with the
contact position angle (in object space) as a two dimensional input for the DNFs.
The amplitude is now given by the eigenvalue ratio (EvR), i.e. high input amplitudes
for broad contact areas. As in the case of edge detection described in the previous
subsection, there is a slow- (A3) and a fast surface detection DNF (A4 in Fig. 5.1.1).
However, the slow surface detection has an additional input.

Slow surface detection

The slow detection of surfaces is achieved by combining information form temporal
integration with the current EvR. The temporal integration is linked to the distri-
butional approach to curvature estimation, described in Sec. 3.4. First, a memory
trace (A1) serves as short time input buffer which stores the recent inputs to the
surface pathway of the model (see Tab. 5.1.3 for the parametrization). This input
buffer MT is then projected to a one dimensional normal orientation DNF (A2) by
summing over the position angle dimension. This results in high input amplitude to
the normal orientation DNF when the past inputs have similar normal orientations,
i.e. several contact measurements on a planar object surface have been made. The
normal orientation DNF thus detects peaks in the current distribution of contact ori-
entation normals, based on an exponential fading time window. This idea of temporal
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integration of normal orientations for surface detection was published in [Strub et al.

2014b]. However, in the current revision the normal orientation DNF is continuously
adapted by IP and thus autonomously tunes its sensitivity to the input amplitude.
This is in particular relevant, as the amplitude of the projected input buffer MT (A1)
is dependent on the spatial extension of the object surfaces. Large surfaces lead to an
increased amount of tactile measurements with the same normal orientation and thus
to higher sums of inputs. Hence, applying IP in the normal orientation DNF is crucial
for the ability of generalizing over different object geometries. Note, that this online
adaptation will lead to sporadic, highly input sensitive activations in the absence of
variations in the normal orientation distribution which would e.g. be the case when
rotating cylindrical objects. The normal orientation DNF (A2) is then projected as
an additional input along the normal orientation dimension of the slow detection DNF
(A3) in order to boost the EvR inputs for detected peaks in the normal orientation
distribution.

In contrast to the slow edge detection field, the slow surface detection field (A3)
uses a non-uniform Mexican hat kernel with a large excitatory σ in Eq. (5.0.4) along
the contact position angle dimension and a small excitatory σ along the contact normal
orientation dimension. The Inhibition of the slow surface detection kernel is approx-
imately circular. The underlying principle here is that for subsequent contacts along
a surface, the contact normal orientation should remain stable as the contact position
angle varies. Thus, the kernel needs to be sensitive to high input amplitudes that vary
along the contact position angle and are roughly constant along the contact normal
orientation dimension. The slow surface detection field then generates a peak for de-
tected surfaces which is sharp in the contact normal orientation dimension and broad
in the contact position angle. Hence, the non-uniform kernel imposes an assumption
on the input distribution in feature space of the DNF over temporal sequences. While
this assumption on the input pattern holds for all objects, the particular spatiotem-
poral extent and amplitude is dependent on the spatial extent of the object surfaces.
This requires the slow surface detection DNF (A3) to be autonomously adapted to the
input characteristics by IP, like in the normal distribution DNF (A2).

For further processing only the contact normal orientation is relevant. The contact
position angle dimension is only necessary to link the surface detection field to the
edge detection field, which share this feature dimension.

Fast surface detection

In the surface pathway there is only one fast surface detection DNF (A4), as the tactile
features of both fingers are processed jointly in one DNF. The fast surface detection
DNF has standard circular Mexican hat kernels, thus the DNF is sensitive primarily
to the input amplitude (EvR) and not to the input movement direction / spatial
distribution. This enables a fast surface detection, although with higher rates of false
positives.

Altogether, there are five detection fields in total used for further processing in
the neurodynamic model, two (slow and fast) for detecting surfaces in sensory data of
both fingers, one (slow) for detecting edges in sensory data from both fingers and two
(fast) for detecting edges in sensory information from one of the fingers, respectively.
The slow detection fields serve as input to the object mapping process described in
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the next section, while the fast detection fields are utilized in the localization process
described in Sec. 5.3.

5.1.3 Detection Parameters

In this subsection the parameter values of the DNFs and MTs related to the surface
and edge detection in the neurodynamic model are given in Tab. 5.1.3 and Tab. 5.1.3,
respectively.

DNF Name Ii wi τ b a σexc πexc σinh πinh IPµ IPη

A2: (1D)
normal

distribution

A1 1.0 50 -5.0∗ 1∗ 2 5 5 -5 0.2 0.001

A3: (2D)
surf slow
detection

EvR
A2

4.4
1.25

300 -1.9∗ 1∗
(

1.5
8

)
6

(
10
12

)
-28 0.4 0.0015

A4: (2D)
surf fast

detection

EvR 2.2 50 -1.0 6
(

2
8

)
5

(
10
10

)
-15 – –

A5: (2D)
edge slow
detection

EvR
EvR

0.3
0.3

80 -0.8 3
(

1.5
1.5

)
2

(
4
4

)
-2 – –

A6 & A7:
(2D)

edge fast
detection

EvR 0.3 30 -1.0 3
(

7
7

)
1

(
11
11

)
-1 – –

Table 5.1.1: Parameter values of the detection fields. The surface detection fields have the
contact normal orientation as the first dimension and contact position angle as the second.
The edge detection fields have the dimensions position radius and position angle. All 2D
fields have a size of 100×100, the 1D field has a size of 1×100. The resting level and gain
of the “normal distribution” and “surf slow detection” DNFs (denoted with ∗) are adapted
with IP and the according values in the table only denote the initial values.

MT Name τbuild τdecay a b

A1: buffer MT 5k 50k 1 0

Table 5.1.2: Parameter values of the input
buffer memory trace. The MT has as size of
100×100.

5.2 Object Mapping

Mapping of the object shape within the neurodynamic model occurs separately in the
surface and the edge path, respectively. In particular, one map of object surfaces (B1)
and one map of object edges (B2) is built, both fusing detections from both fingers. In
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Figure 5.2.1: Overview of the surface and edge mapping in the neurodynamic model, see
text for description.

both occasions, the according slow detection fields (A3, A5) serve as input to the map,
which is represented in the activation of a MT (B1, B2) implementing an exponential
fading memory (see Sec. 2.4). This implies, that information can not be corrected once
it has been added to the object map, although all information fades out during time
if not reinforced. This fading of memory is therefore critical as, information fused into
the object map may be error prone – especially during the initial build up of the map.
Assuming a localization mechanism at work, subsequent re-sensing of the same object
area leads to a reinforcement of the fading out memory activities of the according map
entries. Hence, the map is maintained only through memory fading and merging new
information to reinforce the old. Therefore it is clear, that an effective localization
mechanism is a necessary prerequisite for building a consistent map in the MTs. The
higher the localization precision, the higher the spatial precision and activation level
of the map, as activity of subsequent map entries accumulates in one position instead
of being scattered in the MT. This increase of activation amplitudes in the MT for
subsequently reinforced map entries increases the impact of the map on the localization
and will therefore support a convergence of the SLAM process.

The surface map (B1) has the surface normal orientation on the x-axis and the
angle of the surface position in object space on the y-axis. The representation of an
object surface will therefore have an activity pattern with a small spatial extension
on the x-axis and an extension on the y-axis according to the length of the surface, as
visible in Fig. 5.2.1, on the left.

The edge map (B2) has the radius of the edge position in object space on the
x-axis and the angle of the edge position in object space on the y-axis. The activation
pattern representing an edge in the MT should be a circular peak of activity, like in
the right half of Fig. 5.2.1.

MT Name τbuild τdecay a b

B1: surf MT 6k 1M 10 0.5
B2: edge MT 5k 750k 10 0.3

Table 5.2.1: Parameter values of the surface
and edge memory traces. Both MTs have as
size of 100×100.

The MT holding the edge map is parametrized with a faster decay rate than the
MT for the surface map, as shown in Tab. 5.2, because of differences in the matching
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procedure, described in the next section. Additionally, for the MTs to hold the object
maps it is necessary to choose the time constants τ in Eq. (5.0.5) of the MTs with
respect to the experimental setup. The time constants of the MTs have to be tuned
according to the object rotation speed and the frequency of tactile feature readouts.
If the decay τ is to small, the object map will fade out before features are revisited,
while for a too large decay τ wrong information fades out very slowly. If the build
τ is chosen too large the object map will hardly be build up at all. Hence, choosing
the time scales for building and decaying of activity in the MT requires some manual
tuning with respect to the operating regime of the robot hardware. The parameters
used in the model are shown in Tab. 5.2.

5.3 Object Localization

The localization of the object pose requires to match the detected features with the
object map and solve the correspondence problem (see Sec. 2.3 for further details).
In the proposed model the only detected features are edges and surfaces. Edges and
surfaces are detected by the slow detection fields (A3 + A5) and are stored into the
MTs (B1 + B2). Additional to the slow detection fields, the matching process requires
fast detection fields (A4 + A6 + A7) in order to match the current tactile features with
the according object maps in the MTs (B1 + B2) before the current information is
fused from the slow detection fields into the MTs. Matching A4 with B1 in the surface
pathway enables the localization and correction of the object orientation, independent
of its position. In the edge pathway, the matching A6 and A7 with B2 enables the
localization of the object position, dependent on its orientation. The description of
the matching is described separately in the following for the edge and the surface
processing pathways.

5.3.1 Orientation from Surfaces

Localizing the object with respect to its orientation can be achieved as soon as a
surface of the object is re-touched (i.e. re-visited). In the chosen experimental setup
this occurs as soon as Finger II detects an surface formerly detected and mapped by
Finger I and vice versa, i.e. after the object has been rotated ≈ 180 deg.

Matching features with the map

For localizing the object with respect to its orientation, it is necessary to associate a
current detected surface (A4) with a previously detected one in the MT (B1). Then the
deviance in the surface orientation corresponds to the error in the object orientation
estimate. This association (matching) of a current detected surface to a previously
mapped one is done by only utilizing information of the surface orientation, the sur-
face position angle is neglected. This assumes that the surface in the map with the
most similar orientation corresponds to the currently detected one. Thus a nearest
neighbour matching with respect to contact normal orientation in object space is per-
formed, if matched at all. This neglecting of surface position is done for two reasons:
First, the manipulated objects are assumed to be convex – preventing the possibility
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Figure 5.3.1: Overview of the surface and surface matching in the neurodynamic model, see
text for description.

of multiple surfaces with the same orientation, which could only be distinguished by
their position. Furthermore, in convex objects the position of a surface is strongly
restricted by its orientation.

Therefore the fast surface detection field (A4) and the surface MT (B1) are both
projected onto the surface normal orientation dimension. For projecting the surface
MT, the logarithm of the summed activity along the contact position angle dimension
is computed. This has the effect that surfaces with a large spatial extent have a
larger impact to the matching (higher saliency). Hence, the spatial structure in the
surface MT is better captured when using the summed projection. In the case of the
fast surface detection DNF the maximum of the activity along the contact position
angle dimension is taken, as the activation pattern is largely determined by the kernel
parametrization and thus does not convey any additional information. These two
projections are provided as input into the one dimensional surface matching DNF
(C1), illustrated in Fig. 5.3.1.

The input from the surface MT projection (B1) primes positions of previously
detected surfaces in the matching DNF (C1), but for itself is not sufficient to trigger a
peak in the output activation of the matching DNF. If the fast surface detection field
(A4) generates a peak at a novel location (i.e. a novel surface normal orientation is
detected), its contribution to the surface matching field alone is also not sufficient for
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generating a peak. It is only if the fast detection field generates a peak near (with
respect to the normal orientation) to a previously stored detection in the surface MT,
that the combination of both suffices to generate an output peak in the matching field
(C1). The lateral interaction in the matching field leads to an output peak that lies in
between the old an the current detected locations. Hence, the matched output peak
lies closer to the previously detected surface orientation then the currently detected
one. This difference in location of the surface matching DNF (C1) output peak with
respect to the fast detection field (A4) output peak serves as a correction direction
for the object orientation estimate, as will be described in Sec. 5.4. Since the system
runs in a closed loop, the corrected object orientation will lead to a shift of the current
detected surface normal orientation (see Fig. 5.0.1), thus the current detected surface
orientation converges towards the past orientation stored in the MT.

The matching of the fast surface detection (A4) with previously mapped ones in
the surface MT (B1) and the according correction of the object orientation estimate
should be done before the slow surface detection (A3) fuses the current surface into
the object map, i.e. the surface MT (B1). Therefore the slow and a fast surface
detection DNFs are necessary. While the matching (A4 with B1 in C1) and correction
(A4 with C1 in D1) take place, the slow surface detection field (A3) will not detect
a surface, as the continuous correction of the object orientation imposes a drift in
the surface normal orientation in object space. Therefore, the normal orientation
detection field (A2) does not generate a peak as the normal distribution is broad
during the correction, described in detail in Sec. 5.1. Additionally, the sharp kernel
shape of the slow detection field (A3) along the surface normal orientation prevents
the generation of peaks for inputs moving along the normal orientation dimension. As
soon as the object orientation correction has converged, surface detection in the slow
detection field may occur. This would then trigger a new entry into the map or the
reinforcement of a previous detection.

