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Kurzfassung in deutscher Sprache

Ein wesentliches Merkmal der menschlichen visuellen Wahrnehmung ist das
aktive Sehen, also das Erfassen der visuellen Umwelt durch Abfolgen ziel-
gerichteter Augenbewegungen. Die Steuerung dieses Prozesses und die In-
terpretation der so gewonnenen sensorischen Daten stellt spezifische Anfor-
derungen an das Nervensystem. Wesentliche Signaturen des aktiven Sehens,
insbesondere die sequentielle Fokussierung der Aufmerksamkeit auf einzelne
Elemente, zeigen sich zudem auch in kognitiven Prozessen.

In dieser Arbeit stelle ich eine Reihe von neurodynamischen Modellen
vor, die aufeinander aufbauend verschiedene Aspekte des aktiven Sehens
behandeln. Zunächst untersuche ich die neuronale Steuerung zielgerichteter
Augenbewegungen sowie die Verarbeitung der visuellen Information zur Er-
zeugung blickrichtungsinvarianter räumlicher Repräsentationen. Dieselben
neuronalen Mechanismen nutze ich zur Entwicklung kognitiver Modelle des
menschlichen Arbeitsgedächtnisses für visuelle Szenen sowie der Verankerung
räumlicher Sprache in der visuellen Wahrnehmung.

Die theoretische Grundlage für diese Modelle ist die Theorie Dynami-
scher Neuronaler Felder. Diese Theorie beschreibt neuronale Prozesse auf
einer mittleren Abstraktionsebene, die einerseits die grundlegenden Funkti-
onsweisen biologischer neuronaler Systeme widerspiegelt, andererseits aber
auch eine direkte Verbindung zu beobachtbarem Verhalten herstellt. Dazu
wird die zeitlich kontinuierliche Entwicklung von Aktivitätsverteilungen auf
der Ebene neuronaler Populationen durch Integro-Differentialgleichungen
beschrieben. Neuronale Felder können unmittelbar an visuelle Eingänge an-
gekoppelt werden, wie ich in Teilen der Arbeit durch Demonstrationen auf
Videobildern zeige.

Der Übergang von reaktivem sensomotorischen Verhalten zu kognitiven
Prozessen in den neurodynamischen Modellen wirft spezifische theoretische
Probleme auf. Zum einen müssen in den parallel und kontinuierlich arbei-
tenden Systemen Abfolgen von diskreten kognitiven Operationen erzeugt
werden. Dies wird unter Ausnutzung von Attraktorzuständen in der Dy-
namik der neuronalen Felder erreicht. Diese erlauben es, die kontinuierliche
Veränderung der Aktivitätsmuster in geordnete Abfolgen von Zustandsüber-
gängen zu gliedern. Zum anderen müssen aus dem komplexen Fluss visueller
Informationen spezifische Objekte als Argumente für die kognitiven Opera-
tionen ausgewählt werden. Hierzu werden Attraktorzustände in räumlichen
Repräsentationen verwendet, welche die Position eines ausgewählten Objek-
tes wiedergeben und es ermöglichen, auf weitere Eigenschaften des Objektes
zuzugreifen. Die Modelle sind so in der Lage, komplexe kognitive Operatio-
nen flexibel auszuführen, und sie erklären zahlreiche experimentell beobach-
tete Charakteristika menschlichen Verhaltens im Bereich des aktiven Sehens.
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Chapter 1

Introduction

Visual perception provides us with a detailed sense of the space around us
and informs us where we are in this space. It allows us to identify objects, to
judge their structure and perceive their motions. And it guides our actions,
when we grasp a cup, kick a ball, or duck under a branch hanging in our
way. Due to its vital role in human perception and action, the visual system
and the neural mechanisms that are involved in the processing of visual
information are in the focus of research in neuroscience and psychology, and
large efforts are aimed at reproducing the capabilities of human vision in
artificial systems.

One central aspect of the biological visual system that is often given little
consideration in computer vision approaches is that vision in humans is a
highly active process. We do not just passively see, we look. We select points
of interest in our surrounding and direct our gaze at them, constantly making
eye and head movements to inspect different parts of a scene. Humans can
shift their fixation point several times per second. Yet we are most of the
time completely unaware of this behavior and how it shapes our perception.
Only when we actively pay attention to our eye movements or intentionally
suppress them do we get an idea of how important they are for the way we
see our environment.

The most obvious reason that we employ such frequent eye movements
lies in the structure of the retinas in our eyes. The receptor cells that form
the basis for high-acuity shape and color perception are clustered in the cen-
tral region of the retina, the fovea, and are sparse in the periphery. As a
result, our ability to perceive shapes and colors outside of the foveal region
is quite limited, much more than we are typically aware of. When reading
a text like this, we can reliably decipher only a handful of letters to the left
and right of our current fixation point without moving the eyes. And our
ability to discriminate colors decreases drastically for objects at a visual an-
gle of greater than 30◦ from the fixation point. Nonetheless, our subjective
impression when viewing a scene is not that of a sequence of disconnected
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images, each with just a small window of the scene clearly perceivable. In-
stead, our typical impression is that we constantly perceive a fixed visual
scene surrounding us, colorful and highly detailed everywhere.

Active vision creates significant challenges for the processing of visual
information, and it structures to a significant extent the neural mechanisms
involved in visual perception. Many visual areas of the brain are tightly
coupled to motor areas involved in the control of gaze shifts, so that behav-
iorally relevant parts of the environment can be selected as target for an eye
movement. Visual representations of space have to take into account the
variable gaze direction, and mechanisms for flexible reference frame trans-
formations are needed to determine and keep track of object locations in
the world. And finally, special processes are needed to form a coherent in-
ternal representation of the visual surrounding from a series of fixations of
single objects—although this internal representation is more limited in many
respects than we are typically aware of, as I will discuss in a later chapter.

But importantly, it does not seem to be only the limited region of high
acuity in the retina that necessitates this kind of processing. In experiments
on visual scene perception and memory, participants are sometimes required
to view a limited array of simple stimuli without making any eye movements,
with all stimuli close enough to a central fixation point that their details can
be perceived simultaneously. Even under these conditions, the participants
typically inspect the items one by one (Vogel et al., 2006). They do this
without actually making eye movements to fixate them, but by focusing one
item at a time through spatial attention.

It has been proposed that the key reason for this sequential selection of
visual items even in the absence of eye movements lies in the binding prob-
lem, more concretely in the problem of feature binding. The problem arises
from the fact that specialized populations of neurons represent different vi-
sual features. There are neural populations whose activity reflects stimulus
colors, others represent stimulus shape or visual motion. The question arises
now how in such a distributed system, the features that belong to different
objects can be kept apart, while the features in different feature dimensions
(such as color and shape) that belong to the same object can be grouped
together. Assume, for instance, that you are shown a simple stimulus display
containing a red circle and a green square. This will induce activity in the
neural populations for color that indicate the presence of red and green in
the visual scene, and activity in shape-sensitive neural populations indicat-
ing the presence of a square and a circle. But how can the neural system
determine from such activity patterns that there is in fact a red circle and a
green square present, rather than a green circle and a red square?

One approach to deal with this problem is a sequential and selective pro-
cessing of visual items, as it is achieved by individual fixations or attentional
selection. If each feature representation contains only the single feature
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value of the currently selected item, the binding problem can be avoided.
This has been prominently suggested in the Feature Integration Theory of
visual attention (Treisman and Gelade, 1980). The theory states that while
individual features can be processed in parallel (e.g., in visual search tasks
for a green item among red ones), the binding between different features
requires focused attention on a single item (e.g., in a visual search for a red
horizontal line among red vertical and green horizontal lines). The theory is
supported by a host of evidence from visual search, change detection, and
image segregation tasks (Treisman, 1988).

The feature integration theory describes how the conjunctions of features
that make up a visual item can be perceived in a bound form, but it does
not explain how these bound features for multiple objects can be stored
simultaneously in working memory to create an internal representation of a
visual scene. An influential extension to address this question was proposed
by Kahneman et al. (1992) in the form of the Object File Theory. This theory
proposes that when an item in a visual scene is first attended, an object file
is created in visual working memory. In this object file, the perceived visual
features of the object are stored in a bound fashion, as well as more abstract
information such as an object category. The object file then remains linked
to one object in a scene over movements of the object and changes in gaze
direction. It may be addressed via the object location when the object is
attended again, which acts as a kind of pointer to the object file, and new
features may be added or present features updated based on new sensory
input. To account for the severe limitations in human scene memory, it is
proposed that only a fixed number of object files—between three and five—
can be maintained at a time in working memory, and the content of older
object files is lost when this limit is reached.

A related idea was presented by Pylyshyn (2001, 2007), whose work
focused on visual tracking and related tasks. He addressed the problem
of object individuation, asking for instance how humans can keep track of
an object and think or communicate about it before the object is identified,
or how we perceive that something still remains the same object when it
changes its locations or even its visual features. Pylyshyn suggests that a
limited number of visual indexes are maintained by the visual system, which
act as pointers to objects in the world. These pointers remain the same
even when the object changes, and thereby provide individuation and the
perception of persistent object identities.

This idea of pointers is taken further by Ballard et al. (1997), who inter-
pret the visual fixation of an object as deictic strategy, a form of pointing out
an object for cognitive operations. As a very simple example, the fixation of
an object with the eyes can mark it as the target of a reaching movement.
This is proposed as a general concept for both motor and cognitive behav-
iors, directly likened to the use of pointers in computer programming. The
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role of the fixation can also be taken by spatial attention, and it is proposed
that a limited number of such pointers can be held in working memory. Bal-
lard et al. (1997) claim that “The concept of pointers changes the conceptual
focus of computation from continuous to discrete processing.” The pointers
are suggested to be used in “cognitive programs” to solve the problem of
variable binding, in that they provide the targets for elementary cognitive
operations by linking to content in cortical representations. By using such
pointers, the cognitive program can be made much more general and flexible
than if the targets of the operations would have to be provided explicitly.

All of these cognitive theories are formulated using analogies from com-
puter programming, referring to files and pointers and cognitive programs.
But critically, these concepts cannot easily be transferred to neural systems.
Files and pointers require an addressable, general-purpose memory structure.
Neural representations, however, can only communicate with each other via
the synaptic connections between them. They have no abstract addresses,
and their connection patterns define their functional role—determining, for
instance, what content can be retained in a specific neural working memory
representation. It is therefore unclear how a pointer, which provides access
to different representations at different times, could be implemented in such
a system. Moreover, Object File Theory does not specify how the problem
of feature binding is to be solved for the working memory representations
of objects, if different features are still represented in separate neural pop-
ulations. And finally, many of these theories require ordered sequences of
operations (most prominently in the cognitive programs of Ballard et al.),
without specifying how these sequences can arise in a biological neural sys-
tem that is structurally set up to operate entirely in parallel.

In this thesis, I aim to overcome this discrepancy between cognitive mod-
els and neurophysiology. The approach that I use is the formulation of neu-
rodynamic process models, based on the Dynamic Field Theory. In this
theoretical framework, neural activity at the level of populations of neurons
is described through Dynamic Neural Fields (DNFs), continuous distribu-
tions of activation that are defined over a space of behavioral variables. The
change of these activation distributions over time is specified by a set of
differential equations, which describe the effects of external stimulation and
lateral interactions. Particular emphasis is put on the analysis of stable
states in the field dynamics that arise due to the lateral interactions, and of
the instabilities as transitions between these stable states. These stability
properties are critical to support robust perceptual representations, deci-
sion making, and working memory in DNF models, and are the basis for
autonomous behavior generation.

The DNF models constitute neurally plausible, integrated dynamical sys-
tems that do not employ abstract concepts like files which can hold arbitrary
information. They operate in a continuous and inherently parallel fashion,
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and all interactions within and between DNFs are mediated by fixed exci-
tatory and inhibitory projections, consistent with synaptic connections in
the neural system. These projections implement all operations within the
DNF model, from the processing of sensory input to the generation of overt
behavior. Neural representations over different feature spaces are modeled
by separate DNFs, so that the neurodynamic models face the same types of
binding problems as the neural system.

With this type of model, I will address several core problems from the
field of active vision, and account for human performance in a variety of
tasks. I will present four concrete DNF models. The first two address
more elementary neural mechanisms, whereas the later two models combine
these mechanisms to generate more complex cognitive behaviors. The first
model I will describe addresses the interactions between spatial and surface
feature information in early visual processing, and it introduces the core
problem of feature binding as well as a first part of a solution. Concretely,
the model aims to explain recent experimental findings on the effects of
holding a color in working memory on the selection of target locations for
eye movements (Hollingworth et al., 2013a). The DNF model captures the
processes underlying visual working memory formation and maintenance,
allocation of spatial and feature attention, and the planning and execution
of saccadic eye movements, and thereby covers several core elements of active
vision behavior in general.

The second DNF model deals with neural mechanisms for spatial trans-
formations. Since every eye movement shifts the whole visual image, all
spatial information that is retained in the reference frame of the retina is
made obsolete whenever the fixation point changes. To obtain a stable rep-
resentation of object locations in a visual scene, location information must
be transformed from the retinal to a gaze-invariant frame of reference. This
transformation can be described as a variable mapping, parametrized by the
current gaze direction. In the DNF model, this mapping is realized as a
continuous bi-directional coupling between spatial representations in differ-
ent reference frames. This mechanism can account for neural findings of
peri-saccadic remapping in retinal spatial representations. It also provides a
fundamental capability for forming stable scene representations from multi-
ple fixations.

The third model that I will present combines mechanisms from the first
two models to capture the formation of a scene representations in working
memory, and it directly addresses the problem of feature binding. In this
model, one stimulus is selected at a time by coupled spatial and feature at-
tention. The stimulus location and its surface features are then conveyed
on separate pathways to a scene working memory representation and re-
combined there. These separate pathways are necessary to efficiently apply
the reference frame transformation to the location representations, and are
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consistent with established views of visual processing in the brain (Mishkin
et al., 1983). The model is then able to perform a variety of change detection
tasks, a key experimental paradigm to asses working memory properties and
capacity in humans. Depending on the type of task, either parallel process-
ing along the separate pathways or sequential processing relying on combi-
nations of the two pathways is used. These different types of processing are
consistent with human performance measures and reaction times in different
types of change detection tasks.

Finally, in the fourth model, the previously introduced mechanism are
applied to address the use of spatial language in humans. The model de-
scribes how relational spatial expressions (like “the cup is to the right of
the monitor”) can be generated from a perceptual representation of a visual
scene, and how spatial expressions can be resolved to select specific visual
items. In the underlying mechanism, a reference object and a target object
for a spatial relation are sequentially selected from a scene, and the their
relative position is then determined via a reference frame transformation
into an object-centered spatial representation. The metric relative position
is then mapped onto a symbolic spatial term, using a set of weight patterns
that reflect spatial semantics. Due to the fact that all projections in this
model are implemented as bidirectional, the system can be used to perform
a variety of spatial language tasks simply by giving different sets of inputs.
The model has succesfully accounted for the results of spatial term rating
tasks (in which subjects rate the appropriateness of a certain spatial term for
the spatial relation shown in a visual scene), and it has reproduced human
reference object selection behavior in a task that requires the free generation
of a spatial description.

The DNF models have to meet two key conceptual challenges. First,
an architecture, composed of individual DNFs defined over different feature
spaces, must be found with sufficient representational power to solve the core
problems of active vision and explain human performance. For the task of
forming a scene representation, the architecture must contain the memory
representations of different visual features in such a fashion that they can
be bound together for individual objects, but held separate for different
objects. In addition, these working memory representations must still remain
linked to sensory input and motor behavior, supporting for instance that
a previously formed working memory representation is activated when the
same stimulus is visually inspected again at a later time; or conversely, that
the memory can be used to guide an eye movement to re-fixate a stimulus.
This implements the pointer function discussed above. The model of spatial
language must additionally address the problem of variable binding. To
generate and interpret spatial expressions, the system must be capable of
binding different objects to the grammatical roles of target and reference
object in a flexible manner.
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The second key challenge is that the models must implement the required
sequential operations. For forming a scene representation, the model must
sequentially select individual items, moving on to the next item once the
currently focused one is memorized. Similarly, the spatial language model
must sequentially select the target and the reference object of a spatial re-
lation and assign them to their respective semantic roles. What would be
achieved trivially by a sequence of commands in an imperative programming
language must here be achieved by the internal dynamics of the neural ar-
chitecture. These dynamics, initially set into motion by an external input
(e.g., from the visual stimuli), drive the transition of the activation patterns
in the system through a series of stabilized states. In these transitions from
one stabilized state to another one, the system can implement different types
of decisions, like the selection of one stable state out of a set of qualitatively
different potential successor states. The stability properties that are empha-
sized in the Dynamic Field Theory are critical here to prevent this series of
state transitions from degenerating into chaos, especially in the presence of
random noise in the visual input and the internal representations.

The DNF architecture with its internal dynamics can thus be viewed as
implementing an algorithm, performing a sequence of processing steps on
the visual input. These processing steps are however not given by explicit
instructions, but instead emerge from the dynamics of the activation pat-
terns. And unlike classical algorithms, the dynamical system is not started
at a fixed time and then terminates, but is conceptually a continuously run-
ning system, in which operations are initiated simply by the presentation of
external stimuli. This mode of operation makes DNF architectures partic-
ularly suitable for robotic applications, where a high degree of autonomy is
desirable. The value of DNF models thus lies not only in their ability to ex-
plain the operations of neural systems and account for psychological findings,
but they are also valuable for designing artificial autonomous agents. They
allow continuous operation and responsiveness to external stimuli without
the need for any higher-order system to control and monitor them.

All of the models presented in this thesis provide this kind of autonomy
to a certain degree, making them viable as building blocks for autonomous
agents. The model of saccade target selection continuously reacts to visual
stimulation, executes simulated gaze-shifts to fixate salient stimuli, and can
modulate its behavior in different ways to support goal-directed active vi-
sion. The spatial transformation model provides continuous coupling and
updating of spatial representations, although it does not produce overt be-
havior. The model of scene representation has direct applications in guiding
robotic action, and a robotic version of this DNF model has been success-
fully employed. Likewise, the model of spatial language has obvious uses for
verbal interfaces in human-machine interactions, and closely related models
have been used for this task. In this scenario, using a model that is based
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on neurobiology and explicitly aimed at reproducing psychological findings
also has a concrete advantage: It allows easy and intuitive communication
even in ambiguous situations since the behavior of the model follows charac-
teristics of human behavior. These practical applications highlight the value
that biological models offer to the field of applied sciences.
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Chapter 2

Dynamic Field Theory

2.1 Overview

Dynamic Neural Fields (DNFs) are a class of models that describe neural and
behavioral processes through the continuous change in distributions of neu-
ral activation. They allow a direct mapping of neural activation patterns to
behavioral variables that are measured in psychophysical experiment, such
as movement directions or reaction times. This makes DNFs particularly
suited for behavioral modeling. DNF models have been used successfully
to explain a variety of psychophysical findings, such as biases in working
memory (Simmering et al., 2006) and performance in change detection tasks
(Johnson et al., 2009a), as well as developmental changes in working mem-
ory capacity (Spencer et al., 2001; Perone et al., 2011). At the same time,
DNF models have been employed to reproduce and explain measured neural
activation patterns, in particular in the planning of saccadic eye movements
(Trappenberg et al., 2001; Marino et al., 2012) and the preparation of reach
movements (Bastian et al., 2003; Cisek and Kalaska, 2005). Finally, the
same type of model has been used in robotics to actively perform cogni-
tive tasks and generate behavior. Applications include object recognition
(Faubel and Schöner, 2009), scene representation (Zibner et al., 2011a), and
interpretation of spatial language (Lipinski et al., 2009).

2.2 Biological motivation

The biological basis of DNFs lies in neural population codes. In the nervous
systems of animals, sensory signals, motor plans, and cognitive states are
encoded in the activity of neurons. This activity is expressed through action
potentials (APs, also referred to as spiking or firing of the neuron). An
AP is a rapid, transient de-polarization of the neuron’s membrane potential,
typically lasting around 1 ms. Highly active neurons produce APs in quick
succession, whereas less active neurons generate APs more sparsely or not

15



at all. These APs are transmitted to other neurons via the cell’s axons, long
and thin projections of the cell body. They terminate in synapses that make
contact with other neurons, and they affect those receiving neuron’s activity
by the release of chemical neurotransmitters that either excite or suppress
the activity of the target cell.
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Figure 2.1: Derivation of continuous activation distributions from neural
tuning curves. (a) Idealized tuning curve of an orientation-sensitive neuron
in visual cortex, plotting the activity of the neuron (as normalized firing
rate) against the orientation of a visual stimulus (shown on top). (b) Tuning
curves from a sample of orientation-sensitive neurons, covering the space of
possible orientations. (c) Continuous activation distribution as superposition
of scaled tuning curves. Tuning curves from (b) are scaled with the neuron’s
activity in response to a specific stimulus (solid lines). The dashed line is
the sum of these scaled tuning curves.

To generate goal-oriented behavior, neural systems often have to encode
metric values of a sensory stimulus or a planned action. This may include
the position of a visual stimulus, the direction of a perceived motion, or
the parameters for a motor action. In neural systems, particularly in the
cortex of the vertebrate brain, such metric values are typically represented
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in the form of population codes (Erickson, 1974). In this form of coding, the
metric value is reflected in the distribution of activity over a large assembly
of neurons. The activity of each individual neuron of this population can
be described by a tuning curve. For instance, a sub-group of neurons in
the primary visual cortex is sensitive to edge orientations in visual stimuli.
Each of them will show high activity for a certain orientation (the neuron’s
preferred value), moderate activity for similar orientation values, and low
activity for dissimilar values. Plotting the neuron’s activity (e.g., as the
firing rate) against the stimulus orientation yields the tuning curve, which
in many cases takes the approximate shape of a Gaussian centered on the
neuron’s preferred value (Swindale, 1998; see Figure 2.1a).

Individual neurons in a population have different preferred values, dis-
tributed over the space of possible metric values that the population can
represent. (In the following, I will refer to this space as the feature space for
the neural population, even if the space does not strictly reflect any visual
surface feature.) The tuning curves of the neurons typically show consider-
able overlap, such that they cover the whole feature space (Figure 2.1b). In
certain cortical areas (particularly in sensory areas), there is a topological
organization of the neurons, such that cells that are located close to each
other on the cortical surface tend to have similar tuning curves. This prop-
erty is however not necessary for a population code, and the physiological
arrangement of neurons is not addressed in Dynamic Field Theory.

The activity of any single neuron in a population is generally not infor-
mative about what is encoded. The tuning curves are often very broad, and
the firing rate of each neuron is subject to noise. Furthermore, a neuron’s
activity may depend on additional factors beside the similarity between the
stimulus feature and the cell’s preferred value (such as stimulus contrast for
orientation-sensitive neurons). To interpret the population code, one must
look at the distribution of activity over all neurons. A simple estimate ṽ of
the encoded value may be obtained as a weighted average of the neurons’
preferred values pi, with the average firing rates ri as the scaling factors:

ṽ = α
∑

i

piri (2.1)

Here, α is a normalization factor (e.g., α = 1∑
i

pi
). Note that for circular

feature spaces (like orientation), the computation of the average has to be
adjusted accordingly. This form of analyzing population activity has been
used successfully in interpreting neural firing patterns during the preparation
and execution of reach movements (Georgopoulos et al., 1986). However, it
relies on certain assumptions about the shape of the tuning curves (symmetry
and monomodality) and the shape of the activity pattern. In particular, the
weighted average will only be meaningful if only a single value is encoded in
the neural population.
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However, the population code representation goes far beyond the encod-
ing of a single metric value. First, a population of neurons may encode
multiple values in parallel, for instance the features of different stimuli or
different possible motor plans. This was shown in the empirical and the-
oretical work of Cisek and Kalaska (2005). In this case, several groups of
neurons (with overlapping tuning curves within each group, but dissimilar
between groups) are active at the same time. In addition, the intensity of
the activation in each group of neurons and the width of the activity distri-
bution can be informative. It can make a difference, for instance, whether
there is low activity in many neurons with relatively different tuning curves,
or high activity in a small group of neurons with strongly overlapping tun-
ing curves, as has been shown for the formation of reach plans in the motor
cortex (Bastian et al., 2003). These results indicate that the full activity
distribution is relevant and cannot be reduced to a single value without loss
of important information.

Finally, the population can also represent the absence of any specific
values by a uniformly low activity profile. While this case may appear trivial,
it is critical for a sensory representation to be able to signal that no salient
stimuli are present, or for a motor representation to be able to not generate
a movement command at certain times. In these cases, reducing the activity
distribution to a single value (using, e.g., the weighted average as described
above) will yield a misleading result, as this single value cannot reflect the
absence of stimuli or motor plans in an intuitive way.

2.3 From population activity to DNFs

Dynamic Field Theory views the activity distributions over neural popula-
tions and the evolution of these distributions over time as the central element
of neural representation and the basis for neural processing and behavior gen-
eration (Wilson and Cowan, 1973; Amari, 1977). Accordingly, DNF models
are aimed at capturing these activity distributions, explaining how they form
and how they shape overt behavior. In doing so, certain abstractions from
biological neural populations are employed. First, the discrete APs are re-
placed by a continuous activation variable. This is a basic simplification
that is used in many neural models, including classical neural networks. It
relies on the assumption that the relevant information in neural processing
is carried by the rate of APs generated over a brief time window, and not by
the exact timing of individual APs. This greatly simplifies the simulation
and analysis of the evolution of population activity over time. There are,
however, a few known exceptions to the assumption that AP timing is not
critical for neural processing, such as the use of AP synchronicity in binaural
sound localization. These can consequently not be modeled adequately with
DNFs.
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The second and more fundamental abstraction is that Dynamic Field
Theory also abandons the modeling of the discrete neurons that make up
a population. DNFs instead describe a distribution of activation over the
continuous feature space. The activation at one location in feature space is
interpreted as directly supporting the corresponding feature value, removing
the intermediate step via a neuron’s tuning curve. This abstraction is based
on the belief that the individual neural cells in a population code merely
provide a discrete implementation of a functionally continuous representa-
tion.

A continuous activation distribution over the feature space can be for-
mally derived from neural firing rates as a superposition of the weighted
tuning curves, as shown in Figure 2.1c. Here, each tuning curve from Fig-
ure 2.1b is scaled with its activity in response to a specific stimulus (with
many neurons having an activity close to zero). The sum of these scaled tun-
ing curves, shown as dashed line, is then a continuous representation of the
population activity. Note that additional normalization steps are necessary
when using this approach as an analytical tool in order to compensate for
inhomogeneities in the sampling of the feature space (Erlhagen et al., 1999).

A special focus of Dynamic Field Theory is on the dynamics of neural
representations, in particular the formation of stable states in the activation
distributions. Such stable states emerge in DNFs from lateral interactions,
which reflect the interactions that occur in biological neural populations
through synaptic connections between the neurons. A general interaction
pattern that is frequently found in neural systems is described as local excita-
tion and surround inhibition. This means each neuron in a population tends
to form excitatory connections to neurons that have similar tuning curves,
such that these neurons mutually excite each other. (Such projections are
“local” in a physiological sense if the neurons are organized topologically,
otherwise the are “local” only in the sense that the neurons’ preferred values
are close to each other in feature space). At the same time, each neuron acts
in an inhibitory fashion on those neurons that have dissimilar tuning curves,
typically through an indirect projection via inhibitory interneurons.

These lateral interaction patterns shape the activity distributions in bi-
ological neural populations (Jancke et al., 1999). If a group of neurons with
overlapping tuning curves is activated by an external stimulus, the local
excitation will further increase these neuron’s activation, while surround in-
hibition will suppress activation of other neurons in the population. This
stabilizes the distribution of activation in that population against fluctua-
tions in the external input. Dynamic Field Theory views such stabilization
of activation states as critical to generate robust goal-oriented behavior in a
world where the sensory input used to guide this behavior is often noisy or
transient. Of course, this stability must be balanced by sufficient flexibility
so that behavior can be adjusted to changing situations. This flexibility is
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achieved through transitions between different stable states. I will describe
the possible stable states in DNF models and the transitions between them
in detail below.

2.4 Mathematical formulation
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Figure 2.2: Dynamic Neural Field, sigmoid output function, and interaction
kernel. (a) Dynamic Neural Field as distribution of activation over a fea-
ture space. Arrows indicate lateral interaction effects of regions with supra-
threshold activity (green for excitatory, red for inhibitory interactions). (b)
Sigmoid (logistic) output function. (c) Lateral interaction kernel with a
difference-of-Gaussians profile.

The temporal evolution of the field activation is governed by a differential
equation that determines the change of activation for each position depend-
ing on the current state of the field, the effects of lateral interactions, and
the external input to the field. This equation has the general form (Amari,
1977)

τ u̇(x, t) = −u(x, t) + h+ i(x, t) +
∫
k(x− x′)f(u(x′, t))dx′ + qξ(x, t). (2.2)

Here, u(x, t) is the field activation at position x in the feature space
and at time t (Figure 2.2a). The rate of change u̇ (the derivative of the
field activation over time) is scaled with a time constant τ . The parameter
h defines a global resting level for the field activation. By convention, the
resting level is negative, and the threshold for the output function (see below)
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is always at zero. The time-dependent external input to the field is given by
i(x, t). The following term describes the lateral interactions in the field: An
interaction kernel k is convolved with the output f(u) of the field. Finally,
ξ(t) is a Gaussian white noise process, with a scaling factor q determining
the noise level.

The output function is a sigmoid nonlinearity, typically implemented here
as a logistic function with a steepness parameter β (Figure 2.2b):

f(u(x)) = 1
1 + exp(−βu(x)) (2.3)

The output is close to zero for low activation values, grows for activation
values around zero, and saturates at one for high activations. The effect
of using an output function of this kind is that only those regions in a
field that have sufficiently high activation levels contribute in a significant
way to the lateral interactions in a field. In addition, the saturation of the
output function limits the maximal strength of the interaction effects. For
β → ∞, the sigmoid approaches a step function with threshold at zero. I
will sometimes refer to this (soft) threshold of the output function to distin-
guish between activation levels that produce significant output (and therefore
induce interaction-driven instabilities, as described below) from activation
levels that do not.

The lateral interactions in the field are homogeneous, and the interac-
tion strength between two points in the field only depends on the signed
distance between them (in feature space). This dependence is described
by the interaction kernel k(x − x′). Reflecting the connection patterns in
biological neural populations, the interaction kernels used in DNF models
typically feature lateral excitation over short distances in feature space, and
inhibitory interactions over longer distances. This is implemented with a
difference-of-Gaussians kernel (with a Mexican hat shape) with an optional
global inhibitory component (Figure 2.2c). For a one-dimensional feature
space, the kernel function can be given in the general form

k(x) = cexc√
2πσexc

exp
(
− x2

2σexc2

)
− cinh√

2πσinh
exp

(
− x2

2σinh2

)
− cgi (2.4)

Here, cexc, cinh and cgi are interaction strengths, and the widths σexc and
σinh determine the range of local excitation and surround inhibition (with
σinh > σexc). The strength of either the local surround inhibition, cinh, or
the global inhibition, cgi, may be zero.

2.5 Attractor states and instabilities in DNFs
The lateral interaction patterns in DNFs qualitatively shape the possible
attractor states in the field dynamics and the possible transitions (insta-
bilities) between them. In particular, the typical interaction patterns of
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short-range excitation and long-range inhibition promote the formation of
localized peaks of activation. These serve as units of representation for indi-
vidual feature values in neural fields. The transitions between stable states
with qualitatively different configurations of activation peaks are the elemen-
tary operations in fields, and serve as building blocks for complex cognitive
processes. For this reason, I will describe the attractors and the instabilities
in some detail here.

Other attractor states than localized activation peaks may also arise
from the field equation, in particular when fields are defined over multi-
dimensional feature spaces (as described in the following chapter). These in-
clude for instance stabilized ridges or rings of activation and different forms
of repetitive patterns. These are not typically employed in DNF models, and
I will not further discuss them here. The reasons are that such attractors
are likely not physiological (measured activation patterns in neural popu-
lations can typically be described by one or more localized activation hills,
see Cisek and Kalaska, 2005), and that they do not offer a straightforward
interpretation in terms of what they represent.

2.5.1 Detection instability and self-sustained peaks

Consider a field that does not receive any external input, and in which the
activation at all points is well below the output threshold. In this case, the
lateral interactions do not take effect, and the deterministic part of the field
equation can be reduced to

τ u̇(x, t) = −u(x, t) + h. (2.5)

These field dynamics drive the activation at every point in the field toward
the resting level h: If the activation at one point x is higher than h, Equa-
tion 2.5 yields a negative rate of change, if it is lower, it yields a positive rate
of change. If the resting level itself is also well below the output threshold—
which is the typical configuration in the DNF architectures treated here—the
field activation exponentially relaxes toward the value h. The activation will
also return to that level when slightly perturbed. This is a first attractor
state of a field, which I will call the sub-threshold attractor.

If an external input is now applied to the field, the field activation will
move toward the sum of this input and the resting level (Figure 2.3a). As
long as the field activation remains so low over the whole field that the field
output is negligible (and therefore no significant interaction effects occur),
the field activation will continue to track the input in this fashion. This
state is not qualitatively different from the input-free state, and is still an
instance of the sub-threshold attractor.

Now assume that a single, localized external stimulus (e.g., with a Gaus-
sian shape) is applied, and its strength is slowly increased over time. At
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Figure 2.3: Sub-threshold and peak attractor in a DNF. (a) For weak local-
ized input (green plot), the sub-threshold state is the only attractor state
for the field activation (blue line). The activation then directly mirrors the
input pattern, shifted by the field’s negative resting level. (b) For moderate
input strength, the field is bistable. The sub-threshold state (solid blue line)
and the activation peak that is stabilized by lateral interactions (dashed blue
line) coexist as attractor states. (c) When the input is strong enough to drive
the field activation locally above the output threshold, the activation peak
is the only possible attractor state.

first, the field activation will track this changing input as it did before. As
the field activation rises further and approaches the threshold of the sigmoid
function, the output signal increases around the location of the input. Now
the lateral interactions begin to take effect. When the interactions take the
typical shape of local excitation and surround inhibition, they will further
increase activation at the input location, and decrease it in the surrounding
regions. This brings about a qualitative change in the field’s activation pat-
tern: As the self-excitation drives activation at the input location, it further
increases the output that is produced by the field, and this in turn further
strengthens the self-excitation. The activation level around the input lo-
cation rises significantly above the level induced by the input itself, and a
stabilized activation peak forms (Figure 2.3c).
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The growth of this peak is limited by two factors. First, as activation
rises beyond the output threshold, the sigmoid output function goes into
saturation; the output from any one point in the field does then not increase
any further. Second, the growth of the activation peak in the feature dimen-
sion is limited by the shape of the interaction kernel. Since the excitatory
effects are limited to a short range, the output of one point in the field only
increases the activation value in its direct vicinity. If an activation peak
grows wider, the points at one edge of the peak do no longer contribute
positively to the activation of points at the opposite edge. In contrast, the
inhibitory interactions have a longer range, and more points contribute to
the inhibitory interactions as a peak grows in width. This increase of in-
hibitory effects for wider peaks limits the spatial expansion of an activation
peak (Amari, 1977), and drives the activation pattern toward a stereotypical
peak size.

It can be seen that the activation peak and the sub-threshold state are in
fact qualitatively different attractor states if the external input is slowly de-
creased again after a peak has formed. The supra-threshold activation peak
will remain even at input strengths that had not been sufficient to induce it
in the first place. This means that for these values of input strength, both
the sub-threshold activation pattern and the activation peaks are possible
and distinct attractor states (Figure 2.3b). The system is bistable under
these conditions, and which attractor state it relaxes to is determined by
its history. When the input is increased sufficiently, as described above,
the system becomes monostable with only the peak state remaining as at-
tractor. This change of attractor states is mathematically described as a
tangential bifurcation, in which the sub-threshold attractor collides with a
repellor state and is extinguished. Conversely, if the external input is de-
creased sufficiently, the peak state will disappear as an attractor in another
tangential bifurcation. (Depending on the parameters of the field, the latter
may only occur for negative input, as described below.)

The transition from the sub-threshold state to an activation peak is re-
ferred to as detection instability in Dynamic Field Theory. It marks the
point at which the presence of a certain feature value is sufficiently sup-
ported by the input signal for the system to start actively representing this
value. In the sub-threshold state, the input signal is passively reflected in
the field activation, but it is neither actively maintained nor transmitted to
any downstream structures via the field’s output signal. Once a peak has
formed, the lateral interaction stabilize it against fluctuations in the input
signal, even if the input strength decreases below the value that is necessary
to induce a peak. Moreover, the activation peak will smoothly shift its loca-
tion in response to small changes in the input location, and thereby provides
the ability to track an input signal that varies over time. Only if the input
strength decreases significantly or there is a sudden and large change in the
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input location, the peak will become unstable and disappear. This is called
the inverse detection instability.

If a DNF features strong self-excitation in its lateral interactions or a
resting level that is close to the output threshold, the peak state may re-
main stable even in the absence of any input. Such self-sustained peaks are
used to model working memory in behavioral models. This is consistent
with neurophysiological findings that during retention of features in working
memory, neurons sensitive to these features show sustained activity (Wang,
2001). Mathematically, the self-sustained peak (in the absence of any local-
ized input) is an instance of a line attractor. While it is stabilized against
decay, it is not stabilized against shift along the feature dimension. In DNF
models of working memory, random drift of the self-sustained peaks occurs
in the presence of random noise in field activation, and systematic biases in
the memory representation may be introduced by non-homogeneous external
input or by interactions with other activation peaks.

2.5.2 Selection decisions and averaging

Additional attractor states and instabilities can occur when multiple local-
ized inputs are present. In the field equation, separate input components are
simply combined additively, so the term i(x, t) in Equation 2.2 would reflect
the sum of all input components. If the lateral interactions in a field are
purely local and the locations of the external inputs are sufficiently distant
from each other, peaks can form or decay at multiple sites independent of
each other. This is also true for self-sustained peaks in models of working
memory.

The situation is different if the inhibitory interactions in a field are global.
If the activation is increased toward the output threshold at two separate
locations in such a field, the lateral interactions create a competition effect:
The self-excitation acts only within a short range, so each location only
excites itself. In contrast, the global inhibition originating from each location
also acts on the other location. If the activation level is slightly higher
at one of the locations at any point in time, the lateral interactions have
the potential to amplify this difference. The more active location creates
more self-excitation and therefore generates further increase in activation.
At the same time, it has a stronger suppressive effect on the less active
location. When interaction parameters are chosen appropriately, this will
lead to the complete suppression of one location below the output threshold
(Figure 2.4a). The activation peak at the prevailing location then no longer
receives any inhibitory input from the competing location, and consequently
has the same shape as if no competing input existed.

The transition from two competing active regions to a single activation
peak is another instability, called selection instability. When the system goes
through this instability, a decision occurs that determines which of multiple
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Figure 2.4: Selection instability in DNFs. (a) When two distant, localized
inputs (green plot) are applied to a DNF with strong global inhibitory in-
teractions, the field will undergo a selection decision in which an activation
peak forms at one location while the other location is suppressed. The field
is then in a bistable state (possible attractors shown as dashed and solid blue
plots). (b) For two nearby localized inputs, an averaging peak can emerge
as third attractor state (solid blue plot), in addition to the states where a
peak is localized on one input (dashed and dotted blue plots).

possible attractor states the system settles in (shown as solid line and dashed
line in Figure 2.4a). The details of input strengths and timing decide which
attractor state is selected, that is, at which of multiple input locations a
peak forms. After a peak has formed and activation at other locations is
suppressed, this decision is stabilized against fluctuations of input strengths.
Nonetheless, the state of the field is still continuously coupled to the input:
As before, the activation peak can track the input location if it changes
smoothly in feature space. And the activation peak can switch to another
input location if the input strengths become sufficiently imbalanced.

This combination of stability and flexibility make the selection mecha-
nism in DNFs suitable for behavioral modeling. As an example, consider a
reaching or pointing movement with multiple possible target objects, con-
veyed by a noisy sensory signal. Assuming that only a single reach movement
can be specified at any time, the system has to select one object and ignore
the others. To create efficient, goal-oriented behavior, the selection should
not switch for spurious reasons, such as when the input strengths fluctu-
ate due to sensory noise. On the other hand, the selection should still be
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allowed to switch if one of the non-selected objects suddenly appears signifi-
cantly more appealing (indicated by an amplified input signal). Finally, the
autonomous tracking that occurs in DNFs is valuable for motor planning if
the target objects are allowed to move.

The above considerations on the selection decision assume that the inputs
are always distant from each other, such that excitatory interactions between
the input locations can be neglected. If this is not the case, activation peaks
can merge in DNFs. The most obvious way this can happen is directly by
merging of the input signals. For instance, if the centers of two Gaussian
inputs are located closely together, they form a single-peaked input pattern.
This will generally also induce a single activation peak in the field. Merging
can also happen if the input has two distinct local maxima through lateral
interactions (solid line in Figure 2.4b). In this case, two active regions may
form in a field that are separated in feature space, but still so close that they
mutually excite each other—and that both excite the region between them.
Through mutual excitation of the proximate borders of the two active regions
and the interjacent space, the active regions may expand toward each other
and merge to a single peak. If the inputs are symmetrical, the activation
peak will be centered in the middle between them, even if this means that
it does not overlap with either peak of the input pattern. For certain input
conditions and field settings, this attractor state with an averaging peak
may coexist in a multi-stable dynamic regime with attractor states in which
a peak has formed over one of the input locations (these three attractor states
are shown in Figure 2.4b). As in the pure selection decision, the details of
input strengths and timing decide which attractor state the system settles
in.

The mechanisms of selection and averaging in DNFs have been used in the
modeling of movement planning, in particular for saccadic eye movements
(Kopecz and Schöner, 1995; Wilimzig et al., 2006). If multiple visual stimuli
are present (as is always the case in naturalistic visual scenes), one of them
has to be selected as the saccade target. In psychophysical experiments
with controlled stimuli, it can be shown that the selection changes into an
averaging behavior if a group of stimuli is presented close to each other
(and distant from the current fixation point; Van der Stigchel and Nijboer,
2011). DNF models can explain these effects and match neural activation
patterns in the superior colliculus, a midbrain structure that is involved in
eye movement control. The use of DNFs in modeling saccade behavior will
be one topic in Chapter 3.

2.6 Constructing behavioral models

The attractors and instabilities described above form the elementary build-
ing blocks to generate more complex behaviors in the DNF models that I
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will present in the following chapters. Activation peaks are used as stabilized
representations of sensory inputs or cognitive states. The detection insta-
bility here creates the demarcation between non-informative sub-threshold
activation states and the representation of specific values along the feature
space. Activation peaks that are self-sustained serve as model of working
memory, to retain feature values after the input that supported them has
vanished. The selection instability implements decisions between different
alternatives, either in the generation of a response or as an intermediate step
to form or alter a cognitive state.

More complex states can arise when multiple fields are coupled to each
other to form larger architectures. Coupling fields together is achieved by us-
ing the output of one field as an input to another field. Typically the output
is first convolved with an additional interaction kernel that describes synap-
tic connection patterns between two neural representations. This coupling
between different fields may be done in a bidirectional or circular fashion,
such that the output that one field sends to another field acts back in an
indirect manner on the activation distribution in the source field. Such ar-
chitectures then act as coupled dynamical systems, in which attractor states
can no longer specified individually for each DNF, but are distributed over
the whole architecture.

The architectures receive external sensory input, either from actual sen-
sors (such as a camera, see Lipinski et al., 2012) or in the form of simulated
stimuli. They can produce responses in the form of motor behavior that is
driven directly by the output of the DNFs, either for a simulated effector
or on actual robotic hardware (e.g., Bicho et al., 2000). The differential
equations of the DNFs generate activation time courses that describe the
real-time neural processing. DNF models can thereby produce variable re-
action times in their response generation based on the characteristics of the
provided stimuli. For instance, if a model has to perform a selection decision
between two stimulus locations to generate a response, the reaction times
will be higher if the two stimuli are almost equal in strength, since in this
case it takes longer to resolve the competition between them via the field
interactions. Moreover, response distributions that model the variability in
human behavior can be generated by adding random noise to field activa-
tions in every time step, which reflect non-task-specific fluctuations in neural
activity in the brain.

The DNF architectures presented in this thesis are conceptualized as
continuously operating neurodynamic models. This means that there is no
fixed start and end point for their operation, but they react whenever stimuli
are presented to them and can produce responses over an unlimited dura-
tion. This contrasts with certain other neurodynamic models (e.g., Denève
et al., 2001) that are initialized to a certain state and then allowed to evolve
until they reach an attractor state. To generate autonomous behavior, this

28



mode of operation would require additional control structures to create the
initial state, detect when an attractor has been reached, and read out this
attractor state. The models presented here are instead intended to run au-
tonomously, and they should ultimately provide systems that can control an
autonomously behaving agent. To model psychophysical experiments, these
models are still operated in such a way as to perform single trials, with reini-
tialization between trials to ensure reproducibility. But the processing in the
models is driven by the timing of the stimuli, and they would continue to
operate in a meaningful way after the completion of a trial.

2.7 Numerical simulations
Since the activation time courses of DNFs with non-trivial interactions can-
not be solved analytically, the main tool to explore the behavior of DNF
models are numerical simulations. To this end, the DNF—which is concep-
tually continuous in time and feature space—has to be discretized. For all
simulations of the models presented in this thesis, the feature spaces of the
DNFs are sampled at equidistant points, and the differential equations are
evaluated at fixed time steps to update the field activations using the Euler
method.

The equation to update the field activation can then be formulated in its
discrete form as follows:

u(xj , t+ ∆t) =∆t
τ

(
−u(xj , t) + h+ i(xj , t) +

n∑
l=1

k(xj − xl)f(u(xl, t))
)

+
√

∆tqξ(xj , t)
(2.6)

Here, x1, . . . , xn are the equidistant sampling points in feature space, and ∆t
is the step size for the Euler step. The Euler method is used to update field
activations in preference of other more elaborate methods with variable time
steps because only the Euler method allows adequate treatment of random
noise in the field activations.

Despite this discrete implementation used for numerical simulations, the
DNFs are still conceptualized as being continuous. This is reflected in the
discrete implementation in the following ways: The sampling rate for the
feature space is chosen in such a way that the sampling does not determine
the behavior of the model. In particular, using a finer sampling or shift-
ing the sampling points should not produce any qualitative changes in the
model’s behavior. Numerical deviations from a (hypothetical) exact solution
of the continuous field equation are of course unavoidable, but these do typ-
ically not produce any qualitative effects, especially given that there is often
random noise added to the field activations that masks any small numerical
differences.
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Similar considerations are also used to determine an appropriate value
for the time step ∆t. The activation patterns should not change qualitatively
within a single step, but evolve smoothly. Here, one has to take into account
that qualitative deviations from the exact solution of the differential equation
can occur if the time step is chosen too large, in particular in the form of
overshoot of activation and oscillations around an attractor state. In this
approximation of continuous changes in activation states, DNF models differ
significantly from classical neural network models, which frequently undergo
qualitative changes of their activation patterns and even perform complete
operations in a single discrete time step.

All numerical simulations of DNF models for this thesis were done in
the computing environment Matlab. The latest models were implemented
using the cosivina toolbox, an open source, object-oriented framework that
I have developed to simplify the design and simulation of DNF architectures
in Matlab (available at bitbucket.org/sschneegans/cosivina).
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Chapter 3

Feature Associations in
Multi-Dimensional Neural
Fields

3.1 Overview
The topic of this chapter is the attentional selection of items in a visual scene
and the generation of saccadic eye movements. As briefly touched on in the
general introduction, one key reason why humans make eye movements is the
structure of the retina. The central region of the retina, the fovea, is tightly
packed with cone-type light receptor cells, which form the basis for color
vision and high-acuity shape perception. In the peripheral regions of the
retina, rod-type cells are predominant, which are important for movement
perception, but contribute little to color and shape perception. In order to
perceive the detailed features of an object in the visual scene, it is therefore
necessary to fixate that object, and thereby bring its image onto the fovea.

The main behavioral mechanism to achieve this is a saccadic eye move-
ment. Saccades are rapid, coordinated movements that typically take less
than 200 ms. Between the saccades there are periods of fixation during
which the gaze direction remains fixed. Saccades are ballistic, meaning that
the movement is fully specified before it is initiated. The eye movement is
then executed with a stereotyped velocity profile, without any update or
correction from visual guidance during the saccade. If the intended target
point is not reached by the initial saccade, it is quickly followed by a cor-
rection saccade. For larger gaze changes, the saccade may be executed as a
coordinated movement of head and eyes.

During free viewing, saccades are driven to a large degree by the visual
saliency of image patches (e.g., due to high contrast or motion in the visual
image). They are closely coupled to visual attention: Attention is obligato-
rily directed to the saccade target location (the new fixation point) before
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the initiation of the eye movement (Hoffman and Subramaniam, 1995), and
focused attention to a certain location is typically followed by an eye move-
ment to fixate that spot. It is possible, however, to actively suppress the
eye movement when directing attention at a location. This is referred to as
covert attention, in contrast to the overt attention that is accompanied by
an eye movement.

In order to plan saccades for goal-directed actions, bottom-up attention
that is only driven by the saliency distribution in the visual image is not
sufficient. To guide everyday actions such as making coffee, sequences of
saccades to behaviorally relevant objects are used (Land and Hayhoe, 2001),
for instance to precisely plan a reaching movement to the coffee pot or to
check the water level in the coffee machine. These have to be controlled
by top-down inputs that specify what kind of object to look for, since one
cannot assume that the objects that are relevant for the current behavior
are always the ones that are most salient in the visual scene. This top-down
guidance of visual attention implements a form of visual search: Given the
visual features of an object, the visual system has to determine its location
in a visual scene. The search template for such behaviors is typically held
in visual working memory (VWM), brought there for instance by activation
of an item in long-term memory.

