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Abstract

In everyday life, humans are very skillful in generating complex action sequences
that are timed in coordination with a changing environment and highly adaptive
to the current perceptual context. This ability appears clearly in tasks ranging
from making coffee, driving a car, to playing table tennis or airhockey. Under-
standing how these behavioral patterns are generated and providing solutions to
emulate this ability is a key challenge in autonomous robotics.

In this thesis, I address how different movement behaviors may be timed to
sensory events while being sequentially and flexibly organized. In this context,
I propose a dynamical model for sequence generation of timed movements. The
system is formulated within the dynamical systems approach, using its tools
and concepts that account for timing and coordination in human movements.
The model consists of two parts: a hierarchical neural dynamics architecture for
behavioral organization and timing dynamics for movements generation. The
neural dynamics architecture is based on elements from the dynamic field theory
(DFT) which is a variant of the attractor dynamics approach to cognition. The
timed movements are generated using a framework that combines fixed point
attractors to define postural states and stable limit cycles for timed behaviors.
This formulation ensures stability and robustness of the system while flexibility
is provided through bifurcation properties of the dynamics. Both the generation
and organization of movements are tightly coupled to time-varying sensory infor-
mation and autonomously react to perturbation either by updating movement
parameters or by flexibly adapting the sequence of behaviors.

The core properties of the model are assessed in simulation by two robotic
tasks, catching and hitting a ball, and in a hardware implementation of a robotic
hitting task. Both from simulation and hardware tests, the obtained results
demonstrate that the system is able to execute successfully the robotic tasks and
illustrate the features of the model in handling different perturbation scenarios.
In addition, the tests show the characteristics of the dynamical systems approach
in addressing this kind of problems in robotics.

Keywords : Attractor dynamics, dynamic field theory (DFT), autonomous robotics,
timed movement, behavioral organization.



Zusammenfassung

Im alltäglichen Leben sind Menschen sehr geschickt darin, komplexe Hand-
lungssequenzen zu generieren, die mit einer veränderlichen Umwelt zeitlich ko-
ordiniert und hochgradig an den aktuellen Sensorkontext angepasst sind. Diese
Fähigkeit wird im Spektrum verschiedenster Aufgaben offensichtlich, vom Zu-
bereiten von Kaffee über das Steuern von Automobilen, bis hin zum Tischtennis-
spielen. Zu verstehen, wie diese Verhaltensmuster generiert und emuliert werden
können, ist eine zentrale Fragestellung im Bereich der autonomen Robotik.

In dieser Arbeit behandle ich, wie verschiedene Bewegungsverhalten zeitlich
mit sensorischen Ereignissen koordiniert und gleichzeitig sequentiell und flexi-
bel organisiert werden können. In diesem Kontext schlage ich ein dynamisches
Modell für Sequenzgenerierung und zeitlich koordinierte Bewegungen vor. Für
die Formulierung dieses Systems nutze ich dabei den dynamische-Systeme-Ansatz
und die daraus stammenden Konzepte und Werkzeuge, um den zeitlichen Ablauf
und die Koordination menschlicher Bewegungen abzubilden. Das Modell besteht
aus einer hierarchischen, neuro-dynamischen Architektur für Verhaltensorgan-
isation, sowie Timing-Dynamiken für die Bewegungsgenerierung. Der neuro-
dynamische Teil der Architektur basiert auf Elementen aus der dynamische-
Felder-Theorie (DFT), einer Variante des Attraktordynamik-Ansatzes für die
Modellierung Kognition. Die zeitlich koordinierten Bewegungen werden von
einem Framework generiert, das Fixpunkt-Attraktoren kombiniert, um posturale
Zustände zu definieren, und stabile Grenzzyklen für zeitlich koordinierte Verhal-
ten erzeugt. Diese Formulierung stellt die Stabilität und Robustheit des Systems
sicher, während Flexibilität durch die Bifurkationseigenschaften der Dynamiken
erreicht wird. Sowohl die Generierung als auch die Organisation der Bewegun-
gen sind eng an die zeitlich veränderlichen Sensorinformationen gekoppelt und
reagieren autonom auf Störungen, entweder, indem sie Bewegungsparameter ak-
tualisieren, oder, indem sie die Verhaltenssequenz flexibel anpassen.

Die Kerneigenschaften des Modells werden sowohl in Simulationen zweier
robotischer Anwendungen, dem Fangen und Schlagen eines Balls, als auch in
einer Hardwareimplementierung des Letzteren evaluiert. Sowohl die Ergebnisse
der Simulationen als auch der Tests auf der echten Hardware zeigen, dass das
System in der Lage ist, die Aufgaben erfolgreich auszuführen. Weiterhin illus-
trieren die Ergebnisse die Eigenschaften des Systems in verschiedenen Perturba-
tionsszenarien, und heben die Nützlichkeit des dynamische-Systeme-Ansatzes in
robotischen Problemstellungen hervor.

Schlagwörter : Attraktordynamik, dynamische-Feld-Theorie (DFT), autonome
Robotik, zeitlich koordiniertes Bewegungsverhalten, Verhaltensorganisation.
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Chapter 1

Introduction

1.1 Preamble

In everyday life, humans and other animals generate behavioral patterns that are
tightly coordinated with the environment, in the service of achieving a specific
goal. On one hand, this ability implies the organization in time of different
elements of the body to produce the required pattern of movements. On the
other, it implicates perception, such that information about the surroundings
lead to the selection of the appropriate action to be performed and adapted to
the environmental conditions.

For instance, humans excel in all kinds of ball games and racket sports where
it is crucial to coordinate multiple actions in time and adapt the movements
online to a quickly changing environment. In a table tennis game, a player is
able to generate and coordinate, almost instantaneously, a set of different tasks
that start by tracking and predicting the ball trajectory, initiating the required
movements to hit the ball, and returning to a resting posture to be ready for
the next set of actions. In addition, the generated movements should adapt
and continuously compensate for perturbations in order to successfully perform
the hit. Furthermore, a hitting movement is generally constrained with a correct
timing and racket orientation at impact. Typically, these actions are continuously
chained together and may be reproduced at any time in a new sensorial context
with new movement parameters.

In performing such tasks, humans exhibit two complementary attributes: sta-
bility and flexibility. Stability implies consistent movement patterns that resist
perturbations and are reproducible in different sensorial contexts. In addition,
these movement patterns are non-rigid but flexible and adaptive to environmen-
tal constraints like timing and coordination. Understanding how such behavioral
patterns are generated and organized in time has been a theme for decades, in
particular, defining the nature of the interaction between perception and the
generated actions. Different research disciplines including psychology, cognitive
science, neuroscience, and robotics addressed these issues using different concepts
and tools. Those studies were conducted at many levels of analysis and resulted
in different theories of motor control.

An effective approache to human movement is the dynamical systems ap-
proach (Kelso, 1995; Schöner and Kelso, 1988). If we emphasize the fact that
these behavioral patterns result from cognitive processes that are environmen-
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1.2. Motivations for the thesis

tally embedded, corporeally embodied, and neurally embrained, the dynamical
systems approach offers an integrated framework to describe cognition as a dy-
namical phenomenon in a dynamical world (Van Gelder et al., 1999; Thelen and
Smith, 1994). The central insight of dynamical systems theory is that behaviors
are represented as stable states of a dynamical system that unfolds continuously
in time. Moreover, such a representation provides the system with the necessary
flexibility through instabilities (or bifurcations).

In this thesis and within the dynamical systems framework, I propose a dy-
namical model for sequence generation of timed movements. The model presents
a systematic approach to the organization of timed actions in which both the in-
dividual movement components as well as the sequencing mechanism are tightly
coupled to changing sensory information. The performance of the model is as-
sessed both in simulation and in a hardware implementation of a ball hitting
task executed by a robot manipulator.

1.2 Motivations for the thesis

From coffee making to playing pinball machine or table tennis, humans excel at
generating complex action sequences that are often coordinated with the envi-
ronment. Moreover, these actions need to be timed, flexible, and adaptive to
the current perceptual conditions. Being able to define the processes behind
these behavioral patterns is a key challenge both in cognitive science and in au-
tonomous robotics. Indeed, enabling robots to exhibit resembling behaviors will
open the doors to more direct human-robot interactions and will considerably
increase robots autonomy in natural environments.

In the present thesis, I address how different movement behaviors may be
timed to sensory events while being sequentially and flexibly organized. The
main contribution of the work is a dynamical model to generate sequences of
timed movements. The mechanism comprises a hierarchical neural dynamics
architecture for behavioral organization and timing dynamics for movements
generation. Both organization and generation of the movements are coupled
online to sensory information so that the system adjusts to perturbations both
by varying movement parameters, and by activating or deactivating different
movement components.

For this work, different tools and concepts from the dynamical systems the-
ory are used. The dynamical systems approach is a theoretical framework within
which the embodied view of cognition can be formalized and designed. The ap-
proach defines the quantitative variables that describe a system as attractor
states of continuous time dynamical systems. This formulation provides dynam-
ical models with an intrinsic stability and robustness against perturbations and
flexibility features through bifurcations (Van Gelder et al., 1999; Schöner, 2008).
With these properties, the framework can account for many empirical evidences
in human movements, notably, movement timing, coordination, and the neural
and sensory couplings involved.

To demonstrate the core properties of the model, two robotic applications
are considered. A simplified catching task in simulation permits to show the
functioning and properties of the proposed architecture. An extension of the

2



Chapter 1. Introduction

model to a more complex application with a hardware implementation is also
addressed. Here, the task is a blend of playing pinball machine and airhockey,
in which a robot arm keeps hitting a ball back up an inclined plane. In both
applications, perturbation scenarios that affect the movement timing and the
behavioral organization are treated. Even though my perspective is a pure en-
gineering one, these demonstrations represent a proof of the applicability of the
dynamical systems concepts in these kind of tasks. Tasks that imply high speed
movements and a large degree of adaptation and flexibility.

1.3 Main goals of the work

The main goals of the present work can be summarized as follows:

1. Inside a framework for timed movement generation, develop mechanisms
to stabilize total movement time by adapting the movement parameters in
face of perturbations.

2. Design and implement an architecture to organize in time and space timed
behaviors in coordination with sensed events. The architecture is based on
elements from the dynamic field theory (DFT) (Schöner, 2008).

3. Illustrate the core features of the proposed model in simulated robotic
tasks.

4. Evaluate the performance of the model in a hardware implementation.

1.4 Contributions

A preliminary implementation of the robotic hitting task has been published
as a refereed contribution in (Oubbati and Schöner, 2013). The application of
the dynamical model for sequence generation of timed movements to a robotic
hitting task was published as an abstract (Oubbati et al., 2013b), and as a
refereed proceedings paper (Oubbati et al., 2013a).

1.5 Outline of the thesis

The remainder of the dissertation is laid out in the following chapters. Chapter 2
provides a review of the related literature and an introduction to the principles
and tools of the dynamical systems approach. Chapter 3 presents the dynamical
model for timed movements sequence generation and illustrates its features in
a simulated catching task. Chapter 4 applies the proposed model to a robotic
hitting task both in simulation and in a hardware implementation. Chapter 5
covers my conclusions and further work that would improve on the model.
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Chapter 2

Background and methods

2.1 Sequencing timed motor acts: state of the

art

Human life is full of activities that require generating a well ordered series of
complex actions, that are yet stable and highly adaptive. Moreover, these actions
often need to be timed and coordinated with the environment. These aspects
appear clearly in many sport activities like table tennis, pinball or airhockey
games where humans can exhibit their skills in terms of speed, dexterity, and
coordination while keeping very flexible against perturbations.

Building movement generation systems able to emulate these capacities was
and is still a tremendous challenge in the robotics field. Roboticists studied
problems of this kind because they exemplify core elements of autonomous action,
in particular, the problem of timing robot’s actions to external events. Providing
such skills to robots will certainly increase their performance and abilities to work
autonomously in human environments.

To solve these problems, several solutions have been proposed and demon-
strated in a variety of robotic scenarios. Typically, tasks like ball hitting, jug-
gling, or catching in which robots interact with moving objects are the most
widely chosen to address these issues. In the following, I will go through some lit-
erature where similar problems are addressed using different approaches. Broadly
speaking, these approaches can be classified into classical (or algorithmic ap-
proaches), learning based approaches , and dynamical systems approaches.

2.1.1 Classical approaches

Tasks like ball catching, juggling, or hitting have been extensively addressed
by various researchers. For instance, robot juggling is a well studied problem
and has been realized using different approaches. In earlier implementations,
Aboaf et al. (1989) presented a task level learning method to juggle a single
ball in three dimensions with an aiming mechanism. A class of mirror control
algorithms introduced by Buehler et al. (1994) allowed a one degree of freedom
robot to juggle a ball in two-dimensional space, where a symmetry between the
ball and paddle motions is continuously kept. More recently, Nakashima et al.
(2006) proposed an extended version of the Buehler et al. (1994) algorithm to
perform a juggling task by solving the ball regulation problems. The ball was
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tracked by a stereo vision system and predicted using a discrete motion model.
With an industrial robot, Rapp (2011) implemented a Ping-Pong ball juggling
system using a simple PID controller. A Kalman estimator and a discrete time
model were used to predict the ball trajectory. The juggling task was even
demonstrated using a Quadrocopter (Mueller et al., 2011) with a near-hover
feedback controller (Bouabdallah et al., 2004).

A robot catching flying objects was also treated. Baetz et al. (2009) pre-
sented a non-prehensile catching method for a basketball on a plate hold by an
industrial robot. The method decomposed the task into a contact selection prob-
lem, based on mechanical joint limits and a dynamical manipulability measure
(Yoshikawa, 1985), and a balancing problem, based on a force/torque feedback
control. The ball was predicted using recursive least squares. Using a theme
park type animatronic humanoid robot, Kober et al. (2012) developed a test bed
for a throwing and catching game using a finite-state machine algorithm.

Ball interception and hitting scenarios were also frequently considered. In
a Ping-Pong robotic application, Hailing et al. (2012) used a high speed stereo
vision system to track and predict the ball trajectory, and a PID controller for a
redundant manipulator to perform the hitting tasks. In the same context, Senoo
et al. (2006) proposed a hybrid trajectory generator in joint space for high-speed
batting motions. They split the control of the robot’s joints so as to control
separately for high-speed swinging while the remaining degrees of freedom are
used for hitting.

Similar tasks were also addressed as optimal control problems. Optimal con-
trol is a set of techniques for determining the control signals for a system with
given dynamics that will minimize an objective or cost function while satisfying
specified constraints (Kirk, 1970). Lampariello et al. (2011) formulated a ball
caching task as a non-linear optimization problem with the mechanical energy of
the manipulator as a cost function. The method was only tested in simulation
with a suitably initialized local planner and without minimizing the cost func-
tion. A biologically inspired trajectory generator is proposed by Muelling et al.
(2010) for a robot table tennis application. Inspired from the movement stages
observed in human players, comfort postures are selected in joint space and cost
functions are defined on these postures. The model produced a single stroke
movement at a time on a ball predicted using a Kalman filter and a dynamical
model.

Generally, these kinds of applications are used to probe real-time control
problems in robotics. Even though fast and accurate, the path planning methods
are most of the time based on heuristics and ad-hoc approaches that severely
suffer from the lack of flexibility against environmental variations. For example,
perturbation cases in the ball predictions were rarely considered and reorganizing
actions in reaction to some changing events was not a topic. Moreover, timing
was always seen from the prism of real-time planning and not as a result of
coordination with external objects.

2.1.2 Learning based approaches

Learning from external agents tasks like ball catching, juggling or table tennis
was also explored. Learning control means improving a motor skill by repeatedly
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practicing a task. In imitation learning, robots are taught to perform a task
by observing a set of demonstrations provided by a teacher (human or robot).
Demonstrations to a robot may be performed in different ways; back-driving
the robot, teleoperating it using motion sensors, or capturing a task via vision
sensors. The learning process consists of extracting the relevant information from
the demonstrations and encoding this information in a motion model that can
be used to reproduce the task.

Different approaches and techniques have been applied in a variety of robotic
tasks. To teach a robot how to juggle a devil stick, Schaal and Atkeson (1994)
proposed a memory-based model by means of a locally weighted regression (Atke-
son et al., 1997). The particular formulation of the approach allowed a real
time implementation using training data from an inverse model. Using a similar
method, (Matsushima et al., 2005) demonstrated a robot table tennis task by
learning three maps representing the ball states before and after a hit as well as
the desired ball state in the opponent court. These data were fed to a polynomial
based trajectory generator for the robot effector. Neither real time coordination
with the ball nor perturbations were treated.

Ijspeert et al. (2002) and Schaal et al. (2003) suggested to use dynamical
movement primitives to represent both discrete and rhythmic movements. The
framework allowed the representation of arbitrarily shaped movements through
the primitive’s policy parameters that are estimated by locally weighted regres-
sion on training data. The framework was demonstrated in several tasks like
tennis swings. However, the dynamics are time-dependent, thus very sensitive
to temporal perturbations, and modifying the learned global shape of the move-
ment in response to perturbations or varying target predictions was not trivial.
In the same context, Kober et al. (2010) proposed a modified version of the
canonical form introduced by Ijspeert et al. (2002) to allow an online updating
of the movement’s target and final speed. The new version was demonstrated
in a robot table tennis application. The evaluation showed that the dynamics
could be generalized to different targets. Nevertheless, the stroke movements
were often not precise which shows that the robot could not sufficiently adapt
to varying ball predictions. Moreover, perturbation scenarios during movements
were not addressed at all.