In order for the matching system to operate, the proportion of input contributions
from the fast detection DNF (A4) and the surface MT (B1) has to be tuned, as well
as the build and decay rates of the surface MT. The proportion of inputs determines
how conservative the matching is, i.e. how much past “evidence” in the MT is needed
to trigger the matching process.

Adaptation of the matching DNF via IP

In order to keep the input from the projected MT (B1) in the regime just below the
detection instability, the resting level of the matching DNF (C1) needs to be tuned
accordingly, such that the input originating from the MT is always just sub threshold.
This is particularly difficult, as the MT accumulates and leaks information over time
and thus is sensitive to the temporal structure (i.e. frequency) and location (i.e. spatial
density) of the detected surfaces. Objects with more (flat) surfaces on average also have
surfaces with shorter spatial extension, for a fixed diameter. Thus, the input duration
of each detected surface to the MT is on average shorter for objects with a higher
number of surfaces and therefore the average activation amplitude in the MT is lower
compared to objects with a fewer number of surfaces. Additionally, larger surfaces
have a larger distribution of activity along the object position angle dimension and
therefore the logarithmic summed projection onto the normal orientation dimension
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scales with the surface length. Hence, an online parameter adaptation is necessary for
a robust tuning of the matching DNF such that the input of the MT alone is always
in a sub-threshold but input sensitive regime.

The adaptation of the matching DNF (C1) is done with IP, as described in Chp. 4.
The DNF input is scaled by an adaptive gain and the DNF resting level is controlled by
an adaptive bias. Both parameters are tuned by the IP algorithm in order to minimize
the Kullback-Leibler divergence between the output distribution of the DNF and the
target exponential distribution. This adaptation of the gain by IP ensures, that if,
and only if, inputs from the fast detection DNF and the MT coincide, the matching
DNF will generate a peak in the output activity. Introducing the IP adaptation of the
matching DNF enhances the robustness of the neurodynamic model with respect to
the different objects.

5.3.2 Position from Edges

While detected object surfaces are used to locate the orientation of the object, detected
object edges serve for the localization of the object position. The localization of the
object position can be split up into two subtasks: localizing along a distal-proximal
axis (DPA) and the localization with respect to a lateral axis, as described in Sec 3.3.
The localization along the lateral axis has little relevance for object localization in
the chosen experimental setup, as the lateral object position during manipulation is
mechanically restricted to the centre between the two fingers. Therefore the object
localization along this axis is not implemented in the model, although a brief outline
of how this could be done will be given in a subsequent subsection.

For object localization from an detected edge of finger one, there is an edge match-
ing DNF (C2) with input from the edge MT (B2) and the according fast edge detection
DNF (A6). The matching DNF generates an intermediate peak if the two input peaks
are sufficiently near in their location, i.e. in the edge position radius. However, there
are several differences with respect to the rotational case. First the relevant feature
is now the position of a detected object edge in object space, in contrast to the sur-
face normal orientation in the rotation pathway. Second, the features of both fingers
are stored together into one MT (B2), but are then processed separately for each fin-
ger. Third, the edge matching of the edge MT with the fast edge detection DNF is
performed in two dimensions, i.e. no projections are computed like in the surface case.

Localizing along the proximal-distal axis

In contrast to the localization with respect to the object orientation, the matching is
not primarily performed with respect to edges that have been detected during previ-
ous object rotation cycles. Instead, the matching is done with respect to the same
edge, detected in successive measurements during the object rotation with contact
to this particular edge. Hence the highly ambiguous data association problem after
re-grasping the object in the rotation pathway is now replaced with a much easier
tracking problem of one edge during the manipulation with a stable grasp. When
contact to the tracked edge is lost, the matching stops and is then re-initiated when
the next edge is detected.

70



5.3. OBJECT LOCALIZATION

When touching an object edge, its position may be determined in each tactile sensor
measurement. Successive measured positions of an edge during object manipulations
while maintaining contact with the edge are:

• necessary identical in sensor space (i.e. the edge does not “slide” along the
finger)

• may be different in robot space (as the object is manipulated)

• should be identical in object space (i.e. object deformations are not considered)

In object space this only holds for a correct object localization, any errors in the object
position estimate induce systematic errors in the transformation of tactile features into
object space, as described in Sec. 3.6 and Sec. 3.7. Hence, for localizing the object
position with respect to the DPA the drift direction of the a detected edge position in
object space during object manipulations with a stable grasp is used. For a drift of the
edge position towards the centre of the object (in object space) the current position
estimate is too proximal, for an outward drift it is too distal (see Sec. 3.6).

This drift of the edge position is indicated by differences in the peak locations
(with respect to the radii) between the edge MT (B2) and the fast edge detection
DNFs (A6 + A7), due to the differences in the temporal dynamics. In contrast to
the case of rotation estimation in the surface path, the edge MT and the fast edge
detection DNFs are not projected before matching. The edge position radii may be
similar for multiple object edges and are indeed the same for all edges of the objects
used in the experiments. Hence a projection of the MT would lead to a irreversible
fusion of all edge radii information in the map and the matching would be performed
to an arbitrary edge instead of matching to the memory of the according current edge
position. Therefore, the projections are done after the matching, as the drift of the
currently detected edge in its position radius between the fast edge detection DNFs and
the edge MT is of particular interest. This projection will be described in Sec. 5.4.
Accordingly, all DNFs in the edge pathway and the MT (B2) are two dimensional,
featuring edge position angle and radius as feature dimensions.

In the neurodynamic model the localizing of the object position with respect to
the DPA is implemented separately for each finger, except for the shared edge map.
The separate processing of the fingers is necessary because the relevant information
is on the object position radius dimension, thus information from both fingers in one
DNF would interfere in the correction DNFs, discussed in the next section.

The two dimensional DPA position matching field of each finger (C2 + C3) have
inputs from the fast edge detection DNF of the according finger (A6 + A7) and the
joint edge MT of both fingers (B2), visible in Fig. 5.3.2.

If peaks in the fast edge detection DNFs (A6 + A7) and the edge MT (B2) are
sufficiently close in their radii (depending on the kernel parametrization), an inter-
mediate peak is generated in the edge matching fields (C2 + C3), analogous to the
rotational case described previously. In Fig. 5.3.2 this procedure is illustrated. The
peak position of the matching DNF is successively used for correcting the object po-
sition in order to minimize the drift of the edge position radius. Since the matching
and correcting are based on drifts in tactile measurements transformed by the forward
model (see Sec. 3.6), the position of previously mapped edges is only of minor interest
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Figure 5.3.2: The matching of detected with mapped edges.

and therefore the MT (B2) holding the edge map has a faster decay rate then the MT
of the surface map (B1).

The higher decay in the edge MT (B2) combined with the feature separation of
the two fingers makes the matching more robust with respect to number and spatial
distribution of object edges. Compared to the surface path, activity in the MT does not
accumulate over successive object “full rotations” (360◦) as the activity of previously
visited edges has only a minor contribution. Additionally, the matching is done in
two dimensions and projection to one dimension for comparison is only done after
matching. Therefore the matching DNFs for the translation do not benefit from an
IP adaptation.

Localizing along the lateral axis

The distortion pattern of the detected object edges in object space for localization
errors in the distal-proximal axis is a drift of the edge position towards or away from
the object centre during object rotation. In the case of localization errors with respect
to the lateral axis, the distortion in object space is reflected in an asymmetry: the
same object edge would be mapped with a different radii by the two fingers. There-
fore, correcting localization errors in the lateral axis requires a mechanism to detect
systematic offsets between the edges detected by both fingers.

However, the gain of a localization mechanism with respect to the lateral axis
during object manipulation is not clear, as natural grasps for object manipulation
usually imply contacts at opposing locations [Iberall et al. 1986]. In the experimental
setup in this thesis this is also the case, thus the localization with respect to the lateral
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DNF Name Ii wi τ b a σexc πexc σinh πinh IPµ IPη

C1: (1D)
surf match

B1
A4

2.4
2

20 -4.0∗ 1∗ 3 4 5 -4 0.15 0.0005

C2 & C3:
(2D)

edge match

B2
A6/A7

2
1

30 -1.1 6
(

9
9

)
3

(
15
15

)
-2 – –

Table 5.3.1: Parameter values of the matching DNFs. The surface matching DNF is one
dimensional and of size 1 × 100, while the two edge matching DNFs both have the size of
100×100. The resting level and gain of the surface matching DNF (denoted with ∗) are
adapted with IP and the according values in the table only denote the initial values.

axis is not implemented.

5.3.3 Localization Parameters

The parametrization of all three matching fields is shown in Tab. 5.3.3, where the
“edge” DNF parametrization holds for both instantiations of the DNF (C2 + C3), one
for each finger. There is no global inhibition in the surface matching field, as multi-
ple peaks are intended due to the possibility of both fingers simultaneously touching
surfaces. In contrast, the edge matching DNFs (C2 + C3) prevent multiple peak so-
lutions as a single finger cannot simultaneously detect multiple edges as the objects
are assumed to be convex. This is implemented by a global inhibition parameter πglob
which is set to 0.001, corresponding to a uniform distributed inhibitory kernel.

5.4 Pose Correction

In this section the final part of the neurodynamic model is described, the correction
of the object pose estimate, based on the localization in the map. The dynamics
of the localization result in a corrected feature pose, thus a mechanism to extract
the according correction term for the object pose estimate is required. For this, the
matched activation peaks in the edge matching DNFs (C2+C3), (which represent the
corrected feature pose) are compared to the original activation peaks in the according
fast edge detection DNFs (A6+A7). In the surface pathway the surface matching field
(C1) is one-dimensional and the fast surface detection DNF (A4) is two-dimensional.
In contrary, in the edge pathway the edge matching DNFs (C2+C3) and the fast edge
detection DNFs (A6+A7) are all two dimensional. All these two-dimensional DNFs
are projected by using the maximum of the sigmoided DNF output activity along the
edge position angle dimension, thus only the position radius dimensions remains in
the DNFs of the edge pathway and the normal orientation dimension in the surface
pathway (see Fig. 5.4.1).

The comparison of two of the resulting one-dimensional DNFs is performed in
a two dimensional DNF (D1-D3), where each input field projects along one of the
two dimensions and both projections sum up in their activity. This procedure is
shown in the two DNFs depicted as rhombus (D1 + D2) in Fig. 5.4.1. A diagonal
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Figure 5.4.1: Correcting the pose estimate from the model localization. The translation
correction is only shown for one finger (DNFs A6-C2-D2 on the rogth sinde of the figure).
The correction for the second finger is analogous and therefore omitted (DNFs A7-C3-D3).

readout of this two-dimensional DNF, i.e. a diagonal projection to a one dimensional
drift readout DNF (Fig. 5.4.1), creates a representation of the two input peaks in
relation to each other. This mechanism is a neural implementation of reference frame
transformations as described in [Schneegans & Schöner 2012] and provides information
of the peak shift due to the matching. The activation in the readout DNF is suppressed
at locations far from the center to give close by matches a higher weighting and suppress
matches with large deviations. This in particular necessary, as the projection of two
matches of two detected surfaces results in four peaks in the rotation drift DNF. The
suppression is implemented by multiplying the output of the readout DNF with a
Gaussian with the mean located at the DNF centre and a standard deviation σ of
1.8◦ degree. The deviation of the peak position from the center of the drift readout
DNF is the estimated error and is subsequently used to correct the current object
pose estimate. Thus, for consecutive time steps, the perceived feature is mapped to
the corrected location in object space. The object pose itself is encoded by a Gaussian
distribution with the mean at the according position. Pose corrections generated by
the model are continuously integrated into this representation, hence the location of
the Gaussian mean is adapted by the pose correction mechanism. The object pose
is additionally adapted by the forward model (Sec 3.6) for each tactile measurement.
The tactile measurements are implemented as discrete events and therefore the pose
update by the forward model is implemented by summing these up. Hence, the object
pose representation is not implemented with neural dynamics but with a hard-coded
integration of discrete and continuous updates. The parametrization of the drift DNFs
and the according readout DNFs is given in Tab. 5.4.
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DNF Name Ii wi τ b a σexc πexc σinh πinh πglob

D1: (2D)
rot. drift

C1
A4

1
1

30 -1.5 4
(

1.5
1.5

)
1

(
4
4

)
-2 –

D2 & D3:
(2D)

transl. drift

C2/C3
A6/A7

1
1

30 -1.5 6
(

3
3

)
1

(
7
7

)
-1 0.001

readout[3×] 20 -1.0 10.0 – – – – 0.1

Table 5.4.1: Parameter values of the drift DNFs. The rotation drift DNF and the two trans-
lation drift DNFs all have a size of 100×100. The three readout DNFs are one dimensional
with a size of 1× 100 and have no lateral interaction.
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Chapter 6

Results

In the previous chapter the neurodynamic model was described, in this chapter the
model is evaluated and the results are discussed. The discussion of the the model itself
is postponed to the next chapter.