Recent experimental evidence shows that such guidance by visual fea-
tures held in working memory is not purely the effect of a mental strategy for
goal-oriented behavior, but rather an inherent property of the human visual
system. In a series of psychophysical studies, Hollingworth and colleagues
combined a color working memory task with a saccade task (Hollingworth
et al., 2013a,b). Participants had to hold a color in working memory and
then performed a simple saccade task to a sudden onset target, while ignor-
ing possible distractor targets. The memorized color was not relevant for the
saccade task—the target was unambiguously identified by its location, and
stimulus color was not predictive of whether a stimulus was a target or a dis-
tractor. Nonetheless, saccade behavior was systematically influenced by the
color held in working memory. Participants made saccades to targets faster
when these matched the memorized color, were more strongly influenced by
distractors of that color, and the exact amplitudes of their eye movements
varied depending on color match. These effects were found even for rapid
saccades, where such guidance effects had previously not been expected.

These results speak for the existence of continuous interactions through
which the content of VWM influences saccadic motor planning even when it
is not beneficial for the task, and indicate that this happens on an early level
of visual processing. This contrasts with a class of existing models of visual
search which propose separate processing stages: first a parallel, bottom-up
stage that is not influenced by task requirements, then a selection process
in which top-down inputs are incorporated (Wolfe, 1994; Bundesen et al.,
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2005). It is consistent however with the biased competition approach for
visual attention (Desimone, 1998; Deco and Lee, 2002) and for visual search
tasks (Hamker, 2005b). This approach describes the attentional selection of
an item as an emergent process that acts already on the first stages of visual
processing and incorporates both bottom-up and top-down inputs.

In the present chapter, I will present a DNF model to explain the ex-
perimental findings of Hollingworth and colleagues. The model covers early
visual processing, attentional selection, formation and maintenance of VWM,
and planning and execution of saccadic eye movements. This work builds on
and combines previous DNF models of VWM (Johnson et al., 2009a,b) and
saccade planning (Kopecz and Schöner, 1995; Trappenberg et al., 2001). At
the core of the model, however, lies another mechanism: The association be-
tween representations over different feature spaces using multi-dimensional
DNFs. It is used here to reach a coupled attentional selection of a visual
item in terms of both its surface features and its location, and to incorporate
both color and spatial biases in this selection.

The DNF mechanism underlying this attentional selection is also central
for other DNF architectures in which representations over different feature
dimensions have to interact with each other. It directly touches on what is
know as the binding problem in cognitive science, addressing the question of
how neural representations of object features that are distributed over differ-
ent cortical areas can create coherent object percepts. The psychophysical
experiments treated in this chapter form an excellent test case for this mech-
anism, since they provide a variety of both categorical and metric effects of
interactions, and they show interaction effects in different directions.

The full DNF model was tested on a variant of the original experimen-
tal study described above. The psychophysical experiment was designed
collaboratively and conducted by Andrew Hollingworth. After fitting of
the parameter values, the model was capable of emulating the experimen-
tal task, and it quantitatively reproduced the empirical results on saccade
target selection, saccade amplitudes, and saccadic reaction time in differ-
ent experimental conditions. These results provide strong support for the
proposed interaction mechanism. Moreover, the model made specific predic-
tions about the mechanism underlying observed variations of color memory
performance in the empirical results. These predictions were tested in a
separate experiment, and found confirmed.

Below, I will first motivate and explain the core mechanism of feature
associations in DNFs in general terms. I will then describe the specific model
used to address the experimental findings on interactions between VWM
and saccade planning, referred to hereafter as the biased competition model.
I will present simulation results from this model and compare them to the
experimental data. Finally, I will discuss these results and the broader scope
of the model, and give comparisons to other neurally inspired models. The
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biased competition model and the results presented here have been published
in a journal article (Schneegans et al., 2014), and the introduction of the
general mechanism for feature associations follows the description published
in Schneegans et al. (in press a).

3.2 Mechanism of feature association

3.2.1 Multi-dimensional DNFs

Multi-dimensional DNFs are DNFs that are defined over a feature space with
more than one dimension. The field equation given in the previous chapter
can be extended to multiple dimensions in a straightforward manner, and
all attractor states previously introduced are retained. Due to the computa-
tional load imposed by sampling a high-dimensional space, the dimension-
ality that is feasible for numeric simulations is quite limited. In the models
described in this thesis, only DNFs with no more than four dimensions are
employed. Analogous limitations also exist for biological population code
representations: The number of neurons required to adequately sample the
underlying space with their tuning curves quickly becomes prohibitively high
as the dimensionality of the feature space increases. It is therefore advanta-
geous both in the models and in biological systems to use low-dimensional
representations whenever possible, and only to employ higher-dimensional
representations where they are necessary to achieve a certain function.

The space that is spanned by a multi-dimensional representation may be
composed of multiple dimensions of the same type, or it may combine qual-
itatively different feature spaces. A biological example of the first situation
can be found in maps over two-dimensional visual space. Such maps exist
for instance in the superior colliculus (SC) in the midbrain, which is involved
in selecting the target for saccadic eye movements. In a DNF model of such
a representation, the interaction weights can be defined in a straightforward
fashion as function of the distance in feature space (e.g., the Cartesian dis-
tance between two points in two-dimensional visual space).

A prominent example of inhomogeneous feature spaces in a biological
population code representations can be found in the primary visual cortex.
Neurons in this area show both a confined spatial receptive field, and a
preference for certain surface feature values such as a specific orientation
(Hubel and Wiesel, 1962). The population as a whole samples the full multi-
dimensional feature space (Blasdel, 1992). Multiple intertwined maps for
different surface features, including orientation, spatial frequency, and color,
have been identified in the visual cortex (Issa et al., 2000; Livingstone and
Hubel, 1984). I will use such maps that combine visual space with one
surface feature as the prime example for DNFs with multiple inhomogeneous
dimensions in this chapter. Note that the DNF model does not attempt in
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any way to reproduce the physiological arrangement of feature maps in visual
cortex, but only describes activation distributions over the abstract feature
space.

To describe the lateral interactions in such a DNF, one has to define a
metric on the combined feature space (at least implicitly). There is generally
no natural conversion factor between distances in different feature spaces (for
instance, a spatial distance cannot be translated into a distance in hue value).
Therefore, the metric has to be based either on empirical data for synaptic
connection strength in biological neural populations, or on the observed or
the desired behavioral signatures of lateral interactions. The interactions can
then be implemented in the same way as in fields with multiple dimensions of
the same type. For instance, a DNF over two qualitatively different feature
dimensions with Mexican-hat style lateral interactions can be defined by the
equation

τ u̇(x, y) = −u(x, y)+h+i(x, y)+
∫∫

k(x−x′, y−y′)f(u(x′, y′))dx′dy′ (3.1)

with an interaction kernel

k(x, y) = cexc
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y

exp
(
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σexc
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)

− cinh

2πσinh
x σinh

y

exp
(

x2
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x

+ y2

σinh
y

)
.

(3.2)

The general notation is the same here as introduced in the previous chapter,
with dependence on time omitted for brevity. The width parameters σx

and σy set the relative scaling of distances in the two feature spaces x and
y, and determine how broad or sharp the interactions are in each feature
dimension. This relationship between the distances in each feature dimension
may be different for different fields in an architecture, to reflect the different
functional requirements for the field.

The field equation for the general case of a multi-dimensional field can
be given in vector notation as

τ u̇(~x) = −u(~x) + h+ i(~x) + [k ∗ f(u)](~x). (3.3)

Here, I use the notation [k ∗ f(u)] to denote an n-dimensional convolution
between the output of an n-dimensional field and an interaction kernel of
the same dimensionality.

3.2.2 Coupling between fields of different dimensionality

To create DNF architectures that can generate complex behaviors in an ef-
ficient way, it is often necessary to couple fields of different dimensionality
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along feature dimensions shared by both fields. I will describe the basic op-
erations needed for this coupling. As a concrete example, I will consider an
architecture of a single two-dimensional field connected to two separate one-
dimensional fields, as it will also be used in the biased competition model
presented later in this chapter. The two-dimensional field is defined over
one spatial dimension and one color dimension (using the circular space of
color hue values). This reflects in a simplified form one feature map in visual
cortex, omitting one spatial dimension to allow easier description and visu-
alization of the connections and activation patterns. The one-dimensional
fields are defined over one of these dimensions each, yielding one purely spa-
tial field and one color field. The architecture is shown in Figure 3.1, with
the one-dimensional fields aligned with the matching feature spaces of the
two-dimensional field.
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Figure 3.1: Read-out operation from a two-dimensional DNF into separate
one-dimensional DNFs. One-dimensional DNFs are shown as blue activa-
tion plots over their respective feature space, activation levels in the two-
dimensional DNF are color-coded (red indicating highest, dark blue lowest
activation; yellow marks the output threshold at an activation level of zero).
Curved arrows indicate localized inputs from visual stimuli, straight arrows
indicate active projections between DNFs.
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I assume that the two-dimensional space-color field receives excitatory
input that reflects the presence of visual stimuli. Each individual colored
stimulus in the visual scene is reflected by a single localized input, modeled
for instance by a Gaussian pattern over the two-dimensions (as shown in the
activation pattern of Figure 3.1). The input position along the spatial di-
mension reflects the stimulus location, its position on the feature dimension
reflects stimulus color. The activation distribution induced by these inputs
is then further modulated by lateral interactions within the field. Here, I
will assume that these interactions comprise local excitation and local sur-
round inhibition of moderate strengths. These interactions create stabilized
activation peaks from the localized inputs, but do not create any selection
or working memory effects within the space-color field.

The first type of connection between fields to be implemented in this
architecture is now a projection from the two-dimensional space-color field
to each of the one-dimensional fields. I will refer to this kind of projection
(from higher- to lower-dimensional fields) as a read-out. It is implemented
by integrating the field output of the higher-dimensional field over the dis-
regarded dimension. Thus, to determine the input to the spatial field, the
output of the space-color field is integrated over the color dimension; to
determine the input to the color field, the output is integrated over the spa-
tial dimension. Before these integrals are fed into the one-dimensional field,
they are first smoothed by a convolution with a Gaussian interaction ker-
nel. This operation reflects the synaptic spread that is found in projections
between different cortical areas. The smoothing also counteracts the effects
of the sigmoid output function, which can produce plateau-like patterns in
the output distribution at the positions of activation peaks. The convolu-
tion with a Gaussian turns these back into smooth profiles with a localized
maximum at the center of each peak. The result of this readout is shown
in Figure 3.1, where the color field shows two activation peaks reflecting the
colors of the two present visual stimuli, the spatial field showing two peaks
that reflect only their spatial locations.

This DNF architecture with the read-out operation can be described by
the following set of differential equations:

u̇v(x, y) = −uv(x, y) + hv + [kvv ∗ f(uv)](x, y) (3.4)
u̇s(x) = −us(x) + hs + [ksv ∗ Fs(uv)](x) + [kss ∗ f(us)](x) (3.5)
u̇c(x) = −uc(x) + hc + [kcv ∗ Fc(uv)](x) + [kcc ∗ f(uc)](x) (3.6)

The terms Fs(uv) and Fc(uv) describe the output of the space-color field
integrated over one dimension:

Fs(uv)(x) =
∫
f(uv(x, y))dy (3.7)

Fc(uv)(y) =
∫
f(uv(x, y))dx (3.8)
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Here, uv is the activation of the space-color field, us the spatial field acti-
vation, and uc the color field activation. The lateral interaction kernel kvv

is a difference of Gaussians as in Eq. 3.2. The kernels ksv and kcv that me-
diate the read-out projection from the two-dimensional field to the spatial
and color field are one-dimensional Gaussian functions. The lateral interac-
tion kernels in the one-dimensional fields, kss and kcc, may be difference-of-
Gaussian kernels or Gaussians with a global inhibitory term.
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Figure 3.2: Ridge input from a one-dimensional DNF to a two-dimensional
DNF. The induced activation pattern is localized along the shared feature
dimension, and homogeneous along the dimension not covered by the input
field.

In the reverse projection, each of the one-dimensional fields can provide
input to the two-dimensional space-color field. Let us consider this projection
first for the color field, and let us assume that a single activation peak
is present in this field, produced by an external input (e.g., a top-down
input reflecting the concept “blue”). The space-color field does not have any
activation peaks for now (e.g., because there are presently no salient visual
stimuli). This scenario is shown in Figure 3.2. The color field now projects
to the space-color field. Since the representation in the color field does
not specify any spatial locations, this input cannot be localized along the
spatial dimension. Instead, it is a ridge of activation, localized in the color
dimension, but homogeneous along the spatial dimension. Analogously, the
spatial field can project an input to the space-color field that is homogeneous
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along the color dimension.
This type of projection can be implemented by extending the field equa-

tion of the space-color field given above as follows:

u̇v(x, y) =− uv(x, y) + hv + [kvv ∗ f(uv)](x, y)
+ [kvs ∗ f(us)](x) + [kvc ∗ f(uc)](y)

(3.9)

As in the read-out projection, the field output from the source fields is con-
volved with an interaction kernel, typically a Gaussian function, before being
fed into the target field.
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Figure 3.3: Induction of a localized activation peak in a two-dimensional
DNF at the intersection point of two ridge inputs from separate one-
dimensional DNFs.

An individual ridge input should typically not induce an activation peak
in the two-dimensional field, since it does not fully specify a location for the
peak. Although the lateral interactions in the two-dimensional field can be
set up to force the formation of a single localized peak from a ridge input,
the position of that peak along the ridge would be random. Therefore, the
connection weights (in the kernels mediating the projection) are generally
chosen to produce only sub-threshold activation in the target field. These
sub-threshold activation ridges can be combined with other inputs to produce
or modulate localized peaks, since the different inputs to a field are added
up in the field equation. They can strengthen peaks that were induced by
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localized input, such as external visual input in the examples used here.
Alternatively, two ridges may be combined to form a localized peak at their
intersection point, as shown in Figure 3.3. This will be used in the following
chapters to create integrated representations from separate inputs.

3.2.3 Motivation for using multi-dimensional DNFs

The simple DNF architecture used above illustrates that multi-feature items
can be represented in two different ways in DNF models: Either in a single
field defined over the combined feature space (here, stimulus color and loca-
tion), or in a distributed fashion in separate one-dimensional fields. These
different types of representations can be transformed into each other using
the operations described above. In terms of neural or computational re-
sources, the separate one-dimensional fields have a significant advantage, as
they provide a much more compact representation. For instance, if each
feature dimension is sampled with 100 neurons (or 100 sampling points
in numerical simulations of a neural field), it takes a total of 200 neu-
rons to create the separate one-dimensional fields, whereas it would require
100 ·100 = 10000 neurons to sample the full two-dimensional field. And still,
the separate one-dimensional fields can represent the individual features val-
ues with the same precision as a single combined field.

However, the representation in separate one-dimensional fields is missing
one critical aspect: It does not reflect the conjunction of different features
if multiple values are represented in each field. Consider again the case de-
picted in Figure 3.1, with a green stimulus on the left and another blue
stimulus on the right. The representations in the one-dimensional fields can
provide the information that there is green and a blue item in the visual
scene, and that one of them is to the left and the other to the right. But
one cannot tell from the peaks in these fields which color belongs to which
location. This can be made explicit when each one-dimensional field projects
two ridge inputs back into the two-dimensional field, as shown in Figure 3.4.
In this example, four intersection points form, one for each possible com-
bination of a color and a spatial location, even though originally only two
stimuli induced the activation patterns in the one-dimensional fields.

This problem of knowing and maintaining the correct coupling between
the features of multiple items in a distributed representation is one instance
of the binding problem in cognitive science (more precisely, it is a form of
the problem of feature binding; Treisman, 1996). Knowing the locations of
specific surface features and, likewise, the conjunction between features is
critical for many aspects of goal-directed action. If you want to reach for an
apple, for instance, it is not sufficient to know that there is a red item in the
visual scene along with a blue and a yellow one, and that one of them is to
the right, one in the middle, and on to the left. To plan the correct reaching
movement, you need to know at which position the red object is.
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Figure 3.4: Intersections of multiple ridge inputs in a two-dimensional DNF.
Peaks form at all intersection points, reflecting all possible combinations of
peak locations in the one-dimensional DNFs.

On the other hand, many processes do not depend on feature conjunc-
tions, and rely only on a specific subset of feature dimensions. For instance,
in the neural systems that drive the planning and control of reaching move-
ments, surface features such as color are no longer relevant once the correct
target is selected. It is then in fact desirable to employ purely spatial repre-
sentations in these systems that can generalize over the irrelevant features (so
that one does not have to learn the reaching movement repeatedly for reach
targets of all possible colors). Likewise, in processing feature information,
invariance to spatial position is often advantageous. In object recognition,
it is desirable that objects can be identified independent of their location in
the visual field.

A specialization of cortical areas according to these principles appears
to exist in the brain, as maintained by the Two-Paths Hypothesis (Mishkin
et al., 1983). While early visual areas reflect both spatial and surface fea-
ture aspects of the visual input, later visual areas show a division into a
ventral and a dorsal processing stream. Cortical visual areas in the ventral
stream are predominantly involved with the processing of surface feature
information and object identity, with increasing spatial receptive field size
(thus decreasing spatial selectivity) along the pathway (Krüger et al., 2013).
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Areas in the dorsal stream, in contrast, predominantly process spatial and
motion-related aspects of the visual input, which are relevant in particular
for the planning of movements.

Given these advantages of representations specialized for either surface
features or spatial representations, and the evidence that such representa-
tions are common in the brain, the question is how to overcome the binding
problem described above. One suggested solution, formulated in the Feature
Integration Theory (Treisman and Gelade, 1980), is based on the simple no-
tion that no mis-bindings can occur if only a single item is present in each
separate low-dimensional representation. In such a situation, the separate
low-dimensional representations are unambiguous even without the addi-
tional combined representation. It is obviously not reasonably to demand
that only a single item can be present in the visual scene at any time. There-
fore, to enforce this requirement, a mechanism is needed that selects a single
item in the visual scene, and that ensures that the same item is reflected
in each of the separate low-dimensional representations. This mechanism
can be provided by visual attention (Reynolds and Desimone, 1999). The
implementation of such a mechanism in the DNF architecture is described
in the following section.

3.2.4 Visual search and attentional selection

The attentional selection of one visual item in both one-dimensional fields
can be achieved in the DNF model by combining the mechanisms of ridge
projection and read-out. It can be driven either by the bottom-up visual
input alone, or can be dominated by top-down input specifying the color or
location that attention should be directed at. Visual search is an example
of the second case (compare Hamker, 2005b): A target feature is specified—
here, a color—and the location of a matching visual item has to be selected.
The basic DNF model of this task is shown in Figure 3.5. Visual stimuli
provide localized inputs to the space-color field and induce activation peaks.
The target feature is provided as an external input to the one-dimensional
color field. This field now projects a ridge input into the space-color field. If
the ridge overlaps with one of the localized peaks, this peak is strengthened.
Its activation level and extent are increased, and it consequently produces a
higher total output.

A read-out operation is now applied along the spatial dimension, pro-
viding input to the one-dimensional spatial field. A larger activation peak
in the space-color field will produce a larger input to the spatial field. Note
that the Gaussian convolution in the read-out operation is necessary to fully
obtain this effect: The sigmoid function used to compute the output from
the activation at each point in the field typically saturates at moderate ac-
tivation values, so further increasing the activation level of a peak does not
necessarily yield a higher output at a single point in the field. But the
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Figure 3.5: Implementation of a simple feature search mechanism in a DNF
architecture. The search template is given in the color field, the location of
a matching visual stimulus is read out into the spatial field.

stronger activation peaks also produce output over a larger area. If this
wider output is smoothed by a Gaussian convolution, the resulting input to
the target field is not only wider, but also reaches higher values.

Within the one-dimensional spatial field, a selection of a single location
can be produced by implementing competitive lateral interactions (with local
self-excitation and global inhibition). The field will then always form a single
activation peak at the location of the strongest input it receives from the
space-color field. In the case that a single visual stimulus matches the target
color, this item is almost certain to be selected. If there are multiple matches,
the selection is based on both the goodness of the color match and the size
and saliency of the matching stimuli. In the case that no stimulus matches
the target color, a random selection of one stimulus location may take place.
This is problematic with respect to the binding problem because in this case,
the representations in the two one-dimensional fields do not correspond to
the features of a single visual item. I will return to this case below.

An analogous mechanism can be used for the inverse task: Given a spa-
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tial location, determine the color of a visual stimulus at this location (in a
larger system, this can serve as a first step to identify a spatially selected
object). To solve this task, the target location is fed as external input into
the spatial field, and projects a ridge input into the space color field (this
would be a vertical ridge when plotted as in Figure 3.5). This ridge strength-
ens matching activation peaks induced by visual input, and the color of an
item thus highlighted can be determined via a read-out along the color di-
mension. This read-out then provides an input into the one-dimensional
color field, and competitive lateral interactions can ensure the formation of
a single activation peak.

Of course, in a biological neural system, switching between these two
tasks cannot be achieved by inverting the directions of the projections be-
tween the different neural representations. These projections reflect synaptic
connections between neurons, and these do not switch directions or signif-
icantly alter their structure over brief durations. But behavioral flexibility
can be achieved in an other way, namely by combining the connection pat-
terns from these two tasks into a single architecture. The projections between
the one-dimensional fields and the single two-dimensional fields then become
bidirectional: Both the the spatial field and the color field receive input from
the space-color field via a read-out operation, and project ridge inputs back
to it. Competitive lateral interactions within the one-dimensional field drive
selection decisions in both of them.

Let us first consider the behavior of such a system when only the space-
color field receives external input, reflecting a visual scene with several stim-
uli. The spatial field and the color field do not receive any external input.
This case is shown in Figure 3.6. As soon as peaks form in the space-color
field, they provide inputs to both the spatial field and the color field, via
the separate read-out projections (Figure 3.6a). When this input drives ac-
tivation levels locally beyond the output threshold in each of these fields,
two things happen: Through the lateral interactions, the emerging activa-
tion peaks compete with each other within each one-dimensional field. At
the same time, these nascent peaks start to project ridge inputs back into
the two-dimensional space-color field. When one of the peaks—say, in the
spatial field—now grows a little stronger than its competitors, it not only
gains an advantage in the selection process in its own field, but it also pro-
duces a stronger ridge input. This strengthens the corresponding peak in the
space-color field, and in turn increases the input for the associated feature
value in the color field. The competition in the color field is thereby biased
to select the same visual item as is selected in the spatial field.

This effect acts in both directions and thereby reinforces itself. With
indirect back-and-forth projections between them, a joint selection of the
same visual stimulus in the spatial field and the color field is promoted
(Figure 3.6b). This selection can furthermore be biased by additional inputs
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to the spatial or color field—or to both of them. A relatively small additional
input can tip the scales to select preferentially items of a certain color or
at a certain location. This also solves the problem raised above of having
an inconsistent selection in a visual search task when no item matches the
target feature: If the input for the search target is relatively weak, it can
bias the outcome of the search when there is a matching item in the scene,
but still allow the coherent selection of another stimulus if there is no match.

For the joint selection in spatial and color field to work reliably, certain
constraints must be met by the interaction parameters within and between
fields. In particular, there must be a certain balance between the competitive
interactions in each one-dimensional field and the indirect biasing effects that
these two fields exert on each other. The competitive interactions must be
strong enough to push the system as a whole toward a selection decision,
but they must not be so strong that they drive the fields to a selection
independent of each other (e.g., by immediately forcing a selection of one
input location in each field if it shows a slightly higher activation due to
random noise). The strength of the indirect coupling between the fields is a
result of the projection strengths into the visual sensory field, strengths of the
read-out projections, and lateral interaction effects within the visual sensory
field. Balancing the two effects can be difficult (and no analytical solution
for determining appropriate parameter values exists to my knowledge).

One way to ensure that the same visual item is selected in both one-
dimensional fields is to make one of them dominant over the other. In the
biased competition model described below, and also in the model of scene
representation treated in Chapter 5, the selection behavior is stronger in the
spatial field than in the color field (and other surface feature fields in the
scene representation). Thus, even if a mismatched selection has occurred
in both fields simultaneously, the stronger modulatory influence of the spa-
tial field can override the selection in the color field and enforce a matched
selection of a single visual stimulus. Such dominance of spatial representa-
tions in attentional selection is also consistent with experimental evidence
(Vidyasagar, 1999). The flexibility of the architecture is still retained: Top-
down inputs can be used to preshape the activation in the spatial field or
the color field (or both of them), and in both cases the preshaping creates
biases in the selection decision.

Another, more general issue when coupling fields together with bidirec-
tional projections is that activation levels must be held in check. In the visual
attention mechanism, once a single item has been consistently selected, the
activation peaks in the individual fields mutually excite each other. This
can potentially lead to a self-reinforcing growth of activation levels in all
fields. It can be counteracted by adjusting the levels of lateral inhibition
within each field. Since the range of lateral inhibition is higher than that of
the excitatory interactions (both lateral and between fields), the inhibitory
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interaction effects can become dominant once the activation peaks exceed a
certain width, and an excessive growth of activation can be prevented.

3.3 DNF model of biased competition

In this section I will describe the extension of the basic association mech-
anism discussed so far to a new model architecture that can account for
experimentally observed interactions between VWM and saccade planning.
The model is used to emulate an experiment that was performed by Andrew
Hollingworth and colleagues: Participants were facing a computer screen on
which visual stimuli were displayed. They performed two tasks in an inter-
leaved fashion. The first was a working memory task, in which participants
had to memorize the color of a stimulus and were later tested on it. The
second was a saccade task, in which participants had to make timed eye
movements toward sudden-onset stimuli. The details of the experimental
procedure, the different stimulus conditions, and the obtained results are
given below after the description of the DNF model.

The stimuli used in the experiment were colored disks and squares for
the saccade targets and memory cues, and a white cross as fixation point.
Stimuli were always aligned on a horizontal axis at the center of the screen.
It is therefore possible to retain the simplification that only a single spa-
tial dimension is modeled (instead of the full two-dimensional visual space),
while still capturing all behaviorally relevant aspects of the visual stimuli.
I will first describe the DNF architecture verbally, the field equations and
parameter values are then given at the end of this section.

3.3.1 Model architecture

The architecture for the biased competition model is shown in Figure 3.7.
The core of the model is analogous to the space-feature association mecha-
nism explained before, comprised of a single two-dimensional field and two
one-dimensional fields. To be able to fully emulate the psychophysical ex-
periment, the system is augmented by two additional fields: A new field
over the surface feature dimension is introduced to serve as working mem-
ory representation. An additional spatial field reflects the saccade motor
plan, and its output drives a simulated saccadic eye movement. Further-

Figure 3.6 (preceding page): Coupled selection decision in interconnected
DNFs. (a) Situation briefly after the onset of two symmetric visual stim-
uli. (b) Under the influence competitive interactions in the separate one-
dimensional DNFs and mutual coupling via the two-dimensional DNF, one
of the stimuli has been selected consistently in all fields.
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Figure 3.7: DNF model of biased competition. Fields are depicted as in the
previous figures, dynamic nodes are shown as blue circles. White arrows in-
dicate topological connections between fields, green arrows denote excitatory
connections from or to a dynamic node, red arrows inhibitory connections.
Note the logarithmic scaling of the spatial dimension in the model, leading
to the different input strengths induced by the two stimuli in the exemplary
visual scene (which are equal in size, but differ in eccentricity). Also note
that due to this effect, activation peaks are typically not aligned with stimu-
lus positions in the depiction of the visual scene. Abbreviations: vs – visual
sensory field, fa – feature attention field, fm – feature WM field, sa – spatial
attention field, sm – saccade motor field.

more, three discrete nodes are introduced to the architecture to modulate
saccade behavior and terminate saccadic eye movements. These nodes are
intended to model groups of neurons that do not encode metric informa-
tion (and therefore cannot be described as an activation distribution over a
feature space).

The spatial dimension in this model reflects horizontal stimulus position
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in a retinocentric frame of reference, such that spatial representations shift
when a simulated eye movement occurs. The scaling along this dimension is
logarithmic, such that the resolution is highest at the center of the spatial
fields (the foveal region in retinocentric space) and falls off in the periphery.
In effect, a stimulus that appears near the fovea produces a stronger and
wider activation peak than would be produced by the same stimulus at a
more extrafoveal location. In the surface feature dimension, a color represen-
tation (over hue values) is augmented by a separate section that represents
gray values. This is necessary to accommodate for the white fixation point in
the experiment. This implementation reflects the minimal assumption that
surface features of non-colored items are represented in an analogous fashion
to color features, and are subject to the same effects of feature attention.

The simulated visual input drives activation in the two-dimensional vi-
sual sensory field. Individual stimuli induce localized activation peaks in this
field, reflecting the combination of stimulus location and color value. Lateral
interactions of moderate strength stabilize these peaks against random fluc-
tuations in field activation. The lateral inhibition along the surface feature
dimension is global, such that only a single feature value can be represented
for each spatial position (see inhibitory grooves in the visual sensory field in
Figure 3.7).

In the surface feature pathway, the visual sensory field projects into the
feature attention field, via a read-out projection that integrates over the spa-
tial dimension. The lateral interactions in this field include local excitation
and global inhibition to create a competition effect. The feature attention
field projects back to the visual sensory field, inducing ridge inputs along
the spatial dimension. It also provides feed-forward input for the feature
working memory (WM) field, which spans the same dimension of surface
features. The feature WM field in turn projects back to the feature attention
field. Lateral interactions in the feature WM field are set up with strong self-
excitation and strong surround inhibition so that they support self-sustained
activation peaks that serve as working memory representations.

In the spatial pathway, the spatial attention field receives the spatial read-
out of the visual sensory field as input, and projects back to it. The field also
receives direct visual input (only the spatial stimulus components) to reflect
the neurophysiology of the saccade system in the brain (see below). During
the saccade task, the field activation is furthermore preshaped to reflect the
expectation of target locations and the task instructions, with activation level
increased around the expected location of the saccade target and suppressed
around the distractor locations. This preshaping corresponds to cognitive
inputs reflecting intentions and expectations (compare Trappenberg et al.,
2001), whose source lies outside the scope of the current model.

The spatial attention field is bidirectionally coupled to the saccade motor
field, providing feed-forward input and receiving feedback from it. The feed-

49



forward input is suppressed in the foveal region (at the center of the two
fields), such that stimuli that are already being fixated cannot induce a
saccadic eye movement. Both fields feature lateral interactions with a global
inhibitory component, creating a selection regime. The interaction strength
is moderate in the spatial attention field, such that two peaks may coexist
for some time if they are both supported by external input to the field. The
interactions in the saccade motor field are strongly competitive, ensuring
that only a single peak can persist at any time, and thus that a unique
target location is selected for a saccadic eye movement.

Two dynamic nodes project with a fixed weight pattern to the spatial at-
tention field to modulate the system’s saccade behavior: The fixation node
excites the central (foveal) region of the field. Since this region does not
project to the saccade motor field, but does compete with other active re-
gions in the spatial attention field through lateral interactions, its effect is to
suppress saccade initiation and stabilize fixation. The gaze change node has
the opposite effect, it suppresses activation in the foveal region and thereby
facilitates shift of attention and saccade initiation to peripheral stimuli. Fi-
nally, the saccade reset node receives input from the whole saccade motor
field and projects inhibition back to it. It has the role of terminating the eye
movement signal, as detailed below.

3.3.2 Saccade generation

The DNF model of biased competition produces behavioral responses in the
form of saccadic eye movements, which are generated in the model’s spatial
pathway. As stated above, this spatial pathway is comparable to previous
two-layer DNF models of saccade planning in the SC, in particular to the
model of Trappenberg et al. (2001; see also Marino et al., 2012; Wilimzig
et al., 2006). The top layer (the build-up layer in the model of Trappenberg,
corresponding to the spatial attention field here) receives external visual
input as well as top-down input reflecting task instructions or expectations
about stimulus positions. Different active locations compete in this layer
through lateral interactions. When a sufficiently strong peak has formed
at one location, it induces an activation peak in the bottom layer as well
(burst layer in the model of Trappenberg, saccade motor field here). The
formation of an activation peak in this layer is taken as a signal that a
saccade is initiated, with the peak location specifying the selected saccade
target.

What previous models lacked was a treatment of the further evolution of
activation patterns after a saccade motor peak had formed. To produce the
detailed saccade metrics required to fully account for psychophysical data, it
is necessary to also consider the generation of the saccadic motor command
from the activation peak and the termination of the saccade. Furthermore,
the model should be able to perform multiple saccades within one trial.
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Even though only the characteristics of the first saccade are analyzed in the
saccade task of the experiment, the further behavior of the model is relevant
for the results in the subsequent memory test.

To terminate the saccade signal, the saccade reset node is introduced.
This node acts as a simple (lossy) neural integrator that receives as input the
integrated output over the whole saccade motor field, scaled with a constant
weight (see Equation 3.20 below). As long as there is no activation peak in
that field, the node’s activation remains at the resting level. Once a peak
forms, node activation rises until it reaches the output threshold. The node’s
output then provides a strong global inhibitory input to the saccade motor
field, extinguishing the present activation peak there. The node features
moderate self-excitation, such that it remains active a brief time after the
input from the saccade motor field has ceased. This ensures that the peak in
the saccade motor field is fully extinguished by the reset node. Ultimately,
however, the node activation returns to the resting level without the external
input. The output of the saccade reset node is also used to determine the
beginning and end of the simulated eye movement: The actual saccade is
taken to start when the node output exceeds a threshold θstart, and to end
when the output falls back below θend.

Due to the strong interactions in the saccade motor field, the time course
of peak formation and suppression in that field is highly stereotyped. As soon
as an external input drives the field activation at some point to the output
threshold, the lateral interactions will be dominant in determining the shape
(but not the location) of the emerging peak. The activation peak drives the
saccade reset node, independent of the location of the peak, which in turn
suppresses the peak after a largely fixed time. The lateral interactions thus
create a normalizing effect, decoupling the time course of activation patterns
in the field from the strength and shape of the external input that it receives.
This normalization is not complete, however; a stronger input signal may
still create a slightly larger and more enduring saccade motor peak. This
will be important in one of the experimental paradigms modeled with this
architecture.

The method of determining saccade metrics from the activation peak is
inspired by the interpretation of SC motor activity of Goossens and Van Op-
stal (2006). In their view, every spike of a saccadic burst neuron in the deep
layers of the SC contributes to the motor command by adding a “mini-
vector” to the saccade metrics. The size and direction of this vector is fixed
for each neuron, reflecting the preferred saccadic end point of the neuron and
correspondingly its position in the topographic map in the SC (of course,
the mini-vector for each spike covers only a small fraction of the distance to
the neuron’s preferred saccade end point).

This idea is transferred to the DNF model as follows: Each field location
is assigned a preferred saccade vector (actually a positive or negative scalar
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value, since the model only covers gaze changes in one dimension). To de-
termine the metrics of one saccade in the model, the field output at each
location is scaled with this preferred saccade vector. The scaled output is
then integrated over the whole field, and over the whole time that an activa-
tion peak is present in the field. The result, scaled with a constant conversion
factor, is interpreted as a saccadic motor command to the ocular muscles,
and yields the final saccade metrics generated by the model. This transfor-
mation from the population code in the field to a metric value (space-to-rate
code), in combination with the reset mechanism, implements an instance of
a summation with saturation model according to the classification of saccade
models introduced by Groh (2001).

The implementation in the model deviates from the mechanism proposed
by Goossens and van Opstal in the way that the saccade is terminated. In the
explanation of these authors, a mechanism located downstream from the SC
performs a comparison of the generated motor signal with a desired motor
signal (both derived from the spiking activity in the SC) and terminates the
saccade when the two match. How the termination of the neural activity in
the SC is achieved is not specified in this explanation (although the theory
would seem to require a precisely controlled termination of that activity,
since it maintains that every spike in the SC’s deep layers contributes to the
saccade metrics). I opted instead for an explicit termination signal provided
by the saccade reset node: In this model implementation, the saccade motor
peak is always suppressed after an (approximately) fixed time, when a certain
total output has been produced by this peak and has activated the reset node,
while the metrics of the saccade are determined by the location of the peak in
the field. A further downstream comparison process (of two signals derived
from the same source) does not appear to me to be capable of improving the
precision of the motor command, and thus is omitted in the DNF model.

During a simulated saccade (with start and end time as defined above),
all visual input is suppressed in the model. At the end of the saccade, the
saccade amplitude is determined, and the system’s fixation point within the
visual scene is shifted by this value. Stimuli located at the new fixation
point now project to the central (foveal) region along the model’s spatial
dimension, and are represented at higher resolution due to the logarithmic
scaling of the spatial dimension in the model.

3.3.3 Biological basis of the DNF model

The DNF architecture for the biased competition task is not intended as a
strictly neurophysiological model. The individual DNFs in the model are
defined based on functional considerations, and as such, there is no one-to-
one mapping of each DNF to a specific brain area. Nonetheless, the model
aims to preserve the general structure of the visual processing pathways.
In particular, it reflects the division into ventral pathway (focused on visual
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surface features and object identity) and a dorsal pathway (focused on spatial
aspects of visual perception and movement planning, see Mishkin et al.,
1983).

The visual sensory field, which represents both spatial position and one
surface feature of visual stimuli, can be equated with the early areas of the
visual cortex (V1, V2, and especially V4), before the division into separate
pathways. Neurons in these areas have still relatively localized spatial recep-
tive fields, combined with different feature selectivities. In particular in V4,
color representations have been found that are consistent with a space code
representation of hue values as in the model (Wachtler et al., 2003; Krüger
et al., 2013). In addition, neural responses in V4 show pronounced modu-
lation by spatial and feature attention, consistent with the behavior of the
field in the model (McAdams and Maunsell, 2000; Reynolds and Chelazzi,
2004). Some experimental support for attentional modulation has also been
found for the earlier areas V1 and V2 (Motter, 1993), but the evidence is
less clear for these.

The two fields of the spatial pathways in the model are concerned with
spatial attention and saccade target selection. In the human brain, there
are both sub-cortical and cortical structures involved with these functions,
which appear to be partly redundant. The key sub-cortical structure here is
the SC. This midbrain structure consists of multiple layers of neurons, each
forming a topographically organized map of the visual space in a retinocen-
tric reference frame (Sparks and Nelson, 1987). It receives visual input from
the lateral geniculate nucleus (a thalamic structure that conveys the neural
signals directly from the eyes) as well as from visual cortical areas such as
V1, and also integrates input from other sensory modalities. The superficial
layers of the SC represent locations of salient visual stimuli and are involved
in attentional selection. The activation patterns in deeper layers are strongly
coupled to saccadic motor behavior (and gaze control in general), and lo-
calized peaks of activation in these layers have been found to be temporally
aligned and causally involved in each saccadic gaze change (Lee et al., 1988;
Dorris et al., 1997).

Cortical areas involved in spatial attention and saccade planning are
in particular the posterior parietal cortex (PPC) and the frontal eye field
(FEF). The PPC is part of the dorsal stream, receiving input from the visual
cortical areas. It contains spatial representations with activation patterns
that reflect attentional selection (Colby and Goldberg, 1999). Projections
from the PPC are on the one hand directed back to the visual cortex, allowing
attentional modulation of feed-forward activation patterns, and on the other
hand provide input to the FEF. The FEF itself is involved in the control of
saccadic eye movements and projects, among others, to the deep layers of
the SC (Schall, 2004).

The two spatial fields in the model can be most closely related to the
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different layers of the SC (the spatial attention field corresponding to the
superficial layers, the saccade motor field to the deep layers). This is also
reflected in the direct visual input that the spatial attention field receives in
the model (in addition to the input from the visual sensory field), matching
the direct thalamic input to the SC. This part of the model architecture
is also consistent with previous neurodynamic models of saccade generation
(Trappenberg et al., 2001; Marino et al., 2012), which explicitly aimed to
reproduce activation patterns in the SC. As a functional model, however,
the two DNFs are also meant to incorporate the cortical contributions to
attentional selection and saccade initiation, which are functionally similar
to the roles of the different layers in the SC.

The two surface feature fields in the DNF architecture model different
functional aspects of the ventral processing stream. The feature attention
field can be equated with temporal areas such as the infero-temporal cortex
(IT). Neurons in this region have large spatial receptive fields that often
cover large part of the whole visual field, and thus are spatially unspecific
(Krüger et al., 2013). They do show, however, high specificity for certain
surface features (such as forms or colors) or combinations of such features.

The representations that form the basis for working memory are believed
to be distributed in the brain. To memorize a certain feature, neural pop-
ulations involved in the perception of that feature are recruited, such as in
areas IT and V4 (as evidenced by sustained firing of such neurons in ex-
perimental tasks involving VWM; Fuster and Jervey, 1981; Pasternak and
Greenlee, 2005). There is also an involvement of the prefrontal cortex, which
may act to control what is retained in the sensory areas (Miller et al., 1996).
The separate representations of feature attention and feature WM in the
model are also consistent with behavioral data showing that VWM content
and currently attended features can be dissociated when required by a task
(Hollingworth and Hwang, 2013; Houtkamp and Roelfsema, 2006; Olivers
et al., 2011).

Several aspects of the the visual processing in the brain are not ad-
dressed at all in the model. In particular, the model only deals with a single
selected surface feature, and ignores the hierarchical progression from sim-
ple to complex features that is found in the ventral pathway. This reflects
an intentional simplification on the model, since the focus is on interactions
between spatial and feature attention.

3.3.4 Formal description of the DNF model

The full model can be described as a coupled dynamical system governed
by a set of differential equations. I will use a unique index to identify each
DNF and each dynamic node in these equations: vs for visual sensory field,
sa for spatial attention field, sm for saccade motor field, fa for feature at-
tention field, fm for feature memory field, fix for fixation node, gc for gaze
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change node, and r for saccade reset node. The kernels and parameters of
projections between fields are identified by two indices, the first signifying
the target, the second the source of the projection. The parameter values of
all fields and their lateral interactions are given in Table 3.1, the parameters
of interactions between fields are given in Table 3.2. All interactions within
and between fields are mediated by generalized difference-of-Gaussians ker-
nels (see Equation 2.4 in the previous chapter) unless specified otherwise.
The time constant τ for all field equations is 20 ms. Note that dependence
of field activation on time is omitted in the field equations for brevity.

Field equations

field index h β q cexc σexc cinh σinh cgi

vs (ftr/spt) -5 1 0.25 10 5 / 2.5 1 - / 6.25 0
fa -3.5 4 0.25 10 4 18 8 0.1
fm -5 4 0.5 30 3 37.5 9 0.1
sa -2 1 0.25 15 12 0 - 0.3
sm -5 4 0.5 42 8 0 - 0.95
fix -5 1 0.2 0 - 0 - 0
gc -5 1 0.2 0 - 0 - 0
r -5 4 0.2 3 - 0 - 0

Table 3.1: Field parameters and parameters of lateral interactions.

projection index cexc σexc cinh σinh cgi

fa, vs 0.4 4 0 - 0
vs, fa 3.75 6 0 - 0
fm, fa 2.5 6 0 - 0
fa, fm 8.5 8 0 - 0
sa, vs 1.5 10 1 25 0
vs, sa 2.5 12 0 - 0
sm, sa 7.25 10 0 - 0
sa, sm 7.25 10 0 - 0.1
r, sm 0.4 - 0 - 0
sa, r 0 - 0 - 12
sm, r 0 - 0 - 12
fix, r 0 - 0 - 5
sa, in 1.25 10 0.5 25 0.015

Table 3.2: Parameters of interactions between fields.
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The field equation for the visual sensory field can be given as:

τ u̇vs(x, y) =− uvs(x, y) + hvs + ivs(x, y) + [kvs,vs ∗ f(uvs)](x, y)
+ [kvs,sa ∗ f(usa)](x) + [kvs,fa ∗ f(ufa)](y) + qvsξ(x, y).

(3.10)

Here, ivs is the external visual input. The two-dimensional lateral interaction
kernel, kvs,vs, featuring local surround inhibition along the spatial dimension
and global inhibition along the surface feature dimension:

kvs,vs(x, y) =
cexc

vs,vs

2πσexc,spt
vs,vs σexc,ftr

vs,vs
exp

(
− x2

2(σexc,spt
vs,vs )2

− y2

2(σexc,ftr
vs,vs )2

)

−
cinh

vs,vs√
2πσinh,spt

vs,vs
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(
− x2
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)
.

(3.11)

The interaction kernels kvs,sa and kvs,fa, mediating the ridge inputs from
spatial and feature attention fields, are simple Gaussian kernels.

The feature attention field is governed by the differential equation:

τ u̇fa(y) =− ufa(y) + hfa + ifa + [kfa,fa ∗ f(ufa)](y)
+ [kfa,vs ∗Oftr

vs ](y) + [kfa,fm ∗ f(ufm)](y) + qfaξ(y)
(3.12)

It receives input from the visual sensory field, computed by integrating the
field output over the spatial dimension, Oftr

vs (y) =
∫
f(uvs(x, y))dx.

The field equation for the feature WM field is:

τ u̇fm(y) =− ufm(y) + hfm + ifm + [kfm,fm ∗ f(ufm)](y)
+ [kfm,fa ∗ f(ufa)](y) + qfmξ(y).

(3.13)

Here, ifm is a global excitatory control input that determines when new
activation peaks can form in the field.

In the spatial pathway, the spatial attention field is governed by the field
equation

τ u̇sa(x) =− usa(x) + hsa + isa(x) + psa(x) + [ksa,sa ∗ f(usa)](x)
+ [ksa,vs ∗Ospt

vs ](x) + [ksa,sm ∗ f(usm)](x)
+Wsa,fix(x)f(ufix)−Wsa,gc(x)f(ugc)− cgi

sa,rf(ur) + qsaξ(x).
(3.14)

The field receives direct visual input isa (purely spatial) and is modulated
during the saccade task and memory test task by constant preshape psa
reflecting task instructions and prior knowledge. It also receives spatial
input from the visual sensory field, computed by integrating over the surface
feature dimension, Ospt

vs (x) =
∫
f(uvs(x, y))dy. Inputs from the fixation node
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and gaze change node modulate activation in the foveal region of the field
(around zero) through weight patterns

Wsa,fix(x) = 2.25 · exp
(
− x2

2(σexc
sa,sa)2

)
(3.15)

and Wsa,gc = −Wsa,fix.
These two nodes are driven only by external control inputs reflecting task

instructions, yielding the simple dynamic equations:

τ u̇fix = −ufix + hfix + ifix + cgi
fix,rf(ur) + qfixξ (3.16)

τ u̇gc = −ugc + hgc + igc + cgi
fix,rf(ur) + qgcξ (3.17)

Both the spatial attention field and the nodes are suppressed by inhibitory
input from the saccade reset node during a gaze change, expressed through
the terms cgi

fix,rf(ur) with inhibitory connection weight cgi
fix,r.

The field equation for the saccade motor field is

τ u̇sm(x) =− usm(x) + hsm + [ksm,sm ∗ f(usm)](x)
+ [ksm,sa ∗ ofov

sa ](x)− cgi
sm,rf(ur) + qsmξ(x).

(3.18)

In the input from the spatial attention field, the foveal region is suppressed
(so no saccade signal will be created for already fixated stimuli), yielding

ofov
sa (x) =

(
1− exp

(
− x2

2(σexc
sm,sa)2

))
f(usa(x)). (3.19)

The dynamics of the saccade reset node are described by the equation

τ u̇r = −ur + hr + cexc
r,r f(ur) + cexc

r,sm

∫
f(usm(x))dx+ qrξ. (3.20)

Visual stimuli

For each visual stimulus j with screen position pj and size lj , the spatial
pattern on the screen is reproduced as a step function

hj(x) =
{

1, if |x− pj | ≤ 1
2 lj

0, otherwise (3.21)

This pattern is then transformed into a logarithmically scaled retinocentric
pattern mj (with current fixation point xfix) as

mj(x) = hj (sign(x)ζ (exp (χ|x|)− 1)− xfix) , (3.22)

with scaling parameters ζ = 100 px and χ =
ln
( 450 px

ζ
+1
)

150 . This spatial pattern
is smoothed with a normalized Gaussian kernel kvs,in with width σvs,in = 2.5.

57



It is then expanded to a two-dimensional pattern by multiplying it with a
Gaussian pattern over the space of color hue values, centered on the stimulus
color cj and with width σc = 4. The temporal pattern for each stimulus is
phasic-tonic, with the phasic component dependent on the stimulus start
time tj,start. The complete visual input for the visual sensory field is the sum
of all stimulus patterns:

ivs(x, y, t) =
∑

j

(
5 · exp

(
− t− tj,start

100 ms

)
+ 10

)

[kvs,in ∗mj ](x) · exp
(
−(y − cj)2

2σ2
c

) (3.23)

The spatial visual input to the spatial attention field is purely phasic. It is
based on the same pattern mj used above, now smoothed with difference-
of-Gaussians kernel ksa,in with a global inhibitory component that reduces
input strength when multiple stimuli are present:

isa(x, t) =
∑

j

7.5 · exp
(
− t− tj,start

100 ms

)
[ksa,in ∗mj ](x) (3.24)

While a saccade is in progress, all visual input is set to zero.