In a robot catching task, Kim et al. (2010) considered movement timing
and coordination with a moving object. The demonstrated trajectories using
a data glove were encoded in an autonomous dynamical system with Gaussian
Mixture Models and Expectation-Maximization algorithm (Gribovskaya and Bil-
lard, 2009). The motion dynamics were tuned using a timing controller. The
robot could adapt to changes in ball predictions while keeping the temporal
structure of the movement stable. However, the adaptation was too slow to use
real flying or rolling objects. Moreover, adapting the task autonomously so as to
abort or restart the catch in response to some sensed events was not considered.
Using a similar approach, Khansari-Zadeh et al. (2012) extended the previous
formulation of the autonomous dynamical system to model robot motions with a
desired velocity at the target. The modified version was demonstrated in robot
experiments of playing minigolf. The approach could be generalized to differ-
ent initial positions of the ball and the hole. In addition, online adaptation to
perturbations in the ball or the hole positions was demonstrated. However, an
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upper bound for the maximum value of perturbations has to be set and timing
the movements was not considered. The same approach have been used in many
other applications like a pick-and-place task (Gribovskaya and Billard, 2009) or
a coordinated hand-arm grasping (Shukla and Billard, 2011).

As opposed to classical planning algorithms, learning approaches brought to
robots skillful manipulation capacities similar in flexibility and precision to that
displayed by humans. In addition, the proposed approaches were able to adapt
to variations in the sensory information and timing could be considered as a con-
straint. Nevertheless, the adaptation often fails in the face of large perturbations
particularly when high speed movements are to be produced. Moreover, learning
a sequence of movements that can be (re)organized in coordination with some
perceptual events does not seem to be trivial.

2.1.3 Dynamical systems approaches

The dynamical systems theory was also employed to address similar tasks. This
use was mainly motivated by the proven properties of the approach in endow-
ing robots with flexibility in movements generation while ensuring stability and
robustness against perturbations.

In one of the first attempts, Schöner and Santos (2001) proposed a two-layer
model that can produce both stable oscillations and stationary states. The top
layer was composed of switching dynamics (see Section 2.2.2 for more details)
that, in coupling to sensory information, control the switching between these
two regimes. The lower layer was responsible to generate the stationary states
through fixed point attractors and timed movements via a stable limit cycle. The
model allowed the implementation of a sensor-driven initiation and termination
mechanism of discrete timed movements. A demonstration in a simulated ball
interception task was proposed. The model could produce sequences of timed
movements that were coordinated and flexibly organized according to sensed
events. However, stabilizing the movement time by updating the parameters
of the dynamics so that to accelerate or decelerate the movement in response
to perturbations was not treated. More recently, Santos and Ferreira (2009)
used an identical framework to implement a catching task executed by a Puma
arm on a ball rolling on an inclined table. Here also, integrating a consistent
mechanism to stabilize movement time in face of noisy sensory information was
not a topic. The proposed model represents the basic structure of the timed
movement dynamics presented in Section 3.1.

In the context of movement timing and using a similar approach, Tuma et al.
(2009) formulated an on-line adaptation rule to stabilize total movement time
against disturbances. The rule was demonstrated on a mobile robot that while
reaching for a target should avoid obstacles. In this formulation, heading dy-
namics controlled the movement direction and the oscillator dynamics generated
velocity profiles. The adaptation rule permitted to continuously update the oscil-
lator radius that represents the current speed of the robot. The system adapted
the robot’s speed so that to accelerate or decelerate if the distance to the target
is increased or decreased (respectively) during, for example, obstacles avoidance.
Nevertheless, generating sequences of several timed movements, like going back
to a homebase after reaching a target and back again, was not considered.
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In a different context, Degallier et al. (2011) presented a dynamical frame-
work able to generate combinations of discrete and rhythmic motor primitives.
The approach is based on the concept of central pattern generators (CPGs) ob-
served in invertebrate and vertebrate animals (Ijspeert, 2008). The system was
applied to interactive drumming and infant crawling in a humanoid robot. The
framework modeled stable oscillatory movements around time-varying offsets for
each degree of freedom but could be tuned to generate discrete or rhythmic move-
ments separately. The proposed CPG system is a network of coupled dynamics
to obtain discrete and rhythmic behaviors that are coordinated by ensuring fixed
time relationships. Different mechanisms were defined to handle both spacial and
temporal perturbations. Timing was introduced as a coordination constraint, no-
tably, to stabilize phase relationships between movements while playing music
notes in the drumming task. The generated patterns were a set of repetitive
rhythmic movements combined with shift cycles between the drum’s pads. Hav-
ing a stable temporal structure for the generated patterns or a mean to reorganize
the behaviors so as to abort and restart the task in accordance with some sensed
information were not treated.

The dynamical systems approach has been also used in several applications
where a well ordered sequence of movements need to be produced. In a sim-
ulated grasping task, Luksch et al. (2012) presented a neural architecture for
movement generation that is based on a hierarchical organization of dynamical
systems. Different properties like failure recovery and adaptation of the be-
havior sequence in response to sensorial information or a prediction layer were
demonstrated. In the same context, Richter et al. (2012) introduced a neural-
dynamic framework for behavioral organization, in which the action selection
mechanism is tightly coupled to the agents sensory-motor systems. The archi-
tecture is composed of several elementary behaviors organized into a sequence
using behavioral constraints and online perceptual information. The viability
of the approach was shown in a grasping task for a humanoid robot. In both
systems, timing the behaviors and their organization in coordination with sensed
events was not addressed.

As can be observed, the problems of sequencing motor behaviors and con-
sidering temporal constraints in the movement generation in presence of per-
turbations are most of the time addressed separately. Moreover, developing a
mechanism able to reorganize the sequence of behaviors in coordination with
perceived information is not a trivial task. The work presented in this thesis ad-
dresses these specific problems. Using the dynamical systems approach, I have
built a model to generate sequences of timed movements. Both the individ-
ual movement components and the behavioral organization are coordinated with
perceptual information and adapt to perturbations. The model’s core properties
are assessed in simulation and in a hardware implementation of a robotic ball
hitting task.

2.2 Dynamical systems theory

The dynamical systems theory is a confederation of research efforts bound to-
gether by the idea that natural cognition is a dynamical phenomenon that can
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be best understood in dynamical terms, and guided by the belief that dynamics
provide the right tools for understanding cognitive processes (Thelen and Smith,
1994; Van Gelder, 1998). The central insight of dynamical systems theory is that
a behavior can be understood geometrically, that is, as a matter of position and
change of position in a space of possible overall states of the system that unfolds
continuously in time (Van Gelder, 1998). The behavior can then be described in
terms of attractors, transients, stability, hysteresis, coupling, bifurcations, and
so forth features found in dynamical systems (Schöner, 2008; Van Gelder et al.,
1999).

In this section, I will review some core concepts of the dynamical systems
theory. In particular, I will focus on the different methods used for behavior
generation and organization as an approach to autonomous robotics. Some of
these tools will be used along this thesis.

2.2.1 Generation of behaviors

The dynamical system approach to autonomous robotics has been first intro-
duced by Schöner et al. (1995) where they have proposed to represent the task
relevant behaviors as attractor state variables of dynamical systems. Moreover,
they have illustrated stability as a central characteristic of these concepts and
demonstrated flexibility through a form of instabilities (or bifurcations) in the
behavioral dynamics of the robot.

The qualitative changes in a state variable, called non-equilibrium phase tran-
sitions, express the diversity of the behavioral patterns that can be generated.
These transitions occur in the control parameters space. The control parameters
are collective variables that describe the dynamics of the system. The emergent
patterns at a bifurcation are said to be self-organized because the control pa-
rameter that induces the changes does not contain information about the new
pattern. The emerging behavioral pattern is only caused by specific interactions
between the numerous subsystems that are involved in the behavior generation
(Schöner and Kelso, 1988).

The approach has been applied to implement various navigation tasks for
autonomous vehicles (Bicho et al., 1998; Monteiro and Bicho, 2002; Soares et al.,
2007). A typical issue for navigation is planning a collision-free path during a
target acquisition task. To describe the behaviors that this movement represents,
the heading direction, φ, and velocity, v, of the robot are generally employed as
the behavioral variables. The actual behaviors are generated in time as the
governing solutions of dynamical systems (or behavioral dynamics) that define
the rate of change of the behavioral variables as a function of their current values

φ̇ =
dφ

dt
= f(φ),

v̇ =
dv

dt
= f(v),

(2.1)

with φ(t) and v(t) specifying the on-going behaviors at any time t. The be-
havior’s dynamics are designed to be dissipative with asymptotically stable fixed
points (or attractors). The attractors in Eq. 2.1 serve to define the behavioral
variables so that the system is ensured to be at all times in a stable state.
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For example, if we assume the robot’s velocity to be constant (v̇ = 0), a
simple behavioral dynamics for target acquisition can be defined by

φ̇ = −λtar sin(φ−Ψtar), (2.2)

where λtar > 0 sets the attraction strength of the robot’s heading variable, φ,
toward the target direction specified by the attractor Ψtar in world coordinates.
Given that the target direction may vary as the robot moves, the dynamics
of Eq. 2.2 ensures that the heading variable, φ, sits always on or close to the
attractor.

In the case where an obstacle is present in the robot’s way to the target
and if we assume that its distance from the robot dobs can be continuously esti-
mated using sensory inputs, we can modify the behavioral dynamics by adding
an unstable fixed point (also called repellor) at the obstacle direction Ψobs as
follows

φ̇ = −λtar sin(φ−Ψtar) + λobs(φ−Ψobs) exp

(
(φ−Ψobs)

2

σ

)

, (2.3)

where λobs > 0 sets the repulsion strength and σ > 0 defines the angular
range of the repellor. The functional form of the repulsive term is biased by the
distance to the obstacle through λobs = f(dobs) and σ = g(dobs). This implies
that the strength and angular range of the repulsion becomes stronger as the
robot gets closer to obstacles (Figure 2.1).

Figure 2.1: Behavioral dynamics for mobile robot navigation. Overall phase
portrait of the heading dynamics (right) results from a target and obstacle con-
tributions for a robot navigation task (left). The behavioral dynamics illustrate
the emergence of two attractors. This implies an internal decision to be made
by the system that depends on the current state of the heading variable φ.

When multiple N obstacles are present in the scene, their repulsive contribu-
tions can be simply summed and added to Eq. 2.2 to form the overall behavioral
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dynamics

φ̇ = −λtar sin(φ−Ψtar) +

N∑

i=1

λi(φ−Ψi) exp

(
(φ−Ψi)

2

σi

)

. (2.4)

The repulsion angular range of each obstacle assigns the acting field of each
contribution and decides when these contributions merge together to form a
single repellor. The formed behavioral dynamics can produce many complex
behaviors (see (Althaus, 2003) for examples) where internal choices of movement
direction through bifurcations can be taken depending on the actual internal state
of the system (heading direction) and the surrounding environment (obstacles
in the scene) which provides the system with an inherent flexibility. The sensed
distances to obstacles represent the principal control parameters responsible of
this flexibility in the behavioral dynamics. The same principles has been also
extended to control robot manipulators (Iossifidis and Schöner, 2006; Ellekilde
and Christensen, 2009; Reimann et al., 2011). For example, Iossifidis and Schöner
(2006) used the previously illustrated behavioral dynamics to define the end-
effector heading directions (azimuth, φ, and elevation,θ) in 3D space for target
acquisition tasks in an unstructured environment observed by an operator or an
external visual sensor (see Figure 2.2).

Figure 2.2: Behavioral dynamics for robot manipulator. Two heading direc-
tions (azimuth, φ, and elevation, θ) define the behavioral variables of a robot
manipulator in a reaching task.

2.2.2 Organization of behaviors

Nowadays, autonomous robots are called to perform increasingly complex tasks
in naturalistic physical environments. Moreover, robots should be able to re-
act flexibly and change strategies in order to adapt to a dynamically changing
surrounding. This requires mechanisms for decision making and behaviors orga-
nization that are tightly coupled to sensory information from the continuously
changing environment.

The autonomous organization of behaviors is a crucial problem in robotics.
Three major requirements have to be fulfilled by any mechanism meant to solve
this problem. First, flexibility during behavioral organization is necessary so
that changes can be brought into the original sequence of behaviors in response
to variations in the sensorial context. Second, sequence decisions must be stabi-
lized against noisy and fluctuating sensory input. Finally, the mechanism should
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present a framework that is able to integrate, simultaneously, various sources of
sensory information about the environment with an internal knowledge about
the required logical order of the behaviors, their logical interplay and the histor-
ical state of the system. The dynamical systems theory provides the right tools
to address these issues.

Competitive dynamics for behavioral organization

Complex tasks can be regarded as an ensemble of behaviors, called elementary

behaviors (abreviated EB), that are fused inside the same behavioral dynamics
and organized in a certain sequence or concurrently activated to accomplish the
intended objective (Steinhage and Schöner, 1998; Schöner and Dose, 1992).

A neural dynamics architecture proposed by Large (1997); Schöner and Dose
(1992) is capable of fusing all these constraints and representations into a single
framework in the form of dynamical states. For a robotic task composed of N
elementary behaviors EBi, i ∈ {1, ..., N}, a task level competitive dynamics is
defined by

τ u̇i = αi(ui − u3i )−
N∑

i 6= j

γj,iu
2
j ui + η, (2.5)

where ui represents the neuronal activation of the the elementary behavior
EBi; αi ∈ [−1, 1] is the competitive advantage of EBi; τ controls the time scale
of the dynamics. The first two terms of the non-linear dynamics represent a
supercritical pitchfork bifurcation (Strogatz, 1994). A single attractor ui = 0
is formed for αi < 0. For αi ≥ 0, the fixed point ui = 0 gets destabilized and
two attractors ui = 1 and ui = −1 form which implies the use of the absolute
value |ui| as the activation weight of the associated behavior (1 for activated,
and 0 for deactivated). The last part of the dynamics in Eq. 2.5 is a competitive
term where γj,i is the competitive interaction with EBi of each of the remaining
elementary behaviors EBj, j ∈ {1, ..., N} given that j 6= i. The competitive term
destabilizes any formed attractor when the competitive interaction γj,i of at least
one of the interacting behavior EBj and its neuronal activation uj are different
from zero. η ∼ N(0, n) is a Gaussian white noise term with a mean 0 and variance
n to guarantee escape from unstable states and assure robustness to the system.

In the absence of any competitive interaction, the architecture deploys the
neuronal variable ui to activate or deactivate the behavior with the largest com-
petitive advantage α among the behaviors composing a complex robotic task. α
may encode external sensory information and/or internal behavioral constraints
like, for example, a behavioral precondition to express the activation conditions
of a particular behavior. On the other hand, γ expresses a behavioral suppression
mainly to prevent undesired simultaneous activation of particular behaviors.

Using these principles, the architecture implements competitions and corpo-
rations among these dynamical variables by stabilizing or destabilizing particular
patterns of activation. Since the underlying variables are stable states, the behav-
ioral organization is guaranteed to be stable. Moreover, the required flexibility is
ensured via controlled instabilities dictated by the actual sensorial context and
some internal states. The same form of the non-linear dynamics or some variants
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of it has been used in various robotic applications (Steinhage and Schöner, 1997,
1998; Ellekilde and Christensen, 2009).

During the present work, an early implementation of the ball hitting task,
presented in Chapter 4, has been realized using similar competitive dynamics
(Oubbati and Schöner, 2013). The project consisted of building a mechanism
for timed movements generation via oscillatory dynamics demonstrated in a ball
interception task. The competitive dynamics permitted to switch between the
different task movements. The mechanism was able to generate reliably the
correct behavioral sequences based on internal constraints and external sensory
information about the rolling ball. The approach was evaluated in simulation
and successfully brought onto a real manipulator. However, the implementation
severely suffered from different hardware limitations and the complexity of the
resulting architecture.

Dynamic Field Theory for behavioral organization

In Section 2.2.2, I have introduced a neural dynamics architecture as a first
step toward solving the problem of behaviors organization in robotics. Although
successful in many applications, the particular mechanisms used in these earlier
architectures rendered the design of these systems quite complex.

To address this issue, it is not sufficient to build dynamical mechanisms that
activate or deactivate elementary behaviors based on some external sensory in-
formation and internal rules or constraints. In nature, cognitive agents are able
to generate sequences of behaviors in a very smooth and robust fashion to ac-
complish particular tasks. Furthermore, each action is executed while respecting
constraints arising from the environment, the agent’s embodiment and the be-
havioral history. The dynamical systems approach offers a theoretical framework
called Dynamic Field Theory to understand such cognitive processes where em-
bodiment and situatedness are essential elements.