This chapter is structured in the following: first the results are discussed qual-
itatively with respect to the object mapping. For this, the obtained mappings are
visualized and the surface MT holding the detected object surfaces is analysed. Then
the object mapping is evaluated quantitatively, based on the number of detected sur-
faces and the matching to the ground truth shape. Last, the performance of the model
with respect to the object localization is evaluated based on the pose corrections.

6.1 Object Mapping

The mapping of the object obtained by the neurodynamic model is evaluated in two
steps, first qualitatively and then quantitatively. For this a combined representation
of the surface and edge MTs is visualized, showing the build mapping of the object.
Then the MT containing the surface information is analysed in detail. The results of
the large six and eight sided objects are compared to the obtained object map from the
model without any corrective feedback. This is done in order to distinguish effects of
processing in the model from its localization performance. The complete set of results
is provided in the appendix, Ap. B. In the second halt of this section, a quantitative
evaluation of all the recorded datasets is given.

6.1.1 Qualitative Evaluation of the Mapping

In the neurodynamic model the object mapping is distributed into two MTs which is
qualitatively evaluated for six hand chosen examples in this subsection, three examples
from the large six and eight sided objects and three examples from the asymmetric ob-
jects. The results of small six and eight sided objects are postponed to the quantitative
analysis, as they do not add any qualitative insights.
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Final object representation

For this, the information of the surface and edge MTs is combined and plotted in
Cartesian object space, opposed to the polar coordinate system in the MTs. This
procedure is straight forward for the information contained in the edge MT, as the
dimensions are position angle and radius. In the surface MT the dimensions encode
position angle and normal orientation of a surface. The activity distribution also en-
codes the spatial extent of a surface. As the surface MT does not have a representation
of the position radius, a fixed radius is used for plotting. Alternatively, the location
between two neighbouring (with respect to the position angle) edges in the edge MT
would be a plausible estimate for the location of a surface. The marked edges in the
plot on the left of Fig. 6.1.1 (A) are the exact positions contained in the edge MT,
while the surfaces with their according normal orientations are plotted by adding the
information of a fixed radius.

The mapped object in Fig. 6.1.1 is from the dataset #1, the large eight sided
object. In the visualization of the object surfaces on the left plot (A) in Fig. 6.1.1, the
fading information of a “ninth surface” is still visible at the bottom right corner (i.e.
edge) of the object. The same information is also present in the top right plot (B)
of the figure showing the surface MT, where activation for the normal orientation of
approximately 290◦ is visible and accordingly results in a small peak in the summed
activation (blue graph). The edge MT in the bottom right (C) of Fig. 6.1.1 reveals,
that the object representation has undergone a change with respect to the object
orientation. In principle, one would expect to see eight clearly separated activity
peaks corresponding to the eight edges of the object. However, in (A,C) Fig. 6.1.1 a
drift in the object orientation of the entire map is visible by the regular appearance of
past detected (and thus weaker) edge representation in between the current (stronger)
ones. As the object map is drifting consistently, this drift is only visible in the object
position angle dimension but not in the surface normal orientation (B). The angular
distance between the surfaces remains stable, jet the angular position of these drifts
leading to a stronger surface overlap. This is visible in the tendency of the surfaces
to have a pronounced counter-clockwise weighting in the left plot (A) of Fig. 6.1.1.
Hence, while the model achieves a consistent (spatial) object representation it is not
necessarily constant (temporal) in its orientation as the object is continuously rotated.

For two additional exemplary chosen datasets #4 and #8 the results are visualized
in Fig. 6.1.2. In the set of plots at the top of the figure (#4), it is visible that
several surfaces have been merged together, leaving only 2-3 clear surfaces in the
object representation (A,B). This also leads to errors in the edge representation, with
too many and inhomogeneous distributed edges due to the erroneous corrections in the
object localization by the model (A,C). In the bottom set of plots in Fig. 6.1.2 (#8)
the clear map of the six sided object is visible (A). The results here are representative
for the datasets of the large six sided object (see Sec. B in the appendix for the object
maps of the other datasets).
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#1 Large eight sided object
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Figure 6.1.1: The object representation reconstructed from the surface and edge MTs at
the end of the second iteration (i.e. 8th object rotation) through the dataset #1 (large
eight sided object). On the right the activity in the MTs is visualized (A-B), darker shades
correspond to higher activity. In the plot of the surface MT (B) there is an additional overlay
showing the MT activity summed across the position angle dimension – i.e. projected to the
normal orientation dimension (blue). On the left (A) the MT information is visualized in
Cartesian object space: shaded dots indicate the positions of detected edges in the edge MT
(C), darker and lager dots correspond to higher MT activity. The small red dots mark the
surface normal orientations with activity of more then 1/4 of the maximum peak activity of
the projected surface MT (blue overlay). The shaded lines are located at the position angle
of the according site in the surface MT with a fixed radius. The orientation of the lines
is determined by the according normal orientation in the surface MT (B) and the intensity
corresponds to the activity (i.e. amplitude) at the according position in the MT.
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Figure 6.1.2: The object representations after the second iteration of datasets #4 (Top) and
#8 (Bottom). See text and caption of Fig. 6.1.1 for further description.
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#29 Asym. seven edged object

Figure 6.1.3: The object representations after the second iteration of datasets #29. The
ground truth object shape was manually inserted into the centre of (A). See text and caption
of Fig. 6.1.1 for further description.

A representative visualization of a mapping from the asymmetric object with seven
edges is shown in Fig. 6.1.3. Here the ground truth object shape was inserted as a ref-
erence. Overall, the object maps obtained form the seven edged object are comparable
to the results of the large eight sided object.

When inspecting the visualizations of the results for the five edged asymmetric
object, one notices that it is not obvious to determine the quality of a mapping. Two
exemplary object mappings are shown in Fig. 6.1.4, together with the ground truth
shape. The ground truth shape was orientated in order to fit the generated map
best. The mapping of the asymmetric five edged object is difficult to rate as it is not
necessarily clear how the curved surfaces should be treated. The model classifies these
partly as (weak) edges and / or (weak) surfaces as in #22 and partly does not map
them at all as in #21. The parameters of the model remain fixed for all datasets, thus
the variations in the feature mapping visible in Fig. 6.1.4 are purely due to trail by
trial variance in the tactile patterns of the recorded datasets.
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#21 Asym. five edged object

#22 Asym. five edged object

Figure 6.1.4: The object representations after the second iteration of datasets #21 (Top)
and #22 (Bottom). The ground truth object shape was manually inserted into the centre of
(A). See text and caption of Fig. 6.1.1 for further description.
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Temporal development of the object surface representation

Furthermore, the temporal development of the object representation is qualitatively
analysed, based on the activity in the surface MT. For this analysis the same exemplary
datasets as in the above section are used. At each point in time the surface MT
is projected to the surface normal orientation by summing over the position angel
dimension. The temporal development of this projection is discussed in the following.
The first example here is the dataset #1 from the large eight sided object for which
the model performs well, the second example is the dataset #4 from the large eight
sided object for which the model does not perform well and the third dataset is #8
from the large six sided object, which is representative for this object. The bottom
row in Fig. 6.1.5 shows the MT activation for the same datasets, but with deactivated
corrective object pose feedback in the model. For a visualization of all the datasets,
see figures Fig. B.0.1 and the following in the appendix Sec. B. The datasets #1 and
#8 in Fig. 6.1.5 are mapped in a precise and spatio-temporal consistent fashion, as can
be seen in the according plots in the top row. The corresponding plots in the bottom
row show, that the clear alignment is due to the matching and pose correction rather
than an effect of representation in the model or intrinsic structure of the datasets.
This clear detection and representation is not visible in the MT from the dataset #4
(Top row in Fig. 6.1.5). Here the surface detections are very broad in their normal
orientation mapping, merging several surfaces into a single peak of activity. Thus, in
the MT of dataset #4 the object is temporally represented with five surfaces, instead
of eight. The reason is partly visible in the according plot in the bottom row of
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Figure 6.1.5: Exemplary qualitative view of the surface MT for three datasets: # 1 and #
4 (large eight sided object) and # 8 (large six sided object). The plots show the temporal
developement of the MT, projected to the normal orientation dimension, with the number
of estimated full object rotations (i.e. time) on the x axis. The top row shows the results
of the model, while the bottom row shows the results when the correction feedback of the
model is deactivated, i.e. purely forward estimates of the object dynamics are used.
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Fig. 6.1.5: several smeared (with respect to their surface normal orientation) surface
detections with large amplitudes. These “smeared” surface detections have their origin
in tangential shear forces along the tactile sensor surface during rotation. The shear
forces lead to a higher conductivity of the rubber surface of the tactile sensors on
the SDH2 which distorts the pressure pattern output of the sensor.This occasional
distortion while rotating the object along edges produces broad, nearly round tactile
pressure outputs. These then have a high EvR and the curvature feature has a high
amplitude for low curvature, indicating an object surface to the neurodynamic model
(see also Sec. 3.10). Hence, the reason of these “smeared” surfaces in the bottom,
middle plot of Fig. 6.1.5 is a wrong input to the model from the curvature feature
extraction. These smeared surfaces are partly stabilized in the model by corrections
in the object pose estimate, i.e. the object orientation, thus leading to an error in the
object localization which will be discussed in Sec. 6.2.

In Fig. 6.1.6 the temporal development of the surface MTs for the exemplary
selected datasets from the asymmetric objects are shown.

In the plot of dataset #22 in Fig. 6.1.6 a change in the pattern of the surface MT
activity is visible after the fourth object rotation. This is caused by the discontinuity
in the model input, as the dataset is presented a second time. The datasets are
recorded until the estimated fourth object rotation by the forward model. The true
object rotation varies for every dataset within nearly ± one object rotation. Hence,
the repeated representation of the dataset corresponds to a random re-orientation of
the object, which is not predictable by the forward model. In principle, the model
will match detected edges or surfaces to the nearest ones in the map (if matched at
all). Therefore the re-localization of the object orientation has a limited effect for the
symmetric objects, as the model may match the next detected surface to an arbitrary
mapped surface without any particular consequences to the object map. However, for
the asymmetric objects the particular mapped surface to which the detected one is
matched does have consequences. Subsequent object rotation leads to a change of the
feature pattern with respect to the mapped (i.e. “expected”). The consequence is an
overwrite of the existing map with the “new” feature pattern. This process is visible
in the temporal structure of the surface MT plot of dataset #22 in Fig. 6.1.6. As the
re-orientation of the object through the re-presentation of the dataset is essentially
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Figure 6.1.6: Exemplary results from the datasets #21 and #22 of the five edged object
and #29 of the seven edged object. The plots show a qualitative view of the the temporal
development of the surface MT, projected to the normal orientation dimension. The x-axis
of the plots shows the number of estimated full object rotations (i.e. time).
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random, the effect has a varying impact onto the object representation with respect
to the particular dataset.

From the objects with a small diameter the model is only capable to map the six
sided object. Out of the five datasets of the small eight sided object none leads to
a correct mapping, but results in spatio-temporal inconsistent mappings. The results
of the objects with the small diameter are shown in the appendix, see the Sec. B.
Concerning the small six sided object, the model performed comparably to the large
symmetric objects. The datasets #19 and #20 are erroneously mapped as an five
sided object, the other datasets of this object are correctly mapped (see Fig. B.0.17
in the appendix).

6.1.2 Quantitative Evaluation of the Mapping

The qualitative evaluation from the previous subsection is now analysed based on
quantitative measures for the quality of an object map in the edge and surface MT of
the model. First, an analysis based on the number of surfaces in the surface MT is used
as an indicator for rating the object mapping. Then, in a second approach the object
mapping in the edge and surface MT is rated with respect to according templates
encoding ground truth object shape. While the first measure (# of surfaces) has the
advantage of an intuitive interpretation, the second captures the overall shape quality.