Preshape

The preshape for the saccade task pre-activates the spatial attention field
in those regions where the target stimulus may appear, and suppresses it
at the possible remote distractor locations. To compute the excitatory pre-
shape pattern, the average over the target stimulus patterns mt1 , . . . ,mtn

for all possible eccentricities of the target stimulus (in steps of one pixel) is
computed, and smoothed with the kernel ksa,in specified above. For blocks
of trials with a remote distractor stimulus, the stimulus pattern md for the
distractor is subtracted, otherwise this is omitted. The patterns for the two
possible directions of target and distractor from the fixation point (left or
right) are added up:

psacc(x) =
∑

dir={l,r}

(
2.6
n

n∑
i=1

[ksa,in ∗mdir
ti ](x)− 1.2[ksa,in ∗mdir

d ](x)
)

(3.25)

The preshape for the memory test simply pre-activates the locations of the
two memory test stimuli (left and right), based on their stimulus patterns
ml

mt and mr
mt:

pmt(x) = 1.25
(
[ksa,in ∗ml

mt](x) + [ksa,in ∗mr
mt](x)

)
(3.26)
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Saccade metrics

A simulated saccade is assumed to start at the time tstart at which the
output of the saccade reset node first exceeds a threshold θstart = 0.25, and
ends at the time tend at which the node’s output falls below θend = 0.05. The
saccade amplitude s (in pixels on the screen) is determined by integrating the
output of the saccade motor field over the whole time that a supra-threshold
activation peak is present in that field (the integration thus begins before
the saccade start time tstart). The output signal from each field location is
scaled in this integration to reflect the stimulus eccentricity it represents,
using the same mapping from field positions (retinocentric with logarithmic
scaling) to screen positions as used in computing the visual input:

s = 0.0025 px
∫∫

f(usm(x, t)) (sign(x)ζ (exp (χ|x|)− 1)) dxdt (3.27)

Numerical simulations

Numeric simulations of the dynamical system are performed using the Euler
method with a step size of 2 ms. The surface feature dimension is sampled
with 174 units, with separate regions for color hue values (144 units) and
gray values (30 units). The feature space in each of these regions is defined
in a circular manner, without any local interactions between the regions.
The spatial dimension is sampled with 301 units, covering a range from
approximately -15◦ to 15◦ in retinocentric space (with logarithmic mapping
of stimulus positions onto this spatial dimension, as described above). All
parameter values for the interaction widths are given in these field units.

3.4 Test of the DNF model

3.4.1 Experimental procedure and task conditions

In this section I will describe the procedures of the psychophysical experi-
ment that was used to investigate the effects of VWM content on saccade
target selection. The experimental design was a slight variation of two pre-
vious studies (Hollingworth et al., 2013a,b), devised in collaboration with
Andrew Hollingworth and executed by him at the University of Iowa specif-
ically to test the DNF model. The psychophysical experiment combines a
color working memory task and timed saccade task in an interleaved fashion.

Participants faced a monitor on which stimuli were presented, and their
eye movements were recorded via an eye tracking system. Participants then
performed trials that can be divided into three phases (Figure 3.8). In the
first phase, a colored square stimulus was presented in the center of the
screen, visible for 300 ms, and participants were instructed to memorize its

59



target match distractor match no match

target only

remote distractor

near distractor

memory sample saccade task memory test

Figure 3.8: Psychophysical task to test interactions between VWM and sac-
cade behavior. The top row shows the sequence of displays presented to
participants in the course of one trial. The arrow with the eye symbol in-
dicates the instructed eye movement to be performed in this phase of the
trial (this is not part of the stimulus display). In the bottom, the different
paradigms and color match conditions for the saccade task are depicted.

color. In the second phase, a saccade task was performed: The colored stim-
ulus was replaced by a fixation cross, and after a fixed delay period (700 ms)
a saccade target stimulus appeared, in part of the trials accompanied by a
distractor stimulus. The saccade target could be identified unambiguously
by its location (it was always the outer object, as detailed below), and par-
ticipants were instructed to fixate it as quickly as possible after it appeared.
The target and distractor stimuli were removed after a fixed delay after the
participant had made a saccade, and only the fixation stimulus remained.
The third phase of the trial was a memory test: Two colored squares ap-
peared on either side of the fixation cue, one of them matching the color of
the memory cue from the first phase of the trial, the other of a similar color
chosen from the same color category, referred to hereafter as the foil color.
Participants had to indicate by a button press which of these stimuli (left or
right) matched the color they had memorized in the first phase of that trial.
Participants received no feedback of their performance during the trials.

In the saccade task, three different stimulus arrangements were employed
(Figure 3.8): In the target only paradigm, only the saccade target stimulus
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was presented. It was a colored disk with a diameter of 1◦ of visual angle and
was located either to the left or the right of the fixation point, with distance
varied between 4.6◦ and 7◦. In the remote distractor paradigm, another,
smaller colored disk (0.66◦ diameter) was presented simultaneously with the
saccade target. It was always located on the side opposite to the target
stimulus, with a distance of 1.3◦ from the fixation cue. Participants were
instructed to ignore this distractor. Note that the distance for the distractor
does not overlap with distance range of the target stimulus, such that the two
can be clearly distinguished based on their position (and also based on their
size). The third paradigm used was the near distractor paradigm. Here, the
distractor stimulus was located on the same side as the target, 2.3◦ closer
to the fixation point. Target only trials and remote distractor trials were
randomly interspersed within blocks of trials (25% remote distractor trials),
near distractor trials were performed in separate blocks.

The key manipulation in the experiment pertained to the stimulus color
in the saccade task. Three conditions were distinguished: In the target
match condition, the saccade target stimulus was the same color as the
memory stimulus in that trial (and the distractor was a different color); in
the distractor match condition, the color of the distractor (but not the target
stimulus) matched the memory cue; and in the no match condition, neither
the saccade target nor the distractor were the same color as the memory
cue. The memory cue color and match condition for each trial was varied
in a pseudo-random manner, such that the stimulus colors in the saccade
task were not informative regarding the role of each stimulus for the task
(saccade target or distractor). Nonetheless, the color match condition in
the saccade task had significant effects on participants’ saccade behavior, as
detailed below.

As an additional manipulation, the color match for both target and dis-
tractor could be either exact or inexact. For an inexact color match, the
target or distractor was the same as the foil color in the following memory
test (belonging to the same color category as the memory color, but slightly
different from it). These inexact match trials were used to investigate metric
properties of the interaction effects, and in particular revealed effects of the
stimuli in the saccade task onto the working memory representation. Addi-
tional details about the experimental method and the data analysis can be
found in Hollingworth et al. (2013a,b).

3.4.2 Empirical and simulation results for the saccade task

The results of the study revealed significant effects of color match condition
on saccade target selection, saccade amplitudes, and saccade latencies. I will
present them here together with the simulation results, and describe how the
observed effects arise in the DNF model in the following section. Parameter
values in the DNF model (such as interaction strengths within and between
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fields) were manually adjusted to obtain a fit of the experimental data. The
same parameters were used in the simulations of all experimental conditions.
The model then generated novel predictions that were tested in a separate
experiment, described below.

Mean values for saccade metrics and latencies in the experiments were
obtained by averaging over the results of the trials of all participants. Trials
with leftward and rightward target directions were pooled and results are
presented as in rightward trials. Saccade amplitudes were measured as the
size of the horizontal displacement of the fixation point during the first
saccade (in visual angle), saccade latencies as time between target stimulus
onset and first saccade initiation. For the target only and remote distractor
paradigms, twelve participants each performed a total of 384 trials (288 in
target only paradigm, 96 for remote distractor). For the near distractor
condition, eight participants completed 400 trials each. For the simulation
results, a total of 7296 trials were run to approximate the total number of
trials in the empirical study (3040 target only, 1824 remote distractor, and
2432 near distractor trials). Random noise was added to the field activations
to produce a stochastic distribution of results in the simulations. Trials
with saccade latency below 60 ms or above 500 ms were excluded from the
analysis for both experimental and simulation results. The results for exact
and inexact match conditions were pooled for the saccade data since they are
qualitatively equal, as are the results for leftward and rightward saccades.

The empirical results for the target only paradigm are shown in Fig-
ure 3.9a-b. Saccades to the target stimulus generally fell slightly short of
the target. This undershoot was significantly reduced in the target match
condition. Mean saccade landing point relative to target location was −0.31◦
for target match vs. −0.40◦ for no match (t(11) = 4.38, p = 0.001). Further-
more, saccades were initiated significantly faster if the target matched the
memory color, with mean saccade latencies of 140 ms for the match condition
compared to 146 ms in the no match condition (t(11) = 3.20, p = 0.008).

Both of these effects were reproduced in the model simulations (Fig-
ure 3.9c-d). Mean relative landing position was −0.42◦ in the target match
condition compared to −0.47◦ in the no match condition (p = 0.01). Mean
saccade latencies were likewise reduced in the target match condition (149
ms) vs. the no match condition (160 ms, p < 0.001). The model moreover
provided a good qualitative fit of the overall pattern of the saccade landing
point distribution.

For the remote distractor paradigm, the key measure for color WM ef-
fects is the proportion of first saccades that were directed toward the target
stimulus (landed within 1.5◦ from the target center) rather than toward the
distractor. The distribution of saccade landing positions and saccade laten-
cies for the empirical study are shown in Figure 3.10a-b. As can be seen,
the color match condition has a significant influence on the effectiveness of
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Figure 3.9: Empirical (top) and simulation results (bottom) in the target
only paradigm of the saccade task. (a, c) Histogram of saccade landing
positions relative to the target location. Negative position values indicate
saccades that fell short of the target location, positive values indicated over-
shoot. The gray bar shows the extent of the target stimulus. (b, d) His-
togram of saccade latencies.

the distractor to capture saccades. In the target match condition, 93.6% of
saccades landed near the target. This proportion was significantly reduced
in the no match condition (79.6%, t(11) = 3.62, p = 0.004), and further
significantly reduced in the distractor match condition (40.1%, t(11) = 12.7,
p < 0.001). This means that the stimulus that matched the color held in
VWM was generally more likely to be selected as saccade target. Mean sac-
cade latency (averaged over saccades to the target only) was lowest in the
target match condition (172 ms, t(11) = 5.85, p < 0.001), but did not dif-
fer significantly between no match (199 ms) and distractor match (202 ms)
conditions.

The simulation results shown in Figure 3.10c-d again reproduce this pat-
tern of results. In the simulation, the proportion of saccades directed at
the target was 89.3% in the target match condition, significantly reduced to
69.4% in the no match condition (χ2 = 80.3, p < 0.001) and further reduced
to 39.1% in the distractor match condition (χ2 = 125.2, p < 0.001). Mean
latency of simulated saccades to the target was 168 ms in the target match
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Figure 3.10: Empirical and simulation results for the remote distractor
paradigm. (a, c) Histogram of saccade landing position, with initial fixa-
tion point at 0◦ and saccade target always on the right. Grey circles show
the sizes of target and distractor stimuli, gray bars the range of stimulus
positions. (b, d) Histogram of saccade latencies.

condition, significantly lower that in both the no match condition with 192
ms (p < 0.001) and the distractor match condition (181 ms). In the simula-
tion, the smaller latency difference between these two latter conditions also
reached significance, unlike in the experimental results (p < 0.001).

In the near distractor paradigm, the landing point of the first saccade
after stimulus onset was typically located between the target and the dis-
tractor stimulus in all conditions (see Figure 3.11a). This constitutes an
instance of averaging saccades, a well-known phenomenon in saccade target
selection that occurs when multiple stimuli are located close to each other
(Van der Stigchel and Nijboer, 2011). The mean location of the saccade
landing point varied with match condition: In the target match condition,
the mean saccade landing position relative to the target was -1.07◦. In the
distractor match condition, it was −1.48◦ on average, meaning the saccade
landed closer to the distractor stimulus. Mean relative landing position in
the no match condition was −1.27◦, lying between the two other conditions
(significantly different from target match, t(7) = 4.98, p = 0.002, and from
distractor match, t(7) = 4.28, p = 0.004). Again, mean saccade latency was
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Figure 3.11: Empirical and simulation results for the near distractor
paradigm. (a, c) Histogram of saccade landing position relative to the loca-
tion of the target stimulus. Gray bars show the locations and sizes of target
and distractor stimuli. (b, d) Histogram of saccade latencies.

shortest in the target match condition (155 ms, significantly shorter than
no match, t(7) = 2.73, p = 0.03). Mean latencies in the distractor match
condition (160 ms) and no match condition (161 ms) did not show significant
differences (Figure 3.11b).

The model succeeded in reproducing these results as well (Figure 3.11c-
d). It produced averaging saccades in response to the two nearby stimuli, and
the saccade landing point dependent on the color match. In the target match
condition, mean saccade landing point relative to the target position was
−0.75◦. It shifted to−0.92◦ in the no match condition (significantly different,
p < 0.001), and further away from the target to −1.10◦ in the distractor
match condition (significantly different from no match, p < 0.001). As in
the experimental results, mean saccade latency was shortest in the target
match condition (149 ms, significantly different from both other conditions,
p < 0.001), and not significantly different between distractor match (159 ms)
and no match conditions (161 ms).

65



horizontal position

su
rf

ac
e 

fe
at

u
re

0° 2° 5° 10°-2°-5°-10°

ac
ti

v
at

io
n

activation

fm fa vs

sa

sm

(a)

horizontal position

su
rf

ac
e 

fe
at

u
re

0° 2° 5° 10°-2°-5°-10°

ac
ti

v
at

io
n

activation

fm fa vs

sa

sm

(c)

horizontal position

0° 2° 5° 10°-2°-5°-10°

ac
ti

v
at

io
n

activation

fm fa vs

sa

sm

(d)

horizontal position

0° 2° 5° 10°-2°-5°-10°

ac
ti

v
at

io
n

activation

fm fa vs

sa

sm

(b)

Figure 3.12: Evolution of activation patterns in the DNF model during one
trial of the saccade task. (a) Presentation of the memory sample stimulus.
(b) Delay period. Visible are the pre-activation for the memorized color in
the feature attention field, and the weak preshaping of the activation in the
spatial attention field. (c) Situation briefly after the onset of target and
distractor stimulus. (d) Initiation of a saccade to the distractor stimulus.

3.4.3 Time course of activation during a simulated trial

To explain how the biased competition model integrates VWM, perceptual
processing, and saccade behavior to produce the results described above, I
will go through the time course of one trial in the model and describe the
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evolution of activation patterns (Figure 3.12). I will do this in detail for a
trial of the remote distractor paradigm, in which most of the key effects that
occur in the model are covered, and then more briefly discuss effects that
are specific for the target only and near distractor paradigms.

At the beginning of each trial, all fields in the model are at their respec-
tive resting levels, and the system is fixating the center of the screen. The
memory stimulus is now presented at this location, and produces a strong
activation peak in the visual sensory field (Figure 3.12a). The peak is located
centrally along the spatial dimension, and its location along the surface fea-
ture dimension reflects the stimulus color (here, green). Along the spatial
pathway, the single salient stimulus induces a strong activation peak in the
spatial attention field. Since it is located at the central (foveal) position in
the field, activation is not projected further to the saccade motor field (the
forward connection is suppressed in this region).

In the surface feature pathway, the input from the visual sensory field
first induces an activation peak for the stimulus color in the feature attention
field. The output of this field then drives activation locally in the feature
working memory field. During the memorization period, the feature working
memory field receives and additional control input that globally increases the
activation levels. Through the combination of these inputs, an activation
peak forms for the color of the presented stimulus.

The memory stimulus is now removed and replaced by a small white fixa-
tion stimulus. The activation patterns in the architecture during this fixation
period are shown in Figure 3.12b. The activation peak in the feature work-
ing memory field remains self-sustained after both the stimulus that induced
it and the global control input are turned off. It provides feedback input to
the feature attention field, which produces a localized hill of activation in
that field. The activation level remains below the field’s output threshold,
and therefore no feedback input for this feature value is projected further
back to the visual sensory field. At the same time, the smaller fixation cue
induces an activation peak in the visual sensory field, which in turn creates
peaks in the feature and spatial attention fields.

After the delay period with only the fixation point visible, the saccade
target and distractor stimuli are activated. In this example, I will describe a
distractor match trial, as shown in Figure 3.12c. A green distractor stimulus
is presented to the left of the fixation point, relatively close to it, while a
larger red saccade target stimulus appears further from the fixation point
on the right side. Both of these new stimuli induce activation peaks in the
visual sensory field, in addition to the still present fixation stimulus.

In the spatial attention field, the inputs from the three stimuli compete
with each other by means of the lateral interactions in the field. This com-
petition is modulated by additional inputs to the field that reflect the task
instructions for the saccade task: The gaze change node in the model is ac-
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tivated, and suppresses the foveal region of the spatial attention field, thus
weakening the activation peak induced by the fixation stimulus. In addi-
tion, the instruction to make a saccade to the outer stimulus and ignore the
distractor is reflected by a constant preshaping input: The regions on both
sides of the field where the target stimulus can appear are pre-activated, the
possible distractor locations are suppressed. With these modulatory inputs,
the saccade target would typically prevail in the competition based only on
its spatial characteristics.

The competition for spatial attention is however biased by the interac-
tions in the surface feature pathway. The peaks that the two colored stimuli
induce in the visual sensory field project to the feature attention field and
create hills of activation there. In the case of a color match, one of these
inputs will coincide with the region that is already pre-activated by the peak
in the feature WM field—in the example, the green distractor item matches
the memory color (Figure 3.12c). Consequently, a supra-threshold activation
peak for this color value forms much more quickly, and due to the extra in-
put from the feature WM field becomes larger than a purely stimulus-driven
peak would be. The feature working memory field projects back to the visual
sensory field, and consequently the peak for the matching stimulus in that
field is strengthened compared to other peaks.

The biasing effect of the feature match on the representation in the vi-
sual sensory field is also transmitted further to the spatial attention field,
via the spatial read-out projection. It influences the competition process
that is in progress in that field and creates a bias to select the location
of the item that matches the memorized color—here the distractor stimu-
lus. In this scenario, the resulting total inputs to the spatial attention field
are of approximately equal strength for the distractor and target stimulus.
Nonetheless, the competitive interactions will enforce a selection decision in
which one peak prevails while the other one is suppressed. Here, the dis-
tractor location is selected, and the resulting single strong activation peak is
enough to drive the activation in the saccade motor field above the threshold
(Figure 3.12d).

This triggers the saccade behavior as described above: A saccade motor
peak forms, drives an eye movement, activates the saccade reset node, and
is extinguished again. While the saccade is in progress, the external visual
input is suppressed. When it comes up again, it is shifted and centered on
the new fixation point. If one of the stimuli is fixated after the saccade,
the corresponding input to the central region of the spatial attention field
acts to stabilize this fixation and suppresses further saccades. However,
the saccade may fail to bring a stimulus into the foveal region for several
reasons: Random noise in the fields leads to variations in saccade amplitude,
and saccades to distant targets have a tendency to undershoot in the model
(consistent with human saccade behavior). Furthermore, if two stimuli are
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close to each other (as in the near distractor paradigm, see below), the system
will generally perform an averaging saccade that lands between the stimuli.
In all of these cases, the system is in a state with no stimulus in the foveal
region after the saccade, but with one (or more) close to the fovea. By the
very same mechanism that drove the initial saccade, the system will then
autonomously perform a correction saccade to fixate that stimulus. This is
again consistent with human behavior in such situations.

3.4.4 Different interaction effects in the model

The biasing effect of the color match on the spatial selection process di-
rectly explains the saccade target selection results in the remote distractor
paradigm. Without any color bias (the no match condition), the saccade
target has a clear advantage due to the different spatial effects (stimulus size
and preshaping of the field activation), and prevails in the competition in
the majority of trials. The distractor stimulus is still selected in part of the
trials due to effects of random noise on the competition. If the distractor
color matches the memory color, the color bias largely cancels out the advan-
tages of the target stimulus, leading to approximately equal proportions of
saccades to distractor and target. In the target match conditions, all biasing
effects favor the designated saccade target, and only very few saccades to
the distractor are made.

The differences in saccade latency in the remote distractor paradigm
result primarily from the selection process in the spatial attention field. The
competition between two locations is resolved very quickly if one receives
significantly more input than the other, but can take a long time to resolve
if activation levels are very similar. In the latter case, the small differences
in activation value induce only a low rate of change for the activation at both
locations, and the balance between two locations may change back and forth
due to random noise. This is reflected in the longer mean saccade latencies
and high proportion of very slow saccades in the distractor match condition
(Figure 3.10b and d). In the target match condition, the competition is the
most lopsided, and consequently mean saccade latency is lowest.

In the near distractor paradigm (target and distractor on the same side),
the model typically generates an averaging saccade that lands between the
two stimuli, consistent with the experimental results. This averaging is pro-
duced by the relatively broad lateral and feed-forward interaction kernels
in the spatial pathway: Through broad feed-forward projections from the
visual sensory field to the spatial attention field, the inputs created by prox-
imate stimuli are partly joined. Broad lateral excitatory interactions then
further act to merge these adjacent inputs into a single activation peak,
centered between the original input locations. This averaged peak in the
spatial attention field then projects to the saccade motor field and produces
a corresponding saccade signal.
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The exact location of the activation peak between the two input locations
is influenced by the strengths of the inputs. In the target match condition,
the input for the saccade target stimulus is strengthened by the color bias,
and the averaged peak is consequently centered closer to the target location
as compared to the no match condition. For the same reason, in the dis-
tractor match condition, the peak forms on average closer to the distractor
location. This reproduces and explains the saccade amplitude effects for
this experimental paradigm. The lower mean saccade latency for the target
match condition can be explained in a similar way as for the remote dis-
tractor paradigm: In the target match conditions, all positive biasing effects
converge on the target location, so a peak can form here particularly quickly.

In the target only paradigm, there is only the single saccade target. The
corresponding activation peak in the visual sensory field is strengthened if
it matches the memory color, and is not modulated otherwise. This directly
explains the shorter saccade latencies in the target match condition: With
stronger input, the peaks in the spatial attention field and subsequently in
the saccade motor field can form more quickly. The small (but significant)
differences in mean saccade amplitude are a result of the incomplete normal-
ization in the saccade generation: As stated above, the strong interactions
in the saccade motor field make the time course of peak formation and decay
largely independent of the input strength, but this normalization is not com-
plete. Since the input signal is strengthened in the target match condition,
it takes slightly longer for the saccade reset node to suppress the saccade
motor peak, and the resulting saccades are slightly longer than they would
be without the color match.

The fact that these interaction effects arise even for an inexact color
match (albeit slightly weaker) can be explained in the model by the extent
of the activation peaks along the feature dimension and the spread of acti-
vation in the projections between fields. The activation peaks in the surface
feature dimension (as in the spatial dimension) are not localized to a single
feature value, but extend over a range of values. In the projection to another
field—for instance, in the feedback projection from a working memory peak
to the feature attention field—activation is spread out over an even larger
range. Consequently, the working memory peak for a certain color can pro-
vide additional excitation not only for stimuli of the exact same color, but
also for similar colors (that are metrically close in the surface feature dimen-
sion). The additional excitation is weaker than for an exact color match,
and decreases with further distance between the color values, but its effect
on the saccade system is qualitatively the same as for an exact match.

3.4.5 Effects of color matches on memory performance

The experimental and simulation results discussed so far have been explained
by uni-directional biasing effects from the VWM for surface features on the
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spatial selection for saccadic eye movement. If the idea of a dynamically
and bidirectionally coupled system as introduced in the beginning of this
chapter is an accurate description of the visual system, we should expect
that interaction effects can also be observed in the opposite direction. In
fact, the results of the memory test in the experiment provide evidence for
such interactions, in that they show an effect of perceptual processing on the
working memory representation.

In the color memory test, participants had to indicate via a manual re-
sponse which of two stimuli matched the color of the memory cue from the
beginning of the trial. Analysis of the experimental results yielded a sig-
nificant effect of the color match type—exact, inexact, or no color match—
on memory test performance. In the no match condition, pooled over the
three experimental paradigms, participants reached a performance of 77.2%
correct choices. For the exact match trials, pooled over paradigms and tar-
get/distractor match, the performance increased to 82.5% correct. In con-
trast, for the inexact match trials pooled in the same way, performance was
decreased to 74.1% correct. Recall that in these trials, the color of one item
in the saccade task matches the foil color in the memory test.

The memory test is emulated in the model as a forced-choice saccade
task, in which an eye movement from the central fixation point to either of
the two equidistant stimuli is taken as the response for the memory test.
This is not intended to be a direct model of the experimental procedure
(in which participants may freely fixate either or both of the stimuli during
their decision making), but as an alternative probe of the working memory
content. The underlying assumption is that the differences in performance
arise from a change in the working memory representation itself, and not
the procedure of the memory test.

The model mechanism for the memory test works as follows (Figure 3.13):
After the saccade task, only the fixation stimulus remains, and the model’s
gaze direction is externally reset to be centered on that fixation stimulus.
The artificial gaze reset is used instead of a saccade generated by the model
itself to ensure that there are no variations in the initial gaze direction, which
could bias the subsequent memory test saccade. Then, in preparation of the
memory test, the activation level of the feature attention field is globally
increased. This allows the feedback input from the feature working memory
field to form a supra-threshold activation peak (Figure 3.13a), and thereby
increases the effect that the working memory representation has on the visual
sensory field. Effectively, the system is brought into an explicit visual search
mode, with the search target defined by the working memory peak. When
the two memory test stimuli are presented and corresponding peaks form in
the visual sensory field, the peak that matches the feature value in VWM is
immediately supported by the already present input ridge from the feature
attention field.
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Figure 3.13: Evolution of activation patterns during the memory test period
of one trial. (a) Preparatory period directly before the memory test, with
activation level in the feature attention field globally increased. (b) Situation
briefly after onset of memory test stimuli.

The saccade target selection then works in the same way as during the
saccade task. Since the two stimuli are equivalent in their spatial features,
the outcome is determined primarily by the bias from the feature match.
However, since the two stimuli are similar in the color hue value, even the
non-matching peak in the visual sensory field is somewhat strengthened by
the feedback from the feature attention field, and the biasing effect is not as
strong as it would be otherwise. The resulting performance of the model in
the no-match condition is similar to participants’ performance in this task:
The correct memory color is selected as saccade target in 87.4% of all trials.
Moreover, the model also reproduces the effects of exact and inexact color
match observed in the experiment: An exact color match in the saccade trial
raises the performance to 90.0%, an inexact match decreases it to 78.2%.

In the model, the effect of the color match type in the saccade task on the
memory test performance is a result of the continuous coupling between the
feature working memory field and the visual processing in other fields. In
the same way as the working memory representation influences the saccade
behavior even if the task does not demand this, the earlier visual fields
affect the activation patterns in the working memory field even if there is no
instruction to memorize something. The detailed effects are as follows: In
all conditions, the working memory peak shows a certain amount of random
drift along the feature dimension, due to noise in the field activation. This
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Figure 3.14: Effects of saccade task stimuli on activation peak in feature WM
field. The blue plot shows the activation distribution in a part of the feature
WM field, the green line shows the input induced by a visual stimulus (via
the feature attention field). The originally memorized hue value is indicated
by a black arrow, the green arrow indicates the hue value of the current
stimulus. (a) Situation for dissimilar hue values. (b) Situation for exactly
matching hue values. (c) Situation for an inexact match in hue values.

drift makes the memory representation imprecise and reduces performance
in the memory test. It decreases the biasing input for the stimulus that
matches the originally memorized color, and can furthermore increase the
input for the incorrect stimulus if the drift brings the peak closer to the foil
color value.

During the saccade task, additional visual stimuli appear that provide
input to the feature WM field. When all stimulus colors are dissimilar to
the memorized color (no match condition), these inputs do not interact with
the working memory peak, and random drift occurs in the same way as if
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no additional inputs were present (Figure 3.14a). However, when one of the
stimuli has the exact same color as is held in memory, this input stabilizes
the memory peak at its original position and thereby reduces random drift
(Figure 3.14b). This explains the improvement in performance for the exact
color match trials compared to the no match trials. For an inexact color
match, the input from the saccade task stimulus is slightly offset from the
position of the working memory peak. It creates an activation gradient
that pulls the working memory peak toward the feature value of the input
(Figure 3.14c). As a result, the peak in the feature WM field is located at
an intermediate position between the originally memorized color and the foil
color when the memory test is performed. It is then less effective to bias
the decision toward the correct color, which explains the decreased memory
performance for the inexact color match.

The effect in the model was quantified by determining the position of
the activation peak in the feature WM field at the beginning of the memory
test, and computing its deviation from the memorized color. In inexact
match trials, the mean deviation in hue space was 3.4◦ toward the foil color
(significantly different from zero, p < 0.001), confirming the biasing effect
qualitatively described above. In the exact match and no match conditions,
no significant deviation in mean peak position was found (0.19◦ and 0.10◦,
respectively). The analysis also confirmed the stabilizing effect of an exactly
matching stimulus on the peak position: The standard deviation in peak
position was lower in exact match trials (3.9◦) compared to no match trials
(4.8◦) and inexact match trials (5.1◦).

This explanation in the DNF model provides an experimentally testable
prediction for the working memory representation in human participants:
The encoded feature value after a saccade task with an inexact color match
should show a metric bias toward the foil color. This prediction was tested
experimentally in a variant of the experiment, using only the target-only
paradigm: Instead of a two-alternative forced choice task, the participants
were asked to indicate the color they had memorized by setting a slider on
a color wheel (Figure 3.15; see Schneegans et al., 2014, for details of the
experimental procedure).

The results confirmed the expected bias toward the foil color in the inex-
act color match condition. The mean deviation in participants’ responses for
this condition was 1.9◦ toward the foil color (significantly different from zero,
t(15) = 4.1, p < 0.001). This is comparable to the deviation predicted by the
model. In the other match conditions, no systematic bias in color memory
was found. The predicted stabilizing effect of an exact color match was also
confirmed by the experiment. In this condition, the mean standard deviation
in participants’ color response (12.4◦) was significantly smaller than in the
inexact match condition (14.2◦) and the no match condition (15.9◦). It is
noticeable that the standard deviations are overall higher in the experiment
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Figure 3.15: Experiment to test model prediction of WM biases. (a) Ex-
perimental procedure. The two-alternative forced choice test at the end of
the trial is replaced with a continuous response test, in which participants
have to indicate the memorized color on a color wheel. (b) Distribution of
response errors in the memory test.

than those predicted by the model. This may be explained, however, by the
fact that the memorized color in the model was read out directly from the
peak location. The generation of a manual response to indicate the memo-
rized color in the experiment is likely to introduce additional variability.

3.5 Discussion

In the present chapter, I have introduced multi-dimensional DNFs, and have
shown how they can be used to mediate associations between different fea-
ture dimensions. The proposed mechanism assumes that localized activation
is present in the multi-dimensional DNF, reflecting locations and colors of
visual stimuli in the examples of this chapter. Through bi-directional con-
nections, the system then achieves a coupled selection of one item in separate
one-dimensional fields over different feature dimensions.

This association mechanism can be used to deal with the problem of fea-

75



ture binding in distributed representations, by selecting one visual item at a
time through focused attention. The approach is consistent with the Feature
Integration Theory (Treisman and Gelade, 1980), a prominent psychologi-
cal theory of visual perception. Ample evidence from different experimental
paradigms supports the core claim of this theory, namely that focused at-
tention is necessary to form and use conjunctions of different visual features.
The reasons why the separation into multiple distinct representation in visual
processing is employed in the first place, instead of using the type of joined
representation as in the two-dimensional field throughout, will be addressed
in more detail in the following chapters.

The psychophysical experiment on interactions between VWM and sac-
cade behavior that I have presented here provides three key constraints for
the modeling of attentional selection in the visual system. First, interac-
tions between feature and spatial representations occur at an early level of
visual processing. This can be derived from the finding that even fast reac-
tive saccades to sudden onset targets, which have generally been thought to
be purely stimulus driven, are affected by VWM content. This observation
speaks against separate processing steps in visual perception, with top-down
effects only in the later stages, as proposed by some models of visual search
(Wolfe, 1994; Bundesen et al., 2005).

Second, interaction effects between VWM and saccade planning are not
strictly strategic. They take place even when they are not relevant for the
current task, or are even interfering with it. This indicates that they are
not under cognitive control, but instead reflect an inherent property of the
neural architecture. And third, the interaction effects are bidirectional, as
is evident here in the VWM biases induced by visual processing during the
saccade task. This highlights that VWM is not stored away in a passive
fashion, disconnected from visual processing, but that VWM maintenance is
an active process that not only affects the visual processing, but is in turn
also affected by it.

Taken together, these findings provide strong support for the kind of
mechanism that is implemented in the DNF model to achieve an attentional
selection of a stimulus. This mechanism is characterized by continuous cou-
pling between different representations, mediated by bi-directional projec-
tions between them. The selection of an item in the focus of attention is not
a discrete operation, but rather emerges from the competitive interactions
that operate continuously in time, as previously proposed in models of Deco
and Lee (2002) and Hamker (2005a). The active maintenance of VWM and
the planning of saccadic eye movements are directly coupled to this selec-
tion mechanism, and employ the same type of representation that is also the
basis for perceptual processing.

The modeling results demonstrate how measured behavioral variables can
be used as signatures of the underlying neural processing. The DNF model
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generates distributions of saccade landing positions and saccade latencies by
actually executing a large number of simulated trials, directly emulating the
experimental task. It reproduces the influence of VWM on saccade target
target selection and saccade amplitudes. Saccade latencies in the model
directly reflect the time it takes for the competitive interactions to produce
a selection decision, and they successfully recreate the patterns found in the
experiment. The model provides a concrete functional explanation for the
effects of visual processing on memory performance, and the proposed bias
effect was confirmed in a novel experiment study.

To produce these results, the approach presented here combines two pre-
vious lines of DNF models, one focusing on saccade planning, the other on
VWM and change detection. Models of saccade planning have explained
effects of distractors and presence of a sustained fixations point on saccade
latency (Trappenberg et al., 2001; Wilimzig et al., 2006), based on the same
competitive mechanisms as employed in the present model. They have also
described the transition from selection to averaging for multiple nearby stim-
uli, which was used here to capture the metric effects in the near distractor
paradigm (Wilimzig et al., 2006; Marino et al., 2012). The present work goes
beyond these previous models in that it does not only capture the activation
time course leading up to the selection of a saccade target, but also the full
process of space-to-rate-code transformation for the generation of the motor
signal, and the termination of the saccade.

Previous DNF models of VWM have addressed questions of working
memory capacity and effects of feature similarity on change detection per-
formance (Johnson et al., 2009a,b). They have also explained biasing effects
found in spatial VWM due to perceptual inputs. These explanations are
analogous to the mechanism proposed here to account for effects of color
match on memory performance (Schutte and Spencer, 2009, 2010). This
consistency between the different models supports the notion that close cou-
pling to sensory processing is a general property of VWM. I will return to
the task of modeling VWM in Chapter 5, where I will combine the atten-
tional selection mechanism introduced here with previous models of change
detection to provide an account of human scene representation.

The DNF model presented here shows strong parallels to previous models
of visual search, in particular to the neurodynamic models of Hamker 2005b;
2006. Like the present approach, these models propose separate spatial and
surface feature pathways that are coupled to a shared low-level sensory rep-
resentation. These models differ somewhat in formulation of the differential
equations governing the neural dynamics, but they employ the same pop-
ulation code representations and the same basic mechanism for attentional
selection. These models have not previously been employed, however, to ex-
plain VWM effects on saccade planning outside of explicit visual search tasks,
and they lack the detailed mechanism for saccade generation presented here
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to account for the metric details in saccade behavior. These previous models
also have not addressed memory biases induced by perceptual processing.

One aspect that is lacking in the DNF model compared to many vi-
sual search models is the treatment of different surface feature dimensions
and their interactions. These are critical for explaining key effects in vi-
sual search tasks (such as the difference between parallel search for single
features conjunctions and serial search for feature conjunctions), but were
not required to capture all relevant stimulus parameters in the experiment
treated here, so they were omitted in the model for simplicity. An extension
of the mechanism that includes multiple surface feature dimensions will be
treated in Chapter 5, using multiple feature maps coupled via their shared
spatial dimension. The same kind of extension has also been used to address
the effect of illusory conjunction, which represent failures in feature binding
that can occur under certain conditions when spatial attention cannot be
sufficiently focused onto an individual stimulus (publication in preparation).

With respect to the more general goal of this thesis, as outlined in the in-
troduction, the present chapter demonstrates the principle of an autonomous
neurodynamic model. It operates continuously and generates behavior in re-
sponse to external stimuli, based only on the continuous evolution of activa-
tion patterns in the DNFs, and without any algorithmic structure controlling
its operation. However, the system is very limited in the sense that its be-
havior is almost purely reactive and determined by the current input. While
it does contain working memory (which is sometimes taken as one signature
of what constitutes cognitive behaviors), the effects of this working memory
in the context of the tasks treated here is quite subtle.

Nonetheless, one basic mechanism for behavioral flexibility are already
foreshadowed here: Different behavioral regimes can be created in a fixed
architecture with bidirectional connections by global modulations of fields
activation level. This is used here to signal when working memory repre-
sentation should be formed (by globally exciting the feature WM field), and
to bring the system into an explicit visual search mode during the memory
test phase of the trial (by globally exciting the feature attention field and
thereby making surface feature match more dominant in coupled attentional
selection). The later chapters of this thesis will build on this mechanism to
generate more complex and flexible behaviors in larger DNF architectures.
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Chapter 4

Spatial Transformations

4.1 Overview and motivation

After the previous chapter treated issues of separation and integration be-
tween spatial and surface feature representations, this chapter focuses on
operations in spatial representations alone. In particular, I will address the
issue of spatial reference frames. When describing a spatial location, it is
always necessary to describe it relative to some reference frame: Relative to
the own body, to another object, or to the world. When positions are given
in different reference frames, it is necessary to map them into a common
frame of reference before they can be combined or compared. The neural
system continuously faces this problem, since it has to deal with different ref-
erence frames given by the different sensory modalities (in particular vision,
hearing, and touch) and by the motor system.

Here, I will describe how spatial transformations, such as mappings be-
tween representations in different reference frames, can be realized within
the framework of Dynamic Field Theory. Specific challenges arise here from
the fact that spatial locations in DNFs are represented in the form of popula-
tion codes, which are not compatible with standard algorithmic procedures
for reference frame transformations. Moreover, to meet the requirements
of autonomous process models, the transformation process has to be imple-
mented not as a discrete operation performed at a specific point in time, but
rather as a continuous coupling between different representations.

The concrete problem that I will address in this chapter is again taken
from the field of active vision: How does the visual system deal with the
shift of the visual image induced by every gaze change? To illustrate this
problem, let us first take another look at the saccade mechanism described
in the previous chapter. In this mechanism, the location of a visually per-
ceived stimulus is mapped directly onto a saccade motor command. This
simple direct mapping is possible because of special conditions in the oculo-
motor system. In particular, the motor system and the sensory input that
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drives it use the same spatial reference frame. The locations of objects in
visual space are initially perceived via the retina, so they are given relative
to the current fixation point. The motor command for an eye movement
is likewise given as a shift relative to the current fixation point (although
downstream processes also have to take into account the initial state of the
eye to generate the final signal to the muscles; Sparks, 2002). In addition,
the kinetics of eye movements are particularly simple since the eyes can in
good approximation be described as rotating spheres. Due to these factors,
the planning of eye movements to visual stimuli can be achieved through a
one-to-one mapping from each location on the retina to a certain movement
command. As discussed before, this type of mapping can indeed be found
in the brain.

However, this simple mechanism very quickly reaches its limits. Consider
the case that you want to make an eye movement to a memorized location
rather than to a salient stimulus in the current visual scene. For instance,
you may have a cup of coffee standing on your desk while you are reading
this text, and you want to look at the cup in preparation to grasping it. You
saw the location of the cup before, likely you looked at it when you placed it
on the desk. But while you are looking at the text, the cup may be outside
of your field of view, or is perhaps only perceivable as a weak and unspecific
stimulus in the visual periphery. So how does you visual system initiate a
saccadic eye movement to the cup? The position of the cup’s image on the
retina while you were looking at it is not informative by itself, since you
have made many eye movements in between, each of which shifted the whole
visual scene. It is therefore necessary to take into account these different
gaze directions when planning such saccades.

A common experimental task to test this ability under laboratory condi-
tions is the double step saccade task (Hallett and Lightstone, 1976). In this
task, subjects are fixating a point on a monitor, while two saccade target
stimuli are briefly displayed in sequence. The subjects are then required to
make a saccade to the memorized location of the first stimulus, and then
another saccade from there to the second stimulus location. Again, to per-
form the second saccade accurately to the memorized location of the second
stimulus, subjects have to take into account the gaze change that occurred
between the stimulus presentation and the initiation of the second saccade.
If subjects were simply using the retinocentric stimulus position to plan the
second saccade, they would miss its actual location on the screen by the
metrics of the first saccade. Experiments show, however, that subjects can
perform both saccades reliably and with good accuracy under normal con-
ditions (Heide et al., 1995).

One way how this ability may be achieved in the neural system is to
use gaze-invariant representations. When the gaze direction is known at
all times, it is possible to transform the retinocentric representation of a
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stimulus position into a body-centered representation (and, if the body po-
sition in space is given, further into a fully allocentric spatial representation).
However, this alone is still not enough to plan the second saccade in the ex-
periment, whose amplitude and direction has to be specified relative to the
current gaze direction. This can be achieved by transforming the location
of the stimulus into a body-centered reference frame when it is first shown,
based on the gaze direction at that time, and then transforming it back
into the retinocentric frame of reference when planning the second saccade,
using the new gaze direction after the first saccade has been completed. I
will present a DNF model in this chapter that implements this general idea.
Notably, however, the transformation process in the model is not realized as
an operation that that is performed at discrete times, but rather as a contin-
uous coupling between representations in different reference frames. Thus,
the stimulus position is not transformed into the body-centered reference
frame when it is seen and then back at a later time, but it is continuously
represented in both reference frames during the period it is held in memory,
with a flexible and bidirectional transformation mechanism maintaining the
alignment between these representations.

Similar to what was presented in the previous chapter, the DNF model
of reference frame transformation employs higher-dimensional neural fields
to provide a combined representation of different variables, in this case
retinocentric stimulus position and gaze direction. Unlike in the biased com-
petition model, the association of these variables is not provided by an ex-
ternal input (such as a visual stimulus with a spatial position and a specific
color), but it is generated by combining inputs from different sources. A third
variable—namely, the stimulus position in a different frame of reference—can
then be read out from the combined representation.

The general transformation mechanism that is implemented in the model
can also be employed for other processes in which reference frame transfor-
mations are necessary. These include in particular the planning of limb
movements and fusion of different sensory modalities. For instance, for a vi-
sually guided reaching movement, it is necessary to transform the retinocen-
tric representation of the target location into a body-centered representation
in order to determine the required arm configuration for the reach. It may
moreover be necessary to perform additional transformations, for instance
to determine the target location relative to the current hand position for
trajectory planning. In sensor fusion, spatial transformations are needed to
meaningfully integrate information from different sensory surfaces, such as
visual (retinocentric) and auditory (head-centered) spatial information.

Below, I will first review neurobiological findings on spatial reference
frames and transformations between them in neural systems, as well as exist-
ing theoretical models of these processes. I will then describe a basic mecha-
nism for reference frame transformations in the framework of Dynamic Field
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Theory, and show how this mechanism can be extended to a model of flex-
ible coupling between spatial representations in different reference frames.
This mechanism forms the basis for a concrete model of gaze-invariant spa-
tial working memory and spatial updating during saccadic gaze shifts. I
will show how this model can perform a memory-based saccade task and
how activation patterns in the model can account for electrophysiological
data from experiments on macaque monkeys. In doing so, the model recon-
ciles two seemingly contradictory accounts of spatial working memory in the
primate cortex. The concrete model and the results that I will show here
have been published in Schneegans and Schöner (2012), and the underlying
mechanism has been described in Schneegans (in press). This mechanism
also provides an important building block for the models of scene represen-
tation and spatial language presented in the following chapters.

4.2 Biological basis and previous modeling work

4.2.1 Reference frames in neurophysiology

Numerous neural population representations of space have been identified
in the cortical and subcortical areas that are involved in sensory processing,
spatial attention, spatial memory, and movement planning, in particular for
the planning of saccadic eye movements (Colby and Goldberg, 1999). In
these population representations, each individual neuron has a spatial re-
ceptive field, that is, a spatial region within the visual field for which the
neuron responds with strong activity if a stimulus is presented in it or a
movement is planned to it. The receptive fields of the population as a whole
cover the complete represented space. The reference frame of such a neu-
ral representation is the frame in which the receptive fields remain stable.
For instance, for a retinocentric representation as it is found in most ar-
eas throughout the visual cortex (Gardner et al., 2008), the receptive fields
are fixed when described in retinal coordinates (relative to the fovea). This
means that a neuron from such a representation will always respond most
strongly if a stimulus is presented in a certain direction and at a certain dis-
tance (expressed in visual angle) from the current fixation point, irrespective
of the gaze direction. This necessarily means that with every gaze change,
the receptive fields of these neurons are shifting with respect to every other
frame of reference (such as head-centered, body-centered, or allocentric).

Note that when discussing the reference frames of neural populations,
I deliberately avoid the terms ’coordinate system’ or ’coordinate frame’. A
coordinate system is formally defined by an origin and a set of axes or angles,
such that a position in space can be described through a vector of real
numbers. Neural population representations of space do not have a specified
origin, nor do they define any axes, and therefore they cannot strictly be said
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to have a coordinate system. Spatial locations are represented by activation
distributions over the neural population and not by a set of real numbers.
This also means that approaches to coordinate transformations that rely
on arithmetic operations on the coordinates cannot be directly adopted for
neural reference frame transformations.

In order to determine the reference frame of a neural spatial represen-
tation, it is necessary to repeatedly measure neural activity under different
conditions (such as different gaze directions) that dissociate the candidate
reference frames from each other. Such experimental work has shown that
the spatial reference frames of most sensory representations in the brain re-
flect the corresponding sensory surface. The early stages of visual processing
in subcortical and cortical structures show a clear retinocentric response pat-
tern (as well as a retinotopic spatial organization). This retinocentricity is
retained over large parts of the visual processing pathway, even in represen-
tations far removed from the sensory surface (Gardner et al., 2008). There
are however also visual spatial representations that show coding in other
reference frames, or in a mixture of different frames (Andersen et al., 1997;
Snyder et al., 1998).

The tactile representations in the somatosensory cortex are aligned with
the skin on the body surface, and they also show a somatotopic spatial
organization (Kaas et al., 1979). The situation is somewhat more complex for
auditory spatial perception. Unlike in the visual and somatosensory domain,
where different locations map directly to different points on the sensory
surface, the spatial information from auditory signals has to be extracted
in a relatively complex manner from interaural time difference, interaural
intensity differences and other cues. Auditory spatial representations can
be found in the inferior colliculus and the auditory cortex. While these
show at least in part a head-centered frame of reference, one often also finds
significant influences from gaze direction (Groh et al., 2001; O’Dhaniel et al.,
2005). This can be seen as a first step of a mapping to a retinocentric frame
of reference.

Certain cortical areas, for instance parts of the parietal cortex, show
activity in response to multiple different sensory modalities (e.g., both visual
and auditory). For these multimodal areas, some neural representations
with mixed reference frames have been described. Stricanne et al. (1996)
investigated memory activity for auditory stimuli in monkeys, using different
visual fixation points to separate the retinal and the head-centered frames
of reference. They found that among the neurons with auditory memory
activity in the lateral intraparietal area (LIP), the largest group actually
showed activity in a retinal reference frame. Only a smaller number of
neurons responded consistently with the head-centered reference frame that
one would expect for auditory perception, and a third group appeared to
employ a reference frame that was intermediate between the retinal and
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head-centered frame, shifting to some degree with changing fixation points.
A similar observation was made by Avillac et al. (2005) for the nearby

ventral intraparietal area (VIP). This cortical region receives both visual
input and tactile input for the facial region, and many neurons are bimodal.
While the tactile receptive fields for the face were found to be consistently
in a head-centered reference frame, the reference frame for visual receptive
fields was more varied in the bimodal neurons: Both retinocentric and head-
centered receptive fields were identified, and some cells appeared to respond
in an intermediate frame of reference: Their retinocentric receptive field
centers shifted as the gaze direction changed, but they did not shift so much
as to be stable with respect to the head.

4.2.2 Reference frame transformations through
gain-modulated neurons

The presence of sensory spatial representations that are not in the reference
frame of their associated sensory surface clearly indicates that mechanisms
exist in the brain that allow a transformation between different spatial refer-
ence frames. A conjectured neural substrate for this transformation process
has been identified in the form of gain-modulated neurons in the parietal cor-
tex by Andersen and colleagues (Andersen and Mountcastle, 1983; Andersen
et al., 1985). Such gain modulated neurons have later also been found in the
frontal eye field, a region in the prefrontal cortex involved in the generation
of saccadic eye movements (Cassanello and Ferrera, 2007). These neurons
are visually responsive and have localized (although often broad) receptive
fields in a retinocentric reference frame. But their overall response strength,
or gain, is significantly modulated by the current gaze direction.

Neural populations in the parietal cortex comprise a large number of such
neurons, with varied receptive fields and different gain modulations. Any
visual stimulus excites many neurons at the same time, and their respective
responses may be stronger or weaker depending on the current gaze direction.
The activity of a single neuron in such a population is highly ambiguous
regarding the location of a stimulus: A wide range of different combinations
of retinal stimulus position, stimulus intensity, and current gaze direction will
lead to the same activity level. The pattern of activity in the population,
however, is unique for each combination of retinal stimulus position and gaze
direction. It can therefore unambiguously be mapped onto the corresponding
location in a head-centered representation. This has has been demonstrated
in a number of neural network models (Zipser and Andersen, 1988; Pouget
and Sejnowski, 1997).

The exact form of gain-modulation appears to be quite varied among
neurons (Andersen et al., 1985). For some neurons, the modulation is best
described by a linear (or, in two dimensions, planar) dependence on gaze di-
rection. This means that the overall excitation evoked by a stimulus within
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the neuron’s retinocentric receptive field increases roughly linearly if the fix-
ation point is shifted in certain direction. Other neurons have been described
to have more localized gain fields, that is, their overall activity is maximal
for a certain preferred gaze direction, and decreases with deviations in any
direction. Some neurons cannot be clearly assigned to either of these cat-
egories (and often the classification remains ambiguous due to the limited
range of tested gaze directions).