Dynamic Field Theory (or DFT) is a variant of the attractor dynamics ap-
proach to embodied cognition. The theory is based on a description of the dy-
namics of neuronal activation introduced by Amari (1977) and Wilson and Cowan
(1973) to model pattern formation in neural tissues. DFT reflects the hypothesis
that strong recurrent interactions in local populations of neurons form a basic
mechanism for cortical information processing. DFT has found widespread appli-
cations in many areas that include perception of motion, visuo-spatial cognition
and motor planning (Erlhagen and Bicho, 2009; Schöner, 2008).

In the following, I will give a brief introduction to the essential concepts and
principles of DFT. After that, I will present a behavioral organization mechanism
based on elements from DFT and suitable for robotics.

Dynamic Field Theory. Within the DFT framework, the states of a behaving
agent are described by continuous activation functions defined over behaviorally
relevant parameter spaces of different dimensionality. As described by Amari
(1977), an activation function represents a dynamic neural field (or DF) that
evolves in time according to the dynamic equation
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τ u̇(x, t) = −u(x, t) + h+ S(x, t) +

∫

ω(x− x′)f(u(x′, t))dx′ + η, (2.6)

where u(x, t) is the DF activation; h < 0 is the DF resting level; t is the
current time; x is the space parameter of the behavior; S(x, t) is the external
input to the DF; η ∼ N(0, n) is a Gaussian white noise with a mean 0 and variance
n to guarantee escape from unstable states and robustness to the dynamics; τ is
the relaxation constant of the dynamics; f(.) is a sigmoidal non-linearity used to
shape the DF output from 0 for a negative argument to 1 for a positive argument
and may take the form

f(x) =
1

1 + e−β(x−x0)
, (2.7)

with β defining the steepness, and x0 the inflection point of the sigmoid out-
put function. The last term of Eq. 2.6 describes the homogeneous lateral inter-
action within the DF activation where the output is convolved with a Gaussian
interaction kernel given by

ω(x− x′) = cexc exp

(

−(x− x′)2

2σ2

)

− cinh. (2.8)

The interaction kernel decomposes the lateral influence into two aspects, a
local excitation of strength cexc ∈ R over a range specified by σ and a global
or mid-range inhibition set by cinh ∈ R. Nearby field locations are assumed to
mutually excite each other, driving up activation, while distant locations are as-
sumed to mutually inhibit, driving down activation. The sigmoidal non-linearity
f(u(x, t)) implies that only sufficiently activated locations contribute to the in-
teraction. Other forms of interaction kernel are possible.

Figure 2.3: The activation pattern of a dynamic field u(x, t) over a metric dimen-
sion x at time t. Within DFT, a peak activation represents an attractor state
described by its location. A sub-threshold activation is an input-driven attractor
representing graded information. This figure is in part adapted from (Schöner,
2008).

The DFT core idea is to define, via dynamic fields, neural representations
over continuous metric dimensions. The metric dimension x reflects the behav-
ioral space parameters and may span a visual space, object features, or movement
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parameters over which the activation function u(x, t) is defined. Thus, represent-
ing metric information as dynamical state variables requires a second dimension.
The extra dimension is graded and shows the activation extent such like the
strength, certainty, or intensity of a given location along the metric dimension
(Figure 2.3). Depending on the feature space, the behavioral space parameters
may be encoded along a single dimension or more (Figure 2.4).

Figure 2.4: An example of a dynamic field defined over a two-dimensional feature
space: hue value and heading direction φ. The DF receives, as an input, the
robot’s camera image after a segmentation process. Such a DF can be used as
a perceptual system for a robot tracking a colored object. The robot’s heading
direction φ can be extracted from the DF by reading the peak position defined by
the detected hue value. The color bar depicts the activation level of the dynamic
field.

In the absence of external input S(x, t), the field activity stabilizes at an
attractor state set by the resting level h < 0. Inputs to the field activation may
come from sensorial information or other dynamic fields and can be localized to
specify a particular value along the metric dimension or homogeneous to affect
the overall activation level.

When a sub-threshold and localized input (preshape) is introduced, the acti-
vation pattern forms an input-driven attractor in which the contribution of the
neuronal interaction is negligible (due to the non-linearity f(x)). In many appli-
cations, this regime can be exploited to represent, for instance, ambiguous prior
information about the dimension spanned by the field by encoding probability
of choices. It can also be merely used to filter external inputs.

If the input strength is sufficiently increased, the neuronal interaction, driven
by the bell shaped interaction kernel ω(x−x′) and amplified by the stabilization
term −u(x, t), permits to elevate the sub-threshold activation level. During
this process, the system is brought through a bifurcation, referred as detection

instability, to stabilize a localized peak activation beyond the inducing input level
(the system is bistable). The peak solution is stabilized against decay by the local
excitatory interaction and from diffusion by the global inhibitory interaction.
The peak stays stable even if the localized input is fluctuating, reduced, or slightly
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shifted as shown in Figure 2.5 for a one-dimensional field. Within DFT, peaks
of activation represent the elementary units of representation.

Figure 2.5: Activation patterns of a dynamic field u(x, t) with different level
of external input S(x, t). (a) A sub-threshold input results in an input driven
sub-threshold attractor. (b) If the input is increased, the field goes through
a detection instability and a peak activation forms. (c) Even if the input is
decreased to the level of (a), the peak stays stable.

These stabilized patterns of activation are used to build elementary cognitive
functions like decision making mechanisms (see (Schöner, 2008; Sandamirskaya
and Schöner, 2008; Erlhagen and Bicho, 2009) for a review about these mech-
anisms and their use). One form of decision making is detection decision. By
elevating the activation level of an inhomogeneous stream of sub-threshold lo-
calized inputs in a DF (for example, by increasing the resting level h < 0), only
the sub-threshold with the highest input will form a self-stabilized peak leading
to select a particular location on the feature dimension. This instability may be
used to implement methods of categorization or learning processes. If the general
level of activation and the local excitation are sufficiently high, the DF interac-
tion pattern may sustain a localized peak of activation even if the initial input is
completely removed. Such sustained patterns of activation may represent a form
of metric working memory of some behavioral history.

Another form of decision making is detection selection among multiple lo-
calized inputs. When two metrically close inputs are introduced into the field
dynamics, a single broader peak forms at an averaged location between the two.
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On the other hand, when the inputs are distant enough, a single peak activation,
centered around one of the inputs, forms. This choice may be influenced by
fluctuations, noise or prior activation history.

Stability properties of the field dynamics permit to define meaningful states
of the system as attractors while the different dynamic regimes and instabilities
allow the implementation of decision making and abstract cognitive mechanisms.
Therefore, the DFT framework offers a suitable and robust interface between
noisy and highly fluctuating information at a lower sensory-motor layer, and
higher layer cognitive functionalities.

The level of abstraction to represent activity in the cortical tissue may vary
from an entire subsurface of the cortex to few or even a single neuron. In fact,
activity patterns in a DF might be represented by the dynamics of single neurons
or nodes. The activity of those nodes is governed by similar dynamics to the
dynamics of a neural field and is given by

τ u̇(t) = −u(t) + h + S(t) + cexcf(u(t)) + η. (2.9)

Similarly to Eq. 2.6, the self excitation term f(u(t)) of strength cexc ∈ R≥ 0

provides a bistable dynamics to the dynamical node. When the input S(t) pushes
the node activity u(t) beyond the threshold, the system enters a detection in-
stability (modulated by f(u(t))) and the positive activity is sustained against
possible fluctuations of the input. If a sufficiently large self excitation is applied,
the node will maintain its positive activation even if the input ceases. The node
can be brought again to the inactive state by an inhibitory input. A dynamical
node can be considered as a neural field of dimensionality zero.

Coupling between several neural fields, even of different dimensionality, is
possible and permits to propagate positive activations between different rep-
resentations or information resources as in the context of scene representation
(Zibner et al., 2011) or object detection and position estimation (Richter et al.,
2012). This property is due to the stability of the attractor states so that the
qualitative dynamics stays invariant and no unpredictable behaviors can be pro-
duced.

In practice, coupling between a dynamical field ui(x, t) and other uj=1...N(x, t)
fields within an architecture is generally performed via the sum of the field’s out-
puts shaped by the sigmoidal non-linearity of Eq. 2.8. The connections strength
can be tuned by synaptic weights cj,i ∈ R≥ 0 as follows

Si(x, t) =

N∑

i 6= j

cj,if(uj(x, t)). (2.10)

The sigmoidal non-linearity ensures that only supra-threshold activities is
propagated to be used as excitatory or inhibitory inputs in the destination field.
Projecting a field’s positive activation can be realized from lower to higher di-
mensional fields or the opposite along a shared dimension. As an example, a
higher dimensional field can provide supra-threshold activation (by summing up
the activation along the extra dimension(s)) and switch on a dynamical node so
that the later can play the role of a peak detector. Dynamical nodes of this type
are used in the DFT framework for behavioral organization described in the next
Section.
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DFT based framework for behavioral organization

Sandamirskaya and Schöner (2011) and Richter et al. (2012) explored how the
DFT framework can be extended to integrate a behavioral organization mecha-
nism with rules that can connect with perceptual, cognitive, and motor processes.
Expressing these rules using DFT elements makes it possible to consider behav-
ioral constraints, in selecting the most appropriate next action, emerging from
perceptual inputs, past behavioral states and the particular embodiment of the
agent (i.e., motor and sensory systems). Such a mechanism will certainly increase
the autonomy of robots situated in natural environments while the intrinsic sta-
bility of states of the DF dynamics will provide the system with the necessary
robustness.

Using the notation of Steinhage and Schöner (1998), a task can be consid-
ered as an ensemble of elementary behaviors (EBs) that should be executed in
a specific order and manner to accomplish an objective. For example, the task
of grasping an object can be subdivided into several subtasks that may be per-
ceptual like detecting or tracking an object, or motor oriented like moving the
end-effector or closing the gripper.

During a behavioral sequence generation and since the behaviorally meaning-
ful states in DFT are attractors, we need a dynamical mechanism to destabilize
the current state in order to proceed to the next one. This problem was addressed
by implementing in DFT concepts from the theory of intentionality (Searle, 1983)
like the intention and condition of satisfaction in performing actions. The argu-
ment behind this conceptual choice is that every action-related state of a system’s
dynamics needs a correspondent condition of satisfaction (CoS) state, which sig-
nals accomplishment of the current action and triggers a sequential transition.
For the grasping example, the first action of a cognitive agent will start with
the intention to detect the object and estimate its position. Once the object is
detected (first action’s CoS fulfilled), the second action should initiate the end-
effector movement toward it with the intention to be as close as possible to the
grasping point. As soon as the end-effector reaches the object (second action’s
CoS fulfilled), the last action will close the gripper with the intention to execute
the grasp with a certain strength or a specific closing angle (last action’s CoS
fulfilled).

Following these concepts, an elementary behavior (EB) is modeled so that
it comprises both, a higher level representation of the intention and CoS of an
action, as well as a low level sensory-motor representation that receives inputs
directly from robot’s sensors. Using this scheme, architectures of several EBs, as
well as different behavioral constraints between these EBs, can be implemented
using DFT components.

Elementary behavior. In an EB (see Figure 2.6), the intention and CoS
states of an action are modeled using two dynamical nodes, intention (i) and CoS
(c). The state of the intention node determines if the EB is active or inactive
(for example, the intention to reach for an object in a grasping task). When the
EB is active, the state of the CoS node determines whether the behavior has
been completed (the object has been reached). To ensure that the CoS node
can turn on only if the EB is active, the intention node provides a sub-threshold
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excitatory input to the CoS node. However, this input is not sufficient to activate
the CoS node and additional activation describing the current behavioral state
and the target is needed. After completing the behavior, the CoS node turns
on and inhibits the intention node. The intention and CoS nodes are coupled
to two dynamical fields, the intention and CoS fields, that represent graded
information about the EB intention and CoS. The intention and CoS fields play
the interface role between the higher level representation of a behavior and the
low level sensory-motor systems.

Figure 2.6: DFT-based model of an elementary behavior (EB). This figure is in
part adapted from (Richter et al., 2012).

The intention field permits to encode, over a metric feature x of any dimen-
sion, the behavior intention (for example, the intended movement target of the
end-effector in the grasping task) that is forwarded as movement parameters to
the dynamics that drive the effector behavior. In addition, the behavior inten-
tion is propagated to the CoS field as a sub-threshold activation. Depending on
the nature of the EB, the behavioral target may be received from a perceptual
system or from another EB.

On the other hand, the CoS field represents the current perceptual state of
the behavior being executed (in our example, the current end-effector position
that can be acquired as a feedback from the hardware); and it is used to signal
the accomplishment of the behavior when the action target and the current
perceptual states overlap. Depending on the type of the sensory input, the CoS
field may share the same metric feature y and dimension with the intention field
or be defined differently. For instance, if the end-effector is tracked by some
visual system during the movement instead, the CoS field should be defined over
a perceptual feature dimension.

Executing our exemplary grasping task requires a set of EBs that are coupled
together through behavioral constraints to form an architecture and sequentially
activated to generate the necessary actions. In the resulting architecture, the task
is modeled as a dynamical node that activates, through excitatory task inputs,
the intention nodes of all EBs involved, as well as, the respective constraints.

To illustrate how the DFT based behavioral organization mechanism works,
I will take the execution example of one EB.
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To trigger the behavior’s start, the task dynamical node (t) is activated by
some external input I > |h| according to

τ u̇t(t) = −ut(t) + h+ I + cexc,tf(ut(t)) + η. (2.11)

Once activated, the task excitatory input f(ut(t)), with a strength set by the
synaptic weight ct,i ∈ R≥ 0 such that ct,i > |h|, turns on the EB intention node
described by

τ u̇i(t) = −ui(t) + h+ cexc,if(ui(t)) + ct,if(ut(t)) + cCoS,if(uCoS(t)). (2.12)

After accomplishing the behavior, the intention node gets deactivated by an
inhibitory input f(uCoS(t)) coming from the CoS node that is tuned by cCoS,i ∈
R≤ 0 so that |cCoS,i| > (ct,i − |h|+ cexc,i).

When the intention node gets activated, a homogeneous boost f(ui(t)) is
provided to the EB intention field and to the CoS node. Combined with a
localized sub-threshold activation Sperc,int(x, t) encoding the target of the action,
the intention field forms a peak activation governed by

τ u̇int(x, t) = −uint(x, t) + h+ Sint(x, t) +

∫

ω(x− x′)f(uint(x, t))dx
′ + η, (2.13)

where

Sint(x, t) = ci,intf(ui(t)) + cperc,intSperc,int(x, t). (2.14)

The connection weights ci,int, cperc,int ∈ R≥ 0 are tuned so that the intention
field forms a peak only if the behavior target was defined and the intention node
is turned on.

The intention peak activates the movement dynamics that starts driving the
effector to execute the action. The interaction kernel ω(x− x′) consists of a sin-
gle excitatory mode with additional global inhibition to prevent multiple peaks
to form in the case where additional sensory inputs are provided to the inten-
tion field (an action should have only one intention at a time along the feature
dimension).

The localized peak activation in the intention field represents the behavior
intention and is propagated to the CoS field as a sub-threshold excitatory input
f(uint(x, t)). Combined with the progressing sub-threshold input representing the
current perceptual state of the behavior Sperc,CoS(y, t), the CoS field activation
dynamics is described by

τ u̇CoS(y, t) = −uCoS(y, t)+h+SCoS(y, t)+

∫

ω(y−y′)f(uCoS(y, t))dx
′+η, (2.15)

where

SCoS(y, t) = Tint,CoS ⋄ cint,CoSf(uint(y, t)) + cperc,CoSSperc,CoS(y, t). (2.16)
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The weights cint,CoS, cperc,CoS ∈ R≥ 0 are set so that only an overlap between
the intention and the perceptual inputs can induce a peak in the CoS field. A
peak in the CoS field signals the successful completion of the EB by indicating
that the behavior target state has been reached. If the intention and CoS fields
do not share the same feature dimensions, a match mapping process Tint,cos via a
matching operation (⋄) is required for the input coming from the intention field.

The EB CoS node plays the role of a peak detector for the CoS field and
gets activated through the integral of the thresholded activation f(uCoS(y, t)) as
follows

τ u̇c(t) = −uc(t) + h+ cexc,cf(uc(t)) + ci,cf(ui(t))

+

∫

cCoS,cf(uCoS(y, t)) + η. (2.17)

The connection parameters cCoS,c, ci,c ∈ R≥ 0 are chosen so that the CoS node
turns on only if the intention node is currently activated f(ui(t)) and there is a
peak in the CoS field.

When the CoS node is activated, a cascade of instabilities in the elementary
behavior starts. The intention node turns off and ceases to excite the intention
field; which goes through a reverse detection instability. Consequently, the CoS
field looses its activation and turns off the CoS node. After deactivating the
task node, all elements of the EB are now inactive and the action has been
accomplished.

Behavioral constraints. To execute a complex task like grasping an object,
several EBs are required. The set of EBs comprises the behavioral repertory of
the agent (detect an object, move end-effector toward the object, ...). To execute
the task, the activation of these EBs has to be organized in time. This is done
by encoding behavioral constraints on the sequential activation of EBs. The
constraints may relate to the embodiment of the agent or can be task specific.

Task specific constraints implement simple rules of behavioral organization by
coupling EBs via dynamical nodes that can be activated or deactivated. These
constraints are conceptually similar to those introduced in Section 2.2.2 and
involve a precondition, suppression and competition between EBs.