The number of mapped surfaces

For quantitative analysis of the model performance, the projected surface MTs from
the previous section are analysed by first smoothing by a Gaussian filter along the
surface normal orientation dimension, with µ = 0 and σ = 5.4◦. Then all local maxima
are counted for each time step via the Matlab function findpeaks() to determine the
number of detected and mapped surfaces in the model representation. In Fig. 6.1.7
the quantitative results are shown for the three exemplary datasets. Here, the wrong
mapping of dataset #4 is clearly reflected in the varying number of detected surfaces.
To the contrary, the datasets #1 and#8 are mapped correctly.
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Figure 6.1.7: The number of detected Surfaces, i.e. the number of peaks in the activity of
the surface MT for three exemplary datasets: #1 and #4 (large eight sided object) and #8
(large six sided object). The plots show the temporal development of the number of peaks in
the MT, when projected to the normal orientation dimension, with the number of estimated
full object rotations (i.e. time) on the x axis.

84



6.1. OBJECT MAPPING

Corrected Uncorrected Corrected

Figure 6.1.8: The mean (blue cross) number of detected surfaces and its standard deviation
(error bars) of the model for the according datasets. The red circle is the number of detected
surfaces at the end of the trial. Only the last iteration of the dataset is regarded. Left column:
the model performance for the large symmetric objects with pose estimate correction. Second
column: the same datasets are processed, but without pose correction. Third and fourth
column: the datasets of the small symmetric and the asymmetric objects are shown, with
pose correction from the model.

The plots in Fig. 6.1.7 visualize the results for the exemplary datasets, which are
now quantified for all datasets. In Fig. 6.1.8 the mean result with median and standard
deviation is shown across all datasets. Here only the number of detected surfaces for
the last iteration through the dataset is included for the evaluation, i.e. the range from
# object rotations four to eight in the previous figure Fig. 6.1.7. This ensures that
the initial build up phase of the object representation is not included. In Fig. 6.1.8
the mean and standard deviation of detected surfaces are shown for the last half of
the datasets, together with the final estimate (red circle). For comparison the same
procedure is shown for the uncorrected object pose estimate in the case of the large
six and eight sided objects. The uncorrected results for the other datasets are shown
in Fig. B.0.7 in the appendix.

In theory, there is a principal tendency of overestimating the number of surfaces
because changes in the object map are fast when fusing new information and slow
for fading out information. Thus, when the tracking of the object localization is not
jet established or is temporally lost (e.g. when the dataset is repeated without a
smooth transition) a new feature might be included to the map instead of reinforcing
the according old feature. This erroneous mapped feature will increase the number of
features until it fades out, although the object might have been re-localized. This ten-
dency can be observed in Fig. 6.1.8, where performance of the model on the individual
datasets of these objects is shown.

Concerning the datasets of the large eight and six sided object, the errors in the
number of object surfaces in the dataset #4 are clearly visible in the top plot of the
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first column in Fig. 6.1.8. In the evaluation of dataset #6 the reason for the increased
number of detected surfaces are two surfaces in the MT which have a double peak in
their activity surface normal orientation distribution (visible in Fig. B.0.2) . However,
the resulting object map is clearly a six sided object, as can be verified in Fig. B.0.10
in the appendix. In the uncorrected datasets in the second column of Fig. 6.1.8 it is
noteworthy, that dataset #7 has only a very small orientation drift of the true object
pose. Therefore, the performance of the model with and without pose correction is
comparable. However, this is an exceptional case in the recorded datasets.

The results of the small six and eights sided objects in the third column of Fig. 6.1.8
give the impression of rather small errors, when compared to the errors in the number
of detected surfaces of other objects. However, this is illusive, as the number of surfaces
is comparably with the the one if the model pose correction is deactivated (visible in
the appendix, Fig. B.0.7). This will be discussed in the next section, together with
the results of the asymmetric objects.

The objects with a small diameter, in particular the small eight sided object, are
hard to map by the object, visible in the third column in Fig. 6.1.8. This may partly
be due to the fact, that the temporal period where features are detected and matched
is shorter for the objects with small diameter, in particular for the small eight sided
object. When the temporal dynamics of the model correction is to slow to realize
the orientation correction in the brief time of detecting and matching the feature, the
object localization will lag behind.

Measuring quality of the object representation

In addition to the evaluation with respect to the number of detected surfaces in the
surface MT, a measure for the overall quality of a mapping is defined.

For this, the activity patterns in the surface and edge MT are matched to tem-
plates of the ground truth object shape. The object surface and edges are encoded in
templates with a Gaussian distribution with mean at the true position and a standard
deviation of 5.4 degrees. The template is then normalized, such that the integrated
volume is one. These templates capture the correct activity in the MTs and are shown
in the top row of Fig. 6.1.9. Then an inverse template was implemented for measuring
the false activity. For this the positive template was dilated by 16 degrees along both
dimensions and was then inverted. The dilatation ensures that there is no penalty for
activity near the correct position, tolerating small drifts in the object orientation. Ac-
tivity further off from the correct positions is then captured by the negative templates,
shown in the bottom row of Fig. 6.1.9.

Defining a meaningful metric for the quality of a shape representation is difficult,
because there is typically a very non-linear relationship between the perceived mapped
shape quality and the metric. For large ranges of the metric, only small qualitative
differences can be observed and for a small regime in the metric, large differences in
quality are perceived. Thus, a shape quality metric is useful only in the limited range
near to the optimal reachable fit. In order to determine this regime, all shape fit
values will be compared to a baseline of the shape fits of the mode without object
pose correction.

The procedure for determining the quality of the shape representation in the surface
and edge MT at a given point in time is the following:

86



6.1. OBJECT MAPPING

8-Sided Object 6-Sided Object

20 40 60 80 100

20

40

60

80

100

20 40 60 80 100

20

40

60

80

100

20 40 60 80 100

20

40

60

80

100

20 40 60 80 100

20

40

60

80

100

20 40 60 80 100

20

40

60

80

100

20 40 60 80 100

20

40

60

80

100

20 40 60 80 100

20

40

60

80

100

20 40 60 80 100

20

40

60

80

100

Asym 5-Edged Object Asym 7-Edged Object

20 40 60 80 100

20

40

60

80

100

20 40 60 80 100

20

40

60

80

100

20 40 60 80 100

20

40

60

80

100

20 40 60 80 100

20

40

60

80

100

20 40 60 80 100

20

40

60

80

100

20 40 60 80 100

20

40

60

80

100

20 40 60 80 100

20

40

60

80

100

20 40 60 80 100

20

40

60

80

100

Figure 6.1.9: The shape templates. The Top row shows the positive templates for surfaces
and edges for the eight and six sided objects. The left of the template pairs is the surface
template and the according right the edge template. The middle row shows the positive
templates for the asymmetric objects, the corresponding negative templates of the asym-
metric objects are shown in the bottom row. Blue (dark) color denotes low amplitudes and
yellow denotes maximum amplitude. Note the small increase of tolerance in the negative
counterparts.

(I) the activity in the edge and surface MT is normalized to [0, 1].

(II) each template is convolved with the according MT activity, hence four convolu-
tions are done: the positive edge template with the edge MT (true edge), the
negative edge template with the edge MT (false edge), the positive surface tem-
plate with the surface MT (true surface) and the negative surface MT with the
surface MT (false surface).

(III) the positive template convolutions of the surface and edge templates (true posi-
tives) are divided by the corresponding negative template convolutions plus one
(false positives). Thus, an edge fit ratio (edge fit) and an surface fit ratio (surface
fit) are obtained.

(IV) the maximum of each of these fir ratios is determined with respect to their unique
feature dimension, i.e. the best fit with respect to translational and rotational
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transformations, resulting in a best (w.r.t. position radius) edge fit and an best
(w.r.t. normal orientation) surface fit value.

(V) the final value of the shape fit is determined by adding the best surface fit and
the best edge fit and maximizing with respect to the position angle.

The according equation is given in Eq. (6.1.1), where the value of the object shape
template match is determined by

Match = max
Pos. Angle

[
max

Normal Ori.

[
TSP ∗MTS

TSN ∗MTS + 1

]
+ max

Pos. Radius

[
TEP ∗MTE

TEN ∗MTE + 1

]]
(6.1.1)

Here T is the template for surface S and edge E in the positive P and negative N vari-
ants. MT denotes the according MT, the ∗ is a two-dimensional circular convolution
and the division is a element wise division.

The theoretic range of this shape quality measure is [0, 2], as the maximum of the
surface fit and the edge fit can be one, respectively. However, this would require the
activity in the MTs to be zero at all wrong locations and have a uniform amplitude
at all correct locations. Since the activity in the MTs is exponentially fading out,
the activity amplitudes are very heterogeneous – dependent on the temporal history
of features fused into the MTs. The effective range of the shape fit measure was
approximately [0, 0.5].

In Fig. 6.1.10 the results of the proposed metric are shown for the dataset #1 (large
eight sided object). On the left the performance of the proposed model can be seen,
in the right plot the performance of the model with deactivated object pose correction

With pose correction Without pose correction

Figure 6.1.10: The shape fit of the surface and edge MTs with respect to ground truth
templates for dataset #1 over time. The plot on the left is the fit of the shape template to
the surface MT. The plot on the right shows the same, but with deactivated pose correction.
Shown are the best fit value (yellow) and the separate components from the best surface fit
(blue) and the best edge fit (red) for each step in time (i.e. object rotation on the x-axis).
On top of each plot the object shape representation at the end of the trial is shown.
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Figure 6.1.11: The shape fit of the surface and edge MTs with respect to ground truth
templates for all datasets. The statistics are computed across time for each dataset. Shown
are the mean (blue cross), standard deviation (blue error bars) and the fit at the end of the
exploration (red circle). The black triangles show the mean template fit for deactivated pose
correction, i.e. the baseline. Only the second of the two iterations of the dataset is regarded.

for comparison. Although the difference in the absolute template fit value seems very
small, the perceived difference in the mapping quality is rather large. Furthermore,
this difference is systematic, as can be seen in Fig. 6.1.11.

The template fit procedure is performed for all datasets, similar to the determina-
tion of the number of detected surfaces before. The results for all datasets are shown in
Fig. 6.1.11, where the surface and edge MT are evaluated during the second iteration
of each dataset. The corresponding development of the template fit measure over time
is shown in Fig. 6.1.12.

Like in the previous sections of the mapping evaluation, the large six and eight
sided objects are mapped well (left column in Fig. 6.1.12), except for the datasets #4
and #5 of the large eight sided object (left column in Fig. 6.1.11). This is partly also
the case for the small six sided object, on which the model has a similar performance
then on the large eight sided object (Fig. 6.1.12). This could partly be explained by
the fact, that these two objects have the same size of surfaces.

In contrast, the model is incapable to map the small eight sided object. The
explanation for this is the combination of a smaller object diameter (compared to the
large symmetric and asymmetric objects) and the smaller size of the surfaces. Here the
surface size of the small eight sided object corresponds to the surface size of the small
surfaces in the asymmetric objects (see Sec. 3.1). The combination of these two facts
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Figure 6.1.12: The shape fit of the surface and edge MTs with respect to ground truth
templates for all objects. The statistics are computed across all datasets of an object for
each step in time. Shown are the mean (blue cross), standard deviation (blue error bars)
and the fit at the end of the exploration (red circle). The black triangles show the median
of template fit for deactivated pose correction, i.e. the baseline.

results in too brief sensory inputs to the model which make the detection of surfaces
and edges unreliable and degenerate the mapping and localization performance.

In Fig. 6.1.11 it is visible, that in several of the successful mappings of the datasets,
the mean and standard deviation are worse then the final shape representation. This
tendency is also reflected in the temporal development in Fig. 6.1.12, where the shape
fit increases until the end of the trials, in particular in the large eight and six sided
objects. Thus, the quality of the map might increase for further object exploration,
which also might be the case in the five edged object in Fig. 6.1.12, although not
tested.

It should be noted, that the second presentation of the dataset induces a large
change in the true object orientation. The consequences of a wrong localization of the
object orientation form matching the current detected surface to the nearest in the
object map are in particular relevant in the asymmetric objects.

In the plot of the asymmetric seven sided object in Fig. 6.1.11 the results are
comparable to the detected number of surfaces, shown previously. While the datasets
#28, #29 and #30 show only minor improvements in the shape fit measure, the actual
improvements in the object shape representations are rather large (see Fig. B.0.20 and
the following in the appendix). Similar holds true concerning the asymmetric five sided
object, where the results are once more difficult to interpret. The shape fit measure by
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matching templates includes the problem of having ot define the curved areas of the
asymmetric five edged object. In the templates these were defined as neither surfaces
nor edges, thus the model was required to not map them at all. However, the model
frequently mapped these areas as edges or surfaces, as discussed previously.

Therefore, the results were additionally classified by a manual rating of the resulting
maps which can be found in the appendix Fig. B.0.18 and following.