This variability is also reflected in computational models of the reference
frame transformation process. Most use either purely linear (Pouget and
Sejnowski, 1997) or purely local gain fields (Denève and Pouget, 2003) and
different types of gaze-direction input are employed (either space code or rate
code). In the DNF model below, I will focus on the variant with localized
gain fields. This form has several advantages from a computational point
of view: It allows an easier read-out of the transformed spatial information,
using only excitatory projections with a simple connection pattern; it ensures
that the representation in the gain-modulated population can be a stabilized
state with localized activation peaks; and, as I will show below, it can be used
in a straightforward fashion to perform a reference frame transformation on
multiple perceptual items simultaneously.

4.2.3 Retinocentric remapping as an alternative to gaze-
invariant representations

A separate line of electrophysiological experiments has found a surprising
property of visual spatial representations in the cortex of macaque mon-
keys, namely in the LIP region. Duhamel et al. (1992) measured the visual
responses of neurons around the time of saccadic eye movements. They de-
termined the spatial receptive field of each recorded neuron, and observed a
vigorous response when a visual stimulus was presented inside this receptive
field. This response persisted for several hundred milliseconds after the stim-
ulus was extinguished. A first interesting observation was that this visual
response decreased sooner and more sharply when a saccadic eye movement
was performed that moved the neuron’s receptive field away from the stim-
ulus location. This is unexpected because the visual sensory input to the
neuron should be affected in the same way whether the stimulus is turned
off or is moved out of the receptive field.

Even more interesting is the neural response pattern in a different stim-
ulus condition. Here, the authors presented a stimulus and extinguished it
immediately before a saccadic eye movement to a new fixation point was
made. The stimulus location was chosen in such a way that it would be
within the recorded neuron’s receptive field after the completion of the eye
movement. This means that the stimulus never actually appeared in the neu-
ron’s receptive field, but it would have appeared there if the stimulus had
not been turned off directly before the saccade. In the this situation, the
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neuron produced a brief burst of activity around the time of the saccadic
gaze shift, even though it should never experience any visual stimulation.
The same response behavior has also been reproduced for neurons in spatial
representations in the FEF by Sommer and Wurtz (2006). In many cases,
these neurons start to show activity even before the saccade is completed.

Colby and colleagues described this phenomenon as peri-saccadic shift of
the spatial receptive fields of LIP neurons. This is potentially misleading as it
may imply that the origin of the observed effect lies in a change or modulation
of the feed-forward connectivity from the retina to the investigated neurons.
In fact, the underlying mechanism is still unclear, and Cavanagh et al. (2010)
have argued that it should more properly be described as a remapping of
attentional pointers in the retinocentric representation. I will therefore refer
to this phenomenon as retinocentric remapping in the following.

This phenomenon of retinocentric remapping offers a mechanism for
trans-saccadic spatial working memory that does not depend on an explicitly
gaze-invariant representation. A purely retinocentric spatial representation
can be used that is updated during every gaze change in such a way that all
memorized locations are shifted by the inverse of the saccade metrics. Using
such a representation, tasks like the double step saccade may be performed
without using any reference frame transformations. This does, however, re-
quire information about the metrics of the upcoming saccade in order to
determine the appropriate shift in the retinocentric representation. This
information may be obtained from an efference copy of the saccade motor
command, and experimental evidence indicates that such an efference copy
is indeed needed to produce the remapping. Specifically, when a synaptic
pathway from the superior colliculus (where the saccade signal is gener-
ated) to the FEF is interrupted, the remapping activity during a saccadic
eye movements is no longer observed in that cortical region (Sommer and
Wurtz, 2008).

The proposed mechanism of achieving trans-saccadic spatial working
memory through retinocentric remapping has been implemented in a neural
network model Quaia et al. (1998). Their model assumes a population rep-
resentation of visual space in a retinocentric reference frame. Working mem-
ory in this neural map is modeled as neural activity sustained through self-
excitation (analogous to a two-dimensional neural field with self-sustained
activation peaks). The neurons within this map are connected to each other
by means of lateral projections, implementing an all-to-all connection pat-
tern. These projections are gated by an input that reflects the efference
copy for a saccadic eye movement. If, for instance, a 5◦ horizontal saccade
to the right is executed, all lateral connections in this map are activated
that project from some point in visual space to another point 5◦ to the left
of it. This implements the basic remapping of activity. Additional control
mechanisms are used in this neural network to ensure that the activity is
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extinguished at the old location, sustained at the new location, and that
only exactly one remapping operation is performed during every saccade.
The model was successful at demonstrating a functional neural mechanism
for retinocentric remapping and at reproducing observed patterns of neural
activity.

Based on the experimental evidence and these modeling results, some
researchers argued that retinocentric remapping provides a sufficient expla-
nation for trans-saccadic spatial memory, making accounts based on gaze-
invariant representations unnecessary (Colby and Goldberg, 1999; Wurtz,
2008). The remapping approach is appealing in that it relies only on retino-
centric representations, which are known to predominate in the visual system
for sensory processing, spatial attention and eye movement control. Nonethe-
less, reference frame transformations would still be needed for sensor fusion
and sensory-motor mapping. Moreover, some modeling efforts have indicated
that activity patterns consistent with retinocentric remapping can also ap-
pear as the result of bi-directional reference frame transformation. Xing and
Andersen (2000) presented a model for sequential saccades, using reference
frame transformations based on gain-modulated neurons. The model uses
separate representations for the first and second target in a double step sac-
cade task, and an effect consistent with remapping occurs during the first
saccade for the target of the second saccade. Comparable observations were
also reported in the model of White III and Snyder (2004).

The DNF model that I will present in this chapter expands on these
works, and can provide a full account of the experimental observations re-
garding retinocentric remapping in a framework based on neural reference
frame transformations. Through the continuous coupling to a gaze-invariant
representations, stimulus locations are autonomously remapped within the
retinocentric representation. This can occur for multiple perceptual or mem-
ory items simultaneously, independent of whether or not they have been se-
lected as saccade targets. The model also addresses the origin of the gaze
direction signal used in the transformation. By using an internal represen-
tation of gaze direction that is predictively updated based on an efference
copy of saccade motor commands, the model can account for the time course
of the remapping activity and its dependence on signals from the saccade
motor system.

4.3 Basic mechanisms

4.3.1 DNF model of reference frame transformation

In this section, I will describe the implementation of a basic reference frame
transformation mechanism in a DNF architecture. The general mechanism is
analogous to previous radial basis function models of reference frame trans-
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formations (Pouget and Sejnowski, 1997). This system performs a transfor-
mation from a retinocentric visual representation to a body-centered rep-
resentation, using a signal that specifies the current gaze direction. This
signal combines the orientation of the head and the orientation of the eyes
within the head into a single variable, giving the gaze direction relative to
the forward direction of the body. The reference frame transformation then
corresponds to a variable shift of object locations in the two-dimensional
visual representation.

Algorithmically, the reference frame transformation for an individual
stimulus location can be performed as a simple vector addition. To this
end, the retinocentric stimulus position in the two-dimensional visual image
and the gaze direction (as the position of the fixation point within the two-
dimensional visual scene) are both described as vectors in units of visual
angle. The body-centered position ~pb of a stimulus can then be determined
as the sum ~pb = ~pr + ~pg of the retinal position ~pr and the current gaze direc-
tion ~pg relative to the forward direction of the body. In the DNF model, this
operation has to be implemented through fixed synaptic projections between
different population representations.

I will first introduce the reference frame transformation mechanism for
one-dimensional spatial information, dealing only with horizontal visual stim-
ulus positions and gaze direction. The DNF model architecture for this case
is shown in Figure 4.1. The model contains two DNFs that represent sen-
sory inputs. The retinal field is defined over retinocentric visual space, and
forms activation peaks for the angular positions of salient visual stimuli. The
evolution of activation ur in this field is governed by the differential equation

τ u̇r(x) = −ur(x) + hr + ir(x) + [krr ∗ f(ur)](x), (4.1)

with external input i(x) reflecting the locations of salient visual stimuli and
a lateral interaction kernel krr of the difference-of-Gaussians type.

The second DNF is the gaze field, which spans the space of horizontal
gaze directions relative to the straight forward direction of the body. It is
governed by a similar differential equation

τ u̇g(y) = −ug(y) + hg + ig(y) + [kgg ∗ f(ug)](y). (4.2)

The main difference between the fields is in the shape of the interaction ker-
nels, with the kernel kgg featuring strong global inhibition to allow only a
single activation peak at any time. This reflects the fact that the gaze direc-
tion should always take a single value, whereas in the retinal field multiple
stimuli may be represented simultaneously. The retinal field and the gaze
field are initially independent of each other, since they receive input form
separate sensory systems.

To bring these two representations together and to capture the function of
the gain-modulated neurons in the parietal cortex, a two-dimensional trans-
formation field is defined spanning both the dimension of retinal position
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Figure 4.1: DNF architecture for a reference frame transformation from a
retinocentric to a body-centered spatial representation, using the current
gaze direction. One-dimensional fields are shown as activation plots over
their respective feature spaces, the two-dimensional transformation field is
shown as color-coded activation distribution. The feature space axes of the
one-dimensional fields are aligned with the corresponding axes of the two-
dimensional fields, the projections between fields (white arrows) run perpen-
dicular to them.

and gaze direction. The connectivity between the fields is set up as shown
in Figure 4.1. In the figure, the one-dimensional fields are aligned to the
corresponding dimension of the transformation field, with the retinal stim-
ulus position on the horizontal axis, the gaze direction on the vertical axis.
The one-dimensional fields now project ridge inputs into the transformation
field, in the same way as described in the previous chapter. The activation
peak in the retinal field induces a vertical ridge input, the activation peak
in the gaze field induces a horizontal ridge input in the transformation field.
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The connectivity is captured in the field equation for the transformation
field ut as

τ u̇t(x, y) =− ut(x, y) + ht + [ktr ∗ f(ur)](x)
+ [ktg ∗ f(ug)](y) + [ktt ∗ f(ut)](x, y)

(4.3)

As in all DNF models described here, the projections between fields are
mediated by interaction kernels that smooth the output of one field before
it is fed into another field. Here, the interaction kernels ktr and ktg are one-
dimensional Gaussians, while the lateral interaction kernel ktt is a difference
of Gaussians defined over two dimensions.

The pattern of projections from two one-dimensional fields to a single
two-dimensional field in the transformation mechanism is analogous to the
basic space-feature association mechanism described in the previous chapter.
There is a key difference between these two architectures though: The two-
dimensional field in the space-feature association architecture receives direct
external input that is localized in both dimensions, reflecting the existence of
visual feature detectors with localized spatial receptive fields. The ridge in-
puts from the one-dimensional fields only modulates this activation pattern
and strengthens specific existing peaks. In the reference frame transforma-
tion system, the ridge inputs are the only inputs to the two-dimensional
transformation field. Since there is no sensory system that directly detects
a combination of gaze direction and visual stimulus position, there are no
localized inputs to the transformation field.

Activation peaks form in the transformation field at the intersection
points of one horizontal and one vertical ridge input. In the field equations,
all inputs are combined additively, so that the field activation is driven to
the highest levels at those points where two ridge inputs come together. To
obtain peaks only at these intersection points, the connection parameters are
chosen in such a way that the activation induced by each individual input
ridge remains below the field’s output threshold, but the activation induced
by the combination of two such inputs is sufficient to pierce the thresh-
old. Lateral interactions within the two-dimensional transformation field
then drive the formation of stabilized activation peaks at these intersection
points.

The position of such a peak in the two-dimensional transformation field
combines the retinocentric position of a visual stimulus and the current gaze
direction in a single representation. It therefore provides all information
needed to determine the stimulus position in a body-centered reference frame
(as ~pb = ~pr + ~pg). The body-centered representation is implemented in the
DNF architecture as another one-dimensional DNF, plotted diagonally in
Figure 4.1. The reference frame transformation can now be implemented
as a fixed synaptic connection pattern from the transformation field to this
body-centered field. From each point in the transformation field specifying a
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pair [~pr, ~pg], a projection is defined to the corresponding position ~pb in the
body-centered field. The field equation for the body-centered field ub with
this input then takes the form

τ u̇b(z) = −ub(z) + hb + [kbt ∗ Fb(ut)](z) (4.4)

with
Fb(ut)(z) =

∫
f(ut(x, z − x))dx. (4.5)

The projections from the transformation field to the body-centered field
form a specific geometric pattern, which can be seen as follows: Assume
that there is a single visual stimulus in the scene, and that you are initially
fixating it. Now you shift your gaze to the right in little steps by making a
series of small saccades. With each small saccade, the gaze direction shifts
to the right by a certain amount, while the retinocentric stimulus position
shifts to the left by that same amount. In the DNF architecture as shown
in Figure 4.1, this means that the peak in the gaze field shifts upward and
the peak in the retinal field shifts to the left by the same amount. Conse-
quently, the intersection point of the activation ridges in the transformation
field shifts along a diagonal line through that field (this may also be seen
directly from the relationship ~pb = ~pr + ~pg). The points on this diagonal
reflect all possible combinations of gaze direction and retinocentric stimulus
position that correspond to a certain body-centered position, and therefore
project to the same position in the body-centered field. The body-centered
field is drawn perpendicular to this projection, analogous to the other one-
dimensional fields in the architecture.

Note that this geometry of a diagonal projection only reflects the rela-
tionship between the different feature dimensions in the model, and does not
reflect any physiological properties in the biological neural system. More-
over, analogous mechanisms may also be implemented for operations other
than the simple addition of two inputs, as long as the result varies smoothly
with changes in the input. The read-out projection then takes a different
and potentially more complex shape than the diagonal projection employed
here, but the operation principle remains the same.

The DNF architecture now performs the reference frame transformation
in a temporally continuous and autonomous fashion. A single gaze direction
peak is assumed to be present at all times, changing its position when gaze
shifts occur (typically only during saccades). When a visual stimulus ap-
pears, it induces a peak in the retinal field, which automatically drives peak
formation first in the transformation field, then in the body-centered field. If
the stimulus moves, the activation peaks shift accordingly (albeit with slight
delay) to reflect its latest position. Conversely, if the stimulus remains fixed
but the gaze direction changes, then the peaks in the retinal field and gaze
field shift to new locations, the peak in the transformation field shifts along
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the diagonal, but the peak in the body-centered field remains at its original
location (although it may fluctuate in strength during this process).
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Figure 4.2: Simultaneous mapping of two retinal stimulus positions into a
body-centered spatial representation in the DNF model.

Moreover, when set up with appropriate lateral connection patterns, the
DNF architecture may perform the transformation for multiple stimulus po-
sitions in parallel, as illustrated in Figure 4.2. This requires that lateral in-
hibition in the retinal field, the transformation field, and the body-centered
field is of the local surround type (rather than global), such that multiple
activation peaks may coexist in these fields without competition between
them. When two or more peaks are now present in the retinal field, they
project parallel vertical ridge inputs into the transformation field. These
ridges intersect at different locations with the single horizontal ridge from
the gaze field, and two separate peaks form in the transformation field. These
in turn project in parallel to the body-centered field, and again induce two
activation peaks that reflect the positions of the visual stimuli relative to the
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body. To some degree, the transformation mechanism can also retain inten-
sity information of different peaks, in that a larger stimulus-induced peak
in the retinal field will also create a larger peak in the body-centered field.
Differences in peak size are reduced, however, by the normalizing effects of
lateral interactions at all stages of the transformation.

4.3.2 Transformation operations in different directions

The mechanism described so far implements the transformation from a retino-
centric to a body-centered frame of reference. It thereby provides a gaze-
invariant representation of visually perceived spatial locations. But as dis-
cussed in the beginning, to fully utilize this representation we also need a
way to perform the inverse transformation, from the body-centered to the
retinocentric reference frame. This is necessary, for instance, to initiate a
saccadic eye movement to a location memorized in a body-centered repre-
sentation, since the motor command is specified in a retinocentric format
(relative to the current gaze direction) in the saccade motor system.

This inverse transformation can be implemented in a DNF architecture
that is analogous to the one described in the previous section. The only
difference is that the directions of certain synaptic projections are reversed.
The resulting architecture is shown in Figure 4.3. If an activation peak is
present in the body-centered field of this system, it projects a diagonal ridge
input into the transformation field. The single gaze direction peak that is
assumed to be present at all times still projects a horizontal ridge input into
the transformation field (as in the previous setting), and an activation peak
forms in the transformation field at the intersection of these two ridges. By
the same geometric considerations as before, it is clear that the horizontal
position of this peak corresponds to the retinocentric position ~pr for which
the relationship ~pb = ~pr + ~pg holds. To explicitly represent this retinocentric
location information, the transformation field is read out by integrating over
its vertical dimension, and the result is projected into the retinal field. This
yields for the retinal field the modified differential equation:

τ u̇r(x) = −ur(x) + hr + ir(x) + [krt ∗ Fr(ut)](x) + [krr ∗ f(ur)](x) (4.6)

with
Fr(ut)(x) =

∫
f(ut(x, y))dy. (4.7)

The reverse transformation now provides a mechanism to project either
memorized location information or spatial information from body-centered
sensory modalities (such as touch) into the retinocentric reference frame of
vision. It shares all the features of the forward transformation described
above. It provides a continuous coupling between spatial representations,
supporting online updating and tracking of moving stimulus locations. It
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Figure 4.3: DNF architecture for a backward transformation from a body-
centered representation into a retinocentric representation of space, applied
to two stimulus positions simultaneously.

can be applied to multiple locations in parallel (as shown in Figure 4.2), with
each peak in the body-centered field sending a separate diagonal ridge into
the transformation field and ultimately inducing one peak in the retinal field.
And it allows for propagation of graded information (intensity of activation
peaks) to a certain degree.

There is a third possible direction of transformation that can be imple-
mented by reversing projections in this architecture. Assume that you have
memorized a visual scene containing a few objects in a certain spatial ar-
rangement, and now view the same scene again, but under some different
gaze direction. You can now perform an alignment operation on the mem-
orized (body-centered) pattern and the currently perceived (retinocentric)
pattern of spatial locations to determine how they are shifted against each
other and thereby estimate your own gaze direction. At first glance, it may
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appear unnecessary to use such matching processes for estimating your own
gaze direction, because it can be determined just from proprioceptive sig-
nals indicating the current states of muscles and joints. But it is critical for
many spatial cognition tasks to keep different spatial representations exactly
aligned, and experiments have shown that humans do indeed use landmarks
perceived as stable to estimate the metrics of their gaze changes (Deubel
et al., 1998; Deubel, 2004).
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Figure 4.4: DNF architecture for finding the alignment between a retinocen-
tric and a body-centered spatial representation and thereby estimating the
current gaze direction.

An alignment mechanism can be set up in the architecture by having both
the retinal field and the body-centered field project into the transformation
field, and having a horizontal read-out of the transformation field into the
gaze field (Figure 4.4). The field equation for the gaze field is then adjusted
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to

τ u̇g(y) = −ug(y) + hg + ig(y) + [krt ∗ Fg(ut)](y) + [kgg ∗ f(ug)](y) (4.8)

with
Fg(ut)(y) =

∫
f(ut(x, y))dx. (4.9)

Assuming that there is only a single peak in both the retinal field and the
body-centered field, the process is entirely analogous to the two other con-
nectivities discussed before. The retinal field projects a vertical ridge of
activation into the transformation field, the body-centered field induces a
diagonal activation ridge, and a peak forms at the intersection point. The
vertical position of this peak then corresponds to that gaze direction that
brings the two locations into alignment (that is, under which the given reti-
nal location would correspond to the given location in the body-centered
reference frame). Through the read-out projection, a peak for this gaze
direction is induced in the gaze field.

The situation is slightly more complex if there are multiple peaks in
the retinal field and the body-centered field (the situation shown in Fig-
ure 4.4). In this case, both fields induce multiple activation ridges in the
transformation field, and peaks form at all possible intersection points be-
tween any pair of ridges from the two fields. For each of these intersection
points, its vertical position reflects the gaze direction that would bring the
two corresponding locations in the retinal field and the body-centered field
into alignment. But many of these intersections are spurious: They reflect,
for instance, an alignment between the right-most peak in the retinal field
and the left-most peak in the body-centered field. However, if the pattern of
peaks in the body-centered field is indeed an accurate memory of the stim-
ulus pattern currently represented in the retinal field, then the patterns in
the two fields will be shifted versions of each other. In this case, there must
be one gaze direction that brings each retinal peak into alignment with the
corresponding body-centered peak. At this gaze direction, the maximum
number of intersection points will be lined up, as shown in Figure 4.4.

The input to the gaze field will be strongest for this gaze direction, since
here the outputs of all the aligned peaks add up. If the gaze field is set
up with local self-excitation and global inhibition (as was already assumed
above), then a selection decision will take place in the field. A peak forms at
the location of the strongest input, and suppresses activation everywhere else
in the field. This selection decision will reliably yield the correct alignment
between the two peak patterns if they are indeed shifted versions of each
other. It is also robust against moderate deviations from this assumption
(e.g, if the memory in the body-centered field is inaccurate or individual
items in the scene have changed their position), and will still produce a
reasonable estimate of the correct gaze direction under such conditions.
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4.3.3 Transformations with multi-directional coupling

It is possible to merge the three different transformation mechanisms, which
already share the same representations, into a single architecture. To this
end, the projections between the fields are made bidirectional. Each one-
dimensional field projects a ridge input into the transformation field—hor-
izontal, vertical, or diagonal—and in turn receives input from the transfor-
mation field that is computed by integrating along the same direction. In
such a system, there is no longer a predetermined direction of the transfor-
mation process. Each one-dimensional field acts as a potential input for the
transformation, and each can provide a result. Which role each field actually
takes is no longer determined by the connectivity in the architecture, but by
the activation states and external inputs of the fields.

How such a system can be used has been demonstrated by Denève et al.
(2001). Their neurodynamic architecture realizes the same basic mechanism
I have sketched here for a DNF model, with neural fields for retinal posi-
tions, body-centered positions, and gaze direction coupled to each other in
a bidirectional fashion. There are however several differences in the imple-
mentation. In particular, they do not use an actual two-dimensional neural
representation for the coupling, and employ divisive normalization instead
of lateral inhibition to control the spread of activation (which allows only a
single stable peak to exist in each representation). The model is operated in
the following manner: An initial activation pattern is specified for each one-
dimensional field. This is typically a noisy or ambiguous representation of a
stimulus position or gaze direction. It is also possible to initialize one of the
three fields with a completely flat activation pattern. Then the activation
patterns are allowed to evolve under the influence of mutual interactions
until they have settled into a stable state, which can be read out as the
result of the operation. If all fields are initialized with noisy patterns, the
system performs a cue integration that yields a smooth, mutually consistent
representation in all fields. If one field is initialized with a flat activation
distribution, it will be filled according to the transformation operation from
the two inputs that are provided.

While this work of Denève et al. (2001) demonstrates the capabilities
and the flexibility of the multi-directional transformation system, its mode
of operation is not actually compatible with a fully autonomous dynamical
system. It requires that inputs are fed into the three fields synchronously
at a fixed time, then the system is allowed to run on its own, and the
termination (after settling into an attractor state) has to be determined by an
external process. So even though it is formulated as a temporally continuous
dynamical system, it effectively performs a single, discrete operation. This
contrasts with a system such as the biased competition model presented in
the previous chapter, which is coupled directly to simulated sensory and
motor systems and can continuously receive input and generate behavior.
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Operating a DNF model of multi-directional transformation in such a
fully autonomous mode is problematic because of conflicting constraints.
First, to allow transformations in all directions, excitatory coupling has to
be strong enough such that if input is provided to two of the one-dimensional
fields, an activation peak will be elicited in the third one. Second, activation
levels must be held in check once peaks are present in all three activation
fields, which all project input to the transformation field and reinforce each
other. This requires sufficiently high levels of lateral inhibition in the fields.
But now in such a strongly coupled system with strong lateral interactions,
the importance of external input beyond the initial state is greatly dimin-
ished. Once the system has reached a stable state, it will tend to persevere
in this state, and will no longer be sensitive to changes in input patterns.

To avoid these problems, the autonomous neurodynamic model of gaze-
invariant working memory I now present does not implement a fully multi-
directional transformation mechanism. Instead, the gaze field is coupled only
unidirectionally, and for the retinocentric representation, inputs to and out-
puts from the transformation field are held separate to reduce back-coupling.
The full multi-directional transformation will however be used in Chapter 6
to support the flexible use of relational spatial language.

4.4 DNF model of retinocentric remapping

4.4.1 Model overview

Based on the general DNF mechanisms for reference frame transformation,
I will now describe a specific neurodynamic model for gaze-invariant spatial
working memory. The goal of this model is two-fold: On the one hand,
it should provide a functional and autonomous system for spatial working
memory, in which new visual stimulus positions can be entered at any time.
These memorized stimulus positions should then be available at all times in
both the current retinal and the body-centered reference frames, independent
of intervening gaze changes. On the other hand, the model should explain the
neurophysiological findings about peri-saccadic remapping, which indicate a
shift in retinocentric spatial representations preceding every saccade. An
overview of the model architecture is shown in Figure 4.5.

The model architecture introduces a number of extensions and modifica-
tions of the basic transformation mechanism. In order to more fully capture
the properties of visual space, two spatial dimensions are covered both for
stimulus positions and gaze directions. Consequently, the retinal field, the
gaze direction field, and the body-centered field are all two-dimensional. This
requires that the transformation field, which combines spatial position and
gaze direction, now has to span a four-dimensional space. The gaze-direction
field and the retinal field in this system project to the transformation field,
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horizontal gaze field
(1D gaze space)

horizontal update
field

(1D gaze space
× 1D gaze space)

vertical gaze field
(1D gaze space)

gaze field
(2D gaze space)

retinal field
(2D retinal space)

transformation field
(2D retinal space
× 2D gaze space))

body-centered
field

(2D body-centered
 space)

vertical update
field

(1D gaze space
× 1D gaze space)

saccade field
(2D retinal space)

horizontal component vertical component

Figure 4.5: Overview of the DNF architecture for gaze-invariant spatial
working memory and retinocentric remapping. The elements of the archi-
tecture are shown as boxes with the name of the DNF and the feature space
over which each is defined. Arrows indicate projections between these fields
along shared feature spaces.

but do not receive input back from it. The body-centered field is coupled
to the transformation field in a bi-directional manner. In addition, there is
a retinal readout of the transformation field that shows the locations of all
memorized positions in the current retinocentric reference frame.

The model also incorporates an additional subsystem that is serves to
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update the internal representation of gaze direction during a saccadic eye
movement. This is motivated by the aim to account for the electrophysio-
logical findings on retinocentric remapping. As described above, the shift
in the retinocentric representation occurs before a saccadic eye movement is
completed, and it depends on an efference copy of the saccade motor com-
mand. In the present model, such an efference copy is used to update an
internal representation of gaze direction. The update corresponds to adding
the saccade metrics to the current gaze direction, and it is implemented in
a mechanism analogous to the reference frame transformation.

There are two important differences here, however. First, the gaze direc-
tion field appears in two different roles in this operation, providing one of
the inputs but also receiving the result of the update. A specific sequence
of instabilities in the field dynamics is employed to ensure that the update
process is executed stably under these conditions. Second, in the gaze up-
date, the two spatial dimensions are split up, and horizontal and vertical
gaze shift are treated separately. This is possible because there is always
just a single gaze direction at all times, so there can be no confusion which
horizontal gaze direction value belongs to which vertical value. This is differ-
ent in the reference frame transformation, where multiple stimulus locations
can be present simultaneously, and a separate processing of the two spatial
dimensions would result in a binding problem.

The following subsections first describe the subsystem for the reference
frame transformation and retinocentric remapping, then the subsystem for
the predictive gaze update that supports the remapping operation.

4.4.2 Remapping subsystem

The elements of the remapping subsystem are identified with the same in-
dices as used in the description of the general mechanism above: r for retinal
field, g for gaze field, t for transformation field, and b for body-centered field.
The parameter values of fields and lateral interactions are given in Table 4.1,
the parameter values for projections between fields are given in Table 4.2.

The retinal field is defined over two-dimensional visual space, covering
a range of -30◦ to 30◦ from the fovea both horizontally and vertically. It is
governed by the differential equation

τ u̇r(x, y) = −ur(x, y) + hr + ir(x, y) + [krr ∗ f(ur)](x, y). (4.10)

The field receives visual input ir providing the locations of salient visual
stimuli. During saccadic eye movements, this input is suppressed. Lateral
interactions in the field are described by a difference-of-Gaussians kernel krr,
which allows the simultaneous presence of multiple activation peaks to reflect
the locations of different visual stimuli.

The gaze field is analogously defined over a two-dimensional space of
gaze-directions, ranging horizontally and vertically from -30◦ to 30◦ relative
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to the straight forward direction of the body. Its field equation is

τ u̇g(p, q) = −ug(p, q) + hg + ig(p, q) + [kgg ∗ f(ug)](p, q). (4.11)

The input ig indicates the current gaze direction. It is provided by two one-
dimensional gaze fields (for horizontal and vertical gaze direction) that form
a part of the gaze update subsystem, which is described below.

The transformation field is defined over a four-dimensional space, spanned
by the two retinal and two gaze dimensions as defined above. The field re-
ceives input from the retinal field, the gaze field, and the body-centered field,
ub, specified below. This yields the field equation

τ u̇t(p, q, x, y) =− ut(p, q, x, y) + ht + [ktg ∗ f(ug)](p, q)
+ [ktr ∗ f(ur)](x, y) + [ktb ∗ f(ub)](p+ x, q + y)
+ [ktt ∗ f(ut)](p, q, x, y).

(4.12)

The projection patterns from the two-dimensional fields to the four-
dimensional field are illustrated in Figure 4.6. They are natural extensions
of the patterns described for the general mechanism in the lower-dimensional
case above: The projections of the retinal field are localized along the two
retinal dimensions and homogeneous along the gaze dimensions. Conversely,
the projections from the gaze field are localized along the gaze dimensions
and homogeneous along the retinal dimensions. Finally, the projections from
the body-centered field are localized along the retinal dimensions for each
single gaze direction, with the location systematically shifting between dif-
ferent gaze directions.

The projection weights for the different inputs are scaled to fulfill the
following condition: Peaks should only form at the intersection point of the
gaze input with either a retinal input or a body-centered input (or both of
them). To achieve this, the gaze input is weighted approximately twice as
strong as the two other inputs, but still not so strong that it can drive the
transformation field activation beyond the output threshold by itself. The
retinal and body-centered inputs are weaker, so that an intersection between
them is not sufficient to induce activation peaks (these would correspond to
the spurious intersections in the alignment mechanism described earlier).

The lateral interactions in the transformation field are of the difference-
of-Gaussians type along both the retinal and the gaze dimensions, so that
multiple activation peaks may persist in the field simultaneously. To approx-
imate the properties of gain-modulated neurons in the parietal cortex, the
interactions are broader along the gaze dimensions (and likewise, the inputs
from the gaze field are broader than the retinal inputs), so that each sin-
gle point in the transformation field can be active for relatively wide range
of different gaze directions. To ensure that these wide lateral interactions
can still effectively support activation peaks driven by input from the body-
centered field, a special modification is applied: The kernel ktt(p, q, x, y) is
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rotated in the px- and in the qy-plane by an angle of φ = 3
16π toward the

diagonal axes along which the body-centered field projects.
The body-centered field is defined over two-dimensional space in a body-

centered reference frame, covering twice the range of the retinal field (-60◦
to 60◦ from the forward direction in both dimensions). This extended range
means that the field can capture all body-centered locations that correspond
to any combination of positions in the gaze field and the retinal field—such
as when a stimulus appears in the top left in the retinal field while gaze is
also directed to the top left. The body-centered field is governed by the field
equation

τ u̇b(x, y) = −ub(x, y) + hb + [kbt ∗ Fb(ut)](x, y) + [kbb ∗ f(ub)](x, y). (4.13)

Here, Fb(ut) is the output of the transformation field, integrated along the
diagonals:

Fb(ut)(x, y) =
∫∫

f(ut(p, q, x− p, y − q))dpdq (4.14)

The lateral interactions, described by the kernel kbb, are again of the difference-
of-Gaussians type to allow multiple peaks to co-exist.

Finally, to obtain the retinocentric positions of memorized stimuli, the
transformation field is integrated over the two dimensions of gaze direction.
This yields the retinal read-out

Fr(ut)(x, y) =
∫∫

f(ut(p, q, x, y))dpdq. (4.15)

Figure 4.6 (preceding page): Activation patterns and connectivity in the
reference frame transformation model for two-dimensional visual space. (a)
Activation patterns in the different DNFs in response to two localized stimuli
presented to the retinal field. The activation pattern in the four-dimensional
transformation field is depicted through a set of tiles, each reflecting a two-
dimensional cut through the four-dimensional space. Each individual tile
shows the activation distribution over the two dimensions of retinal posi-
tion for one specific gaze direction, and the tiles are arranged according to
this gaze direction along both x- and y-axis. (b) Connection pattern from
one point in the retinal field (marked as red dot) into the transformation
field. Connection weights are color coded (light blue for connection weight
of zero, red for highest weight). Field sizes along all dimensions are reduced
for clarity. (c) Connection strengths from one point in the gaze field to the
transformation field. (d) Connection strengths between the transformation
field and one point in the body-centered field (bi-directional). (e) Connec-
tion strengths for lateral interactions in the transformation field, showing
connections to and from the central point in the central tile of this field
(darker blue indicates negative connection weights).
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For numerical simulations, the feature spaces of all fields in the remap-
ping subsystem are sampled with one unit per two degrees of visual angle,
except for the gaze field that is sampled with one unit per degree. All fields
use the same time constant τ = 10 ms and steepness parameter β = 4 for
the sigmoid output function.

field index h cexc σexc cinh σinh cgi

r -2 5 3◦ 7.5 6◦ 0
g 0 0 - 0 - 0.075
t -2 7.5 3◦/9◦ 25 6◦/18◦ 0
b -2 9 3◦ 15 6◦ 0
s -2 - 0 - 0 0
a -2 10 3◦ 0 - 0.075
d 0 8 3◦ 0 - 0.55

Table 4.1: Field parameters and parameters of lateral interactions. For the
transformation field (with index t,), the first interaction width is the value
for the dimensions of retinal space, the second value is for the dimensions of
gaze direction.

projection index cexc σexc cinh σinh cgi

as 0.45 6◦ 0 - 0
ad 0.7 6◦ 0 - 0
da 1.125 3◦ 0 - 0
gd 7.5 3◦ 0 - 0.1
tg 9.5 9◦ 0 - 0
tr 1.2 3◦ 0 - 0
tb 1 3◦ 0.5 6◦ 0
bt 0.125 3◦ 0 - 0

Table 4.2: Parameters of interactions between fields.

4.4.3 Subsystem for gaze update

The gaze update subsystem provides a self-sustained representation of the
current gaze direction during fixation phases, and updates this representa-
tion when a gaze change is initiated based on the saccade motor plan. All
parameter values are again given in Tables 4.1 and 4.2. For numerical sim-
ulations, the fields of the gaze update subsystem are sampled with one unit
per degree of visual angle.

The motor plan for a gaze update is provided in a format that matches
neural population code representations found in the superior colliculus and
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the frontal eye field. It is an activation distribution over two-dimensional
retinal space (covering a range from -60◦ to 60◦ in both dimensions), with
an activation peak indicating the intended saccade endpoint (relative to the
current fixation point). This is equivalent to the saccade motor field in
the biased competition model, although here, the actual saccade generation
from the field dynamics is not modeled. Instead, the saccade signal is simply
generated as an artificial input that is passively reflected in the field. This
yields the field equation

τ u̇s(x, y) = −us(x, y) + hs + is(x, y). (4.16)

The input is is a Gaussian of fixed strength centered on the planned sac-
cade endpoint, starting 50 ms before the onset of the actual saccadic eye
movement and lasting for 100 ms. This emulates in simplified form the
corollary discharge signal as described by Sommer and Wurtz (2004), which
has been found to be critical for the peri-saccadic remapping of retinocentric
representations.

The central representation of the current gaze direction is provided by
two one-dimensional gaze fields, uhor

d for the horizontal and uver
d for the

vertical component. Each of these is governed by a field equation of the
form

τ u̇d(x) = −ud(x) + hd + [kda ∗ Fd(ua)](x) + [kdd ∗ f(ud)](x). (4.17)

The update fields, ua, provide input to these gaze fields while a saccade is
in progress, as detailed below. During fixations, there is no external input
to the field. The lateral interaction kernel kgg consists of local (Gaussian)
self-excitation and global inhibition, producing competition between active
regions in the field. Moreover, these interactions are strong enough to sup-
port a self-sustained activation peak that continues to reflect the current
gaze direction in the absence of external input.

The actual gaze update mechanism determines the upcoming gaze di-
rection, vnew

d , from the current gaze direction, vcur
d , and a saccade motor

command, vs, as soon as the latter becomes available. With the saccade
motor command given in a retinocentric reference frame, the mathematical
operation to be implemented is the addition vnew

d = vcur
d + vs. This can be

computed separately for the vertical and the horizontal component of the
gaze direction, in a manner largely analogous to the one-dimensional ref-
erence frame transformation. Update fields uhor

a and uver
a , respectively, are

defined over a two-dimensional space spanned by current gaze direction and
upcoming gaze direction, as depicted in Figure 4.7. These fields receive two
inputs: The first one comes from the corresponding one-dimensional gaze-
direction field, which projects a ridge input into the field that is localized
along the dimension of current gaze direction (the horizontal axis in the fig-
ure) and homogeneous along the the dimension of upcoming gaze direction
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Figure 4.7: DNF architecture for a gaze update in one spatial dimension.
Arrows indicate projections between fields. Note that the saccade field is
actually two-dimensional, but only a cut through the activation along the
relevant spatial dimension is shown here.

(the vertical axis). The second input comes from the saccade field. The
horizontal and vertical components of the saccade signal are first separated
by integrating the field output over the corresponding dimensions:

F hor(us)(x) =
∫
f(us)(x, y)dy (4.18)

F ver(us)(y) =
∫
f(us)(x, y)dx (4.19)

These one-dimensional saccade signals are then fed into the corresponding
update field along the diagonal, after smoothing it with the Gaussian kernel.

The resulting field equation for the update fields then takes the form

τ u̇dim
a (x, y) =− ua(x, y) + ha + [kad ∗ f(udim

d )](x)
+ [kas ∗ F dim(us)](x+ y) + [kaa ∗ f(ua)](x, y)

(4.20)

with dim ∈ {hor, ver}. The lateral interactions in the field consist of local
excitation and global inhibition. Peaks in the field are induced at the inter-
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section between the gaze input ridge and the diagonal input ridge from the
saccade field when a saccade motor signal is present. These peaks remain
stable due to the lateral interactions as long as the stronger saccade input
is present, even when the relatively weak gaze input changes. They also
prevent any other peaks from forming in the field during this time.

The vertical position of a peak in the update fields provides the new
gaze direction as the result of the addition vnew

d = vcur
d +vs. To read out this

new gaze direction, the output from each update field is integrated along the
horizontal dimension and fed into the corresponding gaze field, yielding the
term [kda ∗ Fd(ua)](x) in equation 4.17, with

Fd(ua)(y) =
∫
f(ua(x, y))dx. (4.21)

Finally, the two one-dimensional gaze fields provide input to the single two-
dimensional gaze field, linking the gaze update subsystem to the remapping
subsystem. The input takes the form of one horizontal and one vertical
activation ridge, with a peak induced at the intersection point. This is
expressed in the term ig in equation 4.11 as

ig(x, y) = [kgd ∗ f(uhor
d )](x) + [kgd ∗ f(uver

d )](y). (4.22)

4.5 Results

4.5.1 Evaluation of the gaze update mechanism

The gaze update process is illustrated for the horizontal component of the
gaze direction in Figure 4.8 (analogous processes occur simultaneously for
the vertical component). Note that only a one-dimensional cut through
the two-dimensional saccade field is shown here, reflecting the horizontal
saccade metrics relevant for update of the horizontal gaze direction. During
fixations, there is a self-sustained activation peak in the one-dimensional
gaze field, reflecting the current gaze direction (Figure 4.8a). The gaze field
projects a constant input into its associated update field, inducing a vertical
ridge of activation, but this input alone is not sufficient to induce a peak. In
the saccade field, there is no activation during fixation phases.

When a saccade motor command is generated, an activation peak ap-
pears in the saccade field that reflects the intended metrics of the upcoming
saccade. The saccade field projects a diagonal ridge input into the update
field. This input intersects with the present vertical ridge induced by the gaze
field, and an activation peak forms at the intersection point (Figure 4.8b).
The update field now projects back to the gaze field. Critically, this read-
out runs along the horizontal axis, not along the vertical axis as the reverse
projection. So while the gaze field provides the old gaze direction to the
update field, it receives the new gaze direction as input, provided by the
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Figure 4.8: Development of activation patterns during a saccadic eye move-
ment in the horizontal gaze update system. (a) Situation before a saccade
motor signal arrives. (b) Activation peak forming in the update field after a
saccade motor signal has appeared in the saccade field. (c) The representa-
tion in the gaze field has been updated, the peak in the update field remains
stable as long as the saccade signal is present. (d) Situation briefly after the
completion of the gaze update.

vertical position of the peak in the update field according to the relationship
vnew

d = vcur
d + vs.

This input induces an activation peak in the gaze field at a new position.
Due to the global inhibitory interactions in the gaze field, this peak competes
with and ultimately suppresses the previous activation peak, which is not
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supported by any external input (Figure 4.8c). Once the new peak has been
established, it is again self-sustained by the lateral interactions. When the
saccade motor signal ceases, the peak in the update field disappears, but
the gaze peak remains active to reflect the new gaze direction until the next
saccade (Figure 4.8d). As the peak locations change in both of the one-
dimensional gaze fields (for horizontal and vertical gaze direction), they also
provide a new input to the combined two-dimensional gaze field, and the
activation pattern in that field is updated as well.

An important detail of this mechanism is how it ensures that exactly one
complete update of the gaze direction field occurs for each saccade motor
signal that arrives. Based on the coupling of the fields, one might expect
that a whole cascade of gaze shifts may occur for every saccade signal: Once
a new peak has formed in the gaze field, it projects a new input ridge to
the update field (as in Figure 4.8c). A new ridge intersection occurs, and
might once again provide a shifted input back to the gaze field. In fact,
however, the new intersection point between the two ridges does not induce
an activation peak. This is ensured by the lateral interactions and the input
characteristics in the update field. The input from the gaze field is relatively
weak, the input from the saccade field significantly stronger. While the
input ridge from the gaze field determines where a peak first forms in the
update field, it is then no longer needed to sustain the peak. Moreover, the
competitive interactions in the update field mean that the activation peak,
once it has formed, suppresses activation in the remaining field and prevents
any new peaks from forming (this is visible in Figure 4.8c). So even though
the gaze input changes, the peak in the update field remains at its original
position as long as the saccade signal is present. Only once the saccade signal
ceases does this peak disappear, which allows the formation of another peak
in a new location when the next saccade occurs. This is an example of how
the field interactions and the resulting stability properties of the field can be
used to structure the continuous neural dynamics into discrete, controlled
processing steps.

The saccade update mechanism was tested by simulating saccades of
all possible amplitudes and directions within a range from 0◦ to 40◦ both
horizontally and vertically, in steps of 1◦. The initial gaze direction for each
trial was set to (−20◦,−20◦), such that the final gaze direction was always
well within the range of possible gaze directions covered by the gaze fields.
Note that this covers all relevant saccade configurations within the core range
covered by the architecture, since saccade direction (positive or negative)
and initial gaze direction do not change the size of the resulting shift in peak
position due to symmetry properties of the fields. The saccade command was
generated by inducing an activation peak at the appropriate location and
with a time course as specified above in the saccade field. The resulting final
gaze direction was read out from the two-dimensional gaze field, determined
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as center of mass of the field output. By the time the saccade signal ended,
the gaze update was always completed. The mean error in gaze direction
(deviation of the represented direction from the expected one) at this time
was 0.08◦, with a maximal error of 0.53◦.

The main source of errors in the mechanism lies in interactions between
old and new activation peaks in the one-dimensional gaze fields. For small to
moderate saccade sizes, the activation peaks partly overlap. When the new
peak is induced by input from the update field, its location can therefore
be biased toward the location of the old peak. A second source of error at
small saccade amplitudes is drift of the activation peak in the update field.
This occurs when the new peak in the gaze field projects an input ridge into
the update field that partly overlaps with the existing peak there. The peak
then drifts along the diagonal activation ridge induced by the saccade field
toward this new input, and consequently also projects a biased signal back
to the gaze field. These two sources of errors act in different directions (the
first leading to undershoot, the second to overshoot in the shift of the gaze
direction peak), and partly cancel each other out.

These results demonstrate that the gaze update mechanism fulfills the
key requirements to be used in an account of retinocentric remapping. It
uses only signals that are available before the beginning of the actual gaze
change—namely, the saccade motor plan that is modeled after the exper-
imentally determined properties of a an efference copy from the superior
colliculus—, and it performs a fast direct computation of the new gaze di-
rection (rather than, e.g., a slow integration over instantaneous motor signals
as used in the oculomotor system, see Goossens and Van Opstal, 2006). This
makes it possible to predict the new gaze direction before the saccade is ac-
tually completed, and to use this prediction in the generation of pre-saccadic
remapping as described below.

4.5.2 Emergence of retinocentric remapping in the model

A retinocentric remapping of activation peaks during gaze changes is an
inherent property of the architecture presented here. I will describe the de-
tailed sequence of instabilities that leads to this remapping. The process
is illustrated in Figure 4.9 for the case of one-dimensional spatial represen-
tations, allowing an easier visualization and verbal description of activation
patterns in the transformation field. The process for the full two-dimensional
spatial representations is in all respects a direct extension of what is de-
scribed here. The figure shows the architecture in the same format as Fig-
ure 4.1, but with the retinal readout added below the retinal field. This
retinal readout is where the remapping can be observed.

In the absence of any current or memorized visual stimuli, the only acti-
vation peak in the system is in the gaze field, which continuously maintains
a representation of the current gaze direction, as described above. The gaze
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field projects a broad input into the transformation field, visible as horizon-
tal activation ridge in Figure 4.9a, but does not by itself induce an activation
peak. When a salient visual stimulus appears, it first induces an activation
peak in the retinal field. This field projects another input to the transfor-
mation field (weaker, but sharper than the gaze input; see vertical ridge in
Figure 4.9a). An activation peak forms in the transformation field at the
intersection of the two inputs, and projects further to the body-centered
field, following the general mechanism for the forward transformation. Here,
another activation peak forms to explicitly reflect the stimulus position in
the body-centered reference frame.

This peak in the body-centered field now projects a diagonal ridge input
back into the transformation field, which runs through the already present
activation peak. When the stimulus is turned off, the coupled peaks in the
transformation field and the body-centered field remain active (Figure 4.9b).
Each of these peaks is stabilized by lateral interactions within the respective
field, but these interactions in themselves would not be strong enough to
sustain the peaks without input. With the mutual coupling between them
along the diagonal axis, however, they remain stable. These coupled peaks
now provide a working memory representation of the stimulus position in
two reference frames: The body-centered field directly reflects the position
in the body-centered frame. The horizontal position in the transformation
field shows the retinal position of the stimulus, which can be made explicit
in the retinal readout (Figure 4.9b); here, the active region matches the
original retinal stimulus position.

A remapping of this retinal position now occurs when a gaze change is
performed while a stimulus position is held in working memory, as shown in
Figure 4.9c. The gaze change is reflected in the gaze field by the formation
of a new activation peak that replaces the previous peak, driven by the gaze
update mechanism. When the old peak in the gaze field disappears, so does
the input it projects into the transformation field (the upper horizontal ridge
in Figure 4.9). The peak in the transformation field that was located on this
input ridge becomes unstable and decays. But at the same time, the new
peak in the gaze field projects a new input to the transformation field (the
lower horizontal ridge in Figure 4.9). This new input ridge again intersects
with the diagonal activation ridge induced by the body-centered field. A
new peak forms in the transformation field at this new intersection point,
nearly simultaneously with the disappearance of the previous peak.

In effect, the activation peak in the transformation field shifts its position
along the diagonal ridge (or more precisely, it jumps from one point on this
ridge to another point). The peak in the body-centered field remains stable
during this time—reflecting the fact that the remembered position does not
change relative to the body-centered reference frame. Although the input
that the body-centered field receives from the transformation field fluctuates
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during the shift of the peak, the lateral interactions keep the body-centered
peak sufficiently stable.

The retinocentric remapping of memorized locations is visible in the reti-
nal read-out of the transformation field (red plot in Figure 4.9). As the acti-
vation peak in the transformation field shifts along the diagonal, the peak in
the retinal read-out likewise changes its position. Due to the geometry of the
projections between the fields, it is shifted exactly by the inverse of the gaze
shift. Therefore, the new peak position in the retinal read-out now reflects
the retinocentric location where the original stimulus would be visible if it
had been sustained (or, where it reappears after the gaze shift if it actually
was sustained). The system thus implements the desired function of updat-
ing a retinocentric representation of memorized locations to compensate for
shifts in gaze direction.

The temporal pattern of the peak shift in the model is consistent with
experimental data. In particular, the peak does not slide smoothly between
the two locations, but disappears at the old location and almost simultane-
ously reappears at the new location. This matches the electrophysiological
measurements of neural activity during saccadic remapping in the frontal eye
field of the frontal cortex (Sommer and Wurtz, 2006). It is also consistent
with behavioral data from Golomb et al. (2011) investigating how spatial
attention to a fixed visual location is updated during a saccade. This study
found that there is no attentional facilitation for intermediate retinal loca-
tions when the retinocentric locus of attention is shifted. Moreover, due to
the predictive update of gaze direction in the present model, the remapping
takes place before the saccadic eye movement is completed. This will be
shown in greater detail below.