A precondition constraint (p) ensures that EB1 can be activated only if EB0

has been successfully completed as shown in Figure 2.7. The precondition node
is activated by the task input and inhibits the intention node of EB1. In turn,
the precondition node is inhibited by the CoS node of EB0. Thus, when the CoS
node is activated, the intention node of EB1 is dis-inhibited. As a result, EB0

and EB1 are activated sequentially. Alternatively, a precondition constraint can
also model a dependence of an EB to some perceptual information and is referred
as a perceptual constraint.
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Figure 2.7: A precondition constraint between two elementary behaviors EB0

and EB1. This figure is in part adapted from (Richter et al., 2012).

A suppression constraint (s) prevents EB1 to be or to become active while EB0

is being executed as illustrated in Figure 2.8. Similarly to the precondition node,
the suppression node inhibits the EB1 intention node. However, the suppression
node is activated both by the task input and input from the EB0 intention node
and is released as soon as the EB0 is completed or terminated.

Figure 2.8: A suppression constraint between two elementary behaviors EB0 and
EB1. This figure is in part adapted from (Richter et al., 2012).

Using two suppression nodes, mutual suppression between two EBs can be
used to implement competition as depicted in Figure 2.9. In this configuration,
the risk of simultaneous active states of EB0 and EB1 may happen but can be
reduced by tuning the dynamics time scales.
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Figure 2.9: A competition constraint between two elementary behaviors EB0 and
EB1. This figure is in part adapted from (Richter et al., 2012).

The mathematical formulation of the dynamical nodes follows the general
mathematical description of the nodes that compose an EB.

Within the same framework, embodied constraints can also be implemented.
An example may arise when an action depends on the current state of the system
like deciding to open or close the gripper of an agent.

Based on the DFT framework, a robotic architecture for action selection and
behavioral organization has been developed and successfully tested in a grasping
task performed by a humanoid robotic platform (Richter et al., 2012). In the
present work, the DFT framework for behavioral organization will be extended
to the problem of generating and organizing timed movements in coordination
with sensed events. The resulting architecture will be tested in simulation with
different robotic tasks and in a hardware implementation of a robot ball hitting
scenario.

2.3 Timed motor acts: dynamical systems per-

spective

Motor control is the process by which humans and animals use their neuromus-
cular system to activate and coordinate the muscles and limbs involved in the
performance of a motor skill (Rosenbaum, 2009). One major issue in studying
human motor control is how do we control the sequencing and timing of our be-
haviors. In every day life, generating movements in the right order is important,
but generating the movements with the right timing can be even more so. People
can, for example, perform very well in batting an incoming ball, playing musical
instruments or dancing with a partner. Exemplary tasks that require a certain
sense of synchronization (or tempo), hence, a capacity to generate actions just
“at the right time”.

Timing is defined in terms of the stability of the temporal structure of an
action: A timed movement takes place in time and compensates for perturbations
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by either holding up or advancing the movement so as to restore as much as
possible the movement time (Schöner, 2002; Bootsma and Van Wieringen, 1990).
Timed movements are actions whose temporal form is reproducible and stable
in the face of perturbations as attested by the invariant velocity profile of the
end-effector (Morasso, 1981).

Most commonly, timing is studied in rhythmic movements like dancing, walk-
ing or running. Nevertheless, stable temporal relationships and reproducible
movement times occur also during discrete motor acts. For instance, if a hand
is slowed down when reaching for an object, the hand opening is slowed as well,
even though, no functional reasons justify that (Jeannerod, 1984). This implies
a form of coordination that tends to keep stable relative timing between the
different movement components in face of varying environmental conditions or
perturbations. In addition, coordination is a very important aspect in action-
perception schemes (Warren, 2006; Goodale and Humphrey, 1998; Bootsma and
Van Wieringen, 1990). Indeed, humans and other animals are able to generate
behavioral patterns that are tightly coordinated with the environment in order to
achieve specific goals like catching or hitting moving objects. Behavioral patterns
that are yet stable and highly adaptive.

The dynamical systems theory offers a suitable and unified framework to
account for these experimental observations. In the following, I will give a brief
description of the dynamical concepts and tools used to analyze and understand
these phenomena.

2.3.1 Timing dynamics

The dynamics approach focuses on the ability of the nervous system to main-
tain persistent patterns of behavior in complex varying environments. Thus,
the ability to immunize these behaviors from the the stochastic nature of the
environment and uncertainties in percepts and acts. The stability of a behav-
ioral pattern is then a central requirement for meaningful and efficient behavior
outcomes. Stability is a central concept in the dynamical systems theory.

The idea that motions of biological systems may be governed by dynami-
cal systems has been a recurrent topic of discussion in human motion science
and biology. The dynamical systems approach defines the relevant variables
of an observed system as attractor states. This formulation ensures a stable
performance for the underlying states while providing them with the necessary
flexibility and adaptation characteristics to changing conditions and constraints
(see Section 2.2.1 for more details).

By exploiting these concepts, dynamic timing models have proven their ca-
pacity to account for absolute timing, relative timing and coordination in general
(Schöner, 2002). From the dynamical systems theory point of view, all timing
models are limit cases of limit cycle attractors (Schöner, 2002). Limit cycle at-
tractors are stable self-sustained non-linear oscillators (Strogatz, 1994). In other
words, these systems oscillate even in the absence of external periodic forcing and
are stable periodic solutions to which the system is attracted from nearby states.
If the oscillator state is slightly perturbed from the cycle orbit, it resists and
returns back to the original cycle demonstrating it’s stability property. This is
an essential property to realize any inter-oscillator coupling (Schöner, 2002). In
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dynamic timing models, the intrinsic dynamics of the oscillator set the temporal
order of the movement and the coordination between movements is captured in
terms of relative timing between the states of coupled oscillators.

In general, this kind of dynamic timing models use exactly solvable nonlinear
oscillators that contain a bifurcation to a limit cycle. This choice is guided by the
need to have complete control over the timing properties and stable states of the
dynamics via temporal-space control parameters (i.e., the frequency/cycle time
and radius). This will permit to show how the timing properties of discrete or
rhythmic movements can be described by the pattern dynamics and discuss the
relation of the pattern variables to the observed effector movements (Schöner,
1990). Limit cycle attractors represent essential elements in the dynamical sys-
tems toolbox to model, among others, human timed behaviors and movements
coordination (Schöner, 1990; Schöner and Kelso, 1988). Indeed, experimental ob-
servations on reproducible amplitude-frequency relationships and on relaxation
after mechanical perturbations of the movements are accounted for by the radial
stability of limit cycle oscillators (Schöner, 2002).

In such kind of modeling, the commonly used limit cycle oscillator is the
Hopf oscillator. A Hopf oscillator is a two-dimensional dynamical system with
the simplest polynomial formulation containing a bifurcation. This instability
occurs from a fixed point to a limit cycle as a parameter crosses a critical value.
In a differential equation, a Hopf bifurcation typically occurs when a complex
conjugate pair of eigenvalues of the linearized flow at a fixed point becomes
purely imaginary (see Section 3.1 for an example of application). In addition,
the Hopf oscillator is completely solvable. Another type of limit cycle oscillator
is inspired by the neuronal structure and properties of the brain, the Amari
oscillator (Amari, 1977; Schöner, 2002). However, the main inconvenience of the
Amari oscillator as a model for movement trajectories is the difficulty to control
parametrically the limit cycle time.

These ideas and concepts have found a large resonance as a theory of devel-
opment that describe the behaviors of complex physical and biological systems.
For example, in a theoretical modeling,Haken et al. (1985) and Kelso (1984),
succeeded to explain, in terms of the relative phase transitions, the human’s
interlimb coordination patterns by means of coupling nonlinear oscillatory pro-
cesses. Using a similar concept, the coordination of phase and antiphase rhythmic
movements could also be captured in a framework that reproduced the sponta-
neous phase transitions as the frequency is varied (Schöner, 2002; Schöner and
Kelso, 1988). Schöner (1990) demonstrated that the same conceptual framework
can account for the coordination of discrete movements if a mechanism is pos-
tulated that switches a limit cycle to some postural state after a single (or even
a half) cycle based on behavioral information. In particular, Schöner (1990)
showed that in a coordination pattern between two effectors, if one effector is
slowed down or accelerated, the other one may change its time course to reduce
the discrepancy in relative timing. In a dynamical analysis of a paddle-juggling
system, Schaal et al. (1996) demonstrated that a juggling pattern can be charac-
terized and evaluated in terms of the stability properties of a nonlinear system
of coupled oscillators.

These dynamical models for discrete and rhythmic movements generation
lie under the nomination of central pattern generators (Ijspeert, 2008). Other
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approaches based on dynamical systems theory can also be used to generate
coordinated discrete or rhythmic movements (see (Degallier and Ijspeert, 2010)
for a review and application examples).

The work presented in this thesis builds on some of these principles to ad-
dress the problem of generating and organizing sequences of timed movements
in coordination with sensed information. In particular, I exploit a framework for
discrete timed movements generation introduced by Schöner and Santos (2001)
to build the timing dynamics inside my model. The Movement planning com-
bines stable fixed points to define postural states and limit cycle attractors to
model the timed movement phases.

2.3.2 Action-Perception dynamics

The empirical field of action-perception systems is aimed to describe the cor-
relation between a behavior performed by an agent (human or animal) and the
perceptual information from its environment that drives this behavior. In nature,
these patterns of behavior can be observed at different levels and in a variety
of tasks, in which the action is initiated and steered by some external sensory
information. Such tasks include, for instance, batting a ball in a baseball game,
catching a flying boomerang, manipulating an object, and avoiding obstacles
during locomotion. In performing this kind of actions, humans and animals ex-
hibit stable and highly flexible behavioral patterns. This are two properties that
can be captured inside the dynamical systems approach.

In action-perception systems, the perceptual information is generally de-
scribed as a variable that expresses a temporal constraint from the task space.
This variable can be computed as the ratio between a measure related to an ap-
proaching object like a distance, an angle, or a diameter and the rate of change
of this measure. This variable finds its origin in biology and is generally com-
puted as the expansion rate in the retina of the observed object as it approaches
(Hancock and Manser, 1997; Hecht and Savelsbergh, 2004; Tresilian, 1991). The
obtained time measure provides an estimate of the remaining time for the object
to reach the observer. This time estimate is commonly called τ and permits to
obtain a time-to-contact judgment (Hecht and Savelsbergh, 2004; Hancock and
Manser, 1997; Bootsma and Van Wieringen, 1990). Eventually, this estimate
may then be used to trigger an action (for example, an avoidance or an inter-
ception) when the former reaches a critical value. However, this time estimate is
based on too many assumptions, like a constant velocity approach, to be precise.
In reality, this is rarely the case.

Actually, the problem of which information is used in order to decide when to
trigger a movement has not been yet solved. It is likely that humans use a per-
ceptually specified time-to-contact measure to control the timing and adapt their
movements during execution (Katsumata and Russell, 2012). Hence, the opera-
tional timing hypothesis implies that humans have to initiate their movements
when a time-to-contact reaches a certain critical value.

Within the dynamical systems approach, an agent and its environment are
described as two dynamical systems that are informationaly and mechanically
coupled to execute a set of behaviors (Warren, 2006; Schöner and Jeka, 1998).
An argument supported, to some extent, by Gibson (1998). These ideas permit
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to unify the two conceptual visions about action-perception systems. A vertical
conception where a central action planner generates the behaviors according to
some perceptual control information, and a more horizontal one in which be-
haviors emerge by direct coupling between sensorial information and parameters
specifying the actions (Warren, 2006).

Dynamical models for action-perception systems couple the perceived timing
of environmental events to the dynamics describing the actions (Schöner, 1994;
Warren, 2006). In this context, the perceived timing plays the role of behavioral
information and it is used to trigger the different behaviors (Schöner, 1990). The
stability property of the approach permits to maintain particular states in face
of various types of perturbations to which the system is continuously exposed,
while instabilities through bifurcation provide the system with the necessary flex-
ibility. Moreover, integrating the timing constraint in generating the behaviors
can be conceptually accounted for. These characteristics ensure a stable action-
perception coupling and an invariant relative timing between the movement and
the perceptual event, i.e., coordination.

Experimental studies on humans and animals in several action-perception
scenarios led to develop several dynamical models as prediction tools for the
obtained observations. Examples of scenarios include: posture analysis in mov-
ing visual environment (Schöner, 1991), plummeting gannets (Lee and Red-
dish, 1981), landing flies (Wagner, 1982), hitting a falling ball (Bootsma and
Van Wieringen, 1990; Lee et al., 1983), and ball juggling by a racket (Dijkstra
et al., 2004; Siegler et al., 2003; Sternad et al., 2001; Schaal et al., 1996). For
instance, an action dynamics with two postural states for the initial and final
positions of the system, and a limit cycle for the actual action that links the two
states, could account for the timed movement of the wing of a diving gannet as
it approaches the water, and for the flight motor of a landing fly as it approaches
a landing surface (Schöner, 1994). Behavioral dynamics developed by Warren
(2006) permitted to analyze the passive and active stabilization regimes in a ball
juggling and object balancing scenarios. In all cases, the visual information flow,
that expresses a time measure of distance, is coupled to the action dynamics as
a behavioral information used to initiate and steer the action.

The movement model proposed in this work is a dynamical action-perception
system. In robot ball catching and hitting scenarios, the developed timing dy-
namics and the behavior organization mechanism permit to generate sequences
of timed actions directed at a moving ball. Both the timed movements and the
behavior organization mechanism are tiedly coupled to perceptual information
about the ball.
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Dynamical model for sequence

generation of timed movements

In robotics, the autonomous sequencing of timed motor acts is not a trivial task,
particularly when online coupling to low level and often noisy sensory information
is needed to initiate, steer, and terminate the different movement phases. More-
over, an autonomous agent is supposed to operate in time-varying environments
where it needs to adapt the movements and react autonomously to external dis-
turbances either by activating, aborting, or reactivating the appropriate behavior
in coordination with sensed events.

In this chapter, I present a dynamical model for timed movements sequence
generation. The proposed model permits to generate and flexibly organize se-
quences of timed behaviors. The design integrates non-linear oscillators for timed
movements generation and a hierarchical neural dynamics architecture for orga-
nizing in time and space the timed behaviors. The autonomous generation of
movement sequences is tiedly coupled to sensory information and adapts online
to external perturbations.

To demonstrate the core properties of the model, a robotic simulation of a
ball catching scenario is used. For this task, single dimension movements are
executed by an end-effector to catch a free-falling ball before moving back to
a base station. Although very simplified, the task is sufficient to illustrate the
inherent features of the model. Extending the model to a more complex robotic
task is considered in Chapter 4.

This chapter is structured as follows. I will start by presenting the dynam-
ics of a timed movement in Section 3.1 followed by an introduction of different
mechanisms for temporal stabilization of movements in Section 3.2 In Section 3.3,
an intuitive description of the hierarchical neural dynamics architecture is pro-
vided. The robotic catching task is illustrated in Section 3.4. Results of the
robotic simulation are presented in Section 3.5 and discussed in Section 3.6.

3.1 Dynamics of timed movement

The dynamics of a timed movement is a modified version of the canonical form
proposed by Schöner and Santos (2001). It consists of a dynamical system for
a pair of timing variables (x , y). Although only x is used to define the relevant
task variable at any time, the variable y is an auxiliary needed to represent the
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Chapter 3. Dynamical model for sequence generation of timed movements

oscillatory solution. The dynamical system combines two regimes of operation
and permits an end-effector to start a timed movement from a postural state
toward a target location within a specified time duration. The time course of
the variables x and y is governed by

τ

(
ẋ
ẏ

)

= −cpost a
(
x− xpost

y

)

︸ ︷︷ ︸

postural state

+ chopfH(x, y)
︸ ︷︷ ︸

oscillatory regime

+η. (3.1)

The dynamical system can be operated in two separate dynamic regimes by
controlling the “neurons” cpost, chopf ∈ [0, 1]. In practice, the sequential activation
of the neurons is controlled by noisy signals defined by sigmoidal nonlinearities,
thus with a tendency to have values either close to 0 or close to 1.

In the postural regime, (cpost ≈ 1; chopf ≈ 0), the timing variable x relaxes
to the fixed point attractor xpost with a strength set by the term a > 0. The
time scale of the dynamics is controlled by τ that can be tuned to overcome
delays during the switch between the dynamic regimes and so, accommodate
real time implementations. The dynamics are augmented by Gaussian white
noise η ∼ N(0, n) with mean 0 and variance n. The noise signal guarantees
escape from unstable states and assures robustness to the system.

The oscillatory regime, (cpost ≈ 0; chopf ≈ 1), stabilizes a periodic solution
along a limit cycle attractor defined by the normal form of a Hopf bifurcation
(Strogatz, 1994). The Hopf oscillator has many interesting properties, among
which: (a) it has a unique periodic solution that is globally stable, (b) this
solution can be found analytically and is a perfect sine, and (c) the frequency
and the amplitude are explicit parameters that can be tuned and modified on-
line. The Hopf term is given by

H(x, y) =

(
λ −ω
ω λ

)(
x− r − xinit

y

)

−
(
(x− r − xinit)

2 + y2
)
(
x− r − xinit

y

)

,

(3.2)

where the oscillator intrinsic frequency ω defines the movement cycle time
T = 2π

ω
and the amplitude of the Hopf contribution is specified by λ = r2 where

r = xtarget−xinit
2

is the oscillator radius. In normal case, to generate a discrete
timed movement, the oscillatory regime is activated during a half cycle only.