Overall mapping performance

An overview of the model performance on the datasets is given in Tab. 6.1.1.
For the classification into correct and incorrect mappings, the obtained object

map in the model after a full run with the looped datasets is visually inspected and
classified into the classes of a correct or incorrect mapping. All of the according maps
are visualized in the appendix, see Fig. B.0.8 and the following. Note, that this manual
classification is consistent with applying an object specific threshold on the shape fit
measure.

In general, the good mapping (and localization) results of the large six sided object
are expected. This is because the errors in the predicted object change of the forward
model due to noise and unintended object contacts are essentially independent of the
number of surfaces of the object. As the errors in the pose predictions are comparable
across the datasets and objects, objects with fewer surfaces are in theory easier to
map and localize. The correspondence problem becomes easier as there are less and
therefore spatially more unique object “landmarks” (i.e. surfaces and edges) which
decrease the chance of wrong associations for a fixed prediction error.

From the asymmetric objects the model performed well for three of the five recorded
datasets of the seven edged object. The mapping of the asymmetric five edged object
is difficult to rate as it is not necessarily clear how the curved surfaces should be
treated. The model maps these partly as (weak) edges and partly as (weak) surfaces
(see the previous Sec. 6.1.1). Whether this is correct or not is debatable, therefore the
overall map from the five edged asymmetric object is rated with respect to its temporal
consistency. The maps of datasets #21, #22 and #25 are consistent in the sense that
the object orientation of the map does not or only slightly drift during the object
exploration. Thus surfaces repeatedly measured are mapped to the same location
(and orientation). This was determined by visual inspection of videos1 showing the
temporal development of the object map, the last frame is identical to the according
one shown in Fig. 6.1.1. Notably, this procedure lead to classifications consistent with
the shape fit measure, although the range of fit values for the asymmetric five edged
object is very small.

Interestingly, with the recorded datasets the model either showed a robust con-
vergence of the mapping or performed a permanent re-mapping. This is in particular
visible in the figures showing the number of detected surfaces over time of the large
symmetric objects and the seven edged asymmetric objects (see Fig. B.0.1 and the fol-
lowing in the appendix Sec. B). In all the experiments only one example was observed
(#26), where the model lead to a wrong object map which was clear and spatiotem-

1The videos are located on the supplementary CD
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poral consistent. All other wrong object maps had a strong drift in orientation overt
time. However, the vice versa cannot be concluded: not all object mappings with a
drift in the orientation over time are necessarily wrong.

In general, the results in this subsection show that the object shape representa-
tions built in the neurodynamic model are sufficient to map and discriminate several
objects. There model failed on the small eight sided object, presumably as the sur-
faces are in particular small and combined with the small object diameter, features
are only measured for a brief period in time. The ability of the model to recover from
wrong localization estimates (and thus wrong map entries) by rebuilding the map is
demonstrated.
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# Dataset Object Shape fit Shape fit + Correct Object Class

1

8-sided large

0.3744 0.1222 3

60%

80%

2 0.3802 0.1513 3

3 0.3584 0.1351 3

4 0.2754 -0.0188 7

5 0.2836 0.0029 7

6

6-sided large

0.3699 0.1263 3

100%
7 0.4256 0.0825 3

8 0.4922 0.2934 3

9 0.4381 0.2209 3

10 0.4452 0.2453 3

11

8-sided small

0.2079 -0.0111 7

0%

30%

12 0.1884 -0.0036 7

13 0.2375 0.0036 7

14 0.1811 -0.0179 7

15 0.2003 -0.0229 7

16

6-sided small

0.3024 0.1233 3

60%
17 0.3387 0.1455 3

18 0.2753 0.0620 3

19 0.1817 -0.0003 7

20 0.1812 -0.0246 7

21

5-edged asym.

0.2022 0.0284 3

80%

70%

22 0.2184 0.0169 3

23 0.1969 -0.0132 7

24 0.2221 0.0253 3

25 0.2266 0.0525 3

26

7-edged asym.

0.2411 0.0151 7

60%
27 0.2498 -0.0168 7

28 0.2948 0.0357 3

29 0.3228 0.0703 3

30 0.3455 0.1264 3

Table 6.1.1: Overview of the performance of the model with respect to the recorded datasets.
The “shape fit” column shows the shape fit value at the end of the second dataset iteration,
the “shape fit +” column shows the difference with respect to the performance without pose
correction, i.e. a base line. The classification into correct (3) and incorrect (7) was done
by manual visual inspection of the built object map after the 8th object rotation (i.e. at
the end of each dataset) and its temporal consistency during the object manipulation. The
according object maps are shown in the appendix, in Fig. B.0.8 and the following. The results
are furthermore grouped into the object performance and the object class performance.
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6.2 Object Localization

The aim of the model is to implement spatiotemporal integration of haptic sensory
information into a consistent object shape representation. For this, the model needs
to continuously localize the object, however the focus is not on the exact object lo-
calization. Therefore, the evaluation of the object localization in this section is less
detailed then the previous analysis of the mapping performance. In particular, the
object position estimate is quantitatively evaluated and the localization of the object
is used to correct the original tactile data and qualitatively visualize it.

6.2.1 Object Position Estimate

The effect of the position correction was implicitly visible in the evaluation of the
mapping in the previous section Sec. 6.1. Here, the localization of the object with re-
spect to the DPA is analysed for the large six and eight sided objects by systematically
manipulating the initial position estimate. Normally, the object position estimate is
initialized with the arithmetic mean of the first object contact positions of both fin-
gers. In order to evaluate the translation correction, the initial estimate of the object
position was systematically varied from -1.0 cm to +1.0 cm for each of the 10 datasets.
This corresponds to an translational error of up to ±25% of the object diameter (4.0
cm). The estimated position by the model is evaluated during four full rotations of
the object, i.e. until the object has turned 8 × π. For each dataset of the large six
and eight sided objects the mean position estimate across the five initializations was
computed at every step in time. Then the standard deviation all all five initializations
with respect to this computed mean position estimate is computed. This gives a mean
position estimate and the according standard deviation for each dataset, based on
five initializations with different initial object position estimates. Then the mean of
the standard deviations is computed across all five datasets of an object, again with
the according standard deviation. The mean standard deviation of the position esti-
mate with the according standard deviation of the standard deviation of the position
estimate are plotted for both objects in Fig. 6.2.1.

The results in Fig. 6.2.1 show that for all tested datasets the object position es-
timate converges. Indeed, the position estimates do not converge to the same object

Figure 6.2.1: Temporal development of the mean and standard deviation (across all datasets
of an object) of the position estimate standard deviation (across five different initial trans-
lation estimates). Blue: the large eight sided object; Green: the large six sided object.
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position trajectory across datasets (not shown). This is due to the variability of the
object position in the recorded datasets, where the object position was mechanically
constrained within a range of approximately ± 1.0cm along the distal-proximal trans-
lation axis. The other axis was not constrained, as the grasp enforced the object
position along the lateral axis. As no ground truth of the object position was tracked
during the experiments, the evaluation of the localization is limited to the analysis of
the standard deviations.

It should be noted, that the final mean standard deviation of circa 1mm roughly
corresponds to the spatial resolution of the position MT with one sampling point per
mm.

6.2.2 Pose Corrected Tactile Data

The results of the object localization by the neurodynamic model are used here to
correct the recorded tactile features from the according dataset with respect to their
location in object space. For this the last two object rotations from the exemplary
datasets from the large symmetric objects used in Sec. 6.1.1 are visualized in Fig. 6.2.2.

The raw sensory data are plotted in three variations: first the raw data is plotted
according to the predictions of the forward model. This refers to the tactile features
transformed from sensory space to object space by relying only on the pose estimates
from the forward model (object kinematics, see Sec. 3.6). These features are plotted in
the first column of Fig. 6.2.2 for three exemplary datasets. Each feature is composed of
two coloured lines: a blue line marks the estimated surface orientation with its length
determined by the EvR. A color-coded orthogonal line marks the surface normal, where
the color indicates the temporal order in which the features were recorded, starting
from teal and ending at magenta. Thus, the features of the two object rotations are
distinguishable by their color-code. The second column of the figure shows the tactile
features when the object orientation estimate is corrected by the model. The third,
right column shows the tactile features when the orientation and position corrections
of the model are regarded.

In Fig. 6.2.3 the same procedure is done for the exemplary datasets of the asym-
metric objects.

The visualization for all the datasets is given in the appendix, Sec. B. The corrected
raw data from dataset #1 show that the orientation correction in principle works
however, the slight drift in the orientation of the object representation is visible in
the imprecision of the orientation alignment of consecutive mapped surfaces. As to be
expected from the previous evaluations, the performance with dataset #4 is poor. In
the plots on the bottom row (dataset #8) of Fig. 6.2.2 the effects of the orientation and
the position correction are best visible. The localization with respect to the orientation
is (from visual inspection) precise and the localization with respect to position accounts
for the majority of the errors from the forward model. In most of the tested datasets
from the six sided object the correction of the position was only achieved to a certain
degree, as is apparent by the remaining small “bumps” at the object edges.

This limitation in position correction is visible even stronger in the data of the
asymmetric objects in Fig. 6.2.3.

It is notable, that the errors in the object position estimate responsible for the
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”bumps” in the transformed raw data (Fig. 6.2.2 and Fig. 6.2.3) are increasing with
the amplitude of the original errors. An explanation could be, that the speed of the
position correction in the model is implemented by a dynamical system and is thus
limited by its parametrization (e.g. the choice of the time constants, the number of
fields, etc.). Therefore, the correction for positional shifts may not be fast enough to
fully compensate translations of the object position in time.

In general, the object orientation correction leads to good results when the surfaces
are matched correctly. The position estimates have a robust convergence, however with
a limited precision. Together with the previous section section it is shown that the lo-
calization performance of the model is sufficient for a consistent haptic spatiotemporal
integration into a map of the object shape.
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Forward model Orientation correction Position correction

#1

#4

#8

Figure 6.2.2: Tactile features in object space from exemplary datasets: #1, #4 (large eight
sided object) and #8 (large six sided object). The left column shows the features based
on the object pose estimate from the forward model (input to the neurodynamic model).
The middle column includes the orientation correction from the model, the third column
additionally includes the position correction. All plots are in Cartesian coordinates, with
the x-axis at the bottom and the y-axis on the left. The ticks correspond to 1cm intervals.
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Forward model Orientation correction Position correction

#21

#22

#29

Figure 6.2.3: Tactile features in object space from exemplary datasets: #21, #22 (asym-
metric five edged object) and #29 (asymmetric seven edged object). The left column shows
the features based on the object pose estimate from the forward model (input to the neu-
rodynamic model). The middle column includes the orientation correction from the model,
the third column additionally includes the position correction. All plots are in Cartesian
coordinates, with the x-axis at the bottom and the y-axis on the left. The ticks correspond
to 1cm intervals.
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Discussion

In this chapter the proposed neurodynamic model will be discussed. Starting with a
discussion on a conceptual level of the model in general, it will be set into the context
of related work in the subsequent sections. Finally the scientific contribution will be
highlighted, followed by a concluding section.

7.1 The Model in General

In this section the proposed model is discussed with respect to its general properties.
Concerning the object shape representation (i.e. the map), it is rather unconven-

tional to use two maps. The motivation for a distributed object representation is partly
biologically inspired, as different brain regions have different representations of haptic
retrieved object properties (see Sec. 2.1). On the other hand, the distribution of the
object representation onto two two-dimensional maps has a computational advantage,
as a combined map would be three dimensional (in a space encoding the number of
required neurons grows exponentially with the number of dimensions). Only detected
surfaces allow for a unique localization with respect to the orientation of the object,
assuming convex objects. It is sufficient to only use the surface normal orientation for
this orientation localization, as the position along a previously mapped surface can
not be determined with certainty. Thus, a one dimensional surface orientation map
is sufficient for unique object localization with respect to the orientation. Detected
edges are spatially distinct features of two dimensional object mappings (accordingly
corners in three dimensional mappings). Therefore, only edges allow a positional lo-
calization with respect to a map, when assuming the orientation is known. As the
object orientation localization is independent of the object position localization, this
assumption is approximately true. Therefore the position localization of the object is
dependent on the orientation localization and requires a two dimensional map of pre-
viously detected edge positions. The dependency on the orientation is released if two
(ore more) features are detected simultaneously, which makes the localization unique.

These two localization mechanisms together span a three dimensional mapping
space, each localization mechanism only requires a subspace of the map. Therefore
the splitting of the map into a one dimensional and a two dimensional map is sufficient.
Then each localization is a unique localization of the feature in the according map.