In order for this mechanism to fully account for experimental data and
to be useful for an autonomous system of spatial memory and scene rep-
resentation, it is important that the remapping can be applied to multiple
items in parallel. This is indeed the case, as shown in Figure 4.10. During
the forward transformation, multiple peaks in the retinal field may project
parallel inputs into the transformation field (vertical ridges in Figure 4.10),
which all form at their intersection with the single input from the gaze field.

Figure 4.9 (preceding page): Evolution of activation patterns in the DNF
model of peri-saccadic remapping during stimulus presentation and gaze
change. (a) Forward transformation of retinal stimulus location briefly after
stimulus onset. (b) Maintenance of a distributed working memory represen-
tation in the transformation field and body-centered field after the stimulus
is turned off. (c) Shift of the gaze peak during a saccadic eye movement and
resulting shift of the peak in the transformation field. (d) Prediction of new
retinocentric stimulus position after the gaze change is completed.
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Figure 4.10: Simultaneous remapping of two stimulus locations in the DNF
model. (a) Distributed representation of two stimulus locations during fixa-
tion. (b) Shift of activation peaks during gaze change and resulting predic-
tions of new retinocentric stimulus positions.

These peaks then project in parallel to the body-centered field, where they
produce one separate activation peak for each retinal stimulus. These in
turn project back to the transformation field. Note that while the retinal
stimuli are active, additional intersections occur in the transformation field
between the inputs from one retinal peak and a non-matching body-centered
peak (in Figure 4.10a, the intersections between vertical and diagonal input
ridges above and below the horizontal gaze input ridge). These spurious
intersections do not induce supra-threshold activation peaks, since the in-
tersecting retinal and body-centered inputs are relatively weak compared to
the gaze input. When a gaze change occurs, the peaks in the transformation
field all shift in parallel along their corresponding diagonal ridges, driven by
the changing input from the gaze field (Figure 4.10b). Consequently, the
peaks in the retinal read-out shift to reflect the new retinocentric positions
of all memorized stimuli.

4.5.3 Evaluation of the remapping mechanism in double step
saccades

One of the key reasons for having a continuously updated retinocentric repre-
sentation of space in the brain is its use in saccade planning. Even if stimulus
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locations are memorized in a gaze-invariant frame of reference, they must be
transformed back into the retinocentric reference frame to be used as saccade
targets, since the saccade motor command is always encoded retinocentri-
cally. To test whether the model can provide the required functionality to
plan saccades to memorized locations after an intervening gaze change and
to evaluate its performance in this task, I employed a simulated double step
saccade task (Hallett and Lightstone, 1976).

The task is illustrated in Figure 4.11 (left column), together with the ac-
tivation profiles of the two-dimensional retinal read-out (middle column) and
the two-dimensional body-centered field (right column). Two visual stimuli
are presented to the model sequentially for 50 ms each, with stimulus onsets
at t = 0 ms and t = 200 ms (Figure 4.11a and b). Activation peaks form to
represent their locations both in the retinal and the body-centered reference
frame, and remain sustained after the stimuli are turned off (Figure 4.11c).
At t = 400 ms, a saccade signal is generated to fixate the first stimulus. The
simulated saccade begins 50 ms later and takes another 50 ms to completion
(Figure 4.11d). As an effect of this gaze change, the peaks in the retinal
read-out are shifted to reflect the updated retinocentric stimulus locations,
while the body-centered peaks remain unchanged. This is the same effect
described in detail above for the simplified scenario with a single spatial di-
mension, now for two-dimensional spatial locations and gaze shifts. At t =
600 ms, the saccade signal to fixate the second stimulus is generated (Fig-
ure 4.11e), leading to another shift in the retinal read-out. Note that the
remapping mechanism is needed to plan this second saccade. The saccade
metrics cannot be determined based only on the retinal position of the visual
stimulus, but must take into account the intervening gaze shift.

The required saccade metrics for both gaze shifts can be obtained from
the retinal read-out of the transformation field, by determining the posi-
tion of the corresponding peak at the time when the saccade signal is to
be generated. For instance, the retinal location of the bottom left peak in
Figure 4.11d (middle row) provides the required metrics for the saccade exe-
cuted in Figure 4.11e. Note that for the task to be solved fully autonomously,
the model would also have to accomplish the sequential selection of the two
peaks in the correct order. This is not covered in the present architecture,
although the continuous coupling of the two reference frames can potentially
be utilized to accomplish this. If the temporal order of the two stimuli is
memorized in the body-centered reference frame, it may send an additional
biasing input into the body-centered field at the time when a saccade to
a specific stimulus should be initiated. This would strengthen the corre-
sponding memory peak, and the stronger activation would immediately be
propagated to the retinal representation, where it could be used to select
the correct peak and determine the saccade metrics from its position. In the
experiment, the correct peak is selected manually instead, as the one that
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is closer to the expected location. In all trials, the mechanism provided a
close approximation of the exact remapping of all memorized locations, so
that this selection was never ambiguous.

The accuracy of the remapping was tested by performing the double step
saccade task with different positions of the first stimulus, and consequently
different metrics of the first saccade. Stimulus positions were varied between
0◦ and 25◦ both horizontally and vertically in steps of 1◦. The second visual
stimulus was always located 20◦ below and to the left of the first stimulus.
This stimulus distance avoided effects of repulsion or attraction between
activation peaks (Simmering et al., 2008), which are not the subject of this
study. The location of the peak corresponding to the second stimulus was
then determined in the retinal read-out at time t = 600 ms (when the motor
signal for the second saccade was generated) to evaluate the accuracy with
which the system could provide the metrics for the second saccade.

The mean amplitude of the error (deviation from the exact remapped
location) was 0.29◦. The maximal error over all trials was 0.85◦, with a
standard deviation from the exact remapped location of 0.35◦. Errors in
the remapping occur when the peak in the transformation field does not
shift exactly along the diagonal input ridge from the body-centered field.
This can occur due to partial overlap and lateral interactions between the
decaying old activation peak and the newly forming activation peak in the
transformation field during the remapping. The error typically manifests in
a slight under-compensation of the gaze shift and occurs mainly for saccades
of intermediate amplitude. Note that the accuracy measures reported here
for the remapping also incorporate the errors in the gaze update described
earlier, since the remapping is based on the internally generated estimate of
the new gaze direction after a saccade.

Figure 4.11 (preceding page): Stimuli and activation patterns in a double
step saccade task. The left column depicts the simulated stimulus positions
on a screen (black dots for active stimuli, dashed circles for positions of
previously presented stimuli). The black cross indicates the current fixation
point, the dashed square shows the current field of view, arrows indicate
gaze changes. The middle row shows the activation patterns in the retinal
read-out of the transformation field, the right column shows the output of
the body-centered field. (a) First stimulus presentation. (b) Second stimulus
presentation. (c) Delay period. (d) Situation after the saccade to the first
stimulus. (e) Situation after the saccade to the second stimulus.
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4.5.4 Time course of remapping and comparison to electro-
physiological data

As a final result, I will show comparisons between the activation time course
in the DNF model and electrophysiological data of retinocentric remapping
from the work of Duhamel et al. (1992). These experimental results have
been viewed as key support for the hypothesis that trans-saccadic spatial
memory relies on remapping of retinocentric representations and therefore
does not require any gaze-invariant neural representations of space (Wurtz,
2008). By modeling the experiment with the DNF model, I will show that
the findings are entirely consistent with the use of a gaze-invariant rep-
resentation (here, the body-centered field) that is continuously coupled to
representations in a retinocentric reference frame.

In the original experiment, activity was measured for single neurons in
the LIP region of macaque monkeys. First, the visual receptive field of
each neuron in a retinocentric reference frame was determined. Then neural
activity was measured while visual stimuli were either presented statically
within the receptive field, or were moved into or out of the receptive field
by saccadic eye movements. Here, I compare the activity of these neurons
to the activation time course in the retinal read-out of the transformation
field, sampled at individual locations that correspond to the receptive field
centers of the neurons in the experimental study. This comparison is based
on the hypothesis that the experimentally observed neurons are either gain-
modulated themselves (which was not tested in the experiment), and thus
correspond to nodes at certain retinocentric locations in the transformation
field; or that they are driven by retinocentric input from the transformation
field.

There is one adjustment made in the model to accommodate for this task.
The monkeys in the experiment were not required or trained to memorize
any spatial locations, and no sustained activity was observed in the neural
recordings after stimuli were turned off. To emulate this in the model, the
resting level in both the transformation field and the body-centered field
is slightly reduced so that the coupled activation peaks that form in these
fields are no longer self-sustained. This can be achieved in a neural system
by a global control input without requiring any structural changes, and is
analogous to the control of the feature working memory field in the DNF
model of biased competition described in the previous chapter. I therefore
consider this as the same model operated in a different mode to reflect task
instructions, and will refer to it as the perceptual mode in contrast to the
memory mode that was used so far. For completeness, I describe activation
time courses for both modes of operation below.

The neural recordings from the experiment are shown side-by-side with
the activation time courses from the model in Figure 4.12. In the first
experimental condition (Figure 4.12a), a visual stimulus is briefly presented
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inside the neuron’s receptive field. The neuron increases its activity with
a brief delay after the stimulus onset (due to synaptic transmission time
from the retina), then activity slowly decays after the stimulus is turned
off. The model responds similarly when operated in the perceptual mode
(Figure 4.12b), with fast increase of activation followed by a slow decline
when the stimulus is turned off. The latter effect is due to the slow decay
of stabilized activation peaks even in the perceptual mode. In the memory
mode, the activation decays to a lower level when the stimulus is turned
off, but then remains stable at that level. Note that a fixed delay between
modeled stimulus onset and activation of the field input is employed in the
model to emulate the synaptic transmission time.

In the second condition (Figure 4.12c), a sustained stimulus is presented
inside the neuron’s receptive field, but then a saccade is made to a periph-
eral visual target such that the neuron’s receptive field is moved away from
the stimulus. As a result, the neural activity decays much more rapidly,
even though the effect on the visual input to the neuron should be indis-
tinguishable. The model reproduces this effect (Figure 4.12d). Both in the
perceptual and in memory mode, the activation quickly goes back to zero
at the time of the simulated saccade. The reason is that during the sac-
cade there is not only a suppression of the visual input to the retinal field,
but there is also the shift of the gaze input. Losing both of its supporting
inputs, the original peak in the transformation field decays almost immedi-
ately (while a new peak forms at the remapped location, see Figure 4.9).
Consequently, the activation at the original retinocentric stimulus location
in the retinal read-out quickly declines.

In the third and final condition, the saccade moves the stimulus location
into the receptive field of the neuron that is being recorded from. How-
ever, the stimulus is only flashed briefly (for 50 ms), and it is extinguished
before the actual gaze shift begins (Figure 4.12e). Here, the key signature
of retinocentric remapping is observed: Briefly after the saccade, there is
a transient stimulus-related response of the neuron, even though there was
never any direct visual stimulation at the retinocentric position of the neu-
ron’s receptive field. The same effect can be observed in the retinal read-out
of the DNF model, due to the remapping mechanism detailed above (Fig-
ure 4.12f). When the visual stimulus is presented before the saccade, it
induces coupled activation peaks in the transformation field and the body-
centered field. Then, during the gaze shift, the peak in the transformation
field is shifted to reflect the new retinocentric location of the stimulus. In the
perceptual mode of the model, the activation peaks in the transformation
field and body-centered field decay over time, but the activation is sustained
long enough to produce the transient response in the retinal read-out. When
the model is operated in the memory mode, the activation at the new lo-
cation is sustained, producing the updated spatial working memory in a
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retinocentric reference frame that was used in the double-step saccade task.

Note that in the response of the single neuron shown in Figure 4.12e,
the remapping activity occurs only with a brief delay after the saccadic
eye movement, and thus later than in the simulation. Sommer and Wurtz
(2006) have investigated the exact timing of neural responses associated
with retinocentric remapping in a separate study. They found significant
variability between individual neurons, but report that the mean response
onset is very close to the time of saccade initiation. Thus, the remapping
often takes place before the eye movement is completed. These findings are
consistent with the activation time course in the DNF model, which can
explain the early remapping activity through the integrated mechanism for
the predictive update of gaze direction.

As a final remark on these simulations, I would like to point out that
all visual stimuli relevant in the different conditions were modeled, not just
the probe stimulus in the receptive field of the recorded neuron. In the
third condition, for instance, the shifting fixation stimulus that provides the
saccade target for the monkey is included in the simulation. These stimuli
are processed in the same way as the probe stimulus, and are likewise subject
to remapping during gaze shifts. This is consistent with experimental results
showing that the saccade target itself is also remapped during the gaze shift,
and its new location is predicted with good accuracy even when it is not
foveated by the saccade (Collins et al., 2009). This feature highlights the
fact that the remapping in the present model is a general property of the
coupled spatial representations, whereas in other theoretical accounts it is
often interpreted as special operation applied only to intended future saccade
targets (Xing and Andersen, 2000).

Figure 4.12 (preceding page): Time course of neural activity in LIP and
activation in the DNF model during stimulus presentation and saccadic gaze
shifts. (a) Response of a neuron to a stimulus (star in the stimulus display
at the top) in the neuron’s receptive field (dashed circle). (b) Time course of
the retinal read-out in the DNF model in the same condition, measured at
the retinal position of the a visual stimulus. The solid line shows the retinal
read-out in the perceptual mode of the model, the dashed line in the memory
mode. (c) Neural response when the stimulus is moved out of the neuron’s
receptive field by a saccade (indicated by the arrow in the stimulus display).
(d) Model activation in the same condition. (e) Remapping activity in an
LIP neuron when the position of a previously extinguished stimulus (dashed
star) is brought into the neuron’s receptive field by a saccade. (f) Model
activation in the same condition.
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4.6 Discussion

In order to understand the neural mechanisms underlying spatial cognition,
it is essential to consider how the brain deals with the different reference
frames in its spatial representations. Mappings between different reference
frames are needed to enable trans-saccadic working memory in active look-
ing, to link sensory representations to motor acts, and to integrate spatial
representations from different sensory modalities. While transformations be-
tween different reference frames are a general issue also for algorithmic ap-
proaches to sensory processing and motor planning, for instance in robotics,
specific difficulties arise in neural approaches to this problem. Here, spatial
information is generally represented in a distributed fashion through popu-
lation codes, and operations on these representations must be implemented
through fixed synaptic connections. Reference frame transformations must
therefore be realized in a form that is fundamentally different from the al-
gorithmic operations that can be applied to numerical vectors.

The mechanism proposed here for neural reference frame transformations
is based on the observation of gain-modulated neurons in the parietal cortex
and other brain areas (Andersen et al., 1985). The general idea is that a
combined representation is formed by bringing together spatial information
in one reference frame and a representation of the required shift between
reference frames (in the case of a transformation from the retinocentric to
the body-centered frame, this is given by the current gaze direction). From
the activation pattern in this combined representation, the spatial informa-
tion in the new reference frame can then be read out through fixed synaptic
projections. This general mechanism has previously been implemented in
different neural network models (Zipser and Andersen, 1988; Pouget and Se-
jnowski, 1997). Here, I have presented an implementation in the framework
of Dynamic Field Theory, first as a general mechanism, then in the form
of a concrete model for trans-saccadic working memory and retinocentric
remapping.

The DNF model focuses on the autonomous operation of the transfor-
mation mechanism, such that new visual stimuli can be processed at any
time to form a representation of their locations in two different reference
frames simultaneously. This is aided by the fact that the DNF model can
perform the reference frame transformation for multiple locations in parallel,
a feature not present in previous models. Early neural network models did
not generalize to multiple stimulus locations (Zipser and Andersen, 1988),
and the radial basis function network by Denève et al. (2001) employed di-
visive normalization that forces the representation to converge on a single
location. The model of Xing and Andersen (2000) did deal with two visual
stimuli (the current and the subsequent saccade target), but held these in
separate representations, with the full transformation process only applied to

122



one of them. With the parallel processing and autonomous operation in the
present model, the reference frame transformation is no longer interpreted
as a discrete operation applied to an individual spatial location. Instead, it
is understood as a continuous process that provides a dynamical coupling
between two spatial representations in different reference frames and keeps
them synchronized.

It is important to note, however, that this system is not intended to
apply the reference frame shift to a complete visual image. Instead, the
transformation is only applied to a limited number of discrete locations that
are represented by stabilized activation peaks in the fields. This is consistent
with experimental findings showing that humans do not integrate even mod-
erately complex shape information across saccadic eye movements (Irwin
et al., 1983). Humans can, however, integrate information about individ-
ual locations across saccades, and for instance make accurate and precise
judgments about their spatial arrangements without having seen them in
the same fixation (Hayhoe et al., 1991). In limiting the spatial shift to a
few spatial locations, the present model differs from approaches such as dy-
namic routing circuits (Olshausen et al., 1993), which propose that a variable
spatial shift and scaling operation is integrated directly into the visual pro-
cessing stream. In this approach, the shift is also applied to representations
of surface feature information (such as edge orientations or texture), so that
it can serve for position-invariant object recognition. Unlike the approach of
Olshausen et al., the present model does not rely on special scalable synapses
to perform the shift operation.

The goal of the DNF model also differs somewhat from the radial-basis
function models of Pouget and colleagues (Pouget and Sejnowski, 1997;
Denève et al., 2001), which show strong similarities in the underlying mech-
anisms (despite several differences in implementation pointed out earlier).
These models aim more strongly to achieve optimality in sensor fusion over
different reference frames. They tend toward an interpretation of the ac-
tivation pattern as a probability distribution (which is also expressed in
the explicit normalization in each representation), and are thereby linked to
graphical models such as Bayesian networks. This link is made explicit in
Denève and Pouget (2004). The DNF model does not aim to explicitly rep-
resent probability distributions. While DNFs can under certain conditions
act in a way that approximates Bayesian integration of different information
sources, the activation peaks in the present architectures are interpreted as
discrete stimulus locations. This discretization occurs through the detection
instability in the DNFs, which transforms a graded input signal into a binary
decision to either form a peak or not (although a certain amount of graded
information can still be represented by the size of the activation peak).

With the DNF model, I have shown how the phenomenon of retinocen-
tric remapping that has been observed in neural data can be explained
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as an emergent effect of bidirectional coupling between retinocentric and
gaze-invariant spatial representations. Retinocentric remapping has been
reported in the same cortical areas in which gain-modulated neurons are
found, but has previously been explained by mechanisms distinct from ref-
erence frame transformations. Models of retinocentric remapping proposed
a direct shift of retinocentric representations based on the metrics of a sac-
cade (Quaia et al., 1998; Keith et al., 2010), and such explanations have
been taken as arguments against a role of gaze-invariant representations in
trans-saccadic spatial memory (Colby and Goldberg, 1999; Wurtz, 2008).
The DNF model can directly account for the original experimental data
(Duhamel et al., 1992), due to the parallel remapping of multiple items and
the integrated mechanism for a predictive gaze update.

This gaze update module is another important novelty of the present
model. It allows the remapping to occur simultaneously with the saccadic
eye movement, and explains the experimental observation that the remap-
ping activity is dependent on an efference copy of the saccade motor signal.
The gaze update module uses an architecture analogous the reference frame
transformation, but is operated in a different dynamic regime. The strong
global interactions employed in this system create a sequence of instabili-
ties and stabilized states that deviates from the one in the transformation
module, and that produces the single, stabilized update of the gaze direction
once a saccade motor signal is provided. The coupling between the gaze up-
date system and the remapping system demonstrates how the field dynamics
simplify the modularization of a complex architecture. Due to the effects of
lateral interactions, the activation states of the gaze fields always take the
form of a single activation peak of a relatively stereotyped shape. The input
to the remapping system is therefore qualitatively always the same, and the
details of the processing within the gaze update system do not affect the
remapping system.

The broader functional achievement of the DNF model is that it can au-
tonomously keep different spatial representations aligned and synchronized.
The general mechanism allows contributions from different sensory and cog-
nitive systems to be integrated and to interact in a single, distributed repre-
sentation of space, without imposing any constraints on the number or timing
of such contributions. In particular, the system allows a selection decision to
be propagated between reference frames, due to the continuous coupling of
graded representations. If, for instance, the location of an individual stimu-
lus is selected by attentional mechanisms at the retinal level (e.g., because
the stimulus is particularly salient), then the increased activation for this lo-
cation is automatically projected to the body-centered reference frame. The
selection decision is thereby propagated to the working memory representa-
tion. This is critical if spatial location is to be used as a form of pointer that
allows referencing a specific object (compare Cavanagh et al., 2010). To be

124



functional, such a pointer must be able to traverse the different levels of a
neural representation, from the sensory level to working memory and more
abstract cognitive representations. In this role, the transformation opera-
tion will be used in the following chapter, where working memory for spatial
locations is combined with surface feature representations to form a scene
representation in memory.
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Chapter 5

Neurodynamic Model of
Human Scene Representation

5.1 Introduction

In this chapter, I will address the question how humans form an internal
representation of a visual scene that can be used to guide behavior and
plan actions. The two previous chapters have highlighted the importance of
active looking with frequent gaze changes to perceive different parts of the
environment, have introduced the problems that these gaze changes create
for spatial cognition and memory, and proposed a solution to keep track of
locations in the world despite shifts of the retinal reference frame. I will now
build on the two models described so far and present a DNF architecture
that can not only keep track of object locations in a visual scene, but that
integrates the spatial information with information of object features at these
locations. The result is a gaze-independent scene representation in working
memory.

When a scene representation is formed by fixating objects individually,
this necessarily requires a sequential processing of the visual scene. How-
ever, humans appear to employ such sequential processing even when the
gaze remains fixed during scene viewing, for instance when memorizing ar-
rays of simple visual stimuli presented around the fixation point. Obser-
vations from psychophysical experiments indicate that participants focus
attention on each item in the array sequentially, even though their gaze does
not change. It has been suggested that this focused attention is necessary
to bind the individual features of an object together into a coherent rep-
resentation. The DNF model that I present here adopts this strategy of
sequential processing of visual items. It provides a mechanistic explanation
for the problem of feature binding, and explains how focused attention can
solve this problem.

In the following sections, I will first review experimental findings on
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human working memory for visual scenes, and discuss theoretical accounts
for these findings. I will then motivate and describe a DNF architecture that
implements a neurodynamic process model for the formation and use of scene
representations in working memory. The model captures two elementary
surface feature dimensions and one spatial dimension for object location, and
autonomously iterates over objects to memorize visual scenes. I will present
tests of this model in different change detection tasks, which constitute a
key experimental tool to assess visual working memory in humans, and I
will show that the model mechanisms are consistent with human behavior.
The model and the results have previously been described in Schneegans
et al. (in press b).

The psychophysical model I describe here has been developed in parallel
with a robotic model (Zibner et al., 2010a,b, 2011a). In the robotic scenario,
the robot builds a representation of objects in a table-top scene based on a
camera image, and can then use this representation to guide arm movements
or answer questions about the scene. The robotic version of the model uses
two spatial dimensions to cover actual visual space, and has also been com-
bined with a full object recognition system to go beyond elementary surface
features for identifying objects (Zibner et al., 2011b). On the other hand, it
is somewhat less neurally realistic in that it uses algorithmic shortcuts for
certain operations, and it lacks certain structural elements to deal with the
change detection tasks discussed here.

5.1.1 Scene representation and working memory in humans

Working memory in humans and animals is a type of memory representa-
tion that forms rapidly, but has limited capacity (Vogel et al., 2006). The
underlying neural mechanism is generally believed to be the sustained activ-
ity of neurons that excite themselves through synaptic loops (Wang, 2001),
as captured in the sustained activation peaks in DNF models. The specific
type of memory addressed here has been termed the visuo-spatial sketchpad
in the influential classification of Baddeley and Hitch (1974). It captures in-
formation about objects and their locations in the world. It is distinguished
from the articulatory loop, which is used to store verbal information, and a
central executive working memory component. All these forms of working
memory can again be contrasted with two other forms of memory. Long-
term memory is a high-capacity memory mechanism that is based on the
formation or modification of synaptic connections between neurons. In con-
trast, iconic memory is often likened to a neural afterimage, that provides a
detailed memory representation for brief periods of time (less than one sec-
ond), but is very susceptible to interference from new sensory input. These
two forms of memory are not addressed in the present chapter.

How does the human nervous system form an internal representation of
a visual scene in working memory? What properties do these internal rep-
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resentations have, and how are they used in the generation of behavior? A
large number of behavioral studies have explored different aspects of these
questions. Change detection experiments constitute one central experimen-
tal tool in exploring human scene representation in working memory. If a
participant can reliably detect a difference between a previously viewed scene
and a changed version of it, this demonstrates that the changed aspects were
held in working memory. The opposite is not necessarily true: Not detecting
a change does not prove that something was not memorized, since failures
may also occur in the comparison between working memory and new stimuli.

One quite radical theory posits that no internal scene representations
are built up in working memory or used to guide behavior when viewing
natural scenes. This view is based on findings of so-called change blindness
(Rensink et al., 1997; Simons and Levin, 1997). In one type of experiment,
participants are asked to view a photograph of a natural scene on a com-
puter screen and to report any changes that occur in the image while they
view it. Participants frequently fail to notice even drastic alterations in the
image, as long as the change is masked in such a way that it cannot be
detected as motion. This can be achieved by altering the image either while
the participant is blinking or performing saccadic eye movements (O’Regan
et al., 2000), during which visual perception is greatly diminished, or while
a masking stimulus is flashed over the image (Rensink et al., 1997). Analy-
sis of participants’ performance indicated that they only detect the change
reliably if they are currently fixating the changing region or object, which is
taken as an indication that only the currently attended item is actually kept
in an internal representation.

This interpretation of change blindness results has been questioned by the
work of Hollingworth and colleagues. Hollingworth and Henderson (2002)
tracked participants’ eye movements during a similar task, and found that
salient changes were detected at least in about half of the trials as long as
participants fixated the affected object both before and after the change.
In another variant, the previously simultaneous tasks of memorization and
change detection were separated. A forced choice test for a specific object was
presented at some point during viewing the scene, and participants had to
decide whether that object was changed or unchanged. Participants showed
moderately high performance (>80%) when they had previously fixated the
tested object in the scene, although performance decreased with increasing
number of intervening fixations.

Other studies looked specifically at the capacity of working memory for
scene representations. A classical experimental paradigm for this is change
detection with arrays of artificial stimuli (Vogel et al., 2001; Treisman and
Zhang, 2006). The stimuli are characterized by one or more elementary
surface features, such as color, shape, or edge orientation. In each trial,
first a sample array is shown, then after a delay a second stimulus array is
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presented as test array. The two arrays may either be identical, or different
types of change may be introduced, and subjects have to report whether they
detected a difference (and possibly provide additional information, such as
indicating the changed item).

One key parameter in these tasks is the size of the stimulus arrays, that is,
the number of presented items. Performance decreases significantly for larger
arrays, and the performance statistics over different array sizes are consistent
with the notion of a limited working memory capacity. Humans appear to
be able to memorize between three and five different items, dependent on
task details (with a few studies indicating a capacity limit of up to seven
items). When more items are presented in the stimulus array, only a subset
is memorized (Irwin, 1992; Irwin and Andrews, 1996). Interestingly, this
capacity limit does not seem to operate on the level of individual features
to be memorized, but on the level of items or objects. A study by Luck
and Vogel (1997) found that participants could remember the same number
of items independent of whether they were characterized by a single feature
(e.g., color) or a combination of features (e.g., color, edge orientation, and
size). This is consistent with the idea that different visual features may be
represented and memorized in separate neural populations.

A second type of manipulation in the change detection task is the type
of the change that can be introduced in the test array. In particular, results
indicate that it makes a significant difference whether a novel feature value
is introduced (such as a color that was not present in the sample array), or
whether only the binding between features is changed (such as switching the
colors between two items from the sample array). The latter type of tasks is
generally found to be harder for humans. Moreover, several studies indicate
that memorizing the binding between different features of an object requires
focused attention on that object, either through fixation or covert spatial
attention (Treisman and Zhang, 2006; Hyun et al., 2009a). The special role
of feature binding in perception and memory is formulated in the Feature
Integration Theory (Treisman and Gelade, 1980; Kahneman et al., 1992),
described below. These findings are generally consistent with the results
for natural scenes, where sequential fixation of visual objects in a scene was
found to be a critical factor for successful change detection.

Taken together, these results clearly show that humans are capable of
forming a representation of a visual scene in working memory, but they
also show the significant limitations in this ability. Clearly, the scene repre-
sentation in working memory is not a photographic image that is acquired
instantly when we first see a visual scene. Instead, only certain aspects of
a scene are retained in memory, such as the features of individual objects,
and also for those the capacity of working memory is very limited. Forming
the scene representation is an active process that takes time and uses neu-
ral resources. In particular, it requires visual attention to be sequentially
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directed at different objects in a scene. The same is true for using such a
scene representation once it is formed, for instance for detecting changes in
the visual image. Explaining the experimental findings on human scene rep-
resentation abilities requires addressing not only the properties of working
memory representations themselves, but also the processes involved in the
formation and utilization of these working memory representations.

5.1.2 Theoretical accounts of human scene representation

An eminent theory in psychology of human scene perception is the Feature
Integration Theory, proposed by Treisman and Gelade (1980; see also Treis-
man, 1988, 1996). Based on convergent evidence collected from visual search
tasks, texture segmentation, illusory conjunctions, and change detection, this
theory states that individual features (like color, edge orientation, and spa-
tial frequency) can be detected and processed in parallel over a whole visual
scene. Forming conjunctions between these features dimensions, however,
requires focused attention.

For instance, visual search for an object of a certain color in an array
of distractor objects is a parallel process, in which the search time does
not increase with increasing number of distractors (Treisman, 1988). In
contrast, search for a conjunction of features (like search for a red vertical
line in an array of red horizontal lines and green vertical lines) is often a
serial process. The response time increases approximately linearly with the
number of distractors, indicating that the items in the search array (or at
least a subset of them) are inspected one by one to determine whether they
match all target features. Attention to individual items in such tasks may
be either overt (making a saccade to fixate an object) or covert. In the latter
case, attention is focused on a single object (or location) without producing
any eye movements; this is the more common strategy in humans to rapidly
inspect simple and closely spaced stimuli in typical visual search tasks. Both
forms of attention appear to work equally to bind features together.

Based on this theory of scene perception, Kahneman et al. (1992) devel-
oped a theory for how the objects from a scene are stored in memory. They
proposed so-called object files, which hold the different features of an object
in an integrated fashion. According to this theory, an object file is created
for a visual object when it is first focused by spatial attention. Features
may then be added to that object file (although not necessarily all features
are added immediately, but only task-relevant ones). The object file can be
addressed by the location of the object and accessed at a later point in time
(e.g., when the same object is attended again), and features can be added
when they become available, or updated when they change.

Through these properties, object files mediate continuity of object rep-
resentations. For instance, if you see an object moving in the sky, you may
first only perceive its approximate shape and assume that it is a bird; but

131



after briefly observing it, you realize that it is actually a plane. Still, you are
certain throughout this identification that there is only a single object, and
only your assumption about its identity changed. In such a case, a single
object file is created and sustained, and its content is updated. Conversely,
multiple distinct object files with equal content can accomplish individua-
tion of objects, when several indistinguishable objects are present in a visual
scene.

It is assumed in the theory that movement of objects is tracked in the
object file (so that addressing it via the object’s location remains possible),
and that a correspondence process exists to link object files to the visual
scene when the view changes, for instance, due to an eye movement. There
is an important constraint, however: Only a limited number of object files
can be active at the same time, matching the estimated capacity limit of
about four objects that is found in working memory experiments. When
this limit is reached, one of the existing object files is lost as soon as a new
one is created. Note that Object File Theory does not claim that object files
are the only form of visual working memory. There can also be memory of
unbound object features, as shown in different psychophysical experiments.
But if the features belonging to an object are stored in a bound form, the
theory claims that this happens in the form of object files.

Concepts similar to the object files are also used in other theoretical work.
Pylyshyn (2001) focused on the spatial aspect of scene perception, aiming
in particular to explain experimental results on multi-object tracking. He
proposed that a limited number of visual indexes are available that can be
assigned to objects in the world and used to track them over movements.
Object features may be associated with these visual indexes in working mem-
ory, yielding a representation analogous to object files. Such ideas have also
been taken up in the work of Ballard (Ballard et al., 1997, discussed in
the introduction of this thesis), who proposes a kind of pointer to solve the
problem of variable binding in cognitive programs. In this approach, overt
fixation or spatial attention to a visual object is one form of this pointer,
but additional ones can be held in working memory. They provide access
to more complex object representations (either sensory or in memory), and
can be handed to cognitive routines so that these can be applied flexibly to
different objects.

Interestingly, all of these conceptual models of human scene memory
directly employ terminologies from computer science, namely pointers and
files. In this analogies, biological working memory is treated as a form of
addressable memory (albeit with some specific properties), in which different
features of an object can be laid down in a cluster that constitutes a file.
This file (as a location in memory) can then be addressed by a pointer. (It
appears, however, that the direction of this pointer is not quite consistent
between different theoretical approaches: In the Object File Theory, it is
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assumed that the location of an object in the world can be used to address
the object file. The visual indexes of Pylyshyn, in contrast, are described
as pointers to objects and their locations in the world. It appears that both
directions would be needed for different tasks.)

The fundamental problem with these analogies from computer science is
that none of the theories specifies how the required structures and functions
can actually be realized in neural systems. In particular, there is no obvious
way to realize a variable pointer in a network of neurons. Working memory
in biological systems is realized as sustained activity of specific populations
of neurons. All interactions between neurons are mediated by synaptic con-
nections, which can be considered as fixed in the context of scene viewing
and memorization (although they may be adapted by learning on longer time
scales). This means that a group of neurons may activate a certain working
memory representation that it is synaptically connected to, but it can not
switch to activate another working memory representation a few moments
later. Groups of neurons thus cannot act as variable pointers, and working
memory representations are not organized as addressable memory.

An additional, more specific issue for the neural implementation of ob-
ject files is the exact structure of the working memory representations. The
behavioral evidence described above points to separate WM capacities for
different feature dimensions. This is consistent with the assumption of sep-
arate neural populations, sensitive for different surface features such as col-
ors, shapes or orientations, as the basis for working memory. These capacity
limitations still hold when the features of objects are memorized in a bound
form, as tested by Wheeler and Treisman (2002). While the Feature Integra-
tion Theory does posit separate neural populations for representing different
feature dimensions at the perceptual level (Treisman, 1988), its extension to
the Object File Theory does not specify how the memory for different fea-
tures within one object file is organized. Based on behavioral evidence and
from what is known about the neural basis of working memory, it is quite
clear that the image of a “file” as a segment of memory into which arbitrary
information can be written is not fitting here.

So while the theoretical accounts presented here provide a conceptual
model that can explain the behavioral data, they do not address the neural
implementation of the model. Consequently, they also do not address the
neural processes underlying the elementary operations that are necessary
for working memory tasks like change detection. The conceptual theories do
not specify how the sequential processing of individual objects is realized,
how attention is shifted from one to the other, how the working memory
representation—or object file—for each item is actually formed, and how
it is compared to new perceptual items to detect changes. Moreover, the
conceptual theories cannot explain the origin of the capacity limit, beyond
stating that only a fixed number of object files or visual indexes are avail-
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able; and they cannot give a reason why the sequential attentional focusing of
objects is necessary to form bound representations, given the inherently par-
allel processing that the neural systems are capable of. The present chapter
aims to address these questions by proposing a functional and autonomous
model that implements the conceptual model of the Object File Theory in
a neurally plausible fashion.

5.2 DNF model of scene representation

5.2.1 Outline of the model

The model to be described in this chapter should capture the neural pro-
cesses underlying the formation of a scene representation in working memory.
Moreover, the model should be able to use such a scene representation to
perform change detection tasks, which constitute a key behavioral paradigm
in testing human scene memory. The model is restricted to processing sim-
ple visual features as used in many of these tasks, and is not designed to
deal with complex natural scenes. This makes it possible to focus on the
general mechanism underlying the formation and use of scene working mem-
ory, without requiring a complex object recognition system (but see Zibner
et al., 2011b for integration of a DNF model of scene representation and
object recognition).

A simplified sketch of the full model architecture is shown in Figure 5.1,
illustrating the basic organization of perceptual and working memory or-
ganizations. The perceptual part of the model (right part in the figure) is
based directly on the biased competition model (Chapter 3). It is now ex-
tended to two elementary surface feature dimensions (color hue value and
edge orientation) to allow modeling of feature bindings. The initial visual
representations for these two feature dimensions are feature maps over reti-
nal space. They are implemented as DNFs over a two-dimensional space,
called visual sensory fields, spanned by one spatial dimension (the same for
both feature maps) and one surface feature dimension. Note that the re-
striction to a single spatial dimension in the biased competition model is
retained here, to reduce computation complexity and allow easier visualiza-
tions. The general mechanisms in the model would not change if a second
spatial dimension was added, as done in the robotic implementation (Zibner
et al., 2010a).

The separate feature maps do not directly code feature conjunctions, in
the way that a single, three-dimensional field over the dimensions of color,
orientation, and space would do. This avoids a combinatorial explosion when
further dimensions, either for space or more surface features, are added.
However, the feature maps are indirectly coupled to each other via the shared
spatial dimension, in that they project to a single spatial attention field and
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Figure 5.1: Simplified DNF architecture for a model of scene representation
in working memory. Working memory for feature conjunctions is imple-
mented as a stack of feature maps over space, coupled via a shared spatial
dimension (left part of the figure), analogous to the representations at the
perceptual level (right part of the figure).

both receive feedback from it. This layout is consistent with what is known
about the neural architecture in early visual cortex (Krüger et al., 2013).
Here, separate populations of neurons exist that are sensitive to different
surface features, while at the same time having localized receptive fields in
retinal space. The layout also matches the assumptions underlying Feature
Integration Theory (Treisman, 1988).

The model also retains the separate pathways for spatial location and
surface features from the biased competition model. Separate one-dimen-
sional fields are used to mediate attention and working memory for each
surface feature dimension and for space. These separate working memory
representations reflect the psychophysical findings that unbound features can
be memorized, and appear to be memorized more easily and robustly than
feature conjunctions (Treisman and Zhang, 2006).

The core design question for the scene representation architecture is how
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the working memory for feature conjunctions is realized (left part in Fig-
ure 5.1). This working memory representation should provide the function-
ality ascribed to object files, but in a neural implementation. A straight-
forward hypothesis is that the working memory representation for feature
conjunctions is organized in a fashion directly analogous to the perceptual
representations. This is implemented here by employing feature maps for
the different surface features over space as the substrate for scene working
memory.

Unlike on the perceptual level, the spatial dimension for the working
memory representation should not employ retinal space. One of the functions
of scene working memory is to integrate information over different fixations,
and to this end, the working memory representation should be invariant
over gaze shifts. I assume for the model that the spatial dimension for
the working memory representation uses a reference frame that is aligned
with the visual scene (not necessarily strictly allocentric, but invariant under
different views of the scene). This is consistent with behavioral evidence
that rearrangements of items in a scene has a disruptive effect on change
detection, whereas a shift of a whole array of objects only weakly affects
change detection performance (Hollingworth, 2007).

The use of different spatial reference frames between perceptual and scene
working memory representations makes it necessary to introduce a reference
frame transformation between these two levels. The DNF model of reference
frame transformation presented in the previous chapter is an ideal candidate
for this task, since it allows the continuous coupling between different multi-
object representations. It is adopted in the present model in a simplified
form, employing a direct convolution of the spatial representations with a
shift signal. This is neurally less realistic, but reduces the complexity of this
large architecture and speeds up simulations. The model then includes a
spatial attention field in the retinal frame, and both a spatial attention field
and a spatial working memory field in the scene reference frame, coupled to
each other via the transformation system.

The full structure of the scene working memory is then as follows: A
stack of feature maps over space, with one separate map for each surface
feature dimension, provides the substrate for memory of bound features.
The binding of different feature dimensions is achieved by coupling of these
feature maps to the purely spatial working memory representation via their
shared spatial dimension. This is supported by psychophysical findings that
show a special role of location for feature binding in working memory (Pert-
zov and Husain, 2013). The feature maps are also coupled bidirectionally
to the pure feature working memory via the shared feature dimension. This
visual working memory architecture can therefore represent either only the
unbound feature values, or form actually bound object representations by
additionally employing the coupled feature maps. This is neurally plausible,
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as recent fMRI results show that additional brain regions are engaged when
memorizing feature bindings compared to memorizing individual feature val-
ues (Parra et al., 2014).
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Figure 5.2: DNF mechanism for change detection. A sensory field provides
excitatory input to a contrast field (green arrows), a working memory field
provides inhibitory input (red arrows). (a) Feature match. (b) Mismatch of
features.

The final building block for the architecture is the change detection mech-
anism. This is adapted from prior DNF models of change detection in spatial
memory and feature memory (Schutte and Spencer, 2009; Johnson et al.,
2009a,b). Change detection in these models is achieved in a contrast field,
which receives excitatory sensory input and inhibitory input from a working
memory field, all defined over the same feature space (Figure 5.2). In the
earlier publications, this inhibitory input was achieved indirectly through a
shared inhibitory layer, but in the present work it is implemented as a direct
inhibitory projection. When the working memory matches the current sen-
sory stimulus, the two inputs to the field cancel each other out (Figure 5.2a).
However, when no memory was previously formed or when there is a mis-
match between memory and stimulus features, the excitatory sensory input
can induce an activation peak in the contrast field (Figure 5.2b). This peak
indicates that a novel feature value is being detected, and can thus serve as
change signal in a change detection tasks.

The present architecture contains a one-dimensional contrast field for
each of the surface feature dimensions. Change detection thus occurs sepa-
rately for different feature dimensions and does not operate directly on the
bound features. As will be described below, the contrast fields in this con-
figuration are sufficient to allow both the parallel detection of single feature

137



changes in a stimulus array, and the sequential detection of changes in fea-
ture binding. The full implementation contains an analogous contrast field
in the spatial pathway, but this will be omitted in the following descriptions
since it is not relevant for the tasks addressed here.

5.2.2 Binding problem and sequential processing

The perceptual processes in the neural field architecture are inherently par-
allel. If multiple visual stimuli are presented simultaneously, then multiple
peaks will form in each visual sensory field to reflect all the stimuli. So why
is there a need to sequentially attend to individual items to establish and
memorize the feature bindings? In the present architecture, the reason lies
in the separate pathways for spatial and surface feature information. Such
separation (at least a partial one) is widely accepted in the neurobiological
literature (Krüger et al., 2013). Going up in the cortical hierarchy for visual
processing, neural representations of surface features in the ventral pathway
show sensitivity for increasingly complex features and feature combinations,
but at the same time show decreasing sensitivity for the spatial location of
a feature. In the dorsal pathway, on the other hand, neurons are sensitive
to spatial locations and certain spatio-temporal features such as movement,
but not sensitive for surface features like color.

If now multiple stimuli are present in the visual scene, their locations and
individual surface feature values are transmitted via these separate path-
ways. A binding problem occurs when these are going to be recombined in
working memory, since the separate representations contain no information
about which feature values belong together to the same object. In the DNF
model, the recombination is implemented as an intersection of horizontal
and vertical ridge inputs in a two-dimensional field. As discussed in Chap-
ter 3, this recombination induces a single peak unambiguously recombining
the individual features if only one vertical and one horizontal ridge inputs
intersect. But if there are two or more ridge inputs in each dimensions (re-
flecting, e.g., the locations and colors of two stimuli), then they form four
intersection points, and spurious combinations of locations and features are
formed (see Figure 3.4 in the earlier chapter).

For this reason, the main transmission paths along the separate pathways
run through the feature and spatial attention fields. These fields are operated
in a selection regime, so they can only stably support a single activation peak
at any time. The model autonomously performs a coupled selection decision
to select a single stimulus item in both the spatial and feature attention fields,
in the same way as described for the biased competition model. There are
additional parallel projections via the one-dimensional spatial and feature
working memory fields, that allow the system for instance to smoothly track
changes in object features or object locations. However, the selection of an
object by focused attention is necessary to form bound representations in
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working memory, consistent with the Object File Theory.
This account of the binding problem still leaves open the question why

a separation into multiple streams is used at all, in particular if these are
to be recombined in the end. A closer look at the spatial pathway can give
an answer to this question. The transmission via this pathway includes the
reference frame transformation, which, as shown in the previous chapter,
is a rather complex and resource-intensive operation when realized purely
by synaptic connectivity. Retaining the surface feature information in this
operation would require a further substantial increase in neural resources.
Transforming a full three-dimensional feature map (two spatial and one fea-
ture dimensions) with the same mechanism as used in the purely spatial
transformation would require a five-dimensional transformation field—and
this would have to be repeated for each surface feature dimension. Moreover,
in a biological system, these transformations have to be learned from experi-
ence, and the synaptic connections for the transformation would have to be
learned for each feature dimension and each feature value, even though they
are identical for different features. The separation into spatial and surface
feature pathways therefore provides a significant benefit in terms of efficiency
and generality of the system.

Similar considerations may independently hold for the surface feature
pathway. In the biological neural system, neurons along this pathway show
specific responses to increasingly complex feature combinations, while se-
lectivity for spatial location decreases. This likely allows neurons at higher
levels of the processing hierarchy to aid in identifying objects independent
of their location in the retinal image. Keeping the full spatial information
in this pathway would likely decrease the efficiency and generalization ca-
pabilities of this processing pathways, similar as in the spatial pathway. In
the present model, this increase in feature complexity is not captured, and
the feature pathway simply propagates elementary surface features. This is
sufficient to solve change detection tasks with simple artificial stimuli.

Given the need for sequential processing of individual items, the challenge
for the model is now to generate this sequentiality based on its temporally
continuous and inherently parallel mode of operation. The emergence of
discrete steps from the continuous evolution of activation patterns can be
effected by the field interactions, as has already been described in the pre-
vious chapters. The selection of a single item, for instance, is achieved by
a selection decision (constituting a bifurcation in the field dynamics) in a
set of coupled fields with competitive lateral interactions. The present ar-
chitecture must go beyond that by creating a series of attentional selections
(and releases of the previous selection) to sequentially process the items of
a visual scene, without any change in external input to drive this sequence.

To meet this goal, the architecture contains a set of specific structures
to generate the sequential selection of items. First, a set of peak detector
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nodes is used to detect the successful memorization or completed comparison
of a single item. The nodes are driven by the scene attention fields that are
coupled to the scene working memory fields. These nodes then drive the
formation of activation peaks for an inhibition-of-return field, defined over
a spatial dimension in the scene reference frame. This field forms peaks for
already visited locations, and suppresses spatial attention to them. This
both creates the release of attention from the presently selected location,
and ensures that the same stimuli are not selected repeatedly as focus of
attention. An inhibition-of-return effect is also known in the behavioral
literature. For instance, humans are slower to initiate saccades to locations
they have recently attended to in certain tasks (Posner and Cohen, 1984).

5.2.3 Model architecture

The model combines parallel processing of multiple items, mediated by multi-
peak DNFs, with sequential processing of individual items, mediated by
selective DNFs that support only a single activation peak at any time (Fig-
ure 5.3). Both types of processing occur both along the spatial and the
feature pathways. The parallel processing supports the simultaneous de-
tection of changes in feature values for all memorized items, and keeps the
working memory representations aligned with the visual input. It also allows
the parallel tracking of smooth changes in object locations or feature values
to a limited degree (compare Spencer et al., 2012), but this will not be ad-
dressed in detail for the present architecture. The sequential processing is
needed for memorizing feature conjunctions. It also underlies the detection
of changes in feature conjunction, using the structures as the parallel change
detection. I will describe the DNFs and connections for the different forms
of processing separately below.

Multi-item representations for parallel processing

The external visual input to the system first induces localized activation
peaks in a set of visual sensory fields (Figure 5.3a, right side). There is
one of these fields for each surface feature dimension, namely color and ori-
entation. The fields are defined over the two-dimensional space spanned by
feature dimension and retinal space. The logarithmic scaling of retinal space
that was used in the biased competition model is omitted here for simplicity.
Otherwise, these DNFs behave in the same way as in that previous model,
with moderate lateral interactions (local self-excitation and local surround
inhibition) to support stabilized representations of visual stimuli, but with-
out creating a working memory or selection regime. It is assumed in the
model that each visual stimulus creates one activation peak in each of the
visual sensory fields. These peaks are aligned with each other in the spatial
dimension, while the feature values in different surface feature dimensions
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are independent of each other.

Each visual sensory field is read out along both the spatial dimension
and the surface feature dimension by integrating the field output over the
disregarded dimension. The surface feature read-out provides input to the
feature WM fields (Figure 5.3a, middle), defined over the one-dimensional
space of surface feature values (color or orientation; note that only one sur-
face feature is shown in the figure). These fields are set up in a multi-item
working memory regime, with strong local self-excitation and local surround
inhibition, such that they sustain multiple activation peaks without exter-
nal input. The spatial read-out analogously projects to the spatial working
memory field, which is set up in the same fashion. This read-out, however,
is first convolved with a gaze signal indicating the current gaze direction
within the visual scene. This implements a reference frame transformation
from the retinal to the scene reference frame (Figure 5.3a, top).

For each surface feature dimension, a scene WM field is defined as acti-
vation distribution over the two-dimensional space spanned by the surface
feature and one spatial dimension in the scene reference frame (leftmost fields
in Figure 5.3). Like the one-dimensional WM fields, the scene WM fields
are set up with strong lateral interactions to support multiple self-sustained
peaks simultaneously. These scene WM fields are bidirectionally coupled to
the one-dimensional WM fields: Each feature WM field is coupled to the cor-
responding scene WM field along the surface feature dimension, projecting
horizontal ridge inputs into the scene WM field and receiving feedback from
it (integrated over the spatial dimension). The spatial WM field projects
vertical ridge inputs into both of the scene WM field and likewise receives
input from both (integrated over the surface feature dimensions). Through
this coupling, WM peaks in all these fields mutually support and stabilize
each other, and retain their alignment with each other when activation peaks
drift over time.