In phase portrait, the Hopf cycle is shifted along x-axis by the Hopf radius
r and initial state xinit. This modifications introduce a variable offset along
the movement dimension spanned by the timing variable x. The new system
permits to define a modulated harmonic trajectory for the timed movement so
that x smoothly rises from the current xinit toward the target location xtarget
during the oscillatory regime.

If taken individually, the Hopf oscillator described in Eq. 3.2 represents the
simplest form containing a bifurcation from a fixed point to a limit cycle attractor
as the parameter λ is varied. When λ < 0, the system has a globally attractive
fixed point at (r + xinit, 0). A supercritical Hopf bifurcation occurs when λ >
0. The bifurcation destabilizes the fixed point and leads to a system with a
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3.2. Temporal stabilization of movements

stable periodic solution (attractor limit cycle), a sine of amplitude r =
√
λ and

frequency ω. If it happens that the system is initially at the unstable fixed point
when the bifurcation occurs, a noise term is generally added to the dynamics
to guarantee the escape from the unstable state and the convergence to the
attracting limit cycle. In our case, the special arrangements in the dynamics
ensure that the system is always in an attractor state in both operational regimes.
Thus, the noise term in Eq. 3.1 is an extra security measure.

3.2 Temporal stabilization of movements

Humans generate flexible sequences of movements that are highly adaptive.
Moreover, these actions tend to have a stable temporal structure. Indeed, exper-
imental evidences showed that the generated movements take place in time and
compensate for perturbations by either accelerating or decelerating the move-
ment so as to restore as much as possible the overall movement time (Schöner,
2002; Bootsma and Van Wieringen, 1990).

The timed movement dynamics defined in Eq. 3.1 permits to generate discrete
timed movements by means of a half cycle of the Hopf oscillation as illustrated
in Figure 3.1 (top plots). The major property of a limit cycle attractor is that
if a short-time perturbation occurs, the system will resume to the limit cycle
afterwards, as depicted on Figure 3.1 (bottom plots).
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Figure 3.1: Generating a discrete timed movement by means of a half cycle
of the Hopf oscillation. The plots in the top panels illustrate a discrete timed
movement resulting from integrating the Hopf dynamics during a half cycle (here
3s). When a short perturbation occurred at about one third of the movement
time, the state of the system resumed quickly to the limit cycle as shown in the
bottom panels.

Furthermore, the Hopf amplitude can be modulated online by directly chang-
ing the oscillator radius r in Eq. 3.2. Such feature allows us to very easily, and
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Chapter 3. Dynamical model for sequence generation of timed movements

smoothly, modulate the system’s behavior according to the desired trajectory
output.

In a robotic application, this feature is necessary given that the target location
xtarget of a timed movement is usually a varying prediction based on low level and
often noisy sensory information. However, doing so will introduce a perturbation
in the oscillator phase causing a permanent phase shift of the signal compared
to the unperturbed system. In our case, this is translated by a non-zero velocity
at the target point implying an incorrect timing of the movement as shown in
Figure 3.2. Here, the timed movement defined by x expresses the position of
an effector moving toward an initial target xtarget = 2 in a total time of 3s. At
about two thirds of the movement cycle, the target is moved away to xtarget = 3.
The oscillator accelerated the movement velocity ẋ but failed to compensate for
the perturbation and reach the new target in time.
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Figure 3.2: A perturbation during a discrete timed movement. The timed move-
ment is perturbed at about two thirds of the cycle by moving away the target.
As a result, the perturbed system accelerates the movement as compared to the
initial one but fails to compensate for the perturbation and reach the new target
leading to an incorrect timing.

To overcome this and to ensure the correct timing, the movement must be
updating while it is in execution. This can be done in two different ways :
(a) modulating the frequency of the oscillator, (b) modulating the movement
dynamics, so as to compensate for perturbations by accelerating or decelerating
the movement accordingly while keeping the total movement time stable.

3.2.1 Modulating the oscillator frequency

Modulating the oscillator frequency implies updating the cycle time of the move-
ment. In this work, I developed an update rule for the oscillator half cycle time
Thcycle = T

2
in Eq. 3.2 during the timed movement, i.e., during half time of the

limit cycle. The update rule couples the movement dynamics of the end-effector
with perceptual information about the moving object. For instance, in a ball
interception task, the perceptual information represent a predicted interception
point of the ball that defines the target of the timed movement xtarget, and a
prediction of the time needed by the ball to reach this point specified by the
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time-to-impact btim. Based on these perceptual information, Thcycle is set to sat-
isfy

Thcycle =
2 r btim
d(t)

, (3.3)

where d(t) = |xtarget −x| is the currently measured remaining distance to the
target.

The update rule assumes a linear relationship between the time remaining and
the distance to be covered in order to reach the movement goal. This formulation
stabilizes the total movement time and ensures a synchronization between the
end-effector and the moving ball.

Figures 3.3 and 3.4 show different simulations of the update mechanism for
a fixed movement time MT = 3s. In both figures, three different realizations
by integrating the dynamics in Eq. 3.1 are displayed each as a cycle time Thcycle,
position x, and velocity ẋ. The switching between the dynamic regimes are
performed using a competitive dynamics of the form described in Section 2.2.2.
In both figures, the first realization generates a timed movement from an initial
state xinit = 0 toward a target location xtarget = 2, the second realization depicts
a timed movement from xinit = 0 to xtarget = 3, and the third realization starts
from the same initial state xinit = 0 toward the first target xtarget = 2.

In Figure 3.3, the target of the third realization is moved instantaneously to
the second target xtarget = 3 at about two thirds of the cycle. In Figure 3.4,
the target of the third realization is moved gradually away to the second target
xtarget = 3 at about one third of the cycle. In both cases, the update mechanism
produces a velocity curve that accelerates the movement to cover the larger
distance in the same time MT = 3s and reach the target in time.
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Figure 3.3: Modulating the oscillator frequency to accelerate the movement and
compensate for instantaneous perturbation. Three other realizations of the timed
movement dynamics in Eq. 3.1 using the proposed update rule are displayed. The
initial and final systems share the same starting state but reach for different tar-
gets. The perturbed system starts with the same configuration as the initial
system. At about two thirds of the cycle, the target of the movement is in-
stantaneously increased to match the final system. The perturbation induces an
acceleration and the perturbed system reaches the target in time.
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Figure 3.4: Modulating the oscillator frequency to accelerate the movement and
compensate for gradual perturbation. Three different realizations of the timed
movement dynamics in Eq. 3.1 using the proposed update rule are displayed.
The target of the perturbed system is moved gradually at about one third of the
cycle to match the final system. Here also, the updating dynamics generates the
required velocity profile to reach the new target in time.
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The update mechanism is also able to handle situations where the target
is displaced toward the end-effector during movement. In Figure 3.5, the first
realization generates a timed movement from an initial state xinit = 0 toward
a target location xtarget = 2.5, the second realization shows a timed movement
from xinit = 0 to xtarget = 3, and the third realization starts from the same initial
state xinit = 0 toward the second target xtarget = 3. At about two thirds of the
cycle, the target of the third realization is moved down to match the first target
xtarget = 2.5. Consequently, the mechanism decelerates the movement to cover
the smaller distance in the same time MT = 3s and reach the target in time.
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Figure 3.5: Modulating the oscillator frequency to decelerate the movement and
compensate for instantaneous perturbation. Three different realizations of the
timed movement dynamics in Eq. 3.1 using the proposed update rule are dis-
played. The target of the perturbed system is moved instantaneously down at
about two thirds of the cycle to match the initial system. Here, the updating
dynamics generates the required deceleration to reach the new target in time.

The update rule allows a fast and precise adaptation of the movements in
presence of perturbations. Nevertheless, the update mechanism is not perfect.
As can be seen in the figures, peaks of speed at the end of the movements can be
observed. These undesired accelerations are due to the use of the time-to-impact
variable in the rule formula. Furthermore, a division by zero can occur if the
target is exactly reached before stopping the oscillation. These effects can be
minimized by a behavioral organization that switches off the oscillatory regime
when the end-effector reaches a predefined and small threshold distance to the
target.

3.2.2 Modulating the movement dynamics

A discrete analogue of frequency locking between two coupled timing dynamics
is proposed by Schöner and Santos (2001). The system permits a temporal coor-
dination of two robot arms and synchronized movements even if the movement
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Chapter 3. Dynamical model for sequence generation of timed movements

onsets are not perfectly simultaneous. The coupling terms modify the Hopf con-
tributions in both timing dynamics. A complete analysis of these properties can
be found in (Schöner, 1990).

Following the same principle, an update mechanism can be realized by cou-
pling the Hopf contribution in both dimensions (x , y) to their respective analyt-
ical solutions (x′ , y′) given by

x′ = r(1− cos(ωt)), (3.4)

y′ = −r sin(ωt). (3.5)

In this case, the movement cycle time specified by Thcycle remains unchanged.
The coupling affects the Hopf contribution in Eq. 3.1 as follows

τ

(
ẋ
ẏ

)

= ...+ chopfH(x, y) + chopf cw

(
x′ − x
y′ − y

)

+ ..., (3.6)

where cw is the coupling strength. The coupling term is multiplied by the
neuron chopf to ensure that the coupling is effective only when the Hopf con-
tribution is activated. The proposed update mechanism permits to synchronize
the Hopf contribution in x and y dimensions with their analytical solutions. The
perturbations in the target point will modulate the movement dynamics and gen-
erate the velocity curves necessary to compensate and stabilize the movement
time.

Figures 3.6, 3.7 and 3.8 illustrate the performance of the update rule in similar
experiments as those exposed in Section 3.2.1.
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Figure 3.6: Modulating the movement dynamics to accelerate the movement and
compensate for instantaneous perturbation. Performance of the update mecha-
nism when the target of the perturbed system is moved instantanously to match
the final system. The perturbed system accelerates the movement and manages
to reach the new target in time.
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Figure 3.7: Modulating the movement dynamics to accelerate the movement and
compensate for gradual perturbation. Performance of the update mechanism
when the target of the perturbed system is moved gradually to match the final
system. Here also, the perturbed system accelerates the movement and manages
to reach the new target in time.
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Figure 3.8: Modulating the movement dynamics to decelerate the movement and
compensate for instantaneous perturbation. Performance of the update mecha-
nism when the target of the perturbed system is moved instantanously to match
the initial system. Here, the perturbed system decelerates the movement and
manages to reach the new target while keeping the movement time invariant.

The update rule adapts the movements in presence of perturbations and per-
mits a stabilization of the movement time. However, integrating the update
mechanism inside the timing dynamics requires a timer for the analytical func-
tions that should be be started each time the oscillatory regime is activated. A
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necessary disposition to obtain the required solution profiles in coordination with
the oscillator output.

In the present work, I opted for modulating the oscillator frequency as an
update mechanism for the movements. This choice is mainly motivated by the
need of a fast and precise mechanism to compensate for perturbations when
high speed movements have to be generated as is the case for the robotic tasks
considered in this project.

3.3 Organization of timed behaviors

In order to initiate and terminate the different timed movements at appropriate
instants in time, a form of behavioral organization is required. For that pur-
pose, a neural dynamics architecture is built upon the DFT based framework for
behavioral organization previously introduced in Section 2.2.2.

The neural architecture is organized hierarchically into two levels of abstrac-
tion. The upper level models the different timed behaviors that compose a robotic
task in the form of higher level EBs and encodes their sequencing rules. To ini-
tiate or terminate a timed movement, a higher level EB controls a lower level
movement module that interacts directly with the movement dynamics described
in Section 3.1. A movement module is organized horizontally into three EBs and,
when activated, permits to (1) update the initial state before starting a move-
ment. (2) initiate a timed movement for an end-effector toward a target location
by switching the dynamics to the oscillatory regime. (3) stabilize the end-effector
at a postural state after executing the movement.

3.3.1 Movement module

To generate a timed behavior, the movement module (see Figure 3.9) must be
activated by a higher level EB. The two dynamic regimes described in Section 3.1
express two behaviors (a) ‘move’ EB where the end-effector executes the timed
trajectory toward a target location xtarget during the oscillatory regime (b) ‘fix’
EB stabilizes the end-effector at a postural state after the movement execution.
Furthermore, the initial state xinit needs to be updated before starting the move-
ment. The update process is performed by an ‘update’ EB that allows to start
the behavior from the current ‘real’ end-effector state xcur (read from the hard-
ware sensory) and so, initiate the timed movement from any position along the
movement dimension.

To ensure that an initial state update happens before a movement starts and
that the end-effector stabilizes at a postural state after a movement, behavioral
constraints are set between the movement module EBs.
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Figure 3.9: The movement module used to generate the timed behaviors. The
‘update’ and ‘move’ EBs can be activated or deactivated through the colored
intention ‘i’ and CoS ‘c’ nodes by a higher level EB while the ‘fix’ EB is always
activated by the task input ‘T’. Behavioral constraints are set between the EBs
through a suppression ‘s’ and precondition ‘p’ nodes.

‘update’ EB

The ‘update’ EB permits to update the initial movement state xinit before starting
the timed behavior. When the intention node of the ‘update’ EB gets activated,
a sub-threshold boost is provided to the EB intention field and the CoS node.
Combined with a Gaussian input centered at the current robot state xcur, the
intention field forms a localized peak that is propagated as a sub-threshold acti-
vation to the EB CoS field. The perceptual input to the intention field represents
the target of the update action and is given by the Gaussian

Sup
perc,int(x, t) = cupperc,int exp

(

−(xcur − x′)2

2σ2

)

, (3.7)

where the weight cupperc,int sets the strength of the input and σ defines the range
of the excitation. Simultaneously, the intention node output f(uupi (t)) = cup ≈ 1
(i.e., the sigmoided activation output) turns on a dynamical system with a fixed
point attractor set at the state xcur to update the initial state xinit

ẋinit = −cup a(xinit − xcur), (3.8)

where a > 0 sets the attraction strength. In addition to the input coming
from the intention field, the CoS field receives the variable xinit as a sub-threshold
Gaussian input defined by

Sup
perc,CoS(x, t) = cupperc,CoS exp

(

−(xinit − x′)2

2σ2

)

, (3.9)
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with a strength set by cupperc,CoS and a range specified by σ. When the two
inputs overlap, the update process is completed and a peak activation forms.
The CoS node of the EB acts as a peak detector, gets activated, and inhibits
the EB intention node. Since the peak in the CoS field will not persist when the
timed movement starts and changes the current state xcur, the CoS node is self-
sustained and stays active until the next update process for a new movement. The
mathematical formulation of the EB follows the general mathematical description
of an EB given by the DFT based framework for behavioral organization in
Section 2.2.2.

‘move’ EB

After updating xinit, the ‘move’ EB intention node gets activated and a homoge-
neous boost is provided to the EB intention field and to the CoS node. With a
sub-threshold activation centered at the target location xtarget, the intention field
forms a localized peak activation that is propagated to EB CoS field. The EB
intention field umv

i (x, t) receives the target spatial position either directly from
the perceptual field (introduced further) or from a separate update module where
dynamical fields encode the movement targets as in the case where a movement
module is shared by more than one higher level EB.

The target location is supplied to the timed movement dynamics in Eq. 3.1
(see Section 3.1) by extracting the peak position on the intention field using

ẋtarget = −
(∫

f(umv
i (x, t))dx

)

xtarget +

∫

x f(umv
i (x, t))dx, (3.10)

where f(.) is a sigmoid function. In Eq. 3.10, the field activation is considered
as a probability distribution where the mean is mapped into an attractor, a more
detailed explanation can be found in (Zibner et al., 2011).

At the same time, the intention node output f(umv
i (t)) = chopf ≈ 1 (while

cpost ≈ 0) switches the movements dynamics from the postural to the oscillatory
regime and lets the timing variable x evolve along a harmonic trajectory from
xinit toward xtarget.

Combined with the activation coming from the intention field, the CoS field
receives the timing variable x as a Gaussian shaped input and forms a peak
activation when the two inputs overlap after reaching the target. The EB CoS
node turns on and inhibits the intention node. The mathematical formulation of
the EB follows the general mathematical description of an EB given by the DFT
based framework for behavioral organization in Section 2.2.2.

‘fix’ EB

After completing the timed movement, the ‘fix’ EB intention node gets activated
and switches the dynamics in Eq. 3.1 back to the postural regime f(ufixi (t)) =
cpost ≈ 1 (while chopf ≈ 0) which stabilizes the end-effector at the postural state
xpost. Simultaneously, a homogeneous boost is provided to the EB intention field
that forms a localized peak activation centered at the final (reached) position.
The EB does not have a CoS node or field since it characterizes a postural state.
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The mathematical formulation of the EB follows the general mathematical de-
scription of an EB given by the DFT based framework for behavioral organization
in Section 2.2.2, but without the CoS part.