Although a one dimensional surface map is in principal sufficient, the proposed
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model has a two dimensional surface map featuring the additional position angle di-
mension. This dimension is in particular relevant for an enhanced object mapping,
linking surface orientations to a spatial extension in object space and therefore encod-
ing the object boundaries. The additional position angle dimension also implements
a direct link between the surface and the edge map which is of relevance for object
shape reconstruction Considering the generalization to three dimensional space, the
hypothesis would be that three dimensional surface and edge maps could encode the
object boundaries. Both maps would be extended with the additional position angle
required for three dimensional polar coordinates.

When discussing the proposed model it should be noted that the object position
is encoded in a Gaussian activity distribution, however it is not implemented as a
dynamical system like the remaining model. This is because of the temporal discrete
readout of tactile measurements and the algorithmic implementation of the forward
model (see Sec. 3.6) which predicts a change in the object pose for every measurement.
Integrating these predictions over discrete steps in time is implemented by summing
these up and setting the mean of the Gaussian pose to the according value. Although
this implementation is not done within neural dynamics, this is more a technical issue
then a conceptual one.

Assumptions and Limitations

The processing by the model is based on several assumptions.

First, the model assumes convex objects. This is mainly reflected in the orientation
localization based on surface orientation normals, independent of the contact position.
In order to relax this assumption, the object orientation localization would additionally
require the surface position, i.e. taking into account positional information. This
would impose an bidirectional dependency, requiring the orientation for the position
and the position for the orientation estimates. To determine the consequences from
this conceptual change would require further research.

Second, the model utilizes temporal cues for estimating object curvature at contact
locations, requiring a constant manipulation speed and a rotational movement of the
fingers. In principle, this requirement could be relaxed if the tactile sensors would give
more reliable feedback of the local object curvature. Still, an irregular exploration
speed would influence the distribution of activity in the memory traces (i.e. higher
activity amplitudes for slow exploration phases). Hence, the model performance would
be dependent on the particular exploration strategy and its velocity profile. If primates
process haptic information is a related fashion, the model would predict that they
either try to keep the exploration speed constant or even execute strategies to facilitate
the feature formation in the map(s).

The model has clear limitations with respect to the generalizability. The rotation
speed of the object manipulation is restricted by the time constants τ in the model,
in particular in the MTs. For small objects with smaller surfaces the rotation speed
needs to be slower then for large objects with larger surfaces. This limitation is one
reason why the model fails to map any of the datasets of the small eight sided object,
although the rotation speed in joint space of the SDH2 is constant over all objects.
The dynamics of the model are too slow, compared to the temporal dynamics of tactile
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pattern formation. Form a biological perspective an adaptation of the time constants
is implausible as these model neurophysiological properties of the neural substrates.
Therefore, the object rotation behaviour would need to be adapted accordingly. In
addition, the object manipulation speed determining the overall input durations is also
constrained by the correction rates of the object pose. For fast object manipulations
the pose estimate cannot be sufficiently corrected as the attractor moves faster then
the state of the dynamical system implemented by the model.

This constraint with respect to the object manipulation speed is in particular
relevant concerning pauses between object grasps / contacts. For example, changing
the arm configuration to grasp the object from a different direction requires time
during which the dynamics in the model may fade out and information is lost. This is
an intrinsic problem of the model, as the dynamics is not in a self-stabilizing regime
and therefore is only input driven. The mapping of the object by the proposed model
therefore may serve as a short term spatio-temporal working memory for higher level
object representations.

Since the model does not utilize unique spatial features, the object localization will
always be ambiguous. This prevents a robust mapping of the asymmetrical objects,
as a localization with respect to the wrong feature leads to a re-mapping, i.e. an
overwrite of the existing object map.

This ambiguity could be resolved by containing multiple localization (and map)
hypothesis which would have to be resolved during the successive object exploration.
Although this approach is common in mobile robot navigation, it seems implausible
that the nervous system simultaneously tracks multiple of these localization and map-
ping hypotheses. The other possibility to resolve the ambiguity would be to compute
features with a higher complexity or to assemble several features into higher-order
features. These higher-order features could be inferred from the information in the
maps, which in principle not only hold information on where an edge or surface has
been detected. Evaluating the distances, e.g. the difference in surface normal ori-
entations between to neighbouring surfaces gives insight into the edge angle or the
degree of curvature, depending if an edge has been detected in between the surfaces.
The distance between two edges gives information about the surface length in between
these. Exploiting these informations could enhance the localization and make it less
ambiguous. These higher-order features would be of high relevance since the model as
it is proposed in this thesis implements a greedy data association. Measured features
are matched to their nearest neighbour, which is especially error prone when the object
features are not sparsely distributed in space.

Although the feature complexity in the proposed model is very low and only a
single location and map hypothesis is implemented, the model has a high recovery
rate from false mapped features. This is apparent in particular in the experiments
with the asymmetric objects, where the model recovers from an essentially random
change in object orientation due to the representation of the dataset.

The following two subsections of the discussion relate the model to research in
psychophysics and neurobiology, and to research in robotics.
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7.2 Related Work on Primates

The model implements a prior of rigid objects and uses an estimate of contact curvature
based on the shape of the tactile contact area, which is related to human haptic
perception [Hayward 2008]. However, it is well known that humans and primates
in general have access to a wide variety of haptic cues, such as texture, material
properties, compliance, weight or temperature which influence perception [Lederman &

Klatzky 2009]. As primates use all of these cues, it is difficult to differentiate on the
role of the different kinds of information. The weighting of material properties as e.g.
texture, temperature or compliance and geometric cues is known to be task dependent
[Lederman & Klatzky 1993]. However, the proposed model has only access to local
geometric cues and therefore a direct comparison to human object identification would
require psychophysical experiments with constraints on the exploratory procedure as
well as on the cutaneous perception.

In [Panday et al. 2012] the authors show that smooth surface and edge cues can
interfere and edges seem to dominate, which in turn has a negative effect on the
object orientation localization in their experiments. In the proposed model the object
orientation localization is done purely based on the surface map, which might not be
the case in primates.

Humans are capable to perform path integration of movements inferred from purely
tactile cues as shown in [Moscatelli et al. 2014]. The subjects were able to tempo-
rally integrate the movements to geometric trajectories with high accuracy. Related to
haptic object exploration this task would correspond to temporal integration of tactile
cues while exploring an object fixed in its position. However, how the human perfor-
mance changes when a simultaneous object localization has to be performed remains
unaddressed.

Presumably somewhere in the posterior parietal cortex (PPC) spatio-temporal in-
tegration of haptic information into an object shape representation is performed 2.1.
Several brain regions in the PPC have been shown to contribute in this task, as the
anterior intraparietal area (AIP) in monkeys and the intraparietal sulcus (IPS) and
supramarginal gyrus (ASM) in humans. The proposed neurodynamic model is not
intended to model a specific neural substrate in a particular brain region but is rather
a biological plausible model of the process of haptic spatiotemporal integration. Shape
representation has been shown to be encoded in the population activity of neurons in
the visual cortex (V4) [Pasupathy & Connor 2002]. The encoding of shape in neurons
of V4 is analogous to the shape coding of neurons in SII [Yau et al. 2009], which makes
the findings in [Pasupathy & Connor 2002] in particular interesting for the question of
hapic shape encoding. The neuronal responses in V4 encode for boundary features of
visually presented objects. In particular, the authors reconstructed two dimensional
population codes of angular position over curvature. This object map in V4 is related
to the object representation in the proposed model, which also uses two dimensional,
object centred maps of population activity with angular position on one of the dimen-
sions. The curvature feature in the model is discretized into two categories: surfaces
(low curvature) and edges (high curvature). The reason for this is the poor curvature
estimation capabilities with the tactile pressure sensors. However, this dicretization is
only an approximation as curvature is known to be detected and represented with a
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high precision [Louw et al. 2000]. Furthermore, in the current object representation
curved surfaces (e.g. from cylinders) are not mapped which points to the necessity
of a complete sampling of the curvature grades. Thus the proposed model only con-
tains a minimal object representation for localizing and mapping an object. Still the
shape representation of the surface map is similar to the shape representations iden-
tified in [Pasupathy & Connor 2002], as both representations encode a scale and pose
invariant object boundary. A slight difference in the proposed model is that the cur-
vature dimension (i.e. second derivative) is replaced by normal orientation (i.e. first
derivative). The authors did not use shapes without curved surfaces, i.e. flat surfaces
as in the experiments in this thesis, which makes the direct comparison of the object
representations difficult. Additionally, the object representation of the model uses
the radial position, which is known to be encoded in neurons related to haptic shape
processing but has not been explicitly verified as a population encoding jet.

7.3 Related Work in Robotics

In the following the proposed model is related to the probabilistic SLAM field of
research.

The object map in the proposed model is a fading memory of Gaussian activations.
While the Gaussian in the edge MT do not change in the variance, the variance of the
Gaussian in the surface MT depends on the according surface detection. Clear and
strong surface detections (i.e. circular tactile pressure patterns) result in sharp and
long Gaussian activity distributions, which may move in their surface normal orienta-
tion mean as the finger explores large surfaces. In contrast, pressure patterns that are
only weakly classified as surfaces will induce lower activity and thus lower amounts of
lateral inhibitory interaction, resulting in nearly circular Gaussian distributions with
lower amplitude. Hence, the activity in the MT does capture uncertainty with respect
to detected features, although not in a strict probabilistic sense. In the subsequent
matching of sensed features with the map, the strength of the activity amplitude has
an impact on how large the range for matching is.

The object localization in the model is represented by a Gaussian distribution with
uniform variance. This directly corresponds to the representation in classic probabilis-
tic models, although the distribution in the model is not altered in its variance and
thus the level of uncertainty remains fixed. Thus the representation of the object pose
in the model might be better described as a fuzzy representation.

Concerning the data association (correspondence problem) the model implements a
validation gate by constrained matching with an approximated mahalanobis distance.
This is implemented by a Gaussian interaction kernel and higher DNF input ampli-
tudes for clearer feature detection. The activity in the MT corresponds to the certainty
of the according feature in the map. Although the kernel interaction width in the DNF
is constant, the mahalanobis distance metric of the validation gate is influenced by the
activity amplitudes in the MT. In general, the matching of sensed data with the map
in the model is a greedy approach to data association with all the known drawbacks
such as its unreliability in densely populated feature regions [Bailey & Durrant-Whyte

2006]. The number of simultaneously measurable features is inherently very limited in
the case of haptic object exploration (e.g. maximally two in the proposed setup) just
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as the feature complexity computed from tactile pressure sensors. The feature com-
plexity is mainly determined by the sensor type used, thus using deformable sensors
– possibly optic tactile sensors [Kappassov et al. 2015] – might increase the feature
complexity. However, in the proposed setup the SDH2 tactile sensors were used and
thus, the imposed limit on feature complexity.

The only remaining alternative to the greedy matching is then to contain multiple
matching hypothesis, requiring a strategy for resolving these during further object
exploration. However it is unlikely, that primates contain multiple hypothesis for
the location of each contact sensation. Therefore the high error rate of the greedy
matching is taken into account in the proposed model, implying strong limitations on
the mapping capabilities of the objects manipulated. Whether the model compares to
human capabilities in this respect remains to be shown.

Concerning related wok in the mobile robotic navigation SLAM field of research,
there is in particular one closely related approach to mapping, introduced in [Li et al.

2012]. There a shunting short term memory (STM) [Grossberg 1988] is used as map
represnetation, which is closely related to the DNF and MT dynamics. The authors
evaluate their approach with a database containing laser scan measurements from a
mobile robot in an outdoor environment. The authors in [Li et al. 2012] claim, that
the STM activity is representing a confidence in the existence of the according feature
attributes and is thus a probabilistic representation of the environment. In principle,
the same line of argument can be made for the representation in the MTs of the
proposed neurodynamic model. However, in [Li et al. 2012] a scan matching algorithm
is used for localization, finding the maximum likelihood match for sensory data with
the map. In contrast, the proposed neurodynamic model implements a localization
with DNFs, which is biologically inspired and in the same framework as the mapping
(MT).

In the following, the state of the art approaches focusing on tactile SLAM shall be
briefly discussed and related to the proposed model.

The particle filter approaches to the SLAM problem are in principal unsuitable
for a purely haptics based setup, as sensory input is only available for a spatially
very constrained action outcome. Only for direct contact to the object measurements
can be made and thus noise in the particle location tends to degenerate the particle
population over time. A modification for particle filters has recently been proposed
in [Koval et al. 2013] to cope with the spatial sparsity of contact informations. However
in [Koval et al. 2013] the objects remain fixed in their position during the haptic
exploration. Nevertheless, particle filters remain a popular approach when considering
haptic SLAM scenarios.