Note that the scene WM fields cannot form peaks based on the parallel
inputs of the one-dimensional WM fields alone, due to the binding problem
that occurs when intersecting multiple ridge inputs. They require additional
inputs for a single, attentionally focused item to form activation peaks, as
described below. Likewise, the formation of peaks in the one-dimensional
WM fields is tied to visual attention under normal conditions, as it was
also implemented in the biased competition model. However, they can form
peaks from the parallel input provided by the visual sensory fields when
they are globally boosted, reflecting a possibility for parallel memorization
of features that is indicated by some experimental results.
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Single-item representations for sequential processing

The representation of the present visual stimuli in the visual sensory fields
forms the basis not only for the parallel processing, but also for the sequential
processing. Each visual sensory field is bidirectionally coupled to a feature
attention field and to the single spatial attention field (retinal), with the
same set-up as used in the biased competition model. The one-dimensional
attention fields each receive the read-out along the corresponding dimension
from the visual sensory fields, and project ridge inputs back to them (right
part of Figure 5.3b). Lateral interactions in these fields create a selection
regime, allowing only a single activation peak to form even in the presence of
multiple inputs. As in the biased competition model, the coupling between
the fields ensures that the same item is selected in all of the one-dimensional
attention fields. Compared to that previously described model, the selection
is now extended to span two surface feature dimension, which are coupled
to each other via the single spatial attention field. To make sure that the
simultaneous selection in the attention fields is always consistent with each
other, the coupling between the visual sensory fields to the spatial attention
field is slightly stronger than the coupling to the feature attention fields, so
that the effect of the shared spatial selection is dominant over feature-based
selection.

Each feature attention field provides input to the corresponding feature
WM memory field (in addition to the parallel input from the visual sensory
field), ensuring that a self-sustained peak is formed in that field when a visual
item is attended. The feature attention field in turn receives feedback from
the feature WM field in the same way as introduced in the biased competition
model. In the spatial pathway, the reference frame transformation has to be
applied again. The retinal spatial attention field is first convolved with the
gaze signal, and the result drives activation in the scene spatial attention

Figure 5.3 (preceding page): Parallel and selective processing along separate
spatial and feature pathways in the DNF model of scene representation. The
connectivity is shown only for a single surface feature dimension (color), the
connection patterns for the second surface feature dimension (orientation)
are identical. (a) Projections (green arrows) between fields that can contain
multiple activation peaks simultaneously for the parallel processing of feature
values and locations. (b) Projections between fields that are operated in a
selection regime for the processing of a single visual item. Note that the two
sets of fields on the left are defined over the same spatial dimension, although
they are not aligned along that dimension in the figure. Abbreviations: vis
- visual sensory fields, atn - attention fields, con - contrast fields, WM -
working memory fields, ftr - surface feature representations, spt - spatial
representations, ret - retinocentric, sc - scene-centered.
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field. These fields are typically tightly coupled and represent the same spatial
information, only in different reference frames. However, they can be de-
coupled for certain tasks as described in below. The scene spatial attention
field provides an additional input to the spatial WM field, analogous to the
connectivity in the feature pathway.

The spatial and feature attention fields also provide additional inputs
to the two-dimensional scene working memory fields. Each scene WM field
receives one ridge input from the feature attention field of the corresponding
surface feature (horizontal ridge in Figure 5.3b), and one ridge input from the
spatial attention field (vertical ridge in the figure). These add to the ridge
inputs that the scene WM fields receive from the one-dimensional spatial
and feature WM fields (which may provide multiple input ridges along each
dimension). Only the combination of all these inputs is sufficient to bring the
field activation to the output threshold and induce self-sustained activation
peaks. Consequently, a new peak can only form for the single, currently
attended item, even if there are multiple stimuli in the visual scene.

An additional set of attention fields is employed in the model, the scene
attention fields, that enable the system to select individual item from the
scene WM representation. These fields are defined over the same two-
dimensional spaces as the scene WM fields, spanned by one surface feature
dimension and a spatial dimension in the scene reference frame. Each scene
attention field receives input from its corresponding scene WM field (curved
arrow in Figure 5.3b). This input is localized, meaning that an activation
peak in the scene WM field induces a local hill of activation at the corre-
sponding location in the scene attention field. The scene attention fields are
bidirectionally coupled to the one-dimensional attention fields. They receive
ridge inputs in the same configuration as for the scene WM fields, which
can be used to select an item from scene working memory by inducing a
supra-threshold activation peak from the sub-threshold hills of activation.
Like the one-dimensional attention fields, the scene attention fields feature
lateral interactions with local excitation and strong global inhibition, pro-
ducing a selection regime that support only a single activation peak at any
time.

Change detection

Changes between a memorized scene and the current visual stimuli can be
detected using the feature contrast fields. There is one feature contrast field
for each of the surface feature dimensions, and each of them receives one
pair of inputs from multi-item fields, and one pair of inputs from single-item
fields (Figure 5.4).

The excitatory multi-item input for the contrast fields comes directly
from the visual sensory fields (three parallel, long green arrows in Fig-
ure 5.4). An inhibitory input from the one-dimensional feature WM fields
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Figure 5.4: Change detection and autonomous sequence generation in the
DNF model of scene representation. Change detection is achieved by the
combination of excitatory (green arrows) and inhibitory inputs (red arrows)
to the feature contrast fields (bottom center). The sequence generation
involves the peak detector nodes driven by input from the scene attention
fields, the CoS node, and the IoR field.

acts as antagonist for these excitatory inputs (two parallel short red arrows
in Figure 5.4; the third item has not yet been memorized in the depicted
situation). When WM representations and present visual stimuli match
each other, these excitatory and inhibitory inputs cancel each other out.
Simultaneously, the contrast fields receive excitatory inputs from the one-
dimensional attention fields, and inhibitory input from the scene attention
fields (read out along the feature dimension). These connections allow the
field to detect a difference between a specific item in the current visual scene
and a selected item from scene WM.

The contrast fields also project weakly back to the one-dimensional at-
tention fields in an excitatory fashion, and thereby biases attention toward
changed items in a scene, or items that have not yet been focused during
memorization. This implements and autonomous deployment of attention to
the locations of feature changes, as observed in change detection experiments
(Hyun et al., 2009b).
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Autonomous sequence generation

Several components in the architecture contribute to the transition of fo-
cused attention from one item to the next, either when it has been memo-
rized successfully or when the sequential change detection operation for an
item is completed. Based on previous models of sequential order and behav-
ior organization in DNF architectures (Sandamirskaya and Schöner, 2010;
Sandamirskaya et al., 2011; Richter et al., 2012), the system does not rely on
a fixed timing for the sequential inspection of items. Instead, a condition of
satisfaction is defined that indicates the processing of one item is completed.
This condition of satisfaction is the formation of salient activation peaks in
all of the scene attention fields. As detailed below in the demonstrations,
the scene attention fields form peaks after the memorization of an item is
complete (because then they receive converging input from the scene WM
fields and the one-dimensional attention fields). They also form peaks dur-
ing the change detection process when a specific item in scene WM is being
compared to an item in the current visual input.

The condition-of-satisfaction system is implemented via a peak detector
node defined for each of the scene attention fields (top left in Figure 5.4).
The node is driven by the field output, integrated over the whole field, and it
becomes activated when this total output exceeds a certain threshold. The
peak detector nodes for all surface feature dimensions project to a single
condition-of-satisfaction (CoS) node, with connection weights chosen in such
a fashion that all peak detector nodes need to be active in order to activate
the CoS node (note that only a single surface feature dimension is shown in
the figure, but a second one is present in the model).

The CoS node then acts by globally increasing the activation level in
the inhibition-of-return (IoR) field. This field is defined over the spatial di-
mension in the scene reference frame. It receives localized input from the
retinal spatial attention field as well as from the visual sensory fields (both
first transformed to the scene reference frame), and it features strong lateral
interactions that support a multi-peak working memory regime. When this
field is globally activated by the CoS node, it forms a peak for the currently
attended spatial location. These peaks then remain sustained by lateral in-
teractions in combination with weak input from the visual sensory field, and
provide a memory of which locations in the scene have been inspected. The
IoR field projects local inhibition to both spatial attention fields (Figure 5.4),
which suppresses the peaks for the current attentional selection. This release
from attention is supported by the CoS node globally inhibiting the scene
attention fields and feature attention fields.

The inhibition from the IoR field for previously attended locations pro-
motes the direction of spatial attention to items in the scene that have not
yet been inspected. The continuous spatial input from the visual sensory
field allows spatial tracking of item’s locations by the sustained peaks in the
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IoR field to a certain degree. Thus, items will not be treated as novel if
they have moved to a new location, consistent with experimental findings
that inhibition of return is object-based, rather than strictly location-based
(Tipper et al., 1994). When a visual stimulus (or the whole stimulus array)
is removed from the scene, the input from the visual sensory field ceases and
the activation peaks in the IoR field collapse after a brief time. Newly ap-
pearing stimuli, even at previously inspected locations, will then be treated
as new and can be attentionally selected again.

5.2.4 Field equations and parameter values

As in the DNF model described in the previous chapters, the complete DNF
architecture for scene representation and change detection is implemented
in a set of differential equations that describe the evolution of activation
patterns over time. A unique two-letter index is used to identify each field
in the equations, given in Table 5.1. The fields representing surface features
are furthermore identified by a superscript specifying the surface feature
dimension (col for color and orn for orientation). Connection patterns and
parameter values are identical between these two surface feature dimensions,
so they are generally treated jointly in the equations.

field name field index cexc cinh cgi

visual sensory fields vs 7.5 7.5 0.002
retinal spatial attention field ra 8 0 0.6
scene-level spatial attention field sa 6 0 0.5
spatial contrast field sc 20 20 0
spatial WM field sm 27 25 0
IoR field ir 20 15 0
feature attention fields fa 4 0 0.5
feature contrast fields fc 20 20 0
feature WM fields fm 27 25 0
scene attention fields ca 2.5 0 0.0175
scene WM fields cm 25 27.5 0.05
peak detector nodes pd 4 0 0
CoS node cs 4 0 0

Table 5.1: Field indices and lateral interaction parameters.

The two visual sensory fields are governed by the field equations
τ u̇d

vs(x, y) =− ud
vs(x, y) + h+ idvs(x, y) + [kvs,vs ∗ f(ud

vs)](x, y)
+ [kvs,ra ∗ f(ura)](x) + [kvs,fa ∗ f(ud

fa)](y) + qvsξ(x, y)
(5.1)

for d ∈ {col, orn}. The input pattern idvs is a superposition of two-dimensional
non-normalized Gaussians with width σ = 4 and amplitude a = 6, centered
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on the combinations of stimulus positions and feature values for the present
stimulus array. For projections along the separate spatial and feature path-
ways, integrated outputs are computed as

Fftr(uvs)(y) =
∫
f(uvs(x, y))dx (5.2)

Fspt(uvs)(x) =
∫
f(uvs(x, y))dy. (5.3)

Equivalent integrals are defined for the other two-dimensional DNFs in the
architecture, uca and ucm.

The field equation for the retinal spatial attention field is

τ u̇ra(x) =− ura(x) + h+ [kra,ra ∗ f(ura)](x)
+

∑
d∈{col,orn}

[kra,vs ∗ Fspt(ud
vs)](x)

+ cra,sa[igd ? f(usa)](x)− cra,ir[igd ? f(uir)](x) + qraξ(x).

(5.4)

The notation [igd ? f(usa)] is used here for the correlation operation that
implements the reference frame shift from the scene reference frame back
to the retinocentric reference frame, based on the gaze signal igd. It is
equivalent to the convolution of the field output with a mirrored version of
the gaze signal (for real-valued inputs). The gaze signal itself is a Gaussian
pattern with width σ = 4 centered on the current gaze direction.

The remaining fields in the spatial pathway are defined over space in
the gaze-invariant scene reference frame. Retinocentric input to these fields
is shifted by a convolution with the gaze signal, yielding terms of the form
[igd∗f(ura)]. The resulting field equations for the scene-level spatial attention
field (usa), spatial contrast field (usc), spatial WM field (usm), and IoR field
(uir) are as follows:

τ u̇sa(x) =− usa(x) + h+ [ksa,sa ∗ f(usa)](x)
+ csa,ra[igd ∗ f(ura)](x) + [ksa,ir ∗ f(uir)](x)
+ [ksa,sc ∗ f(usc)](x) + [ksa,sm ∗ f(usm)](x)
+

∑
d∈{col,orn}

[ksa,sm ∗ Fspt(ud
ca)](x) + qsaξ(x)

(5.5)

τ u̇sc(x) =− usc(x) + h+ [ksc,sc ∗ f(usc)](x)
+

∑
d∈{col,orn}

csc,vs[igd ∗ Fspt(ud
vs)](x) + [ksc,sa ∗ f(usa)](x)

− [ksc,sm ∗ f(usm)](x)−
∑

d∈{col,orn}
[ksc,sm ∗ Fspt(ud

ca)](x)

+ qscξ(x)

(5.6)
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τ u̇sm(x) =− usm(x) + h+ [ksm,sm ∗ f(usm)](x)
+

∑
d∈{col,orn}

csm,vs[igd ∗ Fspt(ud
vs)](x) + [ksm,sa ∗ f(usa)](x)

+
∑

d∈{col,orn}
[ksm,cm ∗ Fspt(ud

cm)](x) + qsmξ(x)
(5.7)

τ u̇ir(x) =− uir(x) + h+ [kir,ir ∗ f(uir)](x)
+

∑
d∈{col,orn}

cir,vs[igd ∗ Fspt(ud
vs)](x)

+ cir,ra[igd ∗ f(ura)](x) + cir,csf(ucs) + qirξ(x)

(5.8)

In the feature pathways, the differential equations for the feature atten-
tion fields (ufa), feature contrast fields (ufc), and feature WM field (ufm) are
given as

τ u̇d
fa(y) =− ud

fa(y) + h+ [kfa,fa ∗ f(ud
fa)](y)

+ [kfa,vs ∗ Fftr(ud
vs)](y) + [kfa,fc ∗ f(ud

fc)](y)
+ [kfa,fm ∗ f(ud

fm)](y)− cfa,csf(ucs) + qfaξ(y)
(5.9)

τ u̇d
fc(y) =− ud

fc(y) + h+ [kfc,fc ∗ f(ud
fc)](y)

+ [kfc,vs ∗ Fftr(ud
vs)](y) + [kfc,fa ∗ f(ud

fa)](y)
− [kfc,fm ∗ f(ud

fm)](y)− [kfc,ca ∗ Fftr(ud
ca)](y) + qfcξ(y)

(5.10)

τ u̇d
fm(y) =− ud

fm(y) + h+ [kfm,fm ∗ f(ud
fm)](y)

+ [kfm,vs ∗ Fftr(ud
vs)](y) + [kfm,fa ∗ f(ud

fa)](y)
+ [kfm,cm ∗ Fftr(ud

cm)](y) + qfmξ(y)
(5.11)

for d ∈ {col, orn}.
The two pathways converge in the scene attention field (uca) and scene

WM field (ucm), both defined over a combination of spatial and feature
dimensions, with field equations

τ u̇d
ca(x, y) =− ud

ca(x, y) + h+ [kca,ca ∗ f(ud
ca)](x, y)

+ [kca,sa ∗ f(usa)](x) + [kca,fa ∗ f(ud
fa)](y)

+ [kca,cm ∗ f(ud
cm)](x, y)− cca,csf(ucs) + qcaξ(x, y)

(5.12)

τ u̇d
cm(x, y) =− ud

cm(x, y) + h+ [kcm,cm ∗ f(ud
cm)](x, y)

+ [kcm,sa ∗ f(usa)](x) + [kcm,sm ∗ f(usm)](x)
+ [kcm,fa ∗ f(ud

fa)](y) + [kcm,fm ∗ f(ud
fm)](y)

+ qcmξ(x, y).

(5.13)

Note that in the feature WM fields, lateral inhibition is local only in the
spatial dimension, and global along the feature dimension.
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Finally, the peak detector nodes for the two surface feature dimensions
are governed by the differential equation

τ u̇d
pd = −ud

pd + h+ cpd,pdf(ud
pd) + cpd,ca

∫∫
f(ud

ca(x, y))dxdy, (5.14)

and the CoS node that drives the sequential processing of stimuli is governed
by the equation

τ u̇cs = −ucs + h+ ccs,csf(ucs) + ccs,pd
(
f(ucol

pd) + f(uorn
pd )

)
. (5.15)

projection c projection c projection c

ra, sa 3 fa, cs 4 vs, fa 1.25
ra, ir 10 fa, vs 1 vs, ra 1.5
ra, vs 0.8 fa, fc 1.75 ca, fa 2
sa, ra 10 fa, fm 1 ca, sa 2.75
sa, ir 10 fc, vs 1.25 ca, cm 6
sa, ca 0.75 fc, fa 7.5 ca, cs 2
sc, sa 2.5 fc, ca 0.75 cm, sa 1
sc, sm 8 fm, vs 0.4 cm, sm 1.75
sc, vs 0.625 fm, fa 3.5 cm, fa 1
sc, ca 0.375 fm, fc 8 cm, fm 1.75
sm, sa 3.5 fm, cm 0.1 ir, ra 0.5
sm, vs 0.2 pd, ca 0.05 ir, cs 2.25
sm, cm 0.05 cs, pd 3 ir, vs 0.15

Table 5.2: Connection strengths for projections between fields.

All feature spaces (horizontal stimulus position, gaze direction, color hue
values, and edge orientation) are sampled with 100 units for numerical sim-
ulations. The widths of interaction kernels are given in these field units.
The temporal step size for the Euler method is ∆t = 1 (in arbitrary units,
a mapping to real time is not yet specified for this model).

All fields and nodes use the same resting level h = −5, steepness param-
eter β = 4 for the sigmoid output function, and time constant τ = 10. The
lateral interactions in all fields can be described by a difference-of-Gaussians
kernel with σexc = 4 and σinh = 8, and a global inhibitory component for
some fields. The lateral interaction weights are given in Table 5.1. All inter-
action kernels for projections between fields are Gaussians with width σ = 4,
the weights for these projections are listed Table 5.2.

5.3 Demonstrations
In this section, I will describe in detail how the DNF architecture for scene
representation can solve three different classes of change detection tasks used
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in the psychophysical literature. Each task consists of the presentation of
a sample array, followed after a brief delay by the presentation of the test
array. Each array here consists of three colored, oriented bar stimuli. The
DNF system has to memorize the sample array and maintain this memory
for the following change detection in the test scene.

In the first type of change detection task, the feature change detection,
the system has to detect whether any novel feature values (like a new color)
were introduced in the test array that were not present in the sample ar-
ray. In the feature location change detection task, the system must detect
whether any feature values have changed their locations (e.g., if colors were
swapped between two items in the array). Finally, in the feature conjunc-
tion change detection task, the system must determine whether the same
items (defined by a combination of a color and an orientation) are present
in sample and test array, independent of their location.

5.3.1 Sequential formation of visual working memory

The first step in every change detection task is the memorization of the
sample array. In accordance with the Feature Integration Theory, the model
performs this operations as a sequential process in which each visual item
is attended individually. The sequential approach is directly supported by
evidence from human psychophysical experiments (Vogel et al., 2006). I will
first address the sequential selection of visual items through covert attention,
without any actual gaze changes, and then address the scanning of a scene
through a series of fixations and saccades below.

The beginning of the memorization process in the DNF model is illus-
trated in Figure 5.5. The sample array to be memorized consists of three
colored, oriented bars, shown in the top left. These visual stimuli first induce
activation peaks in the visual sensory fields, with one peak for every item in
each of these fields. These peaks provide input to the one-dimensional at-
tention fields along the separate spatial and surface feature pathways. When
activation levels reach the output threshold in the attention fields, the lat-
eral interactions within these fields and their bidirectional coupling with
the visual sensory fields autonomously initiate a selection process. Through
this process, a single visual item is focused by attention, with its features
and location represented by peaks in the separate attention fields, and the
corresponding peaks in the visual sensory fields enhanced by feedback.

Following the attentional selection, peaks for the individual features of
the selected item are induced in the one-dimensional WM fields. The feature
attention fields project directly to the feature WM fields, and their input, to-
gether with direct input from the visual sensory fields, induces an activation
peak in each WM field. In the spatial pathway, the retinal spatial attention
field first projects to the scene spatial attention field via the reference frame
transformation. The scene spatial attention field then induces a peak in the

151



0°

45°

90°

135°

180°

0°

60°

180°

300°

360°

120°

240°

atn (scene)WM (scene) vis

atn (spt/ret)WM (spt)

W
M

 (
ft

r)

co
n
 (

ft
r)

at
n
 (

ft
r)

IoR

atn (spt/sc)

co
lo

r 
(h

u
e 

v
al

u
e)

o
ri

en
ta

ti
o
n

visual scene

-10° -5° 0° 5° 10°-5° 0° 5° 10°-10° -5° 0° 5° 10°

spatial position (scene-centered) spatial position (retinocentric)

-10°

Figure 5.5: Activation patterns in the DNF model of scene representation at
the beginning of the memorization period. The leftmost item in the visual
scene has been selected by attention, and a distributed working memory
representation for the item’s location and surface features has been formed.
The gaze direction is assumed to be straight ahead, so that retinocentric and
scene-centered reference frames are directly aligned in the figure.

spatial WM field.
Both the one-dimensional attention fields and the one-dimensional WM

fields now project ridge inputs into the scene WM fields (vertical ridges
from the spatial representations, horizontal ridges from the surface feature
representations). For the first item to be memorized, the inputs from the
one-dimensional WM fields are completely aligned with the inputs from the
attention fields, so effectively only a single vertical and a single horizontal
activation ridge is induced in each scene WM field. Activation peaks form at
the intersections of these input ridges, reflecting the combination of feature
values and location in the scene for the selected item.

When an activation peak has formed in the scene WM field, it projects
localized input to the corresponding scene attention field. This field also
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receives ridge inputs from the one-dimensional attention fields, and the po-
sition of the localized input matches the intersection point of these ridges.
This combination of inputs induces an activation peak in the scene attention
field. This peak does not directly contribute to the memorization process
itself, but it indicates that the formation of a memory peak for the currently
attended item in the scene WM field is completed. This activates the con-
dition of satisfaction system described above. An activation peak for the
currently attended location forms in the IoR field, and suppresses activation
for this location in the spatial attention fields. The CoS node simultaneously
inhibits the scene attention fields and the feature attention field, so that the
attentional selection of the current item is released simultaneously in all at-
tention fields. After the peaks in the scene attention fields have disappeared,
the activation values of the nodes in the condition-of-satisfaction system fall
back to their resting level.

When the focus of attention is released from the item that was selected
first, the remaining items start anew to compete for the formation of ac-
tivation peaks in the one-dimensional attention fields. The location of the
previously selected item is inhibited in this competition by the sustained
activation peak in the IoR field, so that it cannot be selected again. A new
item from the visual scene is selected, and is memorized in the same fashion
as the first item.

It is important that during this memorization of additional items, the
WM fields already contain one or more peaks, but these do not interfere
with the process. This is shown in Figure 5.6 for the memorization of the
last of three items in a stimulus array. Self-sustained peaks exist in the
spatial WM field, feature WM fields, and scene WM fields, and these are
coupled by mutually projecting inputs to each other, visible in particular
in the multiple vertical and horizontal input ridges in the scene WM fields.
These different ridge inputs also intersect and could give rise to incorrect
bindings, but by themselves these inputs are too weak to induce any peaks.
Only the addition of the input ridges from the feature and spatial attention
fields produce new peaks in the scene WM field, as shown in the figure, and
these newly created peaks correctly reflect the features and location of the
single, currently attended item.

Note that the lateral inhibitory interactions between peaks in the WM
fields creates a natural capacity limit for the number of items that can be
memorized. The more activation peaks are present in the field, the more
long-range inhibition is generated that depresses the activation of all peaks
and can ultimately make them collapse. When a new peak is added while
the system of coupled WM fields is already at its capacity limits, this new
peak is likely to prevail (due to the strong convergent inputs that support it
during creation), but other, neighboring peaks are likely to decay. Since cor-
responding peaks in the different WM fields for space, features, and feature
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Figure 5.6: Activation patterns in the DNF model at the end of the memo-
rization period. The rightmost item in the scene has now been selected by
attention, and a working memory representation for this item is about to
form. The two other items are already represented by peaks in the working
memory fields, and peaks in the IoR field indicate that the corresponding
locations have been inspected.

conjunction mutually support each other, the loss of an activation peak in
one of the fields generally leads to the subsequent decay of the other coupled
peaks and thereby to the forgetting of the item as whole.

The memorization process can also be performed with overt gaze shifts
toward each item when it is memorized. To this end, a simulated gaze change
is executed whenever a non-foveated item is selected by spatial attention. A
saccadic motor system is currently not integrated into this model, but the
generation of the saccade signal may be assumed to occur in the same way as
in the DNF model of biased competition, driven by the retinocentric spatial
attention field. This is emulated here as follows: For a fixed duration, the
visual input is turned off, and then re-activated at new locations to reflect
the shift in the retinal image. The gaze signal used in the reference frame
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Figure 5.7: Activation patterns in the DNF model after a stimulus array has
been memorized. The visual input has been turned off, the activation in the
sensory fields has returned to the resting level, but the distributed working
memory representation persists in the form of coupled sustained peaks.

transformation is updated according to the size of the simulated saccade.
In addition to this, the retinocentric spatial attention field is globally sup-
pressed, since its activation pattern is made obsolete by the gaze shift. In
contrast, the scene-centered spatial attention field and the feature attention
field are globally activated, so that they retain their activation peaks over
the duration of the saccade (with no visual input). This ensures that after
the completion of the gaze shift, the same visual stimulus is still attention-
ally selected. A peak in the retinal spatial attention field forms at the new
retinal location of the stimulus, driven by feedback from the scene-centered
spatial attention field and the biasing inputs from the feature attention fields,
and the now foveated stimulus is memorized in the same fashion as before.
Since all working memory representations are in the scene-centered reference
frame, they remain unaffected by the gaze change.

After all items in the scene have been inspected and peaks have formed

155



in the IoR field for all item locations, the sequential deployment of attention
effectively stops. When the sample array is then turned off in the visual
input, the peaks in the IoR field decay. What remains is the scene represen-
tation in working memory, consisting of the coupled representations in the
separate spatial and feature WM fields and the scene WM fields. This final
state after the memorization of the sample array is shown in Figure 5.7.

5.3.2 Parallel detection of feature changes

In the simplest form of change detection experiment, a single feature of one
item in the sample array is changed to a novel feature value in the test array.
An experiment of this kind was used for instance by Treisman and Zhang
(2006). They used stimulus arrays consisting of three colored shapes or three
colored letters, and in the change trials either the color or the shape/letter
identity of one item in the test array was set to a feature value that had
not been present in the sample array. According to the Feature Integration
Theory, such changes in individual feature values can be detected in parallel,
without attending to items sequentially. This is also implemented in the
DNF model through the parallel projections to the contrast fields. Here,
I will first review the role of the contrast fields during the memorization
phase, which is directly related to the parallel change detection, and then
demonstrate how the model can perform a feature change detection task.

When a new sample stimulus array is first presented for memorization, all
of its feature values are novel, in the sense that they are not yet represented in
working memory. This is reflected in the activation of the feature contrast
fields, as can be seen in Figure 5.5. Due to the direct excitatory input
from the visual sensory fields, three peaks form in each feature contrast
field. (For the one item that is just being memorized, the peak is kept
stable by input from the attention field, which will be discussed later.) As
the memorization of items progresses, peaks in the feature contrast fields
are suppressed by inhibitory input from the feature WM fields. This is
visible in Figure 5.6. Here, two of the items have already been memorized
successfully, and the corresponding peaks in the feature contrast fields have
disappeared due to inhibition from the feature WM fields. This inhibition
can be seen directly when the visual stimuli are removed after the scene
is completely memorized (Figure 5.7). Here, without any excitation from
the visual stimuli, each memorized feature value in the feature WM fields
induces a distinct suppression in the activation profile of the corresponding
feature contrast field.

This inhibition from the feature WM fields now also serves to distinguish
between already memorized and novel feature values when the test array is
presented. This is shown in Figure 5.8. The test array differs from the
memorized sample array in the color of the leftmost item (orange instead of
red). As soon as the test array is presented, peaks form in the visual sensory
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Figure 5.8: Detection of feature changes in the DNF model of scene repre-
sentation. A visual scene with one novel feature value (orange instead of red
bar) is presented to the model, and an activation peak forms in the color
contrast field to indicate the change.

fields and project to the feature contrast fields. For the orientation dimension
(bottom fields), all peak positions in the visual sensory field match those in
the feature WM field. The excitatory and inhibitory inputs to the feature
contrast field therefore cancel each other out, and the resulting activation
profile is almost flat.

In the color dimension, however, there is a mismatch for the changed
item. The corresponding peak in the visual sensory field for color (bottom
left in Figure 5.8) provides input to the color contrast field at a position
where it is not canceled out by inhibitory input from the feature WM field.
Consequently, activation in the contrast field can rise to reach the output
threshold, and a stabilized activation peak forms. This peak signals that
there is a change in the test array. In some previous models, an additional set
of nodes was defined to turn the presence or absence of a peak in the contrast
field into a binary response (change or no change; Johnson et al., 2009a).
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This response system is omitted here for simplicity, and the response that
the system would give is simply deducted from the presence of the contrast
field peak itself.

There are few notable properties of this change detection system. First,
the detection of a feature change depends on the distance in feature space
between the new stimulus and the memorized features. Since both excitatory
and inhibitory inputs extend over a certain region in feature space, very small
mismatches will not allow a peak to form in the contrast field. The reliability
and speed of peak formation increases (up to a certain level) with distance
in feature space between sensory and working memory peaks. Second, the
detection of feature changes is carried out before an attentional selection of
an individual item has taken place. The competition process for attentional
selections begins about at the same time at which peaks for novel features
form in the contrast fields, as both processes are driven by direct projections
from the visual sensory fields. And third, the parallel change detection
process is not sensitive to the locations of features or their conjunctions
among each other. As long as the individual feature values that are present
in the test array have also been present in the sample array, no change is
detected in this process.

Finally, the detection of a novel feature also influences the further pro-
cessing of a scene. The feature contrast fields project to the corresponding
feature attention fields in an excitatory fashion. If a change is detected
through a peak in one of the contrast field, this creates a bias to direct fea-
ture attention to this novel feature value, and thereby makes it likely that
the corresponding item in the stimulus array is selected first as the focus
of attention. This is consistent with the experimental results on attention
capture by novel features mentioned above (Hyun et al., 2009a).

5.3.3 Change detection for space-feature binding

A second type of change detection task requires participants to detect whether
the same features are still present at the same locations (Wheeler and Treis-
man, 2002; Johnson et al., 2008). In these experiments, a change in the test
array is introduced by swapping the values for one feature dimension between
two items in the sample array. The results of Wheeler and Treisman clearly
indicate that additional processes are necessary to detect such changes in
location binding, and performance is significantly decreased compared to a
pure feature change detection (with novel feature values introduced in the
test array) under the same conditions.

The DNF model can solve this task as well, without any changes to the
architecture or the parameter values. The memorization of the sample scene
is performed in the same way as before, yielding the scene representation
as shown in Figure 5.7 as basis for the change detection. The test array is
then presented, as shown in Figure 5.9. If no novel features are detected in
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Figure 5.9: Detection of changes in space-feature binding. A test scene is
presented in which two items have swapped their colors (the outer red and
blue bars). When one of these items is selected by attention, the change in
its color is detected through a peak forming in the color contrast field.

the scene by the parallel change detected mechanism, the model proceeds
autonomously with a sequential inspection of visual items in the test array.
This is driven by the competitive interactions within the attention fields and
the mutual coupling between them, just as during the memorization phase.

In Figure 5.9, the leftmost item in the test array has been selected as the
first focus of attention. Note that the color of this item has been swapped
with the rightmost item compared to the memory sample array (Figure 5.5),
while its orientation has remained unchanged. The one-dimensional atten-
tion fields that now reflect the surfaces features and the location of the
selected item project ridge inputs into the scene attention fields. This pro-
jection is stronger along the spatial pathway, reflecting the special role of
space in the model to bind surface feature dimensions together.

In the scene attention fields, there are already localized hills of activation
induced by the peaks in the scene WM field. Since the items in the test
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array occupy the same locations as the items in the sample array in this
experimental paradigm, the vertical input ridge from the spatial attention
field will always overlap with one of the localized hills of activation in each
scene attention field. This combination of inputs induces activation peaks
in the scene attention fields. Note that the horizontal ridge inputs from
the feature attention field likewise overlap with hills of activation in the
scene attention fields (assuming that the same features are present in sample
and test array). In the case of a feature-location match between test and
sample array, these inputs converge to select the same item from working
memory (bottom scene attention field in Figure 5.9). If they do not converge,
however, the stronger spatial input dominates in the selection of a working
memory item, and the competitive lateral interactions in the scene attention
fields ensure that only a single peak for this spatially matching item can
form (top scene attention field in Figure 5.9).

The system has now accomplished a simultaneous selection of one item in
the current visual scene and of the item at the same location from the working
memory representation. This allows the direct comparison of the feature
values for this single item in the feature contrast fields. The feature values
of the selected visual item are represented by the one-dimensional feature
attention fields, which project an excitatory input to their corresponding
contrast fields. The feature values for the working memory item can be read
out from the scene attention fields, which project an inhibitory input to the
contrast fields.

If these feature values match, these inputs cancel each other out in the
contrast field, and the activation pattern remains largely flat. This is the
case for the orientation dimension in Figure 5.9 (bottom feature contrast
field). If the feature values do not match, the excitatory input can induce
a supra-threshold activation peak, as can be seen in the color dimension
in Figure 5.9 (top feature contrast field). Note that the feature contrast
fields are also still receiving the parallel inputs from the visual sensory fields
and the feature WM fields, but these always cancel each other out in this
experimental paradigm since no new feature values are introduced in the
test array.

To complete the task of detecting any feature-location changes in the
test array, the system must inspect every item in the present visual scene
and test whether it matches the memorized item at the same location. This
sequential processing of all items for the change detection is achieved by
the same processes as during the sequential memorization. The presence of
salient activation peaks in the scene attention fields serves as condition of
satisfaction, indicating that the processing of the present item is completed.
This is permissible here since by the time that sufficiently strong peaks have
formed in the scene attention fields, the change detection process for the
selected item is complete (meaning that if there is feature mismatch, a peak
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in the contrast field will have formed by this time). The attentional selection
of the current item is released by the inhibitory actions of the CoS node and
the IoR field, and the IoR field retains a memory of the inspected locations.
The next item is selected autonomously by the attentional processes, and
the system continues until all items in the visual scene have been inspected.
Only if no feature mismatch is found in any of the items, sample and test
array can be considered to be the same (again, this final response generation
is not captured in the model).

The reduced performance of human subjects in this task compared to the
detection of simple feature changes can be explained by several factors in
the model. First, the detection of feature location changes requires the for-
mation and maintenance of working memory peaks in the scene WM fields,
in addition to the peaks in the one-dimensional WM fields that are suffi-
cient for pure feature change detection. This is consistent with recruitment
of additional neural populations observed for the memorization of feature
bindings in a recent fMRI study (Parra et al., 2014). Failure to form or
maintain these peaks makes it impossible to detect changes later. In addi-
tion, the sequential process for feature-location changes is significantly more
complex than the parallel process for detecting novel features, and requires
the organization of many individual processing steps.

Interestingly, error patterns in different change detection experiments
indicate that participants may inadvertently mix up the different types of
change detection despite being given explicit instructions. The most com-
mon error in change detection for feature-location bindings in the study of
Wheeler and Treisman (2002) was failure to detect a change (false negatives),
indicating that participants often judged two arrays to be the same when
they did not detect novel features, without completing an individual com-
parison of all items. Conversely, in a task where only pure feature changes
should be reported, participants often judged arrays as different when the
feature locations had changed (Treisman and Zhang, 2006). The authors
concluded that “when a previously filled location is reactivated, retrieval of
its previous contents (if they survive) is automatic.”

These kinds of intermixing the different tasks appear consistent with the
proposed DNF model. The system uses shared structures, namely the feature
contrast fields, to detect both types of changes. Absence of a change signal
in the parallel feature change detection process may be incorrectly judged as
indicating an absence of feature-position changes when the sequential inspec-
tion of items is not pursued to the end. Conversely, the change detection
for feature-position changes is performed automatically when attention is
focused on a single item. This may happen inadvertently in pure feature
change detection tasks, explaining the false positive responses in this condi-
tion. The experimental results thus support the model assumption that the
different types of change detection reflect different modes of operation in a
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shared system, with a smooth transition between them.

5.3.4 Change detection for feature conjunctions

The third type of change detection task that the model is capable of ad-
dresses the core question of how individual features are bound into object
representations. In this type of task, participants are asked to determine
whether the sample and test array contain the same objects, irrespective of
their locations (Treisman and Zhang, 2006). For instance, if the sample array
contained a green triangle and a red circle, the test array must also contain
a green triangle and a red circle to be considered the same (rather than, e.g.,
a red triangle and a green circle). The locations of items in the test array
are typically scrambled, either by switching locations between items or by
using novel locations for all items. The locations should be irrelevant for
the same/different judgment, although the shared locations of features that
belong to a single item naturally still define the feature conjunctions within
each stimulus array.

Compared to the feature-location change detection, this task is much
more open in terms of the strategy to be used in the comparison process.
One possible approach would be to sequentially select each item in the test
array, and then in turn go through all the items in working memory to see if
one of them matches. Obviously, this is not very efficient, and would require
additional control structures to organize the nested sequences of compar-
isons. More efficient approaches can be implemented by using the parallel
processing capabilities of the system where possible, namely in the selection
of a candidate item from working memory for the comparison with the cur-
rently selected visual stimulus. One way to do this would be to select an item
from working memory based on one feature of the attended visual stimulus
(e.g., color), then check whether the other feature (orientation) matches.
This may not work, however, when two or more items share a feature value
in one surface feature dimension.

The strategy I propose here is to select a candidate item for the compar-
ison based on all features of the currently selected visual stimulus. This ap-
proach builds on the assumption that if there is an item in working memory
that exactly matches the selected stimulus, it will be selected as candidate
for the comparison; otherwise, a partially matching item will be selected.
Thus, if the comparison to this candidate yields a mismatch in one feature,
it can be concluded that no working memory item matches the selected stim-
ulus. The global response can then be determined by the same simple rule
as used in the feature-location change detection: If the contrast field indi-
cates a change for any attended item, the test array is judged as ’changed’,
otherwise it is ’same’.

To implement this strategy (and, in fact, any of the strategies mentioned
here), it is necessary that retinal representations and the working memory
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scene representation are spatially de-coupled. The coupling of the spatial
attention fields via the reference frame transformation ensures that corre-
sponding locations are always selected in the two reference frames, but for
the present task, it is necessary that items at different locations can be se-
lected for comparison (reflecting the task instruction that changes in item
location between sample and test array are irrelevant for the response). The
de-coupling is achieved by tuning down the connection strength between reti-
nal and scene spatial attention fields, as well as the connections strengths
for most other projections that are mediated by the reference frame trans-
formation. This may be achieved in a neural system by modulated synaptic
connections. To compensate for the resulting loss of input, the resting levels
of the scene spatial attention field and the scene attention fields are increased.

Note that the reference frame transformation is still employed in this
mode for the IoR field, to support an efficient sequential processing of the
perceptual items even when gaze changes are made. It is known from exper-
imental observations that the inhibition-of-return effect acts on attentional
selection in a gaze-invariant, rather than a retinal reference frame (Posner
and Cohen, 1984), so it does require some form of reference frame trans-
formation. It is less clear, however, how the inhibition-of-return system is
related to scene working memory, and whether these systems use shared re-
sources. If there were in fact a separate system to achieve gaze invariance
for the inhibition-of-return effect, then the spatial decoupling in the model
for this task could be achieved simply by suppressing the gaze signal in the
reference frame transformation, without requiring modulation of synaptic
connection strengths.

Each trial of the feature conjunction change detection task starts with
the formation of a working memory representation for the sample array, in
the same way as before. During this period of the trial, the spatial coupling
between retinal and scene-level representations is still intact, but is then
tuned down when the test array is presented. The events after the presenta-
tion of the test array for a ‘same’ trial are shown in Figures 5.10 and 5.11.
Note that the positions of the outer items in this test array are switched
compared to the sample array in Figure 5.5, but all feature conjunctions are
maintained.

One item in the test array is autonomously selected by the attentional
mechanism at the retinal level (the rightmost item in Figure 5.10), yielding
its location in the retinal spatial attention field and its surface feature values
in the feature attention fields. Due to the spatial de-coupling, activation
is now only propagated along the feature pathway. The feature attention
fields project ridge inputs to the scene attention fields. Each of these ridges
overlaps with one localized hill of activation from the scene WM field (since
the feature values present in the test array are always the same as in the
sample array for this task). Peaks form from these activation hills in the
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Figure 5.10: Detection of feature conjunction changes, early phase in the
processing of one perceptual item in a ‘same’ trial. The rightmost item has
been selected by attentional processes at the perceptual level, and the best
matching working memory item is being selected in the scene attention field.

scene attention fields, and project input to the spatial attention field in the
scene reference frame.

In the case depicted in Figure 5.10, an exact match for the retinally
selected stimulus exists in working memory. Consequently, the peaks that
begin to form in the scene attention fields are spatially aligned, since the
activated feature values belong to a single item in working memory. The
peaks in the scene attention fields both project input to the same location in
the spatial attention field at the scene level, and induce a single activation
peak here. Note that the position of this peak is different from the peak
position in the retinal spatial attention field, reflecting the fact that the
item’s location has changed between sample and test array. The spatial
attention field at the scene level projects a vertical input ridge back into the
scene attention fields and thus stabilizes the selection of the matching item
from working memory (Figure 5.11).
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Figure 5.11: Detection of feature conjunction changes, late phase in the
processing of one perceptual item in a ‘same’ trial. A perceptual item and
a comparison candidate from working memory have been selected, and the
comparison yields no differences between them.

With an item selected in the scene attention field that matches all fea-
tures of the attended visual stimulus, no change signal is generated by the
feature contrast fields. Although local activation levels in these fields briefly
rise when the visual stimulus is first selected at the retinal level (Figure 5.10),
inhibition from the (initially rather weak) activation peaks forming in the
scene attention fields are sufficient to keep activation levels below the output
threshold. When the selection at the scene level is completed, the activation
profile in the feature contrast fields is again almost flat, since excitatory and
inhibitory inputs cancel each other out. The salient peaks in the scene atten-
tion fields are also the signal that the comparison process for the currently
selected visual item is complete, and triggers the release of attention and
transition to the next item.

How does this system work, however, when there is no exactly matching
item in working memory? This case is shown in Figures 5.12 and 5.13. Here,
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Figure 5.12: Detection of feature conjunction changes, early phase in the
processing of one perceptual item in a ‘different’ trial. The rightmost item
has been selected by attentional processes at the perceptual level, and based
on its surface features, a comparison candidate is being selected in the scene
attention fields.

the colors of the two outer items have been swapped between test array and
sample array (Figure 5.5), but the orientations remained the same. Thus,
the feature conjunctions for these two items are changed.

Again, the rightmost item in the visual scene is selected first as the
focus of attention. The feature attention fields form peaks to reflect the
surface features of this visual item, and project ridge inputs into the scene
attention fields. Weak activation peaks form in these fields at the points
where the ridges overlap with localized input from the scene WM fields
(Figures 5.12). Critically, the peaks in the two scene attention fields are not
spatially aligned in this case, since the surface features that characterize the
currently attended visual item belong to two different items in the working
memory representation.

The scene attention fields consequently provide input to two different
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Figure 5.13: Detection of feature conjunction changes, late phase in the
processing of one perceptual item in a ‘different’ trial. A single working
memory item has been selected as comparison candidate in the spatially
coupled scene attention fields, even though non of the memorized items
matches the presently selected perceptual item exactly. The color contrast
field indicates the mismatch between the two selected items.

locations in the spatial attention field at the scene level. The competitive
lateral interactions in the spatial attention field generate a selection decision,
and only a single peak forms from the two inputs (Figure 5.13). The decision
which one is selected is largely random, since the inputs are generally equally
strong. Here, a peak forms on the right, based on the feature match in the
orientation dimension and a remaining weak input from the peak in the
retinal spatial attention field at the same location (the latter reflects a weak
bias to compare the visual item to the working memory item at the same
location, even though the two reference frames are largely de-coupled now).

The peak in the spatial attention field then projects back to the two
scene attention fields. In the orientation dimension, it simply strengthens
the peak that already exists at this location. In the scene attention field for
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color, however, this new spatial input overrides the original selection of a
working memory item, and induces a new activation peak that suppresses
the old one. In effect, the coupling via space ensures that a single memorized
item is selected in both scene attention fields, rather than the features of two
different items.

With this consistent selection of a single item at the scene level, the
mismatch to the attended visual item can be detected. The new peak in
the scene attention field for color does no longer match the selected color
in the corresponding feature attention field. Consequently, excitatory and
inhibitory inputs to the feature contrast field for color do not cancel each
other out, and an activation peak forms in this field to signal the mismatch
(Figure 5.13). It is then also clear that no other working memory item
would provide a better match for the attended visual stimulus, since the
selection in the scene attention fields was already performed based on feature
match. Thus, any peak forming in the feature contrast fields unambiguously
signals a change of feature conjunctions between sample and test array. Only
if all visual items are inspected without such a change signal, the feature
conjunctions in the two arrays are the same.

5.4 Discussion

In this chapter, I have presented a DNF architecture for the representation
of visual scenes in working memory, and have described the autonomous
processes that evolve in this architecture to achieve the memorization of
a scene and to solve different classes of change detection tasks. At the
core of this theoretical work lies the problem of feature binding. Behavioral
evidence shows that humans cannot form memory representations of bound
object features in parallel, and instead employ a sequential strategy in which
each object has to individually selected by focused attention. The extant
models of this process are largely conceptual in nature, and employ language
from computer science to describe the underlying representations. Working
memory representations of bound features are conceptualized as object files,
and these object files and the locations of objects in the world are referenced
by a form of pointer. The neural implementation of such conceptual models
has been left entirely unaddressed.

The DNF model achieves this implementation in a fully neural archi-
tecture, and helps to clarify several aspects of humans scene working mem-
ory. In particular, it illustrates where and how the problem of feature bind-
ing arises, namely in the recombination of feature and location information
from separate processing streams. The recombination is realized in the DNF
model as intersection of ridge inputs into a multi-dimensional neural field,
and the simultaneous application of multiple ridges in each dimension would
lead to spurious intersections that do not match the actual feature con-
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junctions of the perceived objects. Moreover, the DNF model explains why
separate processing pathways are necessary in the first place: The operations
applied on the spatial representations, namely the reference frame transfor-
mation, would be highly inefficient when applied to a combined space-feature
representation. Analogous reasonings likely hold for the feature pathway, al-
though these are not explicitly explored in the model.

The core binding mechanism in the model’s working memory represen-
tations is binding via space. Separate feature maps over a shared spatial
dimension exist for the different surface feature dimensions. This reflects a
natural criterion for feature binding, namely that two features are likely to
belong to the same object if they are perceived at the same location. This
approach is also biologically plausible since it is directly analogous to the
organization of feature maps in early visual cortex. The special role of space
in feature binding is furthermore supported by results of behavioral studies,
both at the perceptual level (Nissen, 1985) and for working memory (Pertzov
and Husain, 2013, , discussed in detail below).

The spatial representation, coupled over different reference frames, fills
the role of the pointer in the Object File Theory, and of the visual index in
the conceptual theory of Pylyshyn (1989, 2001). Through mutual projections
in the DNF model, it can act in two directions: On the one hand, activating
a spatial location can bring up the object features at that location from
working memory. This was used explicitly in the model demonstrations of
the change detection task for feature locations. On the other hand, the
spatial memory can also be used to highlight the objects location in the
retinal image, via the reference frame transformation, and the memorized
location of a specific object may also be queued by a surface feature of this
object. This mutual coupling of object features to locations is clearly useful
if one assumes that most objects in the world are stationary most of the
time, and it is even more useful if moving object can be tracked to some
extent, as can be done in the DNF model.

So on the one hand, the spatial representation in the model directly re-
flects location as a concrete feature of visual objects. But it is at the same
time used to bind object features together when the location is irrelevant.
This is most clearly demonstrated in the change detection task for feature
conjunctions. Here, the locations of objects are not task relevant, and due to
the de-coupling between retinal and scene reference frames, the memorized
locations lose their link to any locations in the current scene. But still, the
shared location of different features in working memory is what indicates
that they belong to the same object. This is explicitly used in the change
detection process for this task, since the coupling via space and competition
in the spatial dimension is what ensures the selection of a single, coherent
object from working memory for the comparison operation. Notably, this
more abstract use of space for feature binding, even when location is irrele-
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vant, emerges directly from the concrete use of representing the locations of
features and objects.

The binding mechanism has major impacts on the processing of visual
scenes in the model. Most importantly, it requires that each item is se-
lected individually in the coupled attention fields to memorize its features
in a bound form, and to compare these bound features to new items during
change detection. This is consistent with the central claim of the Feature
Integration Theory, derived from human behavioral data in various experi-
mental paradigms. The DNF model implements an autonomous mechanism
for the sequential processing of visual items, based on previous DNF models
of sequential order and behavior generation (Sandamirskaya and Schöner,
2010; Richter et al., 2012).