Behavioral constraints

Behavioral constraints between the movement module EBs are necessary to en-
sure the correct execution order (see Figure 3.9). A precondition constraint,
modeled as a precondition node, between the ‘update’ and ‘move’ EBs imposes
that an update of the movement initial state xinit is always performed before the
movement starts. Similarly, a suppression constraint, in the form of a suppres-
sion node, prevents the ‘fix’ EB from becoming active while the ‘move’ EB is
being executed.

While the precondition node is initially activated and gets inhibited after the
update process by the ‘update’ EB CoS node, the suppression node is turned on
by the ‘move’ EB intention node until the timed movement is terminated. The
mathematical formulation of the dynamical nodes follows the general mathemat-
ical description given by the DFT based framework for behavioral organization
in Section 2.2.2 of the nodes that compose an EB.

3.3.2 Sequential organization of timed behaviors

Within the neural dynamics architecture, the timed behaviors that compose a
robotic task are modeled by higher level EBs. To initiate or terminate a timed
movement, the higher level EB needs to activate or deactivate a lower level
movement module (respectively).

To activate a movement module, the higher level EB intention node turns
on and activates, via supra-threshold inputs, the intention nodes of the ‘update’
and ‘move’ EBs as well as the precondition constraint while only sub-threshold
boosts are given to their CoS nodes, the suppression constraint, and to its own
CoS node. As soon as the precondition node is active, it inhibits the ‘move’ EB
intention node and prevents it from being active while the ‘update’ EB is being
executed. Once the initial movement state is updated, the CoS node of the
‘update’ EB gets activated and inhibits the precondition node. The inhibited
precondition node releases its inhibition from the ‘move’ EB intention node.
The latter turns on and starts the timed movement. Simultaneously, the ‘move’
EB intention node activates the suppression constraint which, in turn, inhibits
the ‘fix’ EB intention node to release the fixation dynamics. The fact that the
suppression node is already boosted by the higher level EB intention node reduces
the possibility to have a simultaneous active state of the two dynamic regimes and
ensures a fast switch. In the architecture, the ‘fix’ EB intention node is active by
default through excitatory input coming from the task node, introduced further.
This configuration ensures that the movement dynamics in Eq. 3.1 is either in
the postural or oscillatory regime during movement generation.

On the other hand, the CoS node of the higher level EB receives sub-threshold
inputs from the CoS nodes of the ‘update’ and ‘move’ EBs so that the former
gets activated only if both the update and movement are completed. As soon as
the CoS node turns on, the intention node of the higher level EB gets inhibited
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and consequently ceases its inputs to the movement module which gets deacti-
vated as well. This cascade of instabilities indicates that the timed movement is
completed. Additionally, the same neural connections permit to abort a timed
movement by inhibiting the higher level EB intention node through, for example,
a perceptual constraint about the robotic task. When the movement module is
turned off, the suppression constraint is released and the ‘fix’ EB gets activated
again, switching the dynamics back to the postural regime. The higher level
EB does not have a direct linkage to the sensory-motor system like a traditional
EB but is meant to control implicitly the generation of movements. Therefore,
the intention and CoS fields are omitted in the EB definition but the rest of the
mathematical formulation follows the general mathematical description of an EB
given by the DFT based framework for behavioral organization in Section 2.2.2.

For the robotic catching task considered in Section 3.4, two timed behaviors
are defined. A ‘move to catch’ EB starts a timed movement toward the predicted
catching point to intercept a free falling ball and a ‘move to base’ EB brings the
end-effector back to a base station after executing the task (see Figure 3.11).

Offset suppression nodes

The fact that the CoS node of the higher level EB is not self sustained and
turns off as soon as the timed behavior is executed and the movement module
is deactivated, will lead to reactivate the EB intention node. This may result
in an undesirable oscillation between the active and inactive state of both the
intention and CoS nodes of the higher level EB. To prevent such a situation,
an offset suppression node is used to keep the intention node inhibited when the
target location is reached. The offset suppression node plays the role of a memory
of the accomplished movement and gets activated as soon as the target location
is approached with a predefined small offset. The mathematical formulation of
the offset suppression nodes follows the general mathematical description given
by the DFT based framework for behavioral organization in Section 2.2.2 of the
nodes that compose an EB.

Sequential constraints

The generated timed behaviors are coordinated and organized in time by setting
sequential constraints between the higher level EBs. A suppression constraint in
the form of a suppression dynamical node is used to prevent the simultaneous
activation of two higher level EBs. The suppression node is activated by the
intention node of the first EB and provides an inhibitory input to the intention
node of the second EB. The use of such a constraint provides a form of flexibility
to the architecture and permits to organize sequentially the different timed be-
haviors that compose a robotic task. Moreover, if two timed behaviors are to be
executed sequentially along the same movement dimension, a movement module
can be shared by two higher level EBs.

Since the robotic catching task is executed along a single axis, the ‘move to
catch’ and ‘move to base’ EBs share a single movement module to control the
end-effector timed movements as shown in Figure 3.11.
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3.3.3 Task input

In the neural architecture, the robotic task is modeled as a dynamical task node.
The task node stays always active during the execution of the task and provides
activation inputs to all intention nodes of the higher level EBs as well as to the
nodes implementing the sequential constraints. Furthermore, the task node ac-
tivates by default the ‘fix’ EB in the movement module to make sure that the
dynamics is in the postural regime unless a movement is initiated. A mathemat-
ical description of a dynamical task node is given by the DFT based framework
for behavioral organization in Section 2.2.2.

3.3.4 Perceptual and Motor systems

The neural dynamics architecture is completely autonomous in the sense that all
timed behaviors are initiated or terminated through online coupling to sensory
information about the task.

In the case of the robotic catching task, perceptual information about the
free falling ball permits to initiate the catching and backward movements. The
coupling is achieved by introducing a perceptual constraint in the form of a pre-
condition dynamical node that is active by default and inhibits the intention
node of the ‘move to catch’ EB. At the same time, the precondition node re-
ceives inhibitory input from a dynamical neural field that is used to encode a
perceptual representation of the environment as well as conditions related to the
task and is referred here as the perceptual field. The perceptual field is defined
over the movement metric dimension and forms a peak activation localized at
the predicted catching point whenever the ball is detected to be falling inside the
robot’s reachable region. The peak activation inhibits the perceptual precondi-
tion which activates the ‘move to catch’ EB intention node to start the catching
movement. If the ball is successfully caught or missed, the ball is no longer de-
tected by the visual system and the perceptual field looses its peak activation.
Consequently, the perceptual precondition reactivates and inhibits the ‘move to
catch’ EB intention node which releases the ‘move to base’ EB intention node to
start the backward movement toward the base.

In this context, the visual system is used to algorithmically per-process per-
ceptual information about the task. Building a dynamical or neurally plausible
visual system is not considered here and is beyond the scope of the present work.

On the motor side, the trajectories of Eq. 3.1 are generated in task space be-
fore being converted into joint angles using an inverse kinematics transformation
and fed to the robotic arm for execution.

3.4 Robotic catching simulation

In a Matlab simulation, the simplified catching task is performed by a two degrees
of freedom (DoFs) manipulator on a free falling ball as depicted in Figure 3.10.
The robot’s end-effector emulates a catching container or a basket. To detect
and predict the ball motion, I assume a visual system that updates perceptual
variables consisting of a prediction of the catching point and an estimation of
the ball reachability criterion bcatchable ∈ [−1, 1].
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Chapter 3. Dynamical model for sequence generation of timed movements

Figure 3.10: The simulated catching task performed by a two degrees of freedom
manipulator on a free falling ball.

The task consists of initiating a timed movement from a base station toward
the predicted catching point as soon as the ball is detected to be catchable
(bcatchable = 1). When the ball is successfully caught or missed (bcatchable = −1), it
is no more detected by the visual system and the end-effector returns back to the
base station ready to execute a new catching movement whenever indicated. The
neural dynamics architecture shown in Figure 3.11 generates the task movements.
Moreover, these timed movements are autonomously sequenced and can be, at
any time, aborted or re-initiated in response to any sudden change in the sensory
information of the ball trajectory.
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3.4. Robotic catching simulation

Figure 3.11: The neural dynamics architecture used to generate the sequences of
timed movements for the robotic catching task. The higher level part encloses the
the ‘move to catch’ and ‘move to base’ EBs which share the control of a lower level
movement module. The movement dynamics gets activated by the movement
module and permits to feed the robot manipulator with the timed trajectories.
The perceptual system encodes a representation of the task environment and
ensures the system autonomy. To prevent the higher level EBs to reactivate,
offset suppression nodes are used to inhibit the EBs intention nodes when their
respective target locations are reached. To preserve the clarity of the architecture
figure, the offset suppression nodes are omitted.

The two timed behaviors are modeled by two higher level EBs, ‘move to
catch’ and ‘move to base’ EBs, that share a single lower level movement module
to control the end-effector movements along the x-axis of a world reference frame.
The prediction of the catching point and the catching condition are encoded into
a one-dimensional perceptual neural field defined over the movement dimension
that spans on the range between [0.2m,0.6m]. The perceptual field receives a
sub-threshold Gaussian input centered at the predicted caTo preserve the clarity
of the architecture figures, the offset suppression nodes are omitted.tching point,
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Chapter 3. Dynamical model for sequence generation of timed movements

in addition to a sub-threshold input expressing the catching condition delivered
by the parameter bcatchable. These perceptual information are propagated to the
movement module (more precisely to the intention field of the ‘move’ EB) via an
external update module that encodes both the catching and the base locations
(not shown in Figure 3.11). The ball is launched from a height of 2m and
accelerates in a free fall toward the catching point. The end-effector dynamics
is governed by Eq. 3.1 (see Section 3.1) along the movement dimension. The
oscillator cycle time is updated using Eq. 3.3 given a prediction of the ball time-

to-impact btim by the visual system. Since the term time-to-contact is often used
to designate a time estimate based on the assumption of constant velocity, I
use the term time-to-impact to express more generally the time up to contact
independent of its prediction method.

3.5 Results

The following experiments illustrate the core features of the model. The results
show how the system was able to generate and flexibly organize the timed move-
ment sequences that compose the robotic task. Moreover, external perturbations
in the ball trajectory permit to evaluate the performance of the dynamical model
in adapting and updating the movement sequences.

To produce the present results, the solutions of the continuous time dynamics
are approximated numerically using the Euler method.

3.5.1 Successful execution of a catching task

The first experiment consists of performing a successful catch (Figure 3.12). This
experiment demonstrates how the dynamical model allowed the emergence of the
necessary sequence of behaviors to autonomously execute the timed interception.
In the following, I will present in details the most relevant results obtained from
this experiment.
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Figure 3.12: The ball and end-effector trajectories during a successful catch. The
vertical dotted lines indicate ball trajectory events.

The ball is launched at time t = 0 s. When the ball is detected and predicted
to fall inside the robot’s catching region (bcatchable = 1) at t ≈ 0.225 s , a localized
peak activation centered at the predicted catching point forms in the perceptual
field (Figure 3.13). All events related to the ball trajectory are indicated in the
result figures by vertical dotted lines as they occur during the experiments.
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Figure 3.13: The trajectory of the perceptual parameter bcatchable and the time
course of activation of the perceptual field during a successful catch. The color-
bar in the bottom right corner shows the color map used for the plot of the
dynamical neural field activation.

To produce the plot over time shown in Figure 3.13 (bottom), a color map
is used to show the field activation along the metric dimension as it unfolds in
time. The color-bar expresses the field activation level.
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Chapter 3. Dynamical model for sequence generation of timed movements

As shown in Figure 3.14, the peak activation inhibits the perceptual precon-
dition (‘mtc perc’) which in turn releases its inhibition from the ‘move to catch’
(abbreviated by ‘mtc’) EB intention node (‘mtc int’).
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Figure 3.14: The time course of activation of the higher level EBs intention and
CoS nodes and the dynamical nodes implementing the perceptual and sequential
constraints during a successful catch.

At t ≈ 0.34 s, ‘mtc int’ turns on and activates the movement module to gener-
ate the timed behavior of the end-effector toward the catching point. Simultane-
ously, ‘mtc int’ activates the suppression constraint ‘mtc supp’ that inhibits the
‘move to base (mtb)’ EB intention node (‘mtb int’) and prevents it from being
active. After reaching the target, the ‘move to catch’ EB CoS node (‘mtc CoS’)
gets activated and inhibits the intention node ‘mtc int’. Additionally, as soon
as the task is executed and the ball is caught (bcatchable = −1) at t ≈ 0.675 s,
the perceptual field looses its activation which brings back the perceptual pre-
condition ‘mtc perc’ to the active state. Consequently, the activated ‘mtc perc’
inhibits the intention node ‘mtc int’ which deactivates the movement module.
The deactivated ‘mtc int’ turns off the suppression node ‘mtc sup’ and leads to
activate the ‘mtb int’ intention node. At t ≈ 0.78 s, the intention node ‘mtb int’
turns on and reactivates the movement module to bring the end-effector back to
the base in a per-specified and fixed time. When the base location is reached, the
‘move to base’ EB CoS node (‘mtb CoS’) turns on and stops the movement by
inhibiting the intention node ‘mtb int’ which deactivates the movement module
at t ≈ 1.87 s.
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Figure 3.15: The time course of activation of the ‘update’ EB when executed
before each movement initiation during a successful catch.

Before starting each timed behavior (here, from the base to the catching
point and back to the base), it is necessary to update the initial state of the
movement as shown in Figure 3.15. Every time when the movement module
gets activated (at t ≈ 0.36 s and 0.8 s), the ‘update’ EB intention node (‘up
int’) turns on (cup = 1) and activates Eq. 3.8 which starts updating the initial
movement state. The update process is completed when a peak activation forms
in the EB CoS field which switches on the EB CoS node (‘up CoS’). ‘up CoS’ is
self-sustained and inhibits ‘up int’ leading to terminate the update process. Note
that the update duration can be tuned and vary according to the metric distance
between the current end-effector state and the movement starting position.
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Figure 3.16: The time course of activation of the ‘move’ EB and the update
precondition node ‘up prec’ during the execution of a successful catch.
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After updating the initial movement state, the two timed movements can
be initiated at t ≈ 0.42 s and 0.98 s. The active ‘up CoS’ node inhibits the
update precondition node (‘up prec’) and permits to activate the ‘move’ EB
intention node (‘move int’). The ‘move int’ output (chopf = 1) switches the
movements dynamics in Eq. 3.1 from the postural to the oscillatory regime and
starts the timed movement (Figure 3.16). Simultaneously, the active ‘move int’
node provides excitatory input to the suppression node (‘move sup’) (Figure 3.17)
which gets activated and suppresses the ‘fix’ EB intention node (‘fix int’)(cpost =
0).
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Figure 3.17: The time course of activation of the ‘fix’ EB when acti-
vated/deactivated through the suppression node ‘move sup’ each time the move-
ment is terminated during a successful catch.

After reaching the target location of each movement (catching point or base),
the ‘move’ EB CoS field forms a peak activation that switches on the EB CoS
node (‘move CoS’). In return, the ‘move CoS’ node inhibits the intention node
‘move int’. The inhibited ‘move int’ node switches off the oscillatory regime
(chopf = 0) and deactivates the suppression node ‘move sup’. Consequently, the
‘fix’ EB intention node ‘fix int’ turns on and switches the dynamics back to the
postural regime (cpost = 1) to fixate the end-effector. By default, the postural
regime permits to stabilize the end-effector state at its current position before
starting and after terminating every timed movement. As you can observe, a
systematic delay is introduced before actual movement is initiated mainly due
to the update phase and the switching dynamics. This time delay is undesirable
and can be reduced by tuning the time scale of the dynamics.

3.5.2 Catching movement abortion after ball reflection

In this experiment, the ball is reflected straight to the top during the end-effector
movement toward the catching point (Figure 3.18). The ball reflection led the
end-effector to abort the timed catching before reaching the target and to start
a backward movement to the base.
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Figure 3.18: The end-effector trajectory when the ball is reflected during the
catching movement. The thin and dotted black line shows the unperturbed
trajectory of the end-effector.

The ball reflection (bcatchable = −1) occurs at t ≈ 0.52 s and the perceptual
field looses it activation (Figure 3.19).
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Figure 3.19: The trajectory of the perceptual parameter bcatchable and the time
course of activation of the perceptual field as the ball is reflected during the
catching movement.

The perceptual precondition ‘mtc perc’ returns to its active state and inhibits
the ‘move to catch’ EB intention node ‘mtc int’ which deactivates the movement
module and stops the timed behavior (Figure 3.20).
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Figure 3.20: The time course of activation of the higher level EBs and the dy-
namical nodes implementing the perceptual and sequential constraints as the
ball is reflected during the catching movement.

The ‘move to base’ EB intention node ‘mtb int’ gets activated and reactivates
the movement module (Figure 3.21). The initial state is updated to the current
position of the end-effector before starting the backward movement to the base.
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Figure 3.21: The time course of activation of the movement module EBs as the
ball is reflected during the catching movement.

52



Chapter 3. Dynamical model for sequence generation of timed movements

3.5.3 Reactivating a catching sequence

During this experiment, I show how the robot is able to reactivate a supplemen-
tary timed movement sequence to execute the catch after ball reflection (Fig-
ure 3.22).
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Figure 3.22: A supplementary catching sequence is reactivated while moving
backward toward the base.