In [Fox et al. 2012] the tactile SLAM problem is approached by using artificial
whiskers on a mobile robot with a particle filter and a occupancy grid map of a
(small) environment. The main idea is the assumption that contacts are always with
flat surfaces, hence the contact information is propagated according to its normal ori-
entation to neighbouring cells of the grid map. It should be mentioned, that the tactile
whiskers (14cm length) give contact information in a much larger range of surface dis-
tance then a pressure sensitive tactile sensor array of robotic grippers. The larger
sensory measurement range softens the problem of particle degeneration mentioned
earlier. The authors [Fox et al. 2012] demonstrate a proof of concept for a restricted
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domain, however the obtained maps are not very precise. Using contact sensors in the
proposed setup of this thesis gives the advantage of feedback with respect to the local
properties of the contact, e.g. discriminating between edges and surfaces and in par-
ticular a precise contact location. The usage of the occupancy map in [Fox et al. 2012]
is in principal comparable to the map contained in the surface MT of the proposed
model. In general occupancy grids are a method for clustered storage of raw sensory
data, in particular the contact positions. However, as [Fox et al. 2012] include the
assumption of contacts with surfaces and fuse Gaussian “blobs” with large variance in
the estimated surface orientation direction into the grid map, the map has a similar
information content as the surface MT in the proposed neurodynamic model (despite
different coordinate systems and the fading memory). However, the distinction of an
edge and surface map gives the neurodynamic model an advantage. This is in particu-
lar true, as a surface map for itself is suboptimal for positional localization when only
one surface can be detected at a time.

Recently there have been some publications that claim to solve haptic SLAM,
which are reviewed in the following. In [Zhang et al. 2013] the authors claim to
solve the haptic SLAM problem with a dynamic Bayesian approach. However, in
their evaluation they perform two distinct experiments: a mapping task with fixed
object location and a localization task with a known map. In the mapping task
the object is one dimensional and features two distinct roughness types which can
be directly sensed. The localization task featured a two dimensional triangle object
with an intrinsic random walk motion which was “grasped” by two planar tactile
surfaces. Both experiments were carried out in simulations. Since no experiment with
simultaneous localization and mapping is performed, the authors do not demonstrate
a proof of solving a haptic SLAM problem.

In [Yu et al. 2015] the authors claim to solve the haptic SLAM problem by opti-
mizing a parametric polygon object model with respect to the action trajectory and
the according sensory measurements. The simulated experiments consider the planar
pushing of a two dimensional quadratic object by a probe. The probe implements a
contour following exploratory behaviour whereby the object is moved. The movement
kinematics are known and contact position and surface orientation are measured. One
of the problems here is that the noise seems to be induced only in the observation and
motion models (i.e. the motion prediction and sensory measurements) but not in the
simulated state (i.e. the actual pose) of the object. As they include the physical model
of the simulation into the optimization, the SLAM problem is degenerated. This is
also visible in their results, where the errors of the estimated shape rise to chance
level (i.e. a trivial solution) when the physical model is excluded. Furthermore no
results for the simultaneous application of noise in the motion and observation models
are presented, thus a proof of concept remains to be demonstrated as in [Zhang et al.

2013].

In [Behbahani et al. 2015] the authors claim to solve a haptic SLAM problem with a
grid map and a standard particle filter approach. In their simulated experiment a cube
is probed at random locations resulting in single contact position features. However
the authors have a fixed object pose and only add a Gaussian noise term to the true
contact position in every step. This does not lead to a SLAM problem, as there is no
drift in the object pose estimate and the performance of their particle filter approach
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could probably be matched by temporal averaging of the sensory information. Hence,
the authors do not proof to solve a SLAM problem.

These publications show that the problem of haptic SLAM is still an open research
question in robotics, as there are in particular very few publications featuring experi-
ments with real robots. The pitfalls in simulations are the artificial induction of noise
which is typically Gaussian and often times added to an insufficient number of sys-
tem variables. Furthermore perfect predictions with superimposed Gaussian noise are
not a good model for the complexity of error sources in interactions with real world
objects.

The state of the art in haptic SLAM also indicates that the necessity of solutions
to haptic SLAM seems not to be strong enough to motivate a large amount of research
on this topic. This might be to the fact that in many robotic object manipulation
setups a variety of sensors are available, including vision. As vision is frequently used
for object localization, the haptic SLAM problem may be circumvented. However, if
this will be the case as robotic systems go beyond controlled lab experiments remains
to to be seen.

7.4 Scientific Contribution

The first scientific contribution of this thesis is on a conceptual level, understanding
the problem that the nervous system is confronted with. Here the contribution is to
qualitatively distinguish problem complexities in haptic object exploration into two
classes. The first problem class is exploring object shape when the object can be
directly localized with respect to the body, e.g. which are fixed in their location or are
sustained with a stable grasp during exploration. This includes bi-manual exploration
were one of the hands holds the object without changing the grasp with respect to the
object, while and the other hand explores the object shape. In this case the location
of the object is known at every point in time, i.e. can be directly measured from
the joint angles. Although the measurements of the location may have superimposed
measurement noise, the localization error in every point in time is independent of past
measurements. Thus the first class of object shape exploration is a pure mapping
problem. As soon as the object pose with respect to the hand holding the object
changes the problem becomes a SLAM problem, i.e. falls into a second class. This may
be the case when e.g. re-grasping the object for further exploration or object slippage
due to an unstable grasp. The problem even becomes a SLAM problem, when the
object is passed to the other hand while maintaining the object with a stable grasp at
all times. Then the object location must be inferred by temporal integration of past
localization estimates. The error of this integrated localization estimate will impose a
systematic error in the mapping of all successive haptic object shape features, if not
corrected. Hence, the second class of problems qualitatively differs from the first in that
a simultaneous localization and mapping have to be performed. To my knowledge, this
conceptual difference in the underlying haptic exploration problems not jet considered
in psychophysical and neurobiological experimental setups. This distinction of haptic
object shape exploration into a SLAM problem and a simpler mapping problem is
relevant for future experimental research.

The second scientific contribution is the development of a neural, dynamic process
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model of the haptic spatiotemporal integration. The model is based on principles of
neural computation and takes into account the current state of the art of haptic shape
processing by the primate nervous system. From a theoretical viewpoint the proposed
model has clear limitations. It implements a greedy data association, tracks only a
single location and map hypothesis and does not explicitly represent and compute with
probabilities. Nevertheless, the model is capable to perform spatiotemporal integration
of haptic information into consistent object maps in robotic experiments. Furthermore,
the model is capable to perform this in an autonomous, unsupervised and incremental
fashion with no distinction of phases like data acquisition, training and exploitation.
The proposed model has implications which lead to further research questions.

From neurobiological perspective it would be interesting to analyse whether there
are object boundary maps encoding positional radius and surface normal orientation
in an population encoding similar to the ones found in the visual cortex [Pasupathy &

Connor 2002]. Furthermore, a question would be to what extent humans are capable
to build an object shape representation from haptics when the object needs to be
localized during object manipulation for exploration. The underlying question is the
one of how robust the mapping process is with respect to errors in the localization,
e.g. changes in the object location during the release of an object for re-grasping.
A further question would be how complex and detailed the shape representation in
humans is on the geometric level.

Altogether, this thesis contributes to a deeper understanding of the problem the
nervous system solves and gives an impression of the capabilities of a neurodynamic
approach to the haptic SLAM problem.

In a side-track of this thesis the autonomous adaptation of the gain and resting
level of a dynamic neural field with intrinsic plasticity is introduced. This ensures
that the DNF is always in an parameter regime where it is highly sensitive to input,
i.e. regularly passes through the detection instability. This adaptation is in particular
relevant when the input mean or variance may have a drift over time which could lead
to a degeneration of the input encoding and processing in the DNF. Thus, IP prevents
an over-saturation and input deprivation of the DNF in the presence of drifts in the
first and second order statistical moments of the input.

7.5 Conclusion

This thesis focuses on the problem of haptic spatiotemporal integration and how in
particular the primate nervous system could solve it. Although there is neurobiolog-
ical and psychophysical research on haptic shape processing, the focus there is often
on static processing of (possibly moving) stimuli. The first major contribution of
this thesis is to analyse the underlying problem on a conceptual level and to make
an explicit distinction between a pure mapping and a simultaneous localization and
mapping problem (SLAM). This distinction is relevant for the transfer and general-
ization of experimental research results as the problems differ in their complexities.
Nevertheless, past research has revealed several types of haptic features and their rep-
resentations, as well as processing stages and multimodal interactions. Key brain areas
haven been identified and theories on the processing pathways and hierarchies are elab-
orate. However, there is hardly any knowledge on how spatiotemporal integration of
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haptic sensations during object manipulations is performed by the primate nervous
system. To contribute to this research question, in this thesis a neurodynamic model
is proposed as an exemplary approach to solving the problem of haptic spatiotemporal
integration in a SLAM scenario.

The neurodynamic model considers the current knowledge of haptic shape process-
ing in primates and is limited to computational principles from the nervous system.
The process of haptic spatiotemporal integration is implemented as a dynamical sys-
tem, which is in particular suited to model temporal information processing. The
object shape representation is modelled within two feature maps encoding the object
boundaries, a surface and an edge map. Similar maps have been identified in the visual
cortex, which is known to have a shape encoding related to the haptic encoding in the
secondary somatosensory cortex.

In general, the proposed model is confronted with a task of high intrinsic com-
plexity, as discussed in the introduction Sec. 1.2. The capabilities and limits of the
proposed model were explored and discussed in the context of the SLAM problem. In
experiments with data from a robotic hand the model was able to build object maps
fast (within ≈ four object rotations) and with a robust recovery from erroneously
mapped object areas. For the datasets where the model failed to build a consistent
map, this often lead to a strong drift of the object map orientation as the object is
continuously remapped. The major limitations on the mapping performance are due
to the implementation of a greedy data association and a single hypothesis for the
location and map. Thus the model can only perform a localization within a local
parameter regime (i.e. rotation and translation), making it prone to local minima. In
addition, there is the haptic specific problem of low numbers of simultaneous measur-
able features form different object locations and the sensor specific limitation on the
complexity of tactile features. In combination these lead to a restricted localization
capability, limiting the object shape mapping to regimes with moderate errors in the
object pose predictions.

So what is this model good for? In a robotic scenario, the object shape representa-
tion in the proposed model could in principle be utilized for improving grasp precision
an object manipulation, as it is encoded in a metric map. Furthermore, metric maps
could also be used for predicting tactile features when combined with a body model.
However, the main value of the model is the insight into the problem structure of hap-
tic spatiotemporal integration and its possible solution. The model has implications
which may be tested to gain further insights into the capabilities and mechanisms of
haptic processing in the primate nervous system, discussed in the previous section
Sec. 7.4.
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[Azañón et al. 2010] Azañón, E., Longo, M. R., Soto-Faraco, S., & Haggard, P. (2010).
The posterior parietal cortex remaps touch into external space. Current Biology, 20(14),
1304–1309.

[Bailey & Durrant-Whyte 2006] Bailey, T. & Durrant-Whyte, H. (2006). Simultaneous
localization and mapping (SLAM): Part II . Robotics & Automation Magazine, IEEE,
13(3), 108–117.

[Bailey et al. 2006] Bailey, T., Upcroft, B., & Durrant-Whyte, H. (2006). Validation gating
for non-linear non-Gaussian target tracking . In 2006 9th International Conference on
Information Fusion, (pp. 1–6). IEEE.

[Bar-Shalom 1987] Bar-Shalom, Y. (1987). Tracking and data association: Academic Press
Professional, Inc.

109



CHAPTER 8. BIBLIOGRAPHY

[Behbahani et al. 2015] Behbahani, F. M., Taunton, R., Thomik, A. A., & Faisal, A. A.
(2015). Haptic SLAM for context-aware robotic hand prosthetics-simultaneous inference
of hand pose and object shape using particle filters. In Neural Engineering (NER), 2015
7th International IEEE/EMBS Conference on, (pp. 719–722). IEEE.

[Bierbaum et al. 2008] Bierbaum, A., Gubarev, I., & Dillmann, R. (2008). Robust shape
recovery for sparse contact location and normal data from haptic exploration. In 2008
IEEE/RSJ International Conference on Intelligent Robots and Systems, (pp. 3200–3205).
IEEE.

[Bodeg̊ard et al. 2001] Bodeg̊ard, A., Geyer, S., Grefkes, C., Zilles, K., & Roland, P. E.
(2001). Hierarchical processing of tactile shape in the human brain. Neuron, 31(2), 317–
328.

[Boedecker et al. 2009a] Boedecker, J., Obst, O., Mayer, N., & Asada, M. (2009a). Initial-
ization and self-organized optimization of recurrent neural network connectivity . HFSP
journal, 3(5), 340–349.

[Boedecker et al. 2009b] Boedecker, J., Obst, O., Mayer, N., & Asada, M. (2009b). Studies
on reservoir initialization and dynamics shaping in echo state networks. In Proceedings of
the European Symposium on Neural Networks (ESANN).