While these previous models addressed the learning of arbitrary sequences
of elementary actions, the form implemented in the model for scene repre-
sentation constitutes a special-purpose system specialized for the sequential
processing of visual items. It does not explicitly control every step in the
inspection of each item, like the selection in each attention field and the
peak formation in each working memory field. Instead, it relies on certain
assumptions about the sequence of events and the relative timing of pro-
jections along different routes. Only one event is explicitly detected: the
formation of a peak in the scene attention field, which indirectly indicates
that working memory peaks have been created or that a comparison opera-
tion has been performed. This gives the mechanism a great deal of flexibility,
for instance allowing the attentional selection to be biased toward certain
items by cognitive input to the attention fields without requiring any adjust-
ments in the sequencing mechanism. The use of a condition of satisfaction
to trigger the transition to the next step also allows for significant differences
in the duration of each processing step, for instance due to variability in the
time it takes to resolve the competition for attentional selection. This is the
key feature adopted from the sequential order models.

I consider the use of this special-purpose mechanism to be appropriate
for the task of sequentially processing visual items, since the scanning of a
visual scene constitutes a basic behavior that is frequently employed. The
fact that errors in change detection tasks are often consistent with uninten-
tional task switching (such as reporting feature location changes in a pure
feature change detection task, as described earlier) also indicates that the se-
quential processing is done in a relatively automatic fashion, without explicit
cognitive control in each step. This does not rule out that a more detailed
cognitive control may be employed as an alternative strategy under certain
circumstances, for instance when task requirements are more complex and
time pressure is low.
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5.4.1 Alternative approaches to scene working memory and
feature binding

Forming internal representations of visual scenes for the planning of goal-
directed actions is a highly relevant task for robotics. A robotic version
of the DNF model presented here has been shown to work with real-world
camera input and is capable of answering queries about visual scenes and
guide grasping movements toward objects (Zibner et al., 2011b; Knips et al.,
2014). A large number of algorithmic approaches have been developed for
the same tasks. Many of these make use of a sequential processing of visual
scenes through a series of fixations (with a moving camera system) or atten-
tional selections, an approach often running under the label of active vision
(Aloimonos et al., 1988; Rasolzadeh et al., 2010). This sequential processing
serves both to simplify the task by focusing the scene analysis on a limited
set of behaviorally relevant locations, and it provides additional information
for the reconstruction of three-dimensional scenes when the images from
different fixations are combined (Mishra et al., 2009). Naturally, these al-
gorithmic approaches do not face the same challenges of feature binding in
neural systems as the DNF model.

Among explicitly neural models, the DNF architecture presented here
is to my knowledge the first work that provides a complete account for the
problems of multi-item scene working memory and change detection. Other
neurodynamic models have dealt with related, but more limited problems,
in particular with visual search. Fix et al. (2011) have presented a model of
visual attention that is capable of sequentially searching a visual scene (with
or without gaze changes) and that keeps a memory of inspected locations in
a gaze-invariant reference frame. The theoretical work of Hamker (2005b;
2006; discussed in the previous chapter) likewise addressed visual search and
deployment of visual attention. These models are generally compatible with
the present architecture, although they differ in implementation details, but
neither of them contains structures to address change detection or feature
binding in working memory.

One influential, but also controversial explanation for feature binding in
neural systems is based on synchrony of neural firing. This explanation was
popularized through the theoretical work of von der Marlsburg (reviewed
in Von der Malsburg, 1999) and supported by experimental work of Singer
and others (reviewed in Singer, 2001). The theory starts from the problem
that different properties of visual objects are represented by separate neural
populations, and proposes synchronization of neural firing between these
neural populations as a means to signal that the represented features belong
the same object. Whereas the DNF model only captures neural activity in
the form of a mean firing rate, the synchrony-based approaches assume that
the exact timing of individual action potentials matters.

Some models also explicitly employ neural synchrony as a means of fea-
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ture binding in working memory (e.g. Shastri, 1999). The synchronization
is assumed here to take place within an oscillatory cycle, often equated with
neural oscillations in the gamma range. Within each cycle, a certain time
window would be assigned to each object, and the simultaneous neural fir-
ing (distributed over different populations of neurons) within this time would
reflect the features of that one object. In this way, a single neuron can con-
tribute to representing the features of two objects (e.g., if these share the
same color), but each action potential from that neuron can be clearly as-
signed to representing one object. This means that no binding dimension
(like space in the present model) would be needed, and a single neural repre-
sentation over each individual feature space would be sufficient to represent
the bound features of multiple objects. Capacity limits for the number of
represented objects arise in this framework from the limited number of dis-
tinct time slots within each oscillatory cycle.

While this approach appears to require few neural resources, it makes
very strong assumptions about special properties of the neural populations
involved, namely that they can create, maintain, and transmit a pattern of
synchronous firing, likely across different cortical areas. Both the theoretical
approach and the experimental support for it have been called into question
(Shadlen and Movshon, 1999). Many empirical findings show that correla-
tion between the firing times of different neurons contribute little additional
information beyond what is contained in the firing rates, and the functional
relevance of this correlation is dubious (Golledge et al., 2003; Palanca and
DeAngelis, 2005). And while the advantage of signaling the binding through
synchrony is obvious in theoretical models, it is often not explained how this
synchrony is created in the first place (unless it is already contained in the
input to the system).

The present DNF approach demonstrates that such assumptions of ad-
ditional representational powers of neural populations are not necessary to
account for human performance in scene representation and change detec-
tion. The sequential processing of objects and the use of space as a binding
dimension are sufficient to account for human capabilities, and are consistent
with the limitations in these capabilities that can be observed in different ex-
perimental paradigms. Note that the sequential attention to objects can be
viewed as a form of macroscopic synchrony—during the time window that an
object is attended, the activity of certain populations reflect selectively the
properties of that object—but this synchrony can only be used to establish
the feature binding, not to maintain in it working memory after attention is
shifted to another object.

There is yet another alternative to the use of space as binding dimension.
In several studies, it has been suggested that the properties of visual working
memory are best explained by a fixed number of slots for integrated object
representations (Luck and Vogel, 1997; Zhang and Luck, 2008; but see Bays
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et al., 2009 for an opposing view). This view has only been expressed in
verbal theories, but it is relatively straightforward to imagine how it could
be implemented in a neural architecture. For each feature dimension (both
surface features and location), there would be a fixed number of copies of
the neural representation of that feature, corresponding to the proposed
number of slots (typically around three to five, to match estimates of human
working memory capacity). Each of these copies would be capable of holding
one feature value, and corresponding slots would be coupled across different
feature dimensions to provide a bound representation of one object.

Replacing the spatial dimension by this abstract and discrete “slot di-
mension” would reduce the required neural resources. It is hard, however,
to find any direct evidence either supporting or refuting the existence of
such a mechanism using behavioral or neurophysiological methods, since the
slot assigned to an item would not be linked to any observable features of
the visual object nor to any overt behavior. To some degree, this abstract-
ness of the slot dimension may in itself serve as an argument against this
mechanism—in particular from an embodied cognition perspective, which
views cognitive capabilities as emergent from sensori-motor processes.

More importantly, there is support from psychophysical experiments for
a special role of space for feature binding in working memory, which ap-
pears inconsistent with this slot mechanism. Pertzov and Husain (2013)
found that memory performance for sequentially presented stimuli (colored
oriented bars) is significantly impaired when all stimuli are presented at the
same location compared to a condition with a separate location for each
stimulus. No analogous impairment was found when the stimuli matched in
surface features (color or orientation). Moreover, the memory impairment
was specific to the binding of features (characterized by an increased propor-
tion of mis-bindings) and did not affect memory accuracy for the individual
feature values. This is consistent with the DNF model, where object location
mediates binding of surfaces features, but unbound surface features can still
be memorized independent of their location. It cannot readily be explained
by a slot mechanism, where object location would be expected to be treated
in the same way as surface features, while binding is achieved only via the
slot dimension.

It should also be noted that the mechanism in the DNF model—with
working memory peaks coupled through space—can by itself account for
several experimental observations that have been viewed as support for the
existence of discrete working memory slots (Zhang and Luck, 2008). In
particular, it has been observed that memory for one visual object appears
to be formed in an all-or-non fashion, and memory capacity cannot not be
re-distributed to memorize a larger number of items but with less precision.
This is consistent with the formation of individual self-sustained activation
peaks in DNFs, whose number is limited by the increasing lateral inhibition
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produced by additional peaks.

5.4.2 Open issues

One significant limitation in the present model is the greatly simplified fea-
ture pathway. Unlike in the brain (and in many models aimed at object
recognition and related tasks), the complexity of the represented features
does not increase along the pathway. Instead, the elementary features of
color and orientation are retained in the same format throughout all feature
fields. I consider this an acceptable simplification in the present approach to
explain the general mechanisms for creating a scene representation in work-
ing memory, focusing on the interplay between feature and spatial pathways
and not on the detailed processing within each pathway. It is also suffi-
cient to model the key conditions in change detection experiments, where
artificial stimuli composed of simple features are used. The findings from
these experiments also confirm the basic assumptions underlying the feature
representations in the DNF architecture, namely that elementary features
like color and orientation are memorized, and that they are memorized in
separate representations, requiring specific mechanisms to bind the features
of one object together.

There are several questions, however, that the model does not address
due its limitation to elementary features. It does not explain what types
of feature representations are necessary to memorize natural objects, how
complex these representations have to be, and how they interact with each
other. The question of feature complexity is relevant in particular because
the proposed mechanism requires feature maps over space (simplified to one-
dimensional space in the implementation presented here, but at least two-
dimensional space in the biological system). If the feature representations
themselves are very complex and require a large amount of neural resources,
such feature maps may become unfeasible.

The architecture offers a potential way around this problem due to the
fact that it still contains the separate working memory representations for
features only, which do not cover the spatial dimension. The role of the scene
WM fields, implemented as feature maps over space, is only to provide the
binding of features to space (and, indirectly, to each other). These fields do
not necessarily have to reflect the full details of the feature representations,
and may potentially be coarse in the spatial representation as well, given that
a separate purely spatial working memory representation also still exists.
Such a coarser spatial representation may, in fact, approximate the abstract
“slot dimension” discussed above. The question remains whether a coarser
representation in the scene WM fields can still provide effective binding, or
if it would automatically be prone to misbindings between similar feature
values. But it would certainly provide a way to greatly reduce the required
neural resources.
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Another open question in the present architecture is how objects can
be memorized that occupy the same spatial location. This can be the case
when objects are presented sequentially, as in the study of Pertzov and Hu-
sain (2013). While this study found a significant impairment of memory
performance in this case, it still indicates an ability to memorize more than
one item per location. This is not possible in the model as described so far:
Multiple working memory peaks for different features cannot be induced at
the same location in the scene WM fields, and even if they could, there
would be no way to determine which of these features belong together to
one object. One possible way around this problem is to assume that long
term memory is invoked in such instances, which works in a different fashion
and is not constrained by the same limitations as working memory.

But the issue may also be solved within the present framework if the
spatial dimension in the scene reference frame can be used very flexibly, and
in particular is not linked to allocentric space in a fixed fashion. A certain
amount of flexibility in how the scene space is defined is clear from behav-
ioral results: Shifting a whole stimulus array has little influence on change
detection performance, unlike randomly scrambling the array (Hollingworth,
2007). Such a behavior is quite straightforward to achieve in the DNF archi-
tecture as well, if the gaze signal in the reference frame transformation does
not directly depend on actual gaze alone, but can be adjusted to compensate
for frame shifts. The required shift value can be determined from a spatial
alignment process as described in the previous chapter.

A similar mechanism could be used to map the sequentially presented
objects onto different locations in the scene representation. Of course, this
requires even greater flexibility in the adjustment of the spatial reference
frames, and additional cognitive control in order to shift the reference frame
at the right times without any external signal to drive this shift. The ob-
served decrease in memory performance in this condition is consistent with
such a more complex process, which would be more prone to errors. More-
over, such mapping from temporal order to spatial locations does not appear
implausible based on findings from other fields: In language, in particular,
spatial metaphors are used ubiquitously for temporal relations, and it has
been proposed that analogies to space form the basis not only for talking
about time, but for temporal reasoning in general (Boroditsky, 2000; Gen-
tner, 2001; Casasanto and Boroditsky, 2008). With such generalizations, the
model of scene representation might provide the basis not only for memory
representations of what is where, but for reasoning in both concrete and
abstract spaces.
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Chapter 6

Modeling Spatial Language
Behavior

6.1 Introduction

The topic of this chapter is relational spatial language. Expressions like
“the keys are to the right of the monitor” offer a highly flexible way to
communicate about object locations, and are used frequently in everyday
language. Such an expression uses one object in the world—ideally one that
is salient and easily localized, or whose position is known—to establish a
spatial reference frame, and then uses this frame to describe the location
of another object. It is the freedom to establish new reference frames that
makes relational spatial descriptions so flexible.

The motivation to address spatial language behavior in neurodynamic
models is two-fold. On the one hand, spatial language has a practical use in
the field of human-robot interaction. It can be used to give instructions to a
robot, and provides a natural means to specify an object in a visual scene as
the target of an action or a movement. Conversely, robots endowed with the
ability to generate relational spatial expressions can describe visual scenes
and answer questions about locations in a way that is easy to understand
for humans. Existing approaches in robotics employ algorithmic methods
to determine object locations in space, assess their spatial relationship, and
map this onto a verbal spatial description (Stopp et al., 1994; Skubic et al.,
2004).

On the other hand, the field of spatial language has also attracted con-
siderable attention in psychology and cognitive science. The reason is that
it offers a test case to investigate the link between the abstract, discrete and
symbolic representation in language and the metric sensory representations
of the visual world (Regier and Carlson, 2001). This is also the core issue to
be addressed by the DNF model described in this chapter: How are links es-
tablished between certain elements of a verbal phrase and aspects of a visual
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scene? I will refer to this as the grounding of the verbal description in the
scene (Roy, 2005). This grounding is the foundation to determine truth val-
ues for verbal statements about a concrete visual scene, to complete partial
statements and answer questions, and to generate behavior based on verbal
descriptions.

The individual steps necessary for apprehending a spatial relation have
been analyzed by Logan and Sadler (1996; see also Logan, 1994, 1995). A
spatial phrase of the type “The keys are to the right of the monitor” consists
of three elements: The target object (“the keys”) whose location is described
by the phrase, the reference object (“the monitor”) that serves to anchor the
spatial description, and a spatial relation (“to the right”). To resolve such a
phrase, Logan and Sadler propose the following steps: (1) spatial indexing, in
which the target and reference descriptors in the verbal phrase are bound to
objects in a perceptual representation; (2) adjustment of the reference frame
to center it on the reference object; (3) alignment of a spatial template (e.g.,
for the term “to the right”) with this reference frame; and (4) the assessment
of the match between that aligned spatial template and the location of the
target object. These steps can be assembled in different combinations and
orders to solve different tasks and answer questions, for example of the type
“Where is the pencil relative to the cup?” or “What is to the right of the
plate?”

Notably, in some instances the processing steps proposed by Logan and
Sadler do not appear to be applied in a strictly sequential fashion. In a
relatively open-ended task, Carlson and Hill (2008) asked participants to
provide a description of an object location in a visual scene, and subjects
had to choose both a spatial term and an appropriate reference object. The
results indicated that both the visual saliency of potential reference objects
and the goodness of fit to a relational spatial term influenced the choice of the
reference object. Thus, participants could neither have chosen the reference
object first and then selected an appropriate spatial term (because then the
fit of the spatial term would not have influenced reference object selection),
nor could they have selected the spatial term first (because then they would
have no certainty that a potential reference object, let alone a salient one,
was available to go with that term). This indicates that reference object and
spatial term are selected in parallel to some extent, as will be discussed in
detail later in this chapter.

However, there is also a specific reason why certain processing steps in
these tasks should be executed in a sequential fashion. A binding problem—
specifically, the problem of variable binding—occurs in the grounding of
spatial language, analogous to the problem of feature binding that necessi-
tated sequential processing in the scene representation model. To ground a
relational spatial phrase in a visual scene, the locations and identities of two
objects must be bound to their specific semantic roles of target and referent
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in the phrase. They are not interchangeable—the statement “the key is to
the right of the monitor” is not the same as “the monitor is to the right of
the key.” The solution proposed here follows the same principle as in the
scene representation model: Different visual items are focused sequentially
by spatial and feature attention, and activation peaks in spatial represen-
tations serve as a form of pointer to track different visual items and their
semantic roles.

In the following, I will present a DNF model of spatial language be-
haviors that captures the underlying neural processes, roughly following the
processing steps proposed by Logan and Sadler (1996). The model in partic-
ular aims to emulate the flexibility of human spatial language use by solving
different tasks in a single unified architecture. The double aim of flexibil-
ity and neural realism contrasts with previous models of spatial language.
The models proposed in the psychological literature primarily aim to cap-
ture behavioral signatures in specific spatial language tasks as a function of
stimulus properties. While some of them are inspired by neural principles,
such as the AVS model of Regier and Carlson (2001), they do not describe
the actual neural processes that produce behavior. Existing neural network
models are typically aimed at specific, narrow tasks (Denève and Pouget,
2003; Coventry et al., 2005).

The concrete scenario used to test the model is as follows: An image
of a visual scene with several distinct objects is presented to the model,
either a camera image of a table top scene or an array of artificial stimuli for
statistical evaluation of the response behavior. Based on such images, the
system can then solve three types of tasks: (1) extract the spatial relation
between two specified items in the scene and select an appropriate spatial
term; (2) select and identify an object in the visual scene based on a spatial
description; and (3) generate a spatial description for an item by choosing
an appropriate reference object and a relational spatial term. The system
determines spatial relations in the two-dimensional image plane, and covers
the projective spatial terms “left”, “right”, “above”, and “below”.

The verbal questions posed to the model are represented as activations
of discrete nodes that reflect the semantic roles and semantic content for
different elements of each phrase. Issues of speech recognition or syntactic
analysis are not addressed in the model, since the focus is on the grounding
of spatial language. The model employs a relatively simple visual system
with color as the only represented surface feature, and the objects in the
visual scenes used to test the model are chosen in such a fashion that each
of them can be uniquely identified by its salient color.

The version of the model presented here is the one originally published
in Lipinski et al. (2012). This model is based upon previous DNF models of
spatial language behaviors in robotics (Lipinski et al., 2009; Sandamirskaya
et al., 2010), but the DNF architecture is re-structured to achieve a greater
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degree of neural realism and behavioral flexibility. It should be noted that
this model was designed before most of the work presented in the previous
chapters. It employs the same general mechanisms for space-feature binding
and spatial transformations as discussed so far, but some aspects are im-
plemented in a simpler form. In particular, the model in its original form
features only limited autonomy, with individual processing steps induced by
providing a fixed sequence of external control inputs. Nonetheless, the sys-
tem architecture is compatible with a more autonomous mode of behavior
generation, as has been demonstrated in subsequent work (Richter et al.,
2014a,b). In another work based on this model, it has been shown how the
repertoire of spatial terms can be expanded, and how rotations of the refer-
ence frame can be included in addition to pure shifts as in the original model
(van Hengel et al., 2012).

In the following sections, I will first give a detailed description of the
DNF architecture and its general function. I will then demonstrate the
generation of spatial language behaviors in this architecture in a variety of
tasks. In one class of tasks, the basic capabilities of the system will be shown
using natural images as visual inputs. In another class of tasks, the response
statistics of the system will be tested under controlled stimulus conditions
using artificial visual inputs. The results are compared to the results of
psychophysical experiments in humans, and support the notion that the
DNF model captures not only neural principles of visual processing, but also
the behavioral characteristics of humans in applying spatial descriptions to
visual scenes.

6.2 DNF architecture for relational spatial language

6.2.1 Model description

An overview of the DNF architecture is shown in Figure 6.1. The archi-
tecture can be divided into two functional parts: The first one provides a
simple representation of the visual scene. It enables the system to form as-
sociations between color (as an object identifier) and object location in the
visual image, using the mechanism described in Chapter 3. Instead of repre-
senting color information in a continuous field, it contains a set of dynamic
nodes for discrete colors to serve for verbal input and output. The second
part of the architecture processes spatial information to determine spatial
relationships between objects. It performs a reference frame transformation
into an object-centered reference frame, using the mechanism introduced in
Chapter 4. The object-centered representation is linked to discrete nodes
standing for spatial terms as interface to verbal expressions. I will describe
the individual elements of this architecture in detail below. A formal de-
scription of the model with field equations and parameter values is given in
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Figure 6.1: DNF architecture for spatial language behaviors. Two-
dimensional DNFs over the image space are shown as gray rectangles, dis-
crete dynamic nodes as gray circles. The four-dimensional transformation
field is depicted as a gray diamond. Arrows indicate excitatory projections
between elements, lines ending in circles indicate inhibition. The inset in the
bottom right shows an exemplary semantic weight pattern (black standing
for highest, white for lowest connection weights).

the next section.
The visual input for the system is supplied to a stack of space-color fields

(shown side-by-side in the top part of Figure 6.1). These fields collectively
take a role analogous to the two-dimensional visual sensory field in the biased
competition model, but with some adjustments to the implementation: They
cover the two-dimensional space of the image, while the color dimension is
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reduced to three discrete hue values (red, green, and blue). This results in
a stack of three fields over the same two-dimensional space. Visual input
is preprocessed by a thresholding operation to determine regions of salient
color for each of the three hue values. Every pixel in the image that exceeds
a threshold for saturation and value in the hue-saturation-value color space
provides localized input to the space-color field that best matches the pixel’s
hue value. This input induces active regions in these fields for colored objects
in the scene. Lateral interactions consisting of local excitation and local
surround inhibition are implemented within each color-space field, forming
stabilized peaks from the visual input.

A color term node is coupled bi-directionally to each space-color field.
These nodes stand for the verbal terms (or, more abstractly, the concepts)
of the three colors “red”, “green”, and “blue”. Input from each node globally
excites the corresponding space-color field and strengthens any activation
peaks in the field. In a reverse projection, the total output of each space-color
field, integrated over space, is fed back as input to the corresponding color
node. The nodes are coupled among each other in a competitive fashion,
with each node exciting itself and inhibiting all others. The nodes can be
activated by external inputs which are provided at certain times during a
task to reflect elements of the verbal questions. Node activation at the end of
a task can be read out as a response of the system regarding object identity.

The space-color fields furthermore provide input to two spatial fields, the
target field and the reference field, defined over the same two-dimensional
space in the reference frame of the visual image. The input is computed by
summing the output of the three space-color fields at every location. This
input is not sufficient, however, to induce activation peaks in the target and
reference field. An additional “boost” input is necessary to lift the field
activation beyond the output threshold. The boost input homogeneously
raises the activation level over a whole field, and is given as an external
control signal during certain phases of each task. Since this external input
is provided at different times for the target field and the reference field, the
two fields can form different peaks, even though the input they both receive
from the space-color fields is always the same.

The lateral interactions in the target and reference fields are set up to
create a selection regime, with only a single peak forming even in the pres-
ence of multiple inputs. As long as a weaker external boost input is provided,
these peaks remain stable (even though no new activation peaks can form).
When the boost signal is turned off completely, the peaks decay. Existing
activation peaks in the target and reference fields provide feedback to the
stack of space-color fields. They activate the same spatial region in each
space-color field, such that peaks in these regions that were induced by the
visual input are strenghened. In addition, target and reference fields mutu-
ally inhibit each other, such that peaks cannot form at the same location in
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both of them.
The target field and the reference field provide two functionally distinct

inputs to the reference frame transformation mechanism. This mechanism
works in the same way as described in Chapter 4. But while the trans-
formation previously combined retinal stimulus position and gaze direction
to determine the body-centered position of a stimulus, now a combination
of target object location and reference object location (both in the image
reference frame) is used to compute the relative location of the target to
the reference object. This can be expressed arithmetically as a vector sub-
traction (position of the target object in the image minus position of the
reference object). The result is fed as input into another field defined over
two-dimensional space, the object-centered field.

The connectivity required to implement the transformation for the case
of one-dimensional inputs is shown in Figure 6.2. The target field projects
a vertical ridge input into the two-dimensional transformation field, the ref-
erence field projects a horizontal ridge input, and an activation peak forms
at the intersection of these ridges. For the projection to the object-centered
field, the transformation field is then read out along the diagonal. Two
things are noteworthy about the implementation here compared to the one
used in Chapter 4. First, the orientation of the reference field is flipped
compared to the gaze field in the model from Chapter 4. This reflects the
fact that the reference object position has to be subtracted from the target
object position rather than added to it. Second, the projections between the
transformation field and the three other fields are fully bi-directional, so the
reference frame transformation can be used in all possible directions. The
robust implementation of this mechanism is made easier by the fact that all
fields here support only a single activation peak, so no spurious intersections
between multiple ridge inputs can occur.

In the full implementation of the transformation mechanism in the spa-
tial language model, the transformation field spans a four-dimensional space
to combine the two-dimensional inputs from both target and reference field.
Lateral interactions in the transformation field are restricted to global inhi-
bition to limit growth of activation in response to the external inputs. The
object-centered field is defined over a two-dimensional space, and covers twice
the range of the target and reference field. This way, it can capture all pos-
sible relative positions between objects represented in these two fields. As in
the transformation field, the lateral interactions within the object-centered
field consist only of global inhibition. This enables the field to hold broadly
distributed activation patterns that are needed in certain tasks, and not only
narrow peaks.

The different positions in the object-centered field now directly corre-
spond to different spatial relations between target and reference object. By
construction, the center of this field corresponds to the location of the refer-
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Figure 6.2: Connectivity for the transformation mechanism in the spatial
language model (simplified version for a single spatial dimension). A visual
scene with a target object (T) and reference object (R) is shown on top,
the DNF architecture to determine the relative position between them is
shown below. Arrows indicate excitatory projections between fields. The
activation pattern in the transformation field is coded by gray values (with
black standing for highest activation).

ence object. An activation peak forming in the right half of the field indicates
that the target location is somewhere to the right of the reference object,
a peak in the left half indicates that it is to the left, and so on. Due to
these properties of the field, it is possible to map directly from field posi-
tions to a representation of discrete spatial relations through fixed synaptic
connections.
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These spatial relations are represented by a set of discrete dynamic nodes,
the spatial relation nodes. There is one node for each of the relations “above”,
“below”, “left”, and “right”. Each of these nodes is bidirectionally coupled
to a portion of the object-centered field by a semantic weight pattern (see
inset in Figure 6.1). These patterns contain graded connection weights,
such that for the term “left”, for instance, the region directly to the left
of the field center receives a higher weight than regions diagonally to the
left and above the center. In the forward projection, the strength of the
input that each spatial relation nodes receives therefore reflects how well a
peak position in the object-centered field matches the meaning of a certain
relational spatial term. Through the reverse projection, the nodes can induce
graded activation patterns in the object-centered field. The spatial relation
nodes feature lateral interactions consisting of self-excitation and mutual
inhibition that create a weak selection effect.

A second set of nodes, called spatial term nodes, is used to provide verbal
input to the system and to read out a verbal response. There are four spatial
term nodes matching the four spatial relation nodes, and each spatial term
node is coupled bidirectionally to its corresponding spatial relation node.
The spatial term nodes feature stronger competitive lateral interactions so
that only one node can be strongly activated at any time. The reason to
have these two separate sets of nodes for spatial relations and spatial terms
lies in the different types of tasks that the model is applied to. On the one
hand, the model should be able to select a single spatial term as a response
to a question about the spatial relation between two objects, and it has to
do so even if no term fits perfectly. On the other hand, I will also show tests
of the model in an emulation of a rating task, where the model should give
a graded response about the applicability of a term for a gradually varied
arrangement of objects. This latter response is read out from the spatial
relation nodes, while the spatial term nodes are used for the former type of
task.

6.2.2 Field equations and parameters

The DNF model of spatial language can be formally described by a set
of differential equations. A two-letter index is used in these equations to
identify each field of the architecture, listed in Table 6.1. The spatial di-
mensions of the fields are defined over the space of input image positions,
spanning 152× 120 pixels. The object-centered field covers twice this range
to be able to represent all possible relative positions within the input im-
age. The color representation in the model uses a set of three discrete
color hue values V = {red, green, blue}, and a set of four spatial relations
S = {left, right, above, below} is supported.

A set of space-color fields is defined over the space of image positions,
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field name field index h β cexc cinh cgi

space-color fields sc -2 4 2.5 10 0
color term nodes ct -4 4 2.5 0 2
reference field rf -4 4 10 0 0.02
target field tg -4 4 10 0 0.02
transformation field tn -2 4 0 0 0.0075
object-centered field oc -1 2.5 0 0 0.000175
spatial relation nodes sr -1.95 2 0.25 0 1.25
spatial term nodes st -4 4 2.5 0 4

Table 6.1: Field indices, field parameters, and lateral interaction parameters.

with one field for each color v ∈ V , governed by the field equations

τ u̇sc(x, y, v) =− usc(x, y, v) + hsc + isc(x, y, v)
+ [ksc,sc ∗ f(usc(·, ·, v))](x, y) + cexc

sc,ctf(uct(v))
+ [ksc,tg ∗ f(utg)](x, y) + [ksc,tg ∗ f(urf)](x, y)
+ qscξ(x, y, v).

(6.1)

The lateral interactions described by the difference-of-Gaussians kernel ksc,sc
act only within each space-color field, and not across different colors. The
external input for each space-color field is determined directly from a visual
image (camera image or artificial visual scene) by determining saliently col-
ored pixels within a certain range of hue values. The input at the locations
of these pixels is set to a fixed value isc(x, y, v) = 2, and is zero everywhere
else.

The behavior of the color term nodes is specified by the differential equa-
tion

τ u̇ct(v) =− uct(v) + hct + ict(v) + bct

+ cexc
ct,ctf(uct(v))− cgi

ct,ct
∑

v′∈V

f(uct(v′))

+ cct,sc

∫∫
f(usc(x, y, v))dxdy + qctξ(v).

(6.2)

Here, ict is a specific input for a single node (set to ict = 5 to specify a color
in a verbal task), and bct is global boost of all color nodes (set to bct = 4 to
obtain a color response).

The target field and the reference field are defined with symmetric con-
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nectivity, and they use the same kernels for projections from other fields:

τ u̇tg(x, y) =− utg(x, y) + htg + btg + [ktg,tg ∗ f(utg)](x, y)
+ [ktg,tn ∗ Ftg(utn)](x, y)− [ktg,rf ∗ f(urf)](x, y)
+
∑
v∈V

[ktg,sc ∗ f(usc(·, ·, v))](x, y) + qtgξ(x, y)
(6.3)

τ u̇rf(x, y) =− urf(x, y) + hrf + brf + [krf,rf ∗ f(urf)](x, y)
+ [ktg,tn ∗ Frf(utn)](x, y)− [ktg,rf ∗ f(utg)](x, y)
+
∑
v∈V

[ktg,sc ∗ f(usc(·, ·, v))](x, y) + qrfξ(x, y)
(6.4)

The input from the transformation field to these two fields is obtained by
integrating the transformation field output over the disregarded dimensions,
as specified below. In order to generate an activation peak in one these fields,
the global boost inputs btg or brf are set to a value of 4 at different times
during task execution, and then set to a value of 2 to actively maintain that
activation peak.

The transformation field is defined over a four-dimensional space, with
the first two dimensions (variables x and y in the equation) reflecting the
location of the target object in the image, the following two dimensions (r
and s) reflecting the position of the reference object. The field equation is
given by

τ u̇tn(x, y, r, s) =− utn(x, y, r, s) + htn

− cgi
tn,tn

∫∫∫∫
f(utn(x′, y′, r′, s′))dx′dy′dr′ds′

+ [ktn,tg ∗ f(utg)](x, y) + [ktn,tg ∗ f(urf)](r, s)
+ [ktn,oc ∗ f(uoc)](x− r, y − s) + qtnξ(x, y, r, s).

(6.5)

For the projections to the target, reference, and object-centered field, the
following integrals are defined:

Ftg(utn)(x, y) =
∫∫

f(utn(x, y, r, s))drds (6.6)

Frf(utn)(r, s) =
∫∫

f(utn(x, y, r, s))dxdy (6.7)

Foc(utn)(x, y) =
∫∫

f(utn(x+ r, y + s, r, s))drds (6.8)

The dynamics of the object-centered field is described by the field equa-
tion

τ u̇oc(x, y) =− uoc(x, y) + hoc + boc − cgi
oc,oc

∫∫
f(uoc(x′, y′))dx′dy′

+ [koc,tn ∗ Foc(utn)](x, y)
+ coc,sr

∑
s∈S

Ws(x, y)f(usr(s)) + qocξ(x, y).
(6.9)
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The field receives a global boost input boc = 1 during specific periods of some
tasks. The connections between the object-centered field and the spatial re-
lation nodes are mediated by the semantic weight patterns Ws, which are
generated as a superposition of a Gaussian function in polar coordinates (fol-
lowing O’Keefe, 2003), and a sigmoid function along either the vertical (for
relations “above” and “below”) or the horizontal axis (“left” and “right”).

The spatial relation nodes for the relations s ∈ S are governed by the
differential equation

τ u̇sr(s) =− usr(s) + hsr + cexc
sr,srf(usr(s))− cgi

sr,sr
∑
s′∈S

f(usr(s′))

+ cexc
sr,stf(ust(s))− cgi

sr,st
∑
s′∈S

f(ust(s′))

+ cexc
sr,oc

∫∫
Ws(x, y)f(uoc(x, y))dxdy + qsrξ(s).

(6.10)

The differential equations for the corresponding spatial term nodes are given
as

τ u̇st(s) =− ust(s) + hst + ist(s) + bst

+ cexc
st,stf(ust(s))− cgi

st,st
∑
s′∈S

f(ust(s′))

+ cexc
st,sr ∗ f(usr(s)) + qstξ(s).

(6.11)

Analogous to the color term nodes, the spatial term nodes can receive an
individual input ist(s) = 5 to specify a relational term in a verbal task, or a
global boost input bst = 4 to generate a response.

For numerical simulations, the two-dimensional fields are sampled with
one unit per pixel in the input image. In the four-dimensional transformation
field, the space is downsampled by a factor of 8. The width σexc of lateral
excitation in all fields and for all projections between fields is 4 pixels of the
input image, except for the broad feedback projection from the target and
reference fields to the space-color fields, where it is 15 pixels. The width σinh

of lateral inhibition in the space-color fields is 10 pixels. The noise level of all
fields is set to q = 0.1 except for the two sets of response nodes, where it is
reduced to qct = qst = 0.025. The remaining parameters of fields and lateral
interactions are given in Table 6.1, the parameters for projections between
fields are given in Table 6.2.

6.3 Demonstrations

I will show the function and capabilities of the DNF architecture in five
demonstrations (previously described in Lipinski et al., 2012). In the first
one, the system has to determine the spatial relation between two objects in
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projection index cexc cgi

ct, sc 0.01 0
sc, ct 1 0
tg, sc 6 0
sc, tg 4 0.0005
tn, tg 5 0
tg, rf 1.5 0
tg, tn 0.175 0
oc, tn 0.75 0
tn, oc 1.5 0
sr, oc 0.00215 0
oc, sr 1.0 0
st, sr 2 0
sr, st 4 2.5

Table 6.2: Connection strengths (excitatory and global inhibitory) for pro-
jections between fields and/or nodes.

a natural scene, effectively answering the question “Where is the green item
relative to the red item?” The second demonstration is a variant of this task
applied to artificial stimuli, in which the model is used to reproduce human
rating data from Regier and Carlson (2001) by judging the applicability
of the spatial term “above” for varied arrangements of objects. In the third
demonstration, the system has to select and identify an object from the visual
scene given a spatial description, answering a question of the type “What is
to the right of the blue item?” In the fourth demonstration, the system has to
solve a more open ended task, answering a question of the type “Where is the
red object?” Here, the system has to select an appropriate reference object
from the visual scene and a matching spatial term to generate a response
like “To the right of the blue object.” In the fifth and final demonstration,
the same behavior is applied to a set of artificial stimuli to show that the
model can reproduce human reference object selection behavior.

All tasks are solved by the same DNF architecture with identical pa-
rameters. Different sequences of inputs that reflect the components of the
verbal tasks are supplied to this architecture, as well as additional control
inputs to structure the behavior of the system for the different types of tasks.
These inputs are given with a fixed timing for each type of task, although
the details of the timing (and in some cases even the order of the inputs)
are not critical as long as the system is given sufficient time to settle into a
stable state. The responses in all tasks are read out from the states of the
dynamic nodes for colors and spatial terms at the end of the task. I will give
a detailed description of the sequence of inputs and the resulting evolution
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of activation patterns in the model for each demonstration.

6.3.1 Spatial term selection

In this task, the model is provided with a camera image of a table top
scenario showing three colored objects (Figure 6.3a), and has to answer the
question “Where is the green item relative to the red item?” Note that the
correct response, “to the right”, can only be generated for this scene if the
red object is correctly chosen as spatial referent. The green object is neither
in the right part of the image nor to the right of the other object in the
scene.

The visual input induces weak activation peaks in the stack of space-
color fields, with one peak in each of the three fields to reflect the three
differently colored items (Figure 6.3b); activation in all other fields is initially
at the resting level. The first input to the system in this task now specifies
that the green item should be the target object. The “green” color node
is activated, and at the same time the activation level of the target field is
globally increased (indicated as a “boost” input in Figure 6.3c). The active
color node raises the activation level in the “green” space-color field, and
significantly strengthens the activation peak present in that field. When the
target field is boosted, it receives the strongest input from the position of
this amplified peak. The target field forms a peak at this position, which
reflects the location of the green item in the image. This peak remains
stable when the color input is turned off and the boost input is reduced to
an intermediate level.

The next step is to specify the red object as the referent in the task.
Analogously to the first step, the “red” color node is activated and the
reference field is homogeneously boosted (Figure 6.3d). The reference field
forms a peak at the location of the red item, which is highlighted by the color
input. The color input is then turned off again, and the boost input for the
reference field is reduced to an intermediate level to retain the activation
peak.

As soon as peaks are present in both the target and the reference field,
the relative position of the target to the reference object is determined au-
tonomously through the reference frame transformation mechanism. In the
present scenario, a peak appears in the object-centered field to the right of
the midpoint. This region in the field is strongly coupled to the “right”
spatial relation node, and the node is activated by input from the field. (Be-
ing located near the vertical midline, the peak also provides weak input to
both the “above” and “below” spatial relation nodes.) As the spatial rela-
tion node for “right” becomes sufficiently activated, it provides input to the
corresponding spatial term node, while also projecting its semantic weight
pattern back to the object-centered field.

After a brief delay that allows these dynamics to unfold, all spatial term
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nodes are globally activated by another boost input. The node for “right”
that receives significant input from its associated spatial relation node be-
comes fully active and suppresses the other spatial term nodes. It is thereby
selected as the response of the system, providing the correct answer for the
given question.

To illustrate the relevance of this last step for the response selection,
and to show that the model can also deal with more ambiguous inputs, a
second instance of the same task with a different visual input is shown in
Figure 6.4. Here, the central green object is shifted such that it is now located
diagonally to the right and above the red object (Figure 6.4a). Target and
reference object are specified as before and the relative position of the two
objects is autonomously determined by the model, yielding the state shown
in Figure 6.4b directly before the response generation.

Since the peak location in the object-centered field matches the semantic
weight patterns for “above” and “right” about equally well, the two cor-
responding spatial relation nodes are activated, and both provide input to
their associated spatial term nodes. When the spatial term nodes now re-
ceive a boost input, the two active nodes compete with each other by means
of lateral interactions. One node is selected as a response (the “right” node
in Figure 6.4), while all others are suppressed. This selection of a single term
reflects the fact that in speech production, one word has to be produced at
a time. This does not rule out that a second matching term is still added at
a later time (which could be achieved in the model by repeating the selec-
tion process while suppressing the already produced term), but this is not
covered in the present implementation.

6.3.2 Rating spatial term applicability

Rating tasks constitute one common method to experimentally explore hu-
man spatial language behavior. In this type of task, participants are shown
an arrangement of two or more stimuli, and are asked to provide a rating
(e.g., as a numerical value from 0 to 9) for the applicability of a certain
spatial description to this scene, such as “The small item is above the large
item.” Tasks of this type help to specify the precise semantics of individ-
ual spatial terms. For instance, the results show that not all target objects
whose vertical position is higher than the reference object are equally judged
to be “above” that object. While relative vertical position is one factor that
influences the “above” rating, only a certain region relative to the reference
object receives very high ratings. The present demonstration shows that
the DNF model, using appropriately defined semantic weight patterns, can
reproduce these experimental data.

Regier and Carlson (2001) have furthermore used rating tasks to in-
vestigate how object positions are determined in judging spatial relations.
Specifically, they asked whether the position of the reference object is deter-
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mined as the object’s center of mass, its geometrical midpoint, or the point
within the reference object closest to the target object. To answer this ques-
tion, they used a rating task with an oblong reference object. This referent
was oriented horizontally or vertically, and the position of the target object
was adjusted to keep either the center-of-mass vector between the two ob-
ject constant (Figure 6.5a and b), or to keep the proximal vector constant,
which connects the closest points between the two objects (Figure 6.5c and
d). They tested both versions in separate experiments as part of an array of
possible target object locations around the reference object. An additional
experiment was used by Regier and Carlson to distinguish between the effect
of the reference object’s center of mass and its horizontal midpoint for the
“above” ratings. To this end, they tested ratings for different target positions
in the region above either an upright or an inverted triangle (Figure 6.6).

The results showed that both the center of mass and the closest point in
the reference object affect the assessment of the “above” relationship. The
horizontal midpoint does not seem to play a significant role. Regier and
Carlson proposed a mathematical model to explain the results, inspired by
principles of neural processing. The attentional vector sum (AVS) model
proposes that a vector is determined from every point within the reference
object to the target object (which is modeled as a single point). Each vector
is then weighted according to an “attentional beam”, which is centered on
the point in the reference object that is closest to the target. A single
direction vector is determined by averaging over these weighted vectors, and
the estimated rating is determined from the orientation of this vector (in
combination with a measure of the vertical offset between the target and the
highest point in the reference object).

To show that the DNF model is able to capture these behavioral charac-
teristics, the tasks were emulated in simulation. Artificial images of 152×120
pixels were generated. For the first two experiments, an (invisible) grid with
5 × 5 cells of 24 × 24 pixels was laid over the central part of the image. A

Figure 6.3 (preceding page): Evolution of activation patterns in the spatial
language model for the task “Where is the green item relative to the red
item?” DNFs and dynamic nodes are shown in the same arrangement as in
Figure 6.1, activation states of nodes are indicated by their gray value (black
indicating highest activation). Large black arrows show specific input to
nodes, block arrows show global boost of fields or nodes. Relevant projections
between fields in each step are shown as thicker lines. (a) Visual input for the
task. (b) Initial activation state of the space-color fields. (c) Specification
of the green item as target object. (d) Specification of the red item as
reference object. (e) Automatic assessment of spatial relation. (f) Response
generation.
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Figure 6.4: Response generation for the same task as in Figure 6.3 in the case
of ambiguous spatial relations. (a) Visual input. (b) Activation state after
target and reference object have been specified. (c) Response generation,
with selection of a single spatial term through competition between spatial
term nodes.

green rectangle of 24× 8 pixels was placed as reference object in the central
cell, and a red square of 8 × 8 pixels as target object placed in each of the
surrounding cells in subsequent trials. The placement of the target within
the cell is modified in the different versions of the trials as illustrated in Fig-
ure 6.5. In the first experiment, the center-of-mass vector is held fixed over
different orientations of the reference object (corresponding to Figure 6.5a
and b). In the second experiment, the proximal vector is held constant (cor-
responding to Figure 6.5c and d). For the third experiment, the reference
object is a right-angle triangle with edge lengths of 36 and 12 pixels. The
target object takes the same form as before, placed in three positions as
illustrated in Figure 6.6.

The task is performed by the model in the same fashion as the spatial
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(a) (b)

(c) (d)

Figure 6.5: Proximal vectors (gray) and center-of-mass vectors (black) be-
tween a small square target object and a larger rectangular reference object.
(a, b) The center-of-mass vector remains the same when the reference object
is rotated, the proximal vector changes. (c, d) By adjusting the position of
the target object, the proximal vector is held constant over rotations of the
reference object, the center-of-mass vector now changes.

term selection task described above, with one difference: The final boost
input to the spatial term nodes that effects the selection of a single response
is omitted. Instead, the output of the “above” spatial relation node is read
out at the end of the task, and scaled from its original range [0, 1] to the
range [0, 9] used in the rating task. Note that the generation of a rating
responses in humans, using an arbitrarily defined scale, certainly involves
more complex processes, but attempting to derive the properties of these
processes from the rating results would be purely speculative. Deriving the
ratings in the model directly from the neural activation of the relevant nodes
appears as the most parsiminous approach.

The rating results for the first task is shown in Table 6.3, for the second
task in Table 6.4, with empirical results from Regier and Carlson (2001) given
in parentheses for comparison. The results show that the model qualitatively
captures the pattern of rating responses given by human participants, with
highest rating when the target is placed in the two cells directly above the ref-
erence object, decreasing for the more diagonally placed targets, and hitting
zero when the vertical position of the target is lower than the referent (model
fit in first experiment, vertical reference object: R2 = 0.98, RMSD = 0.55;
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Figure 6.6: Stimulus arrangement and rating results for the spatial term
“above” in the third rating experiment. The target object (small square)
is placed at different locations above a larger, triangular reference object,
either in an upright (a) or inverted orientation (b). Experimental rating
results from Regier and Carlson (2001) are given in parentheses.

horizontal reference object: R2 = 0.97, RMSD = 0.60; model fit in second
experiment, vertical reference object: R2 = 0.99, RMSD = 0.65; horizontal
reference object: R2 = 0.96, RMSD = 0.92).

The model also captures the key effects of proximal vector and center-of-
mass vector between target and referent. Regier and Carlson evaluated these
effects by comparing the mean ratings for the oblique (left and right above)
target locations between the horizontally and vertically oriented reference
objects. In the first experiment, only the proximal vector changes between
the two conditions (Figure 6.5a and b). It is steeper for the horizontally
oriented reference object, and the authors found an increase in rating of
0.093 for this condition. In the simulations of the DNF model, this effect
is reproduced, with a difference of 0.075 in mean ratings between the two
conditions. These results show that both in the experiments and in the
model, the proximal vector between the two objects does have an influence
on spatial term applicability, independent of the center-of-mass vector.

In the second experiment, the proximal vector remains the same when
the reference object is rotated, but the center-of-mass vector changes (Fig-
ure 6.5a and b). In the empirical data, rating results for the oblique target
locations in the vertical condition (with steeper center-of-mass vector) were
increased by 0.11 compared to the horizontal condition. In the model the
mean ratings change in the same fashion, although the amplitude of this
change is an order of magnitude larger (1.64). The rating in both humans
and DNF model is thus sensitive to center-of-mass orientation. The third
experiment confirms that it is indeed the center of mass of the reference
object, and not just its horizontal midpoint, that is relevant for judging spa-
tial relations (Figure 6.6). Target location A in the figure (located over the
wide end of the triangle, closer to its center of mass) received higher “above”
ratings than target location C (over the narrow end of the triangle). The
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6.0 (6.7) 8.3 (7.4) 8.8 (8.9) 8.3 (7.4) 6.0 (6.8)
5.4 (5.6) 7.3 (6.6) 8.6 (8.9) 7.3 (6.2) 5.4 (6.0)
0.9 (0.9) 0.9 (0.9) 0.9 (1.0) 0.9 (1.3)
0.0 (0.6) 0.0 (0.3) 0.0 (0.6) 0.0 (0.4) 0.0 (0.6)
0.0 (0.4) 0.0 (0.4) 0.0 (0.3) 0.0 (0.6) 0.0 (0.3)

5.9 (6.5) 8.3 (7.3) 8.8 (8.9) 8.3 (7.0) 5.9 (6.9)
5.5 (6.2) 7.6 (6.4) 8.6 (8.4) 7.6 (6.9) 5.5 (6.2)
0.9 (0.7) 0.9 (0.8) 0.9 (0.7) 0.9 (0.8)
0.0 (0.4) 0.0 (0.5) 0.0 (0.3) 0.0 (0.4) 0.0 (0.3)
0.0 (0.4) 0.0 (0.4) 0.0 (0.4) 0.0 (0.3) 0.0 (0.3)

Table 6.3: Effect of proximal vector orientation on spatial term ratings in the
DNF model. Ratings for the term “above” are shown for different placements
of the target object in a 5 × 5 grid around the central reference object.
The reference object is oriented either vertically (top part of the table) or
horizontally (bottom). The center-of-mass vector remains fixed between
these conditions, the proximal vectors differ. Empirical rating results from
Regier and Carlson (2001) are given in parentheses.

difference was comparable for empirical results (0.45) and DNF model (0.28,
both averaged over the two orienations of the triangle).

The effect of the reference object’s center of mass on spatial term ratings
in the model is straightforward to explain. The position of the peak in
the reference field is determined primarily by the input from the space-
color fields, smoothed with a Gaussian kernel. For contiguous and convex
stimuli, the resulting location of the activation peak in the reference field
is approximately at the center of mass of the stimulus. The cause for the
observed effect of the proximal vector is more subtle. Both the reference field
and the target field project feedback to the space-color fields, in the form of
broad Gaussians, that strengthen the stimulus representations at matching
locations. If the two objects are relatively close to each other, the feedback
from the target field also overlaps with the location of the reference object
and raises the activation levels for those parts of the object that are closest
to the target. Due to this attentional modulation, the peak in the reference
field is pulled slightly toward the target object location. This is largely
consistent with the explanation used in the AVS model, where attentional
weighting is used to give points within the reference object that are closer
to the target a higher impact on the computed average vector.