The ball reflection at t ≈ 0.52 s led to stop the execution of the catching
behavior and initiate the backward movement toward the base. Simultaneously,
the reflected ball starts falling down again at t ≈ 1.1 s and the robot re-initiated
a new catching sequence from the current end-effector position to successfully
catch the ball at t ≈ 1.82 s before moving back to the base.
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Figure 3.23: The trajectory of the perceptual parameter bcatchable and the time
course of activation of the perceptual field as a catching sequence is reactivated
during the backward movement.

These events are translated to the perceptual parameters as shown in Fig-
ure 3.23 and the four timed movements are controlled via the higher level EBs
as depicted in Figure 3.24.
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Figure 3.24: The time course of activation of the higher level EBs and the dynam-
ical nodes implementing the perceptual and sequential constraints as a catching
sequence is reactivated during the backward movement.

The movement module is activated four times at different positions along
the metric dimension where, at each time, the initial state is updated before
initiating every timed movement (Figure 3.25).
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Figure 3.25: The time course of activation of the movement module EBs as a
catching sequence is reactivated during the backward movement.
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3.5.4 Updating the catching movement after ball devia-

tion

In the last experiment, the ball is deviated during the end-effector catching move-
ment as shown in Figure 3.26. In order to successfully catch the ball, the robot
had to accelerate toward the new predicted catching point. This acceleration
ensures the correct timing of the movement and is due to the update rule of the
dynamics cycle time in Eq. 3.3 (see Section 3.2.1).
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Figure 3.26: The end-effector trajectory when the ball is deviated during the
catching movement.

Figure 3.26 depicts the adapting end-effector trajectory to the deviated ball
as compared to the unperturbed case. The ball deviation occurs approximately
at one third cycle of the movement time (t ≈ 0.42 s). The end-effector starts
accelerating toward the new catching point and catches the ball at t ≈ 0.68 s
before initiating a backward movement to the base. The perceptual field reflected
online the varying catching point prediction (Figure 3.27) and allowed the target
location of the movement to be updated in the ‘move’ EB intention field as shown
in Figure 3.29.
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Figure 3.27: The trajectory of the perceptual parameter bcatchable and the time
course of activation of the perceptual field as the ball is deviated during the
catching movement.

The higher level EBs (Figure 3.28) executed the updating movement by ac-
tivating the movement module as depicted in Figure 3.29.
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Figure 3.28: The time course of activation of the higher level EBs and the dy-
namical nodes implementing the perceptual and sequential constraints as the
ball is deviated during the catching movement.
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Figure 3.29: The time course of activation of the movement module EBs as the
ball is deviated during the catching movement.
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3.6 Discussion

In this chapter, I have introduced a dynamical model for timed movements se-
quence generation. The model combines oscillator and fixed point dynamics to
generate discrete timed movements and a hierarchical neural dynamics architec-
ture for behavioral organization. The timed actions are organized into sequences
based on behavioral constraints between the robot’s EBs and continuous linkage
to perceptual information about the environment. The core properties of the
system are demonstrated in a simulated catching task on a free falling ball.

The results shows that the system is able to successfully execute a robotic
task that involves sequences of timed movements. Moreover, the direct coupling
to a perceptual system allows the hierarchical architecture to autonomously and
flexibly react to time-varying sensory information about the task by aborting a
running behavior as well as initiating or re-initiating inactive behavior depending
on the current situation. Furthermore, the movement parameters can be updated
to adapt the trajectory on the fly to changing perceptual predictions.

While the fairly simple catching example illustrates the general characteristics
of the system on a single metric dimension, the model can be easily extended
to more complex robotic tasks. Making use of the hierarchical structure and
the standard design of a movement module, the properties of the dynamical
model will be demonstrated in a robotic hitting task (Chapter 4) where several
movement components of a robot manipulator are involved and defined along
multiple feature dimensions.
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Chapter 4

Application of the dynamical

model to a robotic hitting task

The dynamical model introduced in Chapter 3 permits to generate and flexibly
organize sequences of timed movements that are tiedly coupled to sensory infor-
mation about the task environment. Such characteristics play a major role in a
variety of robotic applications where the manipulator needs to coordinate multi-
ple actions with external objects or events and adapt online the movements to a
quickly changing environment as for juggling or hitting a ball. Humans exhibit
natural skills in performing such tasks where they are able to blend and sequence
several movement primitives and coordinate their execution with a perceptual
feedback.

In this chapter, I demonstrate how the proposed dynamical model can be ex-
tended, with low efforts, from a simple catching task to a relatively more complex
robotic application. The adopted scenario is a blend of playing pinball machine
and airhockey: a redundant manipulator arm that keeps hitting a ball up an in-
clined plane. The goal is to keep the ball in play on the inclined plane at all time.
The robotic task requires several timed movements that need to be continuously
sequenced in coordination with visual sensory information about the ball motion.
In addition, obstacles on the inclined plane may introduce unpredictable pertur-
bations in the ball trajectory. This implies a continual capacity of the system to
quickly adapt the sequences of movement to new sensorial contexts, and update
on the fly the movement dynamics during task execution.

Similar scenarios have been repeatedly used to probe real-time robotic con-
trol, the interception of a moving ball (Rapp, 2011; Senoo et al., 2006; Hailing
et al., 2012). In my case, this choice was made to demonstrate my model in
a task that involves several movement components for the end-effector. How-
ever, restrictions due to the hardware and speed limitation of the manipulator,
imposed a simplified experimental setup. Indeed, the movement generation is
performed in 2D and the ball velocity is tuned by the plane inclination.

The rest of the chapter is organized as follows. A detailed description of
the experimental setup is given in Section 4.1 followed by a presentation of the
extended model for the robotic hitting task in Section 4.2. The performance
of the model as well as the reactions to different perturbation experiments are
shown in Section 4.3 and these results are discussed in Section 4.4.
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4.1 Task setting

An overview of the experimental setup for the robotic hitting task is shown in
Figure 4.1. The hitting task involves the eight degrees of freedom (DoFs) robot
arm CoRA and a colored rubber ball (of radius 3 cm and weight 66 g) rolling on an
inclined plane placed in front of the robot. The robotic arm holds a small racket
(10.5 cm in diameter) used to hit the ball. The robot is equipped with a vision
system that tracks and predicts the ball trajectory by means of a color based
tracking process and a linear Kalman filter (respectively). The hitting occurs at
a virtual hitting line ‘just in time’ to drive the ball back up the inclined plane
before returning back to a virtual base line.

Figure 4.1: Graphical overview of the experimental setup.

Ideally, the ball is hit continuously and kept in play on the inclined plane at
all times. The hitting region is constrained by safety margins set on both sides
of the hitting line (marked with a checkerboard pattern in Figure 4.1) to prevent
the real robot from colliding the inclined plane’s left and right borders.

During task execution, different measures of the ball motion are continuously
monitored or updated by the robot’s vision system. These include a prediction of
its landing position along the hitting line, which specify the hitting point xhp. In
addition, the hitting movement is initiated only if the xhp is tested to be inside
the reachable hitting region of the robot by the parameter breachable ∈ [−1, 1].
The last measure expresses the time needed for the ball to reach the hitting
line and referred here as the time-to-impact btim. These parameters control the
initiation of the hitting movement sequences when the xhp time is within a btim
criterion and the ball is inside the robot’s hitting region.

4.1.1 Task movements description

The task movements are designed to accommodate the hardware setup while
respecting the manipulator’s limitations and workspace constraints. As the ap-
proaching ball becomes reachable for hitting (breachable = 1), a timed movement
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is initiated and brings the racket positions xeef and yeef to the predicted xhp.
When the ball btim reaches a time threshold, a second timed movement moves
the racket azimuth orientation φeef to hit the ball.

Once the hit occurs (breachable = −1), the racket φeef is brought to the initial
orientation while its yeef position moves back to the base line. Simultaneously, a
tracking movement is executed along the base line with the aim to be as close as
possible to the predicted xhp for the next hitting sequence (a disposition imposed
by the speed limitation the robot). During in the tracking movement, the robot
is ready to start another timed movement sequence to hit the ball whenever the
vision system signals a predicted xhp and btim satisfying the task conditions.

The timed movement sequence is interrupted if the ball falls out of the inclined
plane after a miss, thus no more detected by the vision system, or if it is reflected
before a hit occurs. Furthermore, these timed movements are sequenced and
adapted autonomously allowing a flexible re-organization able to accommodate
any disturbance in the ball trajectory.

4.1.2 Visual system

The robot manipulator is equipped with a stereo cameras system (SONY DFW
VL500) mounted on a support above the arm on an additional 2 DoF pan/tilt
Amtec module. The pan range is about 180◦, and the tilt movement is in the
range of 90◦. The cameras module is oriented toward the inclined plane (pan
= 0◦, tilt = 60◦). It is operated with the maximum frame rate of 30 frames/s
providing a new measurement estimate every ≈ 33ms. To acquire sensory infor-
mation about the ball motion, only the left camera (with respect to the robot)
is used.

Figure 4.2: General diagram of the visual system.

The robot’s cameras module tracks the ball on the inclined plane by means
of a color-based tracking process. Based on the position measurements and
a discrete time motion model, a linear Kalman filter is used to estimate the
velocity of the ball and predict its trajectory. The hitting point xhp is computed
as the intersection between the ball heading vector and the hitting line while the
time-to-impact btim is approximated using the motion model (see Figure 4.2).
These perceptual information are extracted and algorithmically pre-processed to
be included as parameters in the dynamical model for timed movements sequence
generation. Building a neurally plausible tracking and prediction mechanism is
beyond the present work.
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Chapter 4. Application of the dynamical model to a robotic hitting task

Color based detection process

To detect the colored ball and measure its position on a uniformly white inclined
plane, a color-based detection process is used (see Figure 4.3). Many object
detection mechanisms exist and could have been used in this context, see (Yilmaz
et al., 2006) for a detailed review. In my case, the choice of a color-based detection
process was mainly motivated by the simple experimental setup adopted for the
robotic hitting task.

Figure 4.3: Overview of the color-based segmentation process.

From a still raw RGB (Red, Green, Blue) camera image, the detection pro-
cess starts by generating empirically and off-line color histograms of the ball in
HSV (Hue, Saturation and Value) space. These histograms represent color dis-
tributions in each of the image channels and are used as reference models during
the detection process.

The color-based detection process is composed of five precessing steps imple-
mented in C++ using the OpenCV library (Bradski and Kaehler, 2008) and run
sequentially:

1. the input camera image is converted from the RGB to HSV color space
and split into the three image channels: hue, saturation and value.

2. back projection of the hue and saturation channels is performed using the
generated histogram models. For every image channel, the bin location
corresponding to each pixel is searched for. These bin locations are then
looked up in the histogram model and their values are read and stored in
a back-projected image.

3. thresholding operation is performed in the back-projected hue and satura-
tion channels resulting into two binary images.

4. dilation operation with a rectangular kernel is applied to the binary images.
The objective is to merge neighboring but disparate pixels in each image
channel that probably belongs to the detected ball. The resulting images
are multiplied together element by element and combined in a unique re-
fined image.

5. a clustering algorithm is applied on the refined image to obtain a measure
of the ball position in the camera’s image plane. This algorithm performs a
search in the image and groups the pixels marked to be part of the object
into a cluster that its center represents the ball position q = [u , v]T in
image plane.
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In order to obtain the ball position pb = [x , y]T in the inclined plane coordinate
system, a perspective back-projection from the image to the inclined plane ref-
erence frames is required. More details about the camera projection operations
can be found in Section A.1.

Kalman tracking

The position measurements provided by the detection process are corrupted by
noise that may originate from various sources such that camera’s sensors inac-
curacies or lighting changes during image grabbing. The role of the tracking
module is to keep track where the ball is at any time and provide estimates of its
velocity on the inclined plane and all that based on these noisy measurements.

To perform this job, I opted for a Kalman filter. In short, a Kalman Filter is
a recursive and model-based data processing algorithm that estimates the state
of a noisy linear dynamic system (Schutter et al., 1999; Grewal and Andrews,
1993). It operates recursively on streams of noisy input measurements to produce
a statistically optimal estimate of the underlying system state. A brief review of
the linear Kalman estimator can be found in Section A.2. In order to track the
ball and produce estimates of its real position and velocity by a Kalman filter, I
had to make three assumptions:

1. the ball is rolling on the inclined plane without slip. The choice of small
inclination should enforce this assumption.

2. ball motion can be modeled by a linear discrete-time dynamic system. This
is a naive assumption because it leads to increase the model uncertainties
by neglecting many non-linear parameters like air drag, spin and rolling
friction that actually affect the ball motion.

3. camera measurement noise is Gaussian, white and normally distributed.

However, these assumptions are found to be reasonable and with the help of the
Kalman estimator, I could produce acceptable predictions of the ball motion.

The ball dynamics is governed by the weight mb· g and friction force f , where
mb is the ball mass and g is the gravity constant. It is clear from Figure 4.4 that
the gravity force affects the motion only along the inclined plane’s y-axis while
the friction effect can be decomposed into its orthogonal components for the x-
and y-axes motions. Note that when the ball is rolling upward, for example
after a hit, friction and weight forces along the y-axis act in the same downward
direction trying to decelerate the motion. However, when the ball starts rolling
down, the weight will accelerate the ball while friction is still trying to decelerate
the motion. Note also that the friction f is necessary for rolling and if applied
to the instantaneous rotation axis, it will not produce work and therefore does
not dissipate mechanical energy (Domenech et al., 1987).
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Chapter 4. Application of the dynamical model to a robotic hitting task

Figure 4.4: The dynamics of the ball. The side view drawing (right) shows the
external forces acting on a ball rolling without slip on an inclined plane. The
weight (mb g) is acting vertically on the ball center of mass. The normal reaction
N of the inclined plane is equal to the weight projection (mb g cosα). f is the
friction force, necessary for rolling. In the top view drawing (left), we can see
that the friction force can be split into its orthogonal components (fx , fy). While
fx acts along x-axis, the component fy affects the y-axis motion. We can also
see that the weight projection (mb g sinα) acts only along y-axis.

Physically, forces that induce acceleration and velocities do not influence each
other, if they are perpendicular (orthogonal) and independent (Kohler, 1997).
According to that, the ball motion can be modeled as two separate movements
along x- and y-axes. Hence, to track the ball, two separate Kalman recursions
are evaluated and a linear discrete-time model is derived for each movement axis
of the inclined plane

For motion along the x-axis:

xk+1,x = Axxk,x +wk,x. (4.1)

For motion along the y-axis:

xk+1,y = Ayxk,y +Byuk,y +wk,y. (4.2)

In Eq. 4.1 and 4.2, the state vectors xk,x = [xk , vk,x]
T and xk,y = [yk , vk,y]

T

consist of the ball position and speed at time tk along the inclined plane x- and
y-axes (respectively). The transition matrices Ax and Ay describe the motion
by relating the present state vector at tk+1 to the previous state at tk with
∆t = tk+1 − tk, and are given by

Ax = Ay =

[
1 ∆t
0 1

]

. (4.3)

The random variables vectors wk,x = [wk,x , wk,vx ]
T and wk,y = [wk,y , wk,vy]

T

represent the Gaussian and white process noise affecting position and speed. The
process (additive) noise is used to account for uncertainties in the derived motion
model. For the motion along y-axis in Eq. 4.2, the control matrix By is defined
by

By =

[
∆t2

∆t

]

. (4.4)

The matrix By relates the control input uk,y to the state vector xk,y. The
input uk,y is the commanded acceleration ay induced by the gravity and affecting

65



4.1. Task setting

the ball motion along the inclined plane y-axis as shown in Figure 4.4. Following
the derivation process in Domenech et al. (1987), the acceleration ay can be
derived as

uk,y = ay =
g sinα

1 + Ib
mb r

2
b

, (4.5)

where mb is the ball mass, g is the gravitational constant, α is the plane
inclination, rb is the ball radius and Ib is the ball inertia defined by

Ib =
2mb r

2
b

5
. (4.6)

For the motion along x-axis in Eq. 4.1, I assume that there is no control input
since there is no gravity force acting. However, the ball motion is in reality not
uniform because of perturbations due, for example, to rolling friction and air
drag. These perturbations are modeled by the process noise wk,x.

The linear measurement systems corresponding to the motion models in
Eq. 4.1 and 4.2 are (respectively)

zk,x = Hx

[
x
0

]

+ sk,x, (4.7)

zk,y = Hy

[
y
0

]

+ sk,y, (4.8)

where zk,x and zk,y are the measurement variables of the ball position along
the x- and y-axes at time tk (respectively). The measurement matrices Hx and
Hy are given by

Hx = Hy =
[
1 0

]
. (4.9)

The matrices Hx and Hy relates, respectively, the variables zk,x and zk,y
to the position vector pb = [x , y]T provided by the detection process. The
scalars sk,x and sk,y represent the measurement noise and are used to model,
for example, camera sensors inaccuracies or lighting changes. In practical, the
measurement noise is already present in the position vector pb and is shown here
for completeness and taken to be Gaussian and white.