[Bolognini et al. 2010] Bolognini, N., Papagno, C., Moroni, D., & Maravita, A. (2010).
Tactile temporal processing in the auditory cortex . Journal of cognitive neuroscience,
22(6), 1201–1211.
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Appendix: DNF with IP

the plots from the DNF IP with high initial bias
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APPENDIX A. APPENDIX: DNF WITH IP
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Figure A.0.1: IP in a DNF with initial high bias. Top, left three rows show input and
output distribution for IP with NG. The top three rows on the right show the same plot
for IP without NG. The bottom three rows show the parameter adaptation and input-
output correlation for both procedures. From the 107th minute on, the converged parameter
adaptation for IP with NG is frozen. See text for further description.
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Appendix B

Appendix: Neurodynamic Model

In this section of the appendix all the results of the model with respect to the recorded
datasets are shown. This is done for the sake of completeness and because quantitative
measures in this thesis only capture aspects of the mapped object shape. In this section
the individual performance is qualitatively shown. For the large six and eight sided objects
the results are compared to the performance without pose corrections from the model. This
comparison is omitted for all other results as it is not in particular relevant for rating the
mapping performance.

Object Mapping

Surface MT Development Over Time

The following figures show the MT development during the twice iteration of the datasets,
for all recorded datasets. The activity in the two dimensional MT is projected to the surface
normal orientation dimension by summing up the activity along the position angle dimension.
This projected activity is plotted on the y-axis over time on the x-axis.
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APPENDIX B. APPENDIX: NEURODYNAMIC MODEL

Dataset #1 Dataset #2 Dataset #3

MT Orientation - Normal Projection

1 2 3 4 5 6 7 8

Object Rotations [#]

0  

90 

180

270

360

N
o

rm
a

l 
[d

e
g

]

MT Orientation - Normal Projection

1 2 3 4 5 6 7 8

Object Rotations [#]

0  

90 

180

270

360

N
o

rm
a

l 
[d

e
g

]

MT Orientation - Normal Projection

1 2 3 4 5 6 7 8

Object Rotations [#]

0  

90 

180

270

360

N
o

rm
a

l 
[d

e
g

]

MT Orientation - Normal Projection

1 2 3 4 5 6 7 8

Object Rotations [#]

0  

90 

180

270

360

N
o

rm
a

l 
[d

e
g

]

MT Orientation - Normal Projection

1 2 3 4 5 6 7 8

Object Rotations [#]

0  

90 

180

270

360

N
o

rm
a

l 
[d

e
g

]

MT Orientation - Normal Projection

1 2 3 4 5 6 7 8

Object Rotations [#]

0  

90 

180

270

360

N
o

rm
a

l 
[d

e
g

]

Dataset #4 Dataset #5

MT Orientation - Normal Projection

1 2 3 4 5 6 7 8

Object Rotations [#]

0  

90 

180

270

360

N
o

rm
a

l 
[d

e
g

]

MT Orientation - Normal Projection

1 2 3 4 5 6 7 8

Object Rotations [#]

0  

90 

180

270

360

N
o

rm
a

l 
[d

e
g

]

MT Orientation - Normal Projection

1 2 3 4 5 6 7 8

Object Rotations [#]

0  

90 

180

270

360

N
o

rm
a

l 
[d

e
g

]

MT Orientation - Normal Projection

1 2 3 4 5 6 7 8

Object Rotations [#]

0  

90 

180

270

360

N
o

rm
a

l 
[d

e
g

]

Figure B.0.1: The orientation MT for all datasets of the large eight sided object. The plots
show the temporal developement of the MT, projected to the normal orientation dimension,
with the number of full object rotations (i.e. time) on the x axis. The top row shows the
results of the model, while the bottom row shows the results when the correction feedback
of the model is deactivated, i.e. purely forward estimates of the object dynamics are used.
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Figure B.0.2: The orientation MT for all datasets of the large six sided object. The plots
show the temporal developement of the MT, projected to the normal orientation dimension,
with the number of full object rotations (i.e. time) on the x axis. The top row shows the
results of the model, while the bottom row shows the results when the correction feedback
of the model is deactivated, i.e. purely forward estimates of the object dynamics are used.
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Figure B.0.3: The orientation MT for all datasets of the small eight sided object. For
description see caption of Fig. B.0.1.

124



Dataset #16 Dataset #17 Dataset #18

MT Orientation - Normal Projection

1 2 3 4 5 6 7 8

Object Rotations [#]

0  

90 

180

270

360

N
o

rm
a

l 
[d

e
g

]

MT Orientation - Normal Projection

1 2 3 4 5 6 7 8

Object Rotations [#]

0  

90 

180

270

360

N
o

rm
a

l 
[d

e
g

]

MT Orientation - Normal Projection

1 2 3 4 5 6 7 8

Object Rotations [#]

0  

90 

180

270

360

N
o

rm
a

l 
[d

e
g

]

MT Orientation - Normal Projection

1 2 3 4 5 6 7 8

Object Rotations [#]

0  

90 

180

270

360

N
o

rm
a

l 
[d

e
g

]

MT Orientation - Normal Projection

1 2 3 4 5 6 7 8

Object Rotations [#]

0  

90 

180

270

360

N
o

rm
a

l 
[d

e
g

]

MT Orientation - Normal Projection

1 2 3 4 5 6 7 8

Object Rotations [#]

0  

90 

180

270

360

N
o

rm
a

l 
[d

e
g

]

Dataset #19 Dataset #20

MT Orientation - Normal Projection

1 2 3 4 5 6 7 8

Object Rotations [#]

0  

90 

180

270

360

N
o

rm
a

l 
[d

e
g

]

MT Orientation - Normal Projection

1 2 3 4 5 6 7 8

Object Rotations [#]

0  

90 

180

270

360

N
o

rm
a

l 
[d

e
g

]

MT Orientation - Normal Projection

1 2 3 4 5 6 7 8

Object Rotations [#]

0  

90 

180

270

360

N
o

rm
a

l 
[d

e
g

]

MT Orientation - Normal Projection

1 2 3 4 5 6 7 8

Object Rotations [#]

0  

90 

180

270

360

N
o

rm
a

l 
[d

e
g

]

Figure B.0.4: The orientation MT for all datasets of the small six sided object. For
description see caption of Fig. B.0.1.
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Figure B.0.5: The orientation MT for all datasets of the asymmetric five edged object.
For description see caption of Fig. B.0.1.
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Figure B.0.6: The orientation MT for all datasets of the asymmetric seven edged ob-
ject.For description see caption of Fig. B.0.1.
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Number of detected surfaces without pose correction

Here the quantitative evaluation of the number of detected surfaces without any pose cor-
rection for the datasets of the small symmetric and the large asymmetric objects is shown.

Uncorrected Datasets

Figure B.0.7: The mean (blue cross) number of detected surfaces and its standard deviation
(error bars) of the model without pose correction for the according datasets. The red circle
is the number of detected surfaces at the end of the trial. Only the last iteration of the
dataset is regarded.
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Object Maps

In the following figures the object maps are shown at the end of the processing of a dataset
by the model. For this the activation in the surface MT and edge MT are transformed into
Cartesian coordinates and plotted. Note that the position radius is missing in the surface
MT, it is set to a fixed value for this visualization. On the left of each figure the obtained
object map is shown for the according dataset. Activity from the edge MT is indicated by
dots with increasing size and intensity for higher activity in the MT. Activity of the surface
MT is indicated by lines with increasing line width and intensity for higher activity in the
MT. Additionally the surface normal orientation of activity peaks with more than 1/4 of the
maximum amplitude in the surface MT are indicated by red dots. On the right the according
MT activity is shown from the surface MT (top) and the edge MT (bottom). The surface
MT has an additional blue overlay showing the summed activity of the projected surface
MT.
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Figure B.0.8: The object representations after the second iteration of datasets #1 (Top) and
#2 (Bottom). See Sec. 6.1 for further details.
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Figure B.0.9: The object representations after the second iteration of datasets #3 (Top) and
#4 (Bottom). See Sec. 6.1 for further details.

131



APPENDIX B. APPENDIX: NEURODYNAMIC MODEL

Surface MT

90 180 270 360

normal orientation [deg]

0  

90 

180

270

360

p
o

s
it
io

n
 a

n
g

le
 [

d
e

g
]

Edge MT

10 20 30 40 50

position radius [mm]

0  

90 

180

270

360

p
o

s
it
io

n
 a

n
g

le
 [

d
e

g
]

-20 -10 0 10 20

x [mm]

-30

-20

-10

0

10

20

30

y
 [

m
m

]

#5 Large eight sided

Surface MT

90 180 270 360

normal orientation [deg]

0  

90 

180

270

360

p
o

s
it
io

n
 a

n
g

le
 [

d
e

g
]

Edge MT

10 20 30 40 50

position radius [mm]

0  

90 

180

270

360

p
o

s
it
io

n
 a

n
g

le
 [

d
e

g
]

-20 -10 0 10 20

x [mm]

-30

-20

-10

0

10

20

30

y
 [

m
m

]

#6 Large six sided

Figure B.0.10: The object representations after the second iteration of datasets #5 of the
eight sided object (Top) and #6 from the six sided object (Bottom). See Sec. 6.1 for further
details.
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Figure B.0.11: The object representations after the second iteration of datasets #7 (Top)
and #8 (Bottom). See Sec. 6.1 for further details.
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Figure B.0.12: The object representations after the second iteration of datasets #9 (Top)
and #10 (Bottom). See Sec. 6.1 for further details.
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Figure B.0.13: The object representations after the second iteration of datasets #11 (Top)
and #12 (Bottom). See Sec. 6.1 for further details.
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#13 Small eight sided

#14 Small eight sided

Figure B.0.14: The object representations after the second iteration of datasets #13 (Top)
and #14 (Bottom). See Sec. 6.1 for further details.
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#15 Small eight sided
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Figure B.0.15: The object representations after the second iteration of datasets #15 of the
small eight sided object (Top) and #16 from the small six sided object (Bottom). See Sec. 6.1
for further details.
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Figure B.0.16: The object representations after the second iteration of datasets #17 (Top)
and #18 (Bottom). See Sec. 6.1 for further details.
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Figure B.0.17: The object representations after the second iteration of datasets #19 (Top)
and #20 (Bottom). See Sec. 6.1 for further details.
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#21 Asymmetric five edged

#22 Asymmetric five edged

Figure B.0.18: The object representations after the second iteration of datasets #21 (Top)
and #22 (Bottom). See Sec. 6.1 for further details.
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#23 Asymmetric five edged

#24 Asymmetric five edged

Figure B.0.19: The object representations after the second iteration of datasets #23 (Top)
and #24 (Bottom). See Sec. 6.1 for further details.
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#25 Asymmetric five edged

#26 Asymmetric seven edged

Figure B.0.20: The object representations after the second iteration of datasets #25 of the
eight sided object (Top) and #26 from the six sided object (Bottom). See Sec. 6.1 for further
details.
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#27 Asymmetric seven edged

#28 Asymmetric seven edged

Figure B.0.21: The object representations after the second iteration of datasets #27 (Top)
and #28 (Bottom). See Sec. 6.1 for further details.
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#29 Asymmetric seven edged

#30 Asymmetric seven edged

Figure B.0.22: The object representations after the second iteration of datasets #29 (Top)
and #30 (Bottom). See Sec. 6.1 for further details.
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Object Localization

In the following plots the raw haptic data recorded from the object manipulations are shown
for every dataset. On the right column the raw data based on the predictions from the
forward model are plotted. In the middle column the same data are plotted with a corrected
object orientation estimate by the proposed model. In the third column the object position
is additionally corrected in its DPA by the model.
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#1

#2

#3

#4

#5

Figure B.0.23: Tactile features in object space from the datasets of the large eight sided
object (row-wise). The first column shows the features based on the object pose estimate
from the forward model. The middle column includes the orientation correction from the
model, the third column additionally includes the position correction.
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#6

#7

#8

#9

#10

Figure B.0.24: Tactile features in object space from the datasets of the large six sided
object (row-wise). See Fig. B.0.23 for more information (above).
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#11

#12

#13

#14

#15

Figure B.0.25: Tactile features in object space from the datasets of the small eight sided
object (row-wise). See Fig. B.0.23 for more information.
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#20

Figure B.0.26: Tactile features in object space from the datasets of the small six sided
object (row-wise). See Fig. B.0.23 for more information (above).
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#21

#22

#23

#24

#25

Figure B.0.27: Tactile features in object space from the datasets of the asymmetric five
edged object (row-wise). See Fig. B.0.23 for more information.
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#26
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#30

Figure B.0.28: Tactile features in object space from the datasets of the asymmetric seven
edged object (row-wise). See Fig. B.0.23 for more information.
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