The significantly greater influence of the center-of-mass vector in the
model as compared to behavioral data may be an effect of the very simple
visual system that is used in the model. Here, every saliently colored point
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7.4 (6.6) 8.6 (7.3) 8.8 (8.7) 8.6 (7.7) 7.4 (6.9)
6.3 (6.3) 8.4 (6.7) 8.6 (8.6) 8.4 (7.0) 6.3 (6.3)
0.9 (1.2) 1.1 (1.1) 1.1 (1.5) 0.9 (1.2)
0.0 (0.3) 0.0 (0.4) 0.0 (0.5) 0.0 (0.4) 0.0 (0.4)
0.0 (0.5) 0.0 (0.4) 0.0 (0.3) 0.0 (0.3) 0.0 (0.5)

6.3 (6.7) 8.0 (7.0) 8.8 (9.0) 8.0 (7.4) 6.3 (7.1)
3.9 (5.9) 5.7 (6.8) 8.4 (8.9) 5.7 (6.7) 3.9 (6.4)
0.9 (1.1) 0.9 (1.2) 0.9 (1.2) 0.9 (1.6)
0.1 (0.6) 0.0 (0.6) 0.0 (0.4) 0.0 (0.7) 0.0 (0.7)
0.0 (0.6) 0.0 (0.5) 0.0 (0.9) 0.0 (0.9) 0.1 (0.9)

Table 6.4: Effect of center-of-mass vector orientation on spatial term ratings
in the DNF model. The locations of the target objects are adjusted between
the condition with a vertically oriented (top) and horizontally oriented ref-
erence object (bottom) to keep the proximal vector fixed. Empirical rating
results from Regier and Carlson (2001) are given in parentheses.

in the input image simply contributes an equal input to the initial visual
representation. A more detailed model of the biological visual system (with
edge detection and only a weak response to uniformly colored areas) would
likely allow for greater effects of attentional modulation. It is also possible
that the shape of the reference object influences spatial term ratings in the
experiment by defining an axes to divide space—for instance, a horizontally
oriented rectangle may be viewed as a boundary that separates space into
clearly distinct “below” and “above” regions, whereas a vertically oriented
rectangle is less likely to be interpreted in that way. Such effects may coun-
teract the effect of the center-of-mass vector in the second experiment, but
are not accounted for in the current model.

6.3.3 Object selection based on spatial description

The task described above determines the spatial relationship between two
given objects. To make actual use of spatial language, the system should
also be capable of performing the inverse operation, that is, use a relational
spatial description to select an object in a visual scene. This corresponds to
answering a question of the type “What is above the blue item?” Here, the
reference object (the blue item) and a relational spatial term (“above”) are
given. The system has to select a matching target object in the scene, and
responds by giving the color of that object.

Figure 6.7 shows the visual scene that is used here and the sequence of
activation states for solving the task. First, the reference object is selected,
in the same fashion as in the previous task: The node for “blue” is activated
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by an external input, reflecting the identification of the reference object in
the verbal phrase, and the reference field is boosted simultaneously. This
induces an activation peak in the reference field that reflects the location of
the blue object in the image (Figure 6.7b), and that remains stable when
the color input is turned off and the boost is reduced.

Now, an external input is applied to activate the spatial term node for
“above”, and the object-centered field is boosted simultaneously. The spatial
term node activates the corresponding spatial relation node. That node then
projects to the object-centered field through its specific synaptic connection
pattern, which implements the spatial semantic template for “above”. This
pattern then shapes the activation distribution in the object-centered field, so
that the activation at each point corresponds to how well this point matches
the meaning of “above” (Figure 6.7c). The additional boost input to the
object-centered field globally lifts the activation level so that it pierces the
output threshold and the spatial pattern is projected to the transformation
field. Note that due to the absence of strong local interactions in the field and
the use of a soft sigmoid function (with low value for the steepness parameter
β), the object-centered field can project a broad and graded output pattern
rather than a single localized peak.

The transformation field now receives input from two sources: From the
reference field, where a peak reflects the reference object location in the im-
age, and from the object-centered field, reflecting the area relative to the
reference point that matches the term “above”. These two pieces of infor-
mation are combined, and the transformation field projects a shifted version
of the spatial semantic pattern to the target field. This input moderately
activates the regions in the target field that are located above the reference
object.

In the next step, the target field is boosted to spatially select a target
object from the input image. The target field receives localized input from
the stack of space-color fields, reflecting the locations of salient objects in
the input image. (The location of the selected reference object, however,
is suppressed by inhibitory input from the reference field.) The additional
broad input from the transformation field strengthens those object locations
that are positioned in the area above the reference object. In the competition
process, these locations have a clear advantage, and in the present example,
a peak forms in the target field at the location of the red object (Figure 6.7d).

In the final step, the selected target object has to be identified by deter-
mining its color. The peak in the target field projects spatial feedback to the
stack of space-color fields. This strengthens the stimulus-induced peak in the
“red” space-color field, and thereby increases the total output of this field.
When the set of color nodes receives a global boost input to induce a selec-
tion decision, the node for “red” has the highest activation level and prevails
in the competition. It suppresses the other color nodes, and the resulting
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activation pattern of these nodes yields the response “red” for the given task
(Figure 6.7e). Note that in this last step, the reference field likewise projects
feedback to the color-space fields, which strengthens the activation in the
“blue” field. However, the target field is still boosted, so that the peak in
this field is strenghened and its influence dominates over the influence of the
reference field.

As a variant of this procedure, the system is also capable of solving tasks
of the type “The red object is above which other objects?” In this form—
which is less common in natural language—the target object is specified and
the reference object has to be determined. Since the target and reference
fields are symmetric in the architecture, and since the spatial transformation
mechanism between target, reference, and object-centered field can act in all
possible directions, this task variant can be solved in a fashion entirely anal-
ogous to the process described here. The roles of target and reference fields
are switched, and the system will produce the color of the most appropriate
reference object as a response.

6.3.4 Generating spatial descriptions

In the last type of task, the system has to generate a relational spatial
description of an object in a given scene. It has to answer a question of the
type “Where is the green item?” The system’s response in this task should
take the form “to the left of the blue item”, specifying both a reference
object and a matching spatial term. This task is more open ended, in that
there can be multiple combinations of reference object and spatial term in a
scene that yield a valid description of an object’s location. I will describe the
general model mechanism for solving this task here, and provide comparisons
to experimental data in the next section to show that the model captures
key properties of human reference object selection behavior in ambiguous
conditions.

Figure 6.8 shows the steps to process this task in the model. The input
image shows a green highlighter near the center of the image, with a red
stack of blocks to its left and a blue stack of blocks to its right, and the
verbal task is “Where is the green item?” This task specifies the green item
as target in a relational spatial expression. This information is given to the
DNF model in the first step (Figure 6.8b), by simultaneously activating the

Figure 6.7 (preceding page): Evolution of activation patterns for the task
“What is above the blue item?” (a) Visual input. (b) Specification of the
blue item as reference object. (c) Specification of the spatial term “above”.
(d) Spatial selection of a target object. (e) Response generation, yielding
the color of the selected target.

201



boost

boost

boost

boost

(a)

“left”

“right”

“above”

“below”

“green”

target reference

object-centered

“blue”“red”(b)

“left”

“right”

“above”

“below”

“green”

target reference

object-centered

“blue”“red”(c)

“left”

“right”

“above”

“below”

“green”

target reference

object-centered

“blue”“red”(d)

“left”

“right”

“above”

“below”

“green”

target reference

object-centered

“blue”“red”(e)

b
oo
st

b
oo
st

202



color node for “green” and boosting the target field. In the same way as in
the first task, this combination of inputs causes a selection decision to take
place in the target field, and a peak forms for the location of the green item.

Next, the spatial relation nodes are globally activated, and the object-
centered field is boosted (Figure 6.8c). The spatial relation nodes project
through their semantic weight patterns to the object-centered field, and the
boost input to that field ensures that the resulting activation pattern is re-
flected in the field output and is projected to the transformation field. This
is largely analogous to the second step in the previous task, with the differ-
ence that no single spatial term is specified here. Instead, a superposition of
all spatial semantic patterns is induced in the object-centered field.

Now, the reference field is boosted. The reference field receives localized
input from the space-color fields that reflects salient object locations, and
broad input from the object-centered field via the transformation mecha-
nism. The location of the selected target object is inhibited by input from
the target field. The boost input initiates a competition within this field be-
tween the possible reference object locations. On the one hand, the outcome
of this competition depends on the relative saliency of the visual stimuli.
On the other hand, it is also biased by the input from the object-centered
field, in such a way that those object locations that provide a good fit with
the semantic pattern of any spatial term gain an advantage. Note that in
the coupling between reference field and object-centered field via the trans-
formation mechanism, the directions are inverted. For instance, a reference
field peak to the left of the target object induces activation in the right part
of the object-centered field (because it indicates that the target is to the
right of the referent).

In the present scenario, the potential reference objects are nearly equal
in saliency, but the blue stack of blocks provides a better spatial term fit (the
green highlighter is almost exactly to the left of it, while it is to the right and
slightly below the red stack of blocks). Consequently, a peak forms in the
reference field for the location of this blue stack of blocks (Figure 6.8d). As
soon as this peak begins to form, it also projects input back to the object-
centered field, which increases the activation levels in the left part of that
field, and consequently strengthens the spatial relation node for “left”. This
in turn adds further support for the selection of the blue stack of blocks in
the reference field. Effectively, a coupled selection takes place for an object

Figure 6.8 (preceding page): Evolution of activation patterns for the task
“Where is the green item?” (a) Visual input. (b) Specification of the green
item as reference object. (c) Activation of all spatial relations. (d) Cou-
pled selection of reference object location and spatial relation. (e) Response
generation.
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location and a matching spatial relation, with both parts of the selection
reinforcing each other. This process is analogous to the coupled selection of
object location and surface feature in the biased competition model, although
the connection patterns that mediate the coupling are more complex in the
present model.

After a reference object location has been selected and the matching
spatial relation node has been activated, the system’s response is generated
in the final step. To this end, both the set of color nodes and the set of
spatial term nodes are boosted (Figure 6.8e). The boost of the color nodes
produces the object identification in the same fashion as in the previous task.
However, in the present case, the color of the reference object is produced as
a response (because the reference field is still boosted), while in the previous
task the color of the selected target was determined. The boost of the
spatial term nodes simultaneously selects a single spatial term, based on the
activation levels of the spatial relation node. The selection of the “blue”
color node and the spatial term node for “left” yields the response “to the
left of the blue item”, which is one of the two possible valid descriptions for
the green item’s location in the given visual scene.

6.3.5 Statistics of reference object selection

In the above task, the system has the freedom to choose between different
potential reference objects to generate a spatial description. It does so on
the basis of both object saliency and match of the relative position to the
available spatial terms. The reference selection behavior in humans in com-
parable situations has been investigated by Carlson and Hill (2008). In one
of their experiments, the authors presented their participants with differ-
ent arrangements of two or three items (images of real-world objects) on a
uniform background (Figure 6.9). One of the objects was designated as the
target for a spatial description, or located object in the authors’ terminology
(abbreviated L). The participants were asked to provide a spatial description
for this object by completing the phrase “The located object is . . . .”

The second item that was present in the array was always larger and of a
different shape than the designated target object. In most trial conditions,
there was a third item that was of similar size and shape as the target.
Carlson and Hill referred to the larger item as the reference object and to the
other item as distractor, based on their roles in a previous experiment. I will
use the abbreviations R and D based on these designations to refer to these
objects in the following. Note, however, that participants in this experiment
were in no way instructed or encouraged to use the larger object R as the
reference object in their response.

The experiment was emulated in the model using arrangements of dif-
ferently colored squares instead of real-world images as stimuli, in order to
accommodate for the model’s simple visual system. The smaller objects L
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Figure 6.9: Reference object selection in an experiment of Carlson and Hill
(2008) and in the DNF model. The top row shows different spatial ar-
rangements between an object L, whose location is to be described, and
two possible reference objects R and D. The bar plot shows the frequency
with which the more salient object R was selected as reference object for the
generation of a spatial description for each arrangement.

and D were represented by squares of 10 × 10 pixels, the more salient ob-
ject R by a square of 14× 14 pixels, approximating the size relations in the
experimental study. The input image was divided into an invisible 5 × 3
grid, with objects centered in the grid cells of the top and bottom rows, and
the leftmost, center, and rightmost column. The stimulus arrangements for
the different experimental conditions are shown in Figure 6.9. Conditions
were labeled according to the placement of object L in the good (LG) or
acceptable (LA) “above” regions relative to the larger reference object (R),
and the placement of object D in the good (DG), acceptable (DA), or bad
(DB) “above” regions. This naming convention is again based on an ear-
lier experiment in the same study, and the use of the term “above” in the
response was not required or encouraged.

The model performed 100 trials for each condition in which it produced a
description of the target object by selecting both a reference object (identified
by its color) and a relational spatial term in the fashion described above.
Random noise was added to all field and node activations in each step to
obtain stochastic results. In all cases, the response of the model was a valid
description of the target object location. Note that in the case of a target
diagonally displaced from the selected reference object, two spatial terms
were considered correct, for instance both “above” and “left” in condition
LA. The key experimental measure was the proportion of trials in which

205



the more salient object R was used as reference object in the response. The
results from both the model and the experiment are shown in Figure 6.9.

The model provides a good fit of the results from the experimental study
in all conditions. In the first two conditions (LG and LA) with only two
objects in the scene, the results are unsurprising. The only available object
beside the target is always selected in the model’s reference field, and in
turn drives the selection of a matching spatial term. In the next condition,
LA/DG, the target object L is directly to the left of object D, and diagonally
to the left and above object R. Object R does not provide a good match
to the semantic template of any available spatial term in this case, and
consequently it is only chosen in a small proportion of trials despite its
greater visual saliency (25% in the experiment, 17% in the model). The
model produces the same result in condition LA/DB1, where object L is
exactly above object D and diagonally above and to the right of object R.
In the experimental results object R is chosen less frequently as referent
here (8% of trials), which may indicate an asymmetry in choosing horizontal
versus vertical relational spatial terms in humans which is not captured in
the model.

In condition LG/DA, objects D and R provide equally good fits for one
spatial term (“right” and “above”, respectively). In this case, the more
salient object R is chosen in the large majority of trials in both the experi-
ment (85%) and the model simulations (96%). Condition LA/DA is similar
to condition LA/DG, but now the distance between objects L and D is larger.
This is relevant for the model behavior because the semantic weight pattern
is distance dependent, with slightly decreasing weights for larger distances
between objects. This is consistent with the boundary cell semantic distribu-
tions proposed by O’Keefe (2003). Object D still yields a better spatial term
match than object R, but since object R has greater visual saliency, the se-
lection behavior is largely balanced in the model (54% selection of object R).
This is consistent with experimental data for this condition (51%).

In condition LG/DB, the target object L is located directly above ob-
ject R and diagonally above and to the right of object D. Both spatial term
match and visual saliency favor object R to be selected as reference object
in this condition, explaining the results in the model (100%) and the exper-
imental study (96%). Finally, in condition LA/DB2, the target object L is
located diagonally above both D and R (to the right and left, respectively).
As in condition, LG/DA, object R gets chosen more often than D due to its
greater visual saliency (74% in the model, 58% in the experiment). Note,
however, that the advantage of R over D is significantly smaller here than in
condition LG/DA, even though within each of these conditions, the spatial
term match is equally good for R and D. The difference is that the over-
all spatial term match is higher in condition LG/DA. This leads to higher
overall activation values in the reference field in that condition, and a faster
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and more stimulus-driven selection. In condition LA/DB2, both objects only
match poorly with the spatial terms, leading to lower overall activation lev-
els in the reference field during the selection process and a stronger influence
of random noise. This larger influence of noise produces a more balanced
selection behavior.

It should be mentioned that the overall level of random noise in field
activations was treated as a free parameter in these simulations, and was
chosen to fit the experimental data. It was not, however, varied between dif-
ferent conditions. As such, it only determines a global level of stochasticity.
Without any noise, the outcome in each condition would be deterministic
without any graded selection preferences. For increasing noise levels, the
impact of activation differences induced by the properties of the stimuli be-
comes less relevant compared to the random fluctuations in activation, and
the probability for different objects to be selected becomes more similar. The
pattern of relative selection proportions that is visible in Figure 6.9 cannot
be produced by changing the noise level. Instead, it reflects how similar the
activation levels for different potential reference objects are during the selec-
tion process, which, in turn, is determined by the properties of the stimuli
and the internal parameters, such as the definition of the semantic weight
patterns.

6.4 Discussion

In this chapter, I have presented a DNF model of relational spatial language
behaviors. This model demonstrates that the same basic mechanisms that
were introduced in the context of visual processing can also form the basis
of more cognitive tasks, such as the generation and assessment of spatial
phrases for a given visual scene. The model combines the basic mechanism
for space-feature association with a reference frame transformation to deter-
mine the relative position of one object to another, and it then maps this
relative position onto a discrete symbolic representation that stands for a
specific spatial term.

The DNF model can solve a variety of tasks without any changes in its
parameters or connection patterns. The type of operation that is performed
is determined by a series of control inputs that globally activate certain
elements of the architecture. These control inputs determine the effective
flow of information in the dynamical system. They build on the fact that
all projections within the model are implemented bi-directionally, and that
the core mechanism employed here—space feature association and reference
frame transformation—can flexibly work in different directions depending
on present activation patterns.

The core problem that is addressed by the model is an instance of a cen-
tral problem in cognitive science: The grounding of abstract concepts, that
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is, linking symbolic representations for concepts like “above” to concrete sen-
sory or motor representations (Roy, 2005). The model follows an approach
that is consistent with the concepts of embodied cognition: It does employ
discrete nodes (that may be classified as a symbolic representation) at the
input and response stages, but the actual processing underlying the assess-
ment of a spatial relation is performed on metric representations of space and
visual features, which are directly linked to sensory input. This is an impor-
tant contrast to typical symbolic models of processing, where the complete
sensory information is assumed to be transformed into a purely symbolic
representation, on which the cognitive operations are then executed (e.g.,
Shastri, 1999).

The DNF model also contrasts with mathematical models of spatial lan-
guage such as the AVS model of Regier and Carlson (2001). Several aspects
of this earlier model are inspired by neural processes, namely the mechanisms
of attentional weighting and the computation of an estimated direction vec-
tor as a weighted sum over a large number of individual vectors. This latter
approach reflects the estimation of metric values in neural population codes,
as described for instance by Georgopoulos et al. (1986) for determining the
movement vector in the planning of reaching movements. However, the AVS
model does not aim to capture the actual neural processing underlying the
assessment of spatial relation, and instead computes spatial relation ratings
in a simple algorithmic formulation.

The DNF model goes significantly beyond the scope of this earlier work
by proposing a detailed neural process, covering task components from the
initial representation of the visual image all the way to the selection or
assessment of a spatial term. Importantly, the transition from the sensory
representation to the verbal representation is not achieved in a single step,
but is an active and composite process that requires the combination of
several basic operations.

6.4.1 Sequential processing steps

In each of the tasks performed by the model, I have described a series of
distinct processing steps, such as the localization of the target object, local-
ization of the reference object, and selection of a spatial term. It is important
to keep in mind that these steps still emerge from a continuous change of
activation patterns in the neural fields, as described by the differential equa-
tions. Their macroscopically discrete nature arises from instabilities in the
field dynamics—transitions to a new stable state, typically through the for-
mation of an activation peak—and not from the use of discrete processing
steps at the microscopic level.

Moreover, the processing is not strictly sequential in the sense that each
operation is always applied to one object at a time. In many instances, the
system makes use of the inherently parallel representations provided by the
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neural fields. For instance, when selecting a target object based on a given
reference object and a spatial relation, the system assesses the match of all
possible target locations to the spatial description in parallel during the cen-
tral step of this task. The parallel processing is even more striking in the
open-ended task of generating a spatial description. Here, different combi-
nations of reference object and spatial term form implicitly in the coupled
activation patterns and they directly compete with each other, without any
need to assess each combination individually. The sequential and selective
processing is used when it is required to solve a specific problems, namely
different instances of the binding problem (see below). This combination of
parallel and sequential processing matches the approach used in the scene
representation model.

The sequence of steps is induced in this model by a series of global
control inputs, synchronized with the corresponding content-carrying inputs
(colors and spatial terms from the verbal task). The different sequences of
these inputs form a kind of program executed in the architecture. They all
use the same basic operations, but by using them in different combinations
and in different temporal orders, they solve qualitatively different task. For
instance, the selection of the target objects is always achieved by boosting
the target field (which will then form a single peak due to the competitive
interactions). In two of the tasks, the selection is biased by specifying an
object color and thereby modulating the visual input that the target field
receives. In another task, however, the target object selection is only done
after both a reference object and a spatial term have been set, and no object
color is specified. In this case, the selection is biased toward a certain spatial
region. This approach strongly depends on a bidirectional coupling between
the elements in the architecture, a feature that is also prevalent in the form
of reciprocal connections in biological neural systems (Lamme et al., 1998).

The system of different input sequences contrasts to some extent with the
approach used in the scene representation model. That model also executed
sequences of processing steps to execute change detection tasks on visual
scenes, but the underlying mechanism to drive these sequences was more
strongly integrated into the architecture itself. This reflects the somewhat
more stereotyped mode of operation in that model. Even though the scene
representation architecture solved a variety of tasks, it always performed
the same basic operations to sequentially inspect items. Different behaviors
within the change detection task were produced by higher-level adjustments,
such as tuning down the spatial coupling between the retinal and the scene
level. This more integrated and stereotyped form of creating sequences of
operations appears more appropriate for the comparatively low-level and
highly automated task of scanning a scene, whereas the spatial language be-
haviors can be considered more cognitive tasks that require greater variation
in the sequential organization of elementary operations.

209



A significant limitation of the sequential mechanism in the spatial lan-
guage model compared with the scene representation architecture is a lack
of autonomy. The global control inputs that drive the transition to the next
step are applied externally with a fixed order and timing, chosen in such
a way that the transition of the system to a new attractor state is almost
certainly completed before the next input is applied. This makes the system
slow and inflexible. Later extensions of the model have addressed this prob-
lem and added neural mechanisms for the autonomous control of the pro-
cessing steps. Van Hengel et al. (2012) have combined the spatial language
architecture with a neurodynamic model of serial order (Sandamirskaya and
Schöner, 2010). In this system, a series of dynamic nodes provides the con-
trol inputs to drive the processing steps. Connections between the nodes im-
plement the sequential order of operations, and a condition-of-satisfaction
mechanism is used that detects when each processing step has been com-
pleted (e.g., when a peak has formed to select a target object location).
This triggers the transition to the next processing steps, so that the whole
sequence of steps can be traversed with a timing adjusted to the requirements
of the specific task.

In a further development of this model, a variant of the spatial language
architecture presented here was combined with a neurodynamic model of
behavior organization (Richter et al., 2014a,b), which is itself an extension
of the serial order model mentioned above. This system adds a working
memory representation for the content of the verbal task, and employs a
system of rules implemented in specific connections between dynamic nodes
to organize the processing steps. The ordering of the processing steps then
emerges autonomously based on these rules, and may vary between different
instances of the same task. These extensions show that the basic mechanism
of generating complex and varied behaviors through a series of instabilities,
driven by control inputs, is a viable route to create behavioral flexibility in
an autonomous neurodynamic system.

6.4.2 Variable binding

The core reason that makes sequential processing necessary in this model is
the binding problem. This appears here both in the form of feature binding,
which was a key issue in the previous chapter, and in a new form known as
variable binding. The problem of feature binding comes up in the spatial
language tasks when performing a visual search for an object, where a given
color has to be associated with a spatial location. But this alone does not
fully explain the need for sequential processing. In a task like “Where is
the green item relative to the red one?”, it is still conceivable that a visual
search could be performed for both red and green objects simultaneously,
and would yield two locations as a result.

But critically, the two objects referenced in the verbal task are not inter-
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changeable. They take different semantic roles—those of target and reference
object—and these roles are reflected in the different connection patterns of
the corresponding spatial representations in the reference frame transforma-
tion mechanism. This is the problem of variable binding: The two objects,
specified in the verbal phrase through their surface features, must be bound
to their semantic roles in that phrase. In previous robotic DNF models
of spatial language (Lipinski et al., 2009; Sandamirskaya et al., 2010), this
problem was avoided by using separate processing paths to select the target
and the reference object in the visual scene. This does not seem biologically
plausible, however, since the localization for both objects must be achieved
by a single visual system in the brain.

The approach used here to solve the problem of variable binding is in
principle the same as employed in the previous chapter to address the prob-
lem of feature binding. On the one hand, there is a form of conjunctive
coding in the form of the separate target and reference fields. These fields
form an explicit representation of the combination between semantic role
and object location. On the other hand, the system uses the sequential pro-
cessing of individual items to establish the binding between object identities
and their semantic roles in the first place. This allows the model to use
only a single general-purpose visual system that provides the space-feature
association for both objects in a spatial relation, without explicitly dealing
with the objects’ semantic roles. The assignment of an object localized by
the visual system to a specific semantic role is then accomplished by the
timing of the control inputs that boost activation levels in either the target
or the reference field.

There is experimental evidence for the notion that humans likewise em-
ploy a sequential processing of target and reference object when assessing
spatial relations. Franconeri et al. (2012) had subjects perform a task in
which they had to determine the spatial relation between two simple colored
stimuli, and used EEG measurement to estimate where the subjects’ atten-
tion was directed. They found a clear shift of attention during the task, and
explain this with the need to select one object location at a time, based on
the Feature Integration Theory and consistent with the approach presented
here. The authors suggest that the spatial relation is determined directly
from the direction of this attentional shift, but do not propose a model for
this process (and it is not clear that determining the shift direction is actu-
ally different from determining the relative position between start and end
point of the shift). Other experiments, using both eye tracking data (Burigo
and Knoeferle, 2011) and behavioral cuing (Roth and Franconeri, 2012) pro-
vide further support for a sequential processing of objects to determine their
spatial relation.

Notably, the spatial language model also uses the spatial representations
in the target and reference fields as a form of pointer to objects in the
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visual representation, in the same way as used in the scene representation
model. While any objects provided in the verbal phrase are identified by
their surface features, only their spatial locations are actively retained once
it has been found in the visual scene. But this location can be used to
retrieve the features of an item when required, as shown in several of the
tasks. In the present model, this reduction to object location is motivated in
particular by the fact that the location is the relevant aspect of an object for
judging spatial relations. But it also provides an additional example of the
concept introduced in the previous chapter: A spatial representation can act
as a form of pointer in neural architectures to select and individuate objects
from more complex representations that capture detailed object properties.

One may ask whether a mechanism of variable binding that uses a sepa-
rate spatial field for each semantic role is feasible beyond the scope of rela-
tional spatial language, or would require an excessive number of such fields.
There is reason to believe, however, that the roles of reference and target ob-
jects for a spatial relation are truly essential for many tasks, and that there
is only a limited number of other comparable semantic roles that would
require a separate treatment. For instance, relative positions and relative
movements between two objects are central for classifying object-oriented
actions (such as touching, pushing, hitting). A neurodynamic model of ac-
tion recognition by Fleischer et al. (2013) uses an object-centered spatial
representation analogous to the object-centered field in the present model as
a central element. Moreover, neural representations of space in an object-
centered frame of reference have been found in the parietal cortex (Chafee
et al., 2007), further supporting the need for specialized representations to
determine spatial relations.

6.4.3 Limitations and future extensions

An obvious limitation of the present model is the very simple visual system
that only captures the distribution of one surface feature, namely color. For
use in real-world robotics tasks, for instance, this system would have to be
capable of actual object recognition. In principle, it is easy to incorporate
a more elaborate visual system into the spatial language model. It only has
to support two basic operations: It must be able to localize an object in
a visual scene, given an object identifier (a label or a feature description);
and, conversely, it must be capable of identifying an object at a location
selected in the target or reference field. A basic segmentation of a scene is
also needed (to determine candidate objects that can be selected as target or
referent), but may be provided by a separate system. An object recognition
architecture based on the DNF framework that fulfills all these requirement
has been presented by Faubel and Schöner (2009).

Another critical limitation in the visual system is that it is purely in-
put driven (with weak stabilization from lateral interactions), and that it
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uses a retinal or image-based reference frame. It is therefore not capable of
compensating for image shifts due to gaze changes, which frequently occur
during spatial language tasks (Burigo and Knoeferle, 2011), and it does not
retain any information about the objects in a scene if the visual input is
occluded or turned off.

A more robust system could be constructed by integrating the spatial
language model into the scene representation architecture. The scene repre-
sentation in working memory can provide a stable, gaze invariant substrate
to locate objects and determine spatial relations between them. The working
memory fields over space and surface features have the same basic structure
as the space-color fields used in the spatial language model, and it has al-
ready been shown for the robotic version of the scene representation model
how “queries” can be processed on these fields—a form of visual search in
working memory to localize objects that match specific surface feature values
(Zibner et al., 2011b). Initially, the spatial language model did not make use
of gaze invariant working memory representations because the scene repre-
sentation model was only implemented after the spatial language model. But
integrating these two models has the potential to produce a more powerful
architecture with an extended behavioral repertoire.
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Chapter 7

General Discussion

In this thesis, I have presented a series of neurodynamic models that address
different problems from the field of active vision, and that cover the range
from perceptual processing to cognitive operations. The models are formu-
lated within the theoretical framework of Dynamic Field Theory, and their
implementation is consistent with principles of embodied cognition (Wilson,
2002; Riegler, 2002). Cognitive operations in these models emerge from sen-
sorimotor processing, and both build on the same representations and neural
mechanisms.

The DNF models are based directly on neural population dynamics, and
they aim to capture the real-time evolution of neural activation patterns
that underly behavior generation. Their mode of operation is inherently
parallel, with activation values in different DNFs and at different positions
in feature space within each DNF changing simultaneously in response to
external stimuli and internal interactions. All interactions in the models can
be described by fixed excitatory or inhibitory connection patterns, reflecting
synaptic connectivity in biological neural systems.

The results that I have presented further support the biological plausibil-
ity of the DNF models, and highlight how these models establish a link form
neural processes to overt behavior. I have shown that the DNF models can
account for many characteristics of human behavior—often in quantitative
detail—with respect to the planning and execution of saccadic eye move-
ments, human working memory and change detection performance, and use
of spatial language. Processes in the models can be directly linked to be-
havioral measures in psychophysical experiments. In the case of saccadic
eye movements, for instance, different reaction times in the model result
from differences in the time it takes to resolve a competition between pos-
sible movement plans within neural representations. Moreover, for the case
of peri-saccadic remapping, I have shown how the DNF model can directly
account for neural activity patterns obtained in experiments with macaque
monkeys (for a DNF model addressing both behavioral and electrophysio-
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logical results in a combined fashion, see Klaes et al., 2012).
All theoretical models presented in this thesis are process models, that

can actually perform their specific tasks and generate responses based on
the sensory inputs they receive. As a restriction, it must be noted that
the models were for the most part operated only in simulated environments.
They did receive sensory input in a format consistent with biological sensory
systems (rather than abstract symbolic input), but it was often simplified
and idealized. These simplifications were adopted in order to allow an easier
exploration of the general principles that may be used for autonomous pro-
cessing in neural architectures. An extrapolation to real-world applications
may therefore still be a challenging step, although several robotic models
that were developed in parallel with the work presented here demonstrate
that this step is indeed feasible (Zibner et al., 2011a; Lipinski et al., 2009).

The larger theoretical questions addressed by these models are the fol-
lowing: How can a parallel, continuously operating neural system perform
complex cognitive operations that comprise distinct processing steps? And
how can such a system, that is characterized by fixed synaptic connections,
apply cognitive operations flexibly to different objects (either perceived sen-
sory stimuli or internal object representations)? These questions are made
concrete in the examples treated in the last two chapters of this thesis. In the
model of scene representation and change detection, the system sequentially
attends to individual items in a visual scene to memorize them or compare
them to previously memorized items. In the spatial language model, different
stimuli in a visual scene are sequentially assigned to different grammatical
roles in order to ground a verbal spatial phrase.

Both of the core questions—how to generate processing steps and how
to specify targets for cognitive operations—arise in the DNF models to a
large part due to their autonomous mode of operation. In the majority of
neural models in the literature, the different arguments for the operation to
be performed are simply provided via separate input channels at the time
of initialization. The neural model then processes these inputs, either in
a simple feed-forward pass or through an iterative process with recurrent
interactions, and produces a result. Examples for such models are found in
Zipser and Andersen (1988) for the problem of spatial transformations, and
Denève and Pouget (2003) in the field of spatial language.

The DNF models, in contrast, aim to describe the continuous processing
that is required in biological neural systems, rather than isolated operations.
In the earlier examples of the biased competition model and the model of
peri-saccadic remapping, this is expressed in a largely reactive mode of op-
eration. These models produce behaviors (namely saccadic eye movements)
and update their activation states in response to external stimuli, which can
appear at arbitrary times. In contrast, the DNF model of spatial language
has to generate a more cognitive operation that results in a specific response.
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But the arguments for this operation—such as the objects whose spatial rela-
tion should be assessed—are not simply provided through separate channels.
Instead, they must be extracted from the continuously present visual input.
This brings up the different forms of binding problems in the DNF models,
and generates the need for sequential processing.

7.1 Organization of discrete processing steps

The starting point for generating ordered sequences of processing steps from
continuous neural dynamics is provided by a core principle of Dynamic Field
Theory, namely its focus on attractor states and instabilities between them.
The basic instabilities in DNFs mark discrete points in time at which qual-
itative changes occur in the continuously changing activation distributions
(Schneegans and Schöner, 2008). These qualitative changes in activation pat-
terns can be linked to the completion of elementary mental operations—the
detection of a new stimulus, a selection decision between multiple alterna-
tives, or the formation of a working memory representation.

The DNF model of biased competition directly builds on this mechanism.
Its primary behavioral output—the saccadic motor signal—is at its core the
result of a selection decision between different visual stimuli. But the model
already goes beyond the basic concept of an instability in a single DNF.
It demonstrates how a coupled selection decision can take place in a rep-
resentation that is distributed over multiple interconnected DNFs, and how
such a distributed decision forms the basis for new behavioral mechanisms.
The architecture allows contributions from the different fields to influence
the competition process—namely spatial biases and color biases—and inte-
grates them to generate a simple form of goal-directed behavior.

The DNF model of peri-saccadic remapping has a more complex archi-
tecture, and during saccadic eye movements, it shows an intricate sequence
of state transitions. New activation peaks form, some transiently and some
sustained, and existing activation peaks decay or are actively suppressed,
first in the fields of the gaze update system, then in the remapping system.
This sequence of state transitions in the continuous field dynamics ultimately
results in the macroscopically discrete event of remapping, that is, a shift in
the retinocentric representation of object locations.

The stabilizing effects of lateral interactions in the fields play a crit-
ical role in this process. They drive the activation patterns within each
field toward a stereotypical shape and project a relatively uniform signal
to downstream fields, filtering out any fluctuations and irregularities in the
activation patterns. This greatly simplifies the construction of large inter-
connected architectures, since the input to each field can be assumed to be a
set of uniform activation peaks at all times, independent of how these peaks
themselves were induced. And it makes it possible for the system to process
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different contents—different stimulus positions and saccade metrics—while
still reliably following a fixed pattern of state transitions.

While the model of saccadic remapping produces relatively intricate se-
ries of state transitions in this way, these transitions are still triggered by an
external input (the saccade signal), and progress through the architecture in
a mostly linear fashion (albeit with strong interactions and back-coupling).
The scene representation model introduces a new mechanism that enables
it to sequentially inspect the items in a visual scene. For each individual
item, a series of state transitions occurs in a similar way as in the remap-
ping model, beginning with the coupled attentional selection of an item and
leading to the formation of sustained activation peaks in the working mem-
ory fields. But now additional structures and connections are introduced
that serve specifically to trigger a re-initialization of this process with the
selection of a different item.

The central concept here is the specification of a condition of satisfac-
tion (CoS) that indicates the completion of a processing step (or a series
of steps). This idea has been employed in previous DNF models to pro-
duce sequences of arbitrary actions with a flexible timing (Sandamirskaya
and Schöner, 2010) and to organize sequences of overt behaviors for goal-
directed action (Richter et al., 2012). In the scene representation model, this
CoS is the formation of an activation peak in the scene attention field which
signals that the memorization or comparison for the currently selected item
is complete. Again, the lateral interactions play a crucial role here, since
they ensure that a qualitative change occurs in the field’s activation state,
which can be detected unambiguously as CoS. The concept of a CoS allows
a new level of description, in which a processing step is defined as the state
transition or series of state transitions required to trigger a specific CoS. The
scene representations model goes through a series of such processing steps,
with the initial trigger given by the presentation of an external stimulus ar-
ray, but the further progression with its attentional shifts from one item to
the next driven only by its internal dynamics.

Finally, the spatial language model demonstrates how such processing
steps can be combined flexibly to generate a variety of cognitive behaviors
in a single neurodynamic architecture. Due to the strong multi-directional
connectivity in this model, the effective direction of activation flow between
fields can be determined to a large degree by modulatory inputs. These in-
puts globally raise the activation levels in certain fields and thereby induce
instabilities, typically through the formation of an activation peak. The
specifics of each instability, namely where a peak forms, is determined by
the latent inputs to the field. The global control input, however, determines
the timing when an instability occurs, and can produce qualitatively dif-
ferent final activation states by varying the order of instabilities within the
architecture.
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In the original DNF architecture for spatial language presented in this
thesis (based on Lipinski et al., 2012), the system is implemented with only
limited autonomy. The control inputs are applied in fixed order and with
predefined timing, and no explicit conditions of satisfaction are defined for
the individual processing steps. Subsequent work has shown, however, that
an additional layer of dynamic nodes can take over the role of these fixed
external inputs, apply them flexibly while ensuring the task-dependent con-
straints on their order, and detect the completion of individual processing
steps from state transitions in the fields of the architecture (Richter et al.,
2014a,b). A form of cognitive program (Ballard et al., 1997) can then be
defined as a set of processing steps and constraints on their ordering, imple-
mented through sets of interconnected nodes. Each processing step specifies
one or more control inputs applied to the DNF architecture, and an associ-
ated CoS. This does not explicitly specify the operation to be performed, as
it would be done in a step of an algorithm, but it can still ensure implicitly
that the desired operation is executed within the neurodynamic system.

7.2 Spatial pointers

The second challenge in implementing complex cognitive operations in a par-
allel neural system lies in flexibly specifying the targets of those operations.
This can be likened to passing arguments to function in a computer program.
Here, it is often realized efficiently by passing a pointer or reference to a more
complex data structure. One common theme of the models presented in this
thesis is the use of spatial representations to take a role comparable to such
pointers. Similar approaches have previously been suggested in conceptual
models. For instance, Ballard et al. (1997) suggested that spatial attention
or overt visual fixation can single out an object in the world, and its per-
ceptual representation can thereby be selected as the target of a cognitive
operation.

The starting point for using spatial representation as a form of pointer
is again a basic characteristic of DNFs, namely the peak of activation as a
stable state in the field dynamics. The activation peak specifies a discrete
value within the continuous activation distribution. It is stabilized against
fluctuations in the field input, and can serve to represent a discrete object
location. The basic field dynamics allow multiple activation peaks to coexist
and support tracking of changing inputs, which directly provides a model
of visual tracking for moving stimuli (Spencer et al., 2012). Population
code representations of space that are consistent with such DNFs are found
throughout the cortex, and play important roles in attention and movement
planning (Colby and Goldberg, 1999).

The DNF model of biased competition demonstrates the basic association
mechanism through which an activation peak in a spatial field can be used to
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access non-spatial features of an object. In the model, location and surface
features of multiple visual stimuli are represented in a combined fashion
in a multi-dimensional visual sensory field. Through the combination of a
spatial ridge input and a read-out projection, the surface feature of a specific
item can be determined given its location. This mechanism is extended to
multiple surface features in the perceptual part of the scene representation
model. The extension illustrates why the spatial dimension is a suitable
candidate to be used in the role of a pointer, more than any other feature
dimension: Features that belong to the same object naturally appear at the
same location in visual space. Space can therefore be used as a binding
dimension between different surface features, and can mediate the coupled
selection over all feature dimensions. Multiple separate feature maps over a
shared space avoid the curse of dimensionality that would occur when using
a full representation over the combination of all feature spaces. The use of
space as a binding dimension is consistent with numerous existing models
of visual processing and visual attention, both conceptual (Treisman, 1988)
and computational (Hamker, 2005b), and is supported by psychophysical
studies (Nissen, 1985).

But the biased competition model also touches on one of the key prob-
lems of using spatial pointers. Saccadic eye movements constantly shift the
visual image, and make the retinocentric location information from the pre-
vious fixation obsolete. The model of peri-saccadic remapping addresses this
problem. As solution, it proposes a transformation of location information
into a gaze-invariant frame of reference, while still keeping it continuously
linked to the current retinal scene. The proposed system can transform the
locations of multiple visual stimuli simultaneously, so that is compatible with
spatial fields containing multiple activation peaks.

With the spatial transformation mechanism in place, it becomes possi-
ble to accumulate visual information over multiple fixations, and to form
stable object representation in working memory while still using space—
now in a gaze-invariant reference frame—to bind different surface features
together. This is implemented in the DNF model of scene representation.
The model provides a working neural implementation that realizes the core
characteristics of scene working memory proposed in conceptual form in the
influential Object File Theory (Kahneman et al., 1992). Surface features
and locations for a limited number of visual items can be stored in a bound
form in the coupled working memory fields over feature and space, with-
out requiring an addressable general-purpose memory as the term object file
may suggest. These bound working memory representations may then be
re-activated when the object location is re-attended in the visual scene, due
to the coupling between different spatial fields through the reference frame
transformation. This has been demonstrated in the task of feature loca-
tion change detection, and it implements the kind of access to the memory
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representation via a spatial pointer as proposed in the Object File Theory.
The coupled spatial representations in the scene representation architec-

ture also fulfill the key requirements of the spatial indexes in the theoretical
work of Pylyshyn (2001). They individuate a limited number of objects,
keep track of them over gaze changes, and can be used to find them again in
the visual scene. But importantly, the spatial representations at the scene
level can also act in a more abstract role when they are decoupled from the
retinocentric reference frame and thereby loose their fixed relationship to
any physical space. In that condition, demonstrated in the task of feature
conjunction change detection, the spatial dimension serves as an abstract
binding dimension for the surface features of an object. This more abstract
use of space emerges directly from its concrete use to reflect object locations,
simply by dampening certain connections in the DNF model.

The spatial language model has then demonstrated the use of space in
another form of binding, namely variable binding. Separate fields over space
are used to associate an object in a visual scene to its semantic role, namely
target or reference object in a spatial phrase. These spatial representations
are then used to assess the spatial relations between objects, but they can
also serve in the role of spatial pointers again, to direct attention to a specific
object in the visual scene and retrieve its surface features for identification.
This was demonstrated in the response generation for the task of the type
“What is above the blue object?” The assignment of objects to different
semantic roles via spatial fields, and the subsequent use of these fields to
perform spatial operations, can be viewed as analogous to passing arguments
to a function. The flexibility of this system—being able to select any objects
in a scene as target or referent—is achieved by the sequential attentional
selection. The stable activation states of fields are again critical here, since
they allow the association of an object to a semantic role be retained while
another object is selected by attention.

The spatial representations thereby fulfill several roles that are analogous
to pointers in computer architectures. They do not, however, implement an
actual pointer mechanism that allows access to a location in an address-
able general-purpose memory. The function of the spatial representations
is more restricted, and they require special neural structures to act in a
pointer-like fashion. They can only be used to access perceptual or working
memory items in neural representations that directly reflect spatial position,
or that are linked to such spatial representations (e.g., via a space-feature
association mechanism). This reflects an adherence to neural principles, in
particular modality-specific representations through population codes and
fixed synaptic connections among them.

There are other theoretical models that have proposed implementations
of actual pointer mechanism in neural architectures to address the problem
of variable binding. The model of Barrett et al. (2008) includes neural repre-
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sentations that hold an address to an item in another, larger representation.
This mechanism is used to assign specific content to different semantic roles
in a system of knowledge representation and reasoning. A different approach
is the theory of binding through synchrony (Von der Malsburg, 1999), which
was discussed in some detail in Chapter 5. This theory proposes a special
neural mechanism which allows object features that are represented in a
distributed fashion across different neural populations to be linked to each
other directly.

While these models do provide elegant solutions to avoid most problems
associated with feature binding and variable binding, their biological plausi-
bility is questionable. No actual pointer representations have ever been found
in neural systems, and the evidence for a key role of spike synchrony in neu-
ral processing is much disputed (Palanca and DeAngelis, 2005). In contrast,
the limitations of the spatial pointer approach advocated in this thesis can in
fact be taken as an argument for the plausibility of this approach, since they
match limitations observed in human behavior. One core property in both
the mechanism of feature binding and of variable binding presented here is
the need for sequential processing of individual items. This is consistent with
a host of findings both in scene perception and working memory (Treisman,
1988) and in the assessment of spatial relations (Franconeri et al., 2012).
The DNF models explain how the need for this sequential processing arises,
and also provide solutions to control the sequential processes through neural
mechanisms.

Moreover, the mechanism of spatial pointers is made plausible by the
fact that it illustrates how the functions of feature and variable binding can
emerge from basic principles of sensorimotor processing, without requiring
novel and special-purpose mechanisms like neural synchrony. The role as
pointer-like elements for spatial representations is derived directly from the
fact that space is a common dimension between neural feature maps. And
besides their role as pointers, the spatial representations in the DNF mod-
els always retain their original function of representing concrete content,
namely the locations of objects. This exemplifies one core tenet of the em-
bodied cognition stance, that abstract and cognitive functions emerge from
sensorimotor processes.

7.3 Outlook

The models discussed in this thesis have shown how spatial representations
can be used in a generalized fashion, acquiring additional functionality that
is not strictly linked to representing locations. This can be taken further
in several directions. As a first step, spatial representations can be used
in a fashion that is no longer linked to a concrete physical space in the
world, while still retaining its spatial meaning. To some extent, the spatial
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dimension for the working memory fields in the scene representation model
was already interpreted in this way—as not being strictly allocentric, but
tied to a more abstract scene reference frame. This would allow the model,
for instance, to compare a sample scene viewed on one computer screen with
a test scene viewed on another screen, or one viewed in the real world. This
was not fully worked out in the model, but with the mechanism for variable
reference frame shifts (that can also be used to determine the alignment
between two scenes), it is relatively straightforward to imagine how this
may be implemented.

A direct extension of this approach is then to use the same structures
also for scenes that are not at all linked to any space in the world, but arise
in the imagination alone. This is the idea behind an envisioned combination
of the scene representation system and the spatial language model. Such a
combination was already proposed in the previous chapter to stabilize the
visual representation for the assessment of spatial relations, but it may also
be used in another way: to generate an internal scene representation purely
on the basis of a verbal descriptions (such as “there is blue square to the right
of a green triangle”) without any visual input. Due to its separate spatial
and feature pathways, the model is already set up to integrate location and
feature information for new objects given separately in a verbal statement,
and the core of the spatial language system can be used to select appropriate
locations for the objects. To operate autonomously, the model would again
have to generate complex sequences of individual processing steps that can
be flexibly combined. This could be based on the same mechanisms as used
in the later versions of the spatial language model, but may have to be even
more elaborate.

Such a model would then offer the opportunity to also address processes
of mental reasoning. When a scene representation has been built, the system
is able to answer questions about spatial relations that were not given explic-
itly in the verbal description. The empirical and theoretical work of Knauff
(2013) has provided evidence that humans do indeed use such an approach
for reasoning about spatial relations, even though it can be susceptible to
errors. For instance, humans tend to make certain default assumptions when
first constructing the scene in their minds, and do not review these assump-
tions when reasoning based on that scene. Knauff proposed an algorithmic
model of the steps to build up a scene in the mind, but the DNF approach
may provide an account of how the neural system actually achieves this kind
of reasoning.

This approach to reasoning is in line with a number of theories of grounded
cognition, such as the perceptual symbol systems of Barsalou (1999). This
theory emphasizes the importance of simulations in sensorimotor systems
for reasoning. Numerous experimental findings support the notion that
even tasks that could be solved on a purely abstract level are influenced
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by such sensorimotor simulations, for instance in language processing, mem-
ory and perceptual tasks (Barsalou, 2008). This approach is in opposition to
amodal theories of cognition, which propose that reasoning is performed by
operations on abstract symbol systems that are separate and qualitatively
different from representations at the perceptual level (Fodor and Pylyshyn,
1988). The DNF model of relational spatial language is already following the
grounded cognition approach, in that it performs the assessment of spatial
relations on a level that is directly tied to the perceptual processing, with-
out introducing abstract symbols. An extension of this model could extend
a neural implementation of this grounded cognition to the level of reasoning.

When the spatial representations can become dissociated from any con-
crete locations in physical space and are used to construct imaginary scenes,
then it is also conceivable that they may be dissociated from the notion
of object locations itself, and be used to represent more abstract spaces.
Indeed, several theories have suggested that the numerous spatial represen-
tations in the brain, which have evolved to represent physical space as a key
perceptual dimension, can be co-opted to represent feature spaces that can-
not be directly perceived (Anderson, 2010). It has already been mentioned
in Chapter 5 that spatial analogies may be the basis for both speaking and
reasoning about temporal relations (Casasanto and Boroditsky, 2008). But
spatial analogies may be used much more widely, for instance to describe hi-
erarchies in size, value, or importance; to perform approximate arithmetics,
using the analogy of a number line (Hubbard et al., 2005; Chen and Verguts,
2012); or to think about abstract classifications as spatially grouping items
together. If this is indeed the case, then the models described in this the-
sis, which address some core problems in active vision, may be the basis for
explaining cognitive processes with a much wider scope.
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