From the results obtained from experiments conducted in the real setup, we
can show the estimator’s performance in tracking the ball trajectory when the
latter is injected on the inclined plane. Figure 4.5 depicts the predicted, measured
and estimated trajectories of the motion in a sample throw trial.
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Figure 4.5: The predicted, measured and estimated position trajectories as the
ball rolls on the inclined plane.

During the tracking process, the speed estimates are produced through the
cross-correlation between position and speed in the ball motion model. One
way to verify the correctness of these estimates, at least to a certain level, is to
superpose the position trajectory with a plot of the estimated velocity vectors
at every time tk. As shown in Figure 4.6, we can clearly see that the estimated
velocity is always tangent to the trajectory and following the movement direction.
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Figure 4.6: The velocity of the ball is plotted over the estimated position trajec-
tory.

Additionally, the Kalman filters were able to handle situations where the ball
bounced on the right or the left borders of the inclined plane even though no
special dispositions were taken to deal with this non-linearity which illustrates
the robustness of the implementation.
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Prediction of the ball trajectory

For the robotic hitting task, a precise prediction of the ball motion is crucial and
could have been done using different methods:

• Model based methods: consist of integrating over time a derived motion
model to predict the hitting point as in (Muelling et al., 2010) for a robot
table tennis application or in a paddle juggling scenario (Nakashima et al.,
2006). In practical, model based prediction mechanisms are as precise
as the motion models are. In addition, they are able to provide precise
predictions only if sufficient time is given to the model integrator. For the
task considered in this work, the derived motion model contains too many
uncertainties to be used to predict the ball trajectory (see Subsection 4.1.2).
Furthermore, the small surface of the experimental scene, consisting of the
inclined plane, imposes fast and precise predictions.

• Curve fitting based methods: where curve fitting techniques are applied
on pre-recorded set of measurements data during the ball motion as in
(Senoo et al., 2006) where successive least-squares estimations are used
to predict the ball trajectory in a high speed robot batting task. Hailing
et al. (2012) used a similar technique to determine the hitting position in
a Ping-Pong robotic application. In general, such methods need a large
amount of measurements data and so, rely on high speed camera systems
to be effective. In my application, a camera frame rate of 30 frames/s limits
considerably the use of such techniques.

• Learning based methods: estimate the ball dynamics based on several,
off-line, throw trials and use the estimated parameters to predict its motion
during task execution. For example, Kim et al. (2010) used an autonomous
dynamical system to estimate the dynamics and predict the catching point
of a moving ball for an iCub humanoid robot. In practical, the throw trials
are performed in an invariant experimental setting. This means that any
change in the setting implies performing again the throws and re-estimating
the dynamics. In order to have the possibility to change the application
setup, like the plane inclination or the type of the ball, without the need
to redo throw trials, I did not consider learning approaches in this work.

• Kalman filter based methods: modify the Kalman recursion algorithm
by introducing factors to enable long-term predictions as in (Hujic et al.,
1998). However, such methods assume a well-defined motion model of the
ball and suffers from the lack of reactivity when sudden changes happen
during motion. Such methods have not been tested in this work.

To extract the perceptual parameters and variables required for the task, a
geometrical approach based on the ball position and speed estimates is developed.

Hitting point xhp. The hitting point xhp is a prediction of the ball landing
position as it starts rolling down on the inclined plane. A curvilinear Kine-
matics study of the ball trajectory permits to compute the motion direction at
position (xk, yk) and time tk using the tangent velocity vector at that position.
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Chapter 4. Application of the dynamical model to a robotic hitting task

The extracted direction is used to approximate the trajectory as a rectilinear

motion along a straight line segment of length L. While this approximation
doesn’t permit to predict the overall trajectory at any moment in time, it pro-
vides an estimation of the landing position that increases in precision as the ball
approaches the hitting line. The prediction process is continuously performed
during task execution and is described in the following:

Figure 4.7: The ball heading direction φb on the inclined plane coordinate system
ΣP .

The heading direction of the moving ball (Figure 4.7) is continuously com-
puted using the velocity vector estimate vk = [vk,x, vk,y]

T by the formula

φb(tk) = φb = arctan
vk,y
vk,x

. (4.10)

In a coordinate system ΣB attached to the ball but always aligned with the
external inclined plane coordinate system ΣP , a vector r = [L , 0 , 0]T is defined,
where L is a suitably large number. Using the heading direction φb(tk), the
current ball position and after some simple transformations, a line segment sh
of length L can be derived to represent the ball heading vector (Figure 4.8).

xhp is computed as the intersection point between sh and sd where sd is a line
segment placed at the bottom of the inclined plane and parallel to the hitting
line with a distance equal to the ball radius rb as shown in Figure 4.8.
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Figure 4.8: The hitting point xhp is computed as the intersection point of the
line segments sh and sd.

The predicted landing position xhp is continuously tested to be inside the
robot’s hitting region by

breachable =

{

1, if xhp is predicted to be inside the hitting region.

−1, otherwise.
(4.11)

Time-to-impact btim. The time-to-impact btim is a prediction of the time
needed by the ball to reach xhp and can be approximated by the formula

btim =
−vk,y −

√

v2k,y − 2 ay (yk − rb)

ay
, (4.12)

where ay is the ball acceleration along y-axis and the difference yk − rb rep-
resents the remaining distance to the hitting line.

Using the same throw trial of Figure 4.5, Figure 4.9 illustrates the prediction
mechanism. The ball is launched on the inclined plane at time t = 0 s. While
it is rolling toward the top, xhp is given as [0 , 0]T and btim as well as breachable
are set to -1. As the ball starts rolling down and an intersection is detected at
t ≈ 2.46 s, the perceptual parameters are updated.
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Figure 4.9: The prediction of the ball perceptual parameters : (a) depicts the
ball trajectory along y-axis during the trial. When an intersection is detected
(indicated by the black dotted line) the prediction of the landing position xhp

increases in precision as the ball approaches the hitting line (b). breachable is set
to 1 (c) as soon as xhp is detected to be inside the robot’s hitting region. (d)
shows the time-to-impact btim estimation of the rolling ball.

The ball reaches the hitting line at t ≈ 4.28 s. If the ball falls out of the
inclined plane or is hit by the robot’s racket toward the top, the perceptual
parameters are reset to their initial values.

4.1.3 Robotic agent

The Cooperative Robot Assistant (CoRA) in Figure 4.10 is a 7-degrees of freedom
(DoFs) anthropomorphic robotic arm mounted on a 1 DoF trunk acting as a
base joint. All the joints composing the manipulator are rotational. The CoRA
configuration is equivalent to a broadly simplified model of a human arm with
3 DoFs shoulder, 1 DoF elbow, and 3 DoFs wrist. The last component of the
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robotic arm is a two finger gripper device that represents the robot’s end-effector
for grasping. The maximum grasping radius is about 1m with a maximum load
of about 1.5 kg. The kinematic redundancy of the manipulator allows handling
situations in which additional constraints like obstacle avoidance or joint limits
has to be met while executing tasks like reaching or grasping (see Iossifidis and
Schöner (2006); Reimann et al. (2011) for examples). CoRA is built as a modular
system manufactured by “Amtec Cooperation”. Each module has its own servo
controller and communicates with the controlling PC via a CAN-bus interface
integrated in an ISA card.

Figure 4.10: Anthropomorphic Robotic Assistant (CoRA).

CoRA is composed of two series of roll,pitch,roll joints for the shoulder and
the wrist (Figure 4.11). This special structure allows the derivation of a closed
form solution for the inverse kinematics Pieper (1968). Such a solution is always
preferable for real time control of robots.

Figure 4.11: Initial CoRA arm configuration with the relevant coordinate sys-
tems.

The limb vectors rsh, ru, rf, and rh define the spatial positions of the shoulder,
upperarm, forearm, and hand segments (respectively). Given the initial azimuth
φeef and elevation ϑeef orientations of the end-effector, the initial hand vector rh

can be computed as

rh = Rφeef
z Rϑeef

y êx lh, (4.13)

where lh denotes the hand segment length, êx ∈ R
3 represents an x-axis unit

vector and Ry, Rz are rotation matrices around the y- and z-axes (respectively)
in a world reference frame Σb (Figure 4.12). After obtaining the gripper position
rgrip from the desired end-effector (or racket) position vector reef, we can compute
the wrist vector rwst by
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rwst = rgrip − rh, (4.14)

Figure 4.12: The wrist position determines the base joint θ0.

The trunk of the robot θ0 is controlled separately to bring the wrist to the
desired position. The spatial position of the elbow with respect to the shoulder
is specified by a predefined elbow angle β (see above) on a redundancy circle
with a radius R

R =

√

‖ru‖2 −
(‖ru‖2 − ‖rf‖2 + ‖rwst‖2

2 ‖rwst‖2
)2

, (4.15)

and centered around the vector rm laying on a ray pointing from the shoulder
to the wrist

rm =
‖ru‖2 − ‖rf‖2 + ‖rwst‖2

2 ‖rwst‖2
rwst, (4.16)

where rwst is expressed here in the shoulder reference frame Σsh and from
which we can compute the elbow position by

ru =
(
Rφwst

x Rϑwst

z Rβ
x êz

)
R + rm, (4.17)

where ϑwst, φwst are the wrist orientations and Ry, Rz are rotation matrices
around the y- and z-axes (respectively) of the shoulder reference frame Σsh.
Following a similar procedure, the vector rf can be derived and the joint angles
θi=1..4 can be computed from ru and rf using a straight forward solution.

Having the robot’s maximum speed limitation and to achieve higher speed
hitting movements, the manipulator hand segment rh is controlled separately
and permits to compute the two joints θ5 and θ6. The desired azimuth φeef and
the elevation ϑeef control the hand segment using the formula

rh = Rφeef
z Rϑeef

y êx lh, (4.18)

where êx ∈ R
3 represents an x-axis unit vector and Rz, Ry are rotation

matrices around the z- and y-axes (respectively) of the wrist reference frame
Σwst.

To ensure that the racket is correctly oriented during the hitting movements,
the normal unit vector n̂ must be continuously kept parallel to the inclined plane.
This can be achieved by computing the gripper vector rg using
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rg = rh × (Rα
x êz), (4.19)

and extracting the joint angle θ7, where α defines the plane inclination, Rx is
a rotation matrix about the world frame x-axis, and êz ∈ R

3 represents a z-axis
unit vector (Figure 4.13).

Figure 4.13: The hand segment rh is controlled separately to perform the hitting
movements while the joint angle θ7 ensures the correct orientation of the racket.

To respect the manipulator’s task constraints during hitting, the end-effector
elevation ϑeef is set to 0◦ while the elbow posture, defined through the elbow
angle β, is set to 102.5◦.

4.1.4 Reference frames and transformations

Mainly, three relevant reference frames are considered in this application :

1. The inclined plane reference frame: in which the ball is tracked and its
trajectory predicted to estimate the perceptual variables xhp, breachable, and
btim.

2. The world coordinate system: centered at the manipulator base and used
to define the task space in which the end-effector trajectories are generated.

3. The joint space: characterized by the 8 joint angles of the redundant ma-
nipulator CoRA.

The link between the frames (1) and (2) is established using a straightforward
coordinate transformation. Frames (2) and (3) are linked through a forward
kinematics formulation and its inverse kinematics based on the exact solution
for the 8 DoFs CoRA manipulator. During arm movements, coordinates trans-
formation between the inclined plane frame (1) and the task coordinate system
(2) are continuously updated to compute the desired joint angles through the
inverse kinematics transformation.

4.2 Dynamical model for the robotic hitting task

The dynamical model described in Chapter 3 is extended to generate the sequence
of timed movements described in Section 4.1.1. This illustrates the inherent
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flexibility of the proposed architecture to generalize to more complex robotic
tasks. If compared to the simulated catching (see Section 3.4), the robotic hitting
task requires the coordination of more movement components for the end-effector
(xeef, yeef and φeef). Moreover, the timed behaviors are defined along different
task related metric dimensions.

Figure 4.14: The neural dynamics architecture used to generate the sequences of
timed movements for the robotic hitting task.

Figure 4.14 depicts the neural dynamics architecture for the robotic hitting
task. The standard design of the timing dynamics as well as of the movement
module used for the low level behavioral organization, allows their multiple use
with the three movement components that define the end-effector state. The
higher level EBs model the task movements by activating or deactivating the
lower level movement modules. The sequencing mechanism between the timed
behaviors is tiedly coupled to the ball perceptual information extracted by the
robot’s visual system (Section 4.1.2). Furthermore, behavioral constraints set
between the EBs permit the autonomous organization in time and space of the
task movements.

4.2.1 Higher level elementary behaviors

Four higher level EBs are required to model the end-effector movements as shown
in Figure 4.15.

• ‘Move to ball’ EB: brings the end-effector xeef and yeef positions toward the
predicted hitting point xhp.

• ‘Move hand forward’ EB: executed by the end-effector azimuth orientation
φeef and moves the robot hand segment to perform the hit.
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• ‘Move hand backward’ EB: brings φeef back to the initial orientation after
a successful hit or a failure.

• ‘Move to base line’ EB: moves the end-effector yeef position back to the
base line.

Note that the ‘Move to ball’ and ‘Move to base line’ EBs share the use of the
yeef movement module as is the case with the ‘Move hand forward’ and ‘Move
hand backward’ EBs for the φeef movement module (Figure 4.14). This shows
the flexible use of the movement modules. Note also the suppression constraint
set between the ‘Move hand backward’ and “Move to base line” EBs to ensure
that the ‘Move to base line’ EB can be initiated only if the hitting action has
been accomplished. The postural state of the xeef movement module is made to
track the ball along the base line so that the end-effector starts the ‘Move to
ball’ EB from the closest position when a new ball prediction is provided.

Move to ball Move hand forward

Move hand backward Move to base line

Figure 4.15: Movements of the racket during the robotic hitting task.

4.2.2 Movement modules

A movement module is defined for every movement component of the end-effector
(xeef, yeef and φeef) and permit to generate the required timed trajectory (see
Section 3.3.1 for more details). The target location of the xeef movement is the
predicted xhp that is provided directly by the perceptual field of the architecture,
introduced further.

The movement targets of the yeef and φeef components are predefined and
encoded separately into two external update modules (not shown in Figure 4.14).
A necessary arrangement imposed by the shared use of each of these movement
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modules by two higher level EBs with different targets. Every update module is
composed of two dynamical fields, each of which receive a sub-threshold Gaussian
input located at one of the two possible targets (hitting or base lines for yeef and
initial or final hand orientation for φeef). Additionally, every dynamical field
receives a homogeneous boost from the intention node of the associated higher
level EB. When a specific higher level EB is activated, a peak activation forms
at the corresponding target location and is propagated to the movement module
(more precisely to the intention field of the ‘move’ EB) to execute the required
movement.

The tracking movement along the hitting line is obtained by coupling the fixed
point attractor of the xeef timing dynamics to the ball position along x-axis.

4.2.3 Perceptual and Motor systems

The complete autonomy of the dynamical model during task execution is ensured
by an on-line coupling to the ball perceptual information. For that purpose, a
perceptual field, defined over the hitting line metric dimension, is used to encode
this information. The field receives a sub-threshold Gaussian activation centered
at the hitting point location xhp and a homogeneous boost from the reachability
criterion breachable through a sigmoid function.

In the architecture, the coupling is realized via a perceptual constraint in
the form of a precondition dynamical node that is active by default and inhibits
the ‘Move to ball’ EB (meaning the EB intention node). During task execution,
the perceptual field forms a peak activation localized at xhp as soon as the ball
is predicted to be inside the robot’s hitting region (breachable = 1). The peak
activation turns off the perceptual precondition which releases the ‘Move to ball’
EB inhibition and permits to start the end-effector (xeef and yeef) movement
toward xhp. Moreover, an additional perceptual precondition permits to inhibit
the ‘Move hand forward’ EB until the btim reaches a predefined time threshold
tthr to initiate the hand segment movement and perform the hit (btim < tthr and
btim > 0).

If the ball is successfully hit back up the inclined plane (btim > tthr and
breachable = −1) or missed and falls down (btim = −1 and breachable = −1), the
perceptual field looses its peak activation and both perceptual preconditions
turn on. Consequently, the ‘Move to ball’ and ‘Move hand forward’ EBs gets
inhibited which activate the ‘Move hand backward’ and ‘Move to base line’ EBs
to bring the hand segment back to the resting posture and the end-effector back
to the base line (respectively).

The generated task trajectories are converted into joint angles through the
inverse kinematics closed form solution (see Section 4.1.3) to be executed au-
tonomously by the robotic agent.

4.2.4 Stroke movement

After every hit, the ball should be directed toward the inclined plane’s middle
top with the aim to facilitate the next interception and achieve the ‘keep the
ball always in play’ goal. Ideally, the ball landing position (or hitting point xhp)
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should be brought after every hit closer to the hitting line center, and so, as far
as possible away from the safety margins on both sides.

Figure 4.16: Orientation of the racket during hitting movements.

To derive the required racket normal vector n̂ so that the outgoing ball di-
rection after a hit v̂o is correctly oriented, we can use the reflection law

n̂ =
v̂o − v̂i

√

2 (1− v̂Ti v̂o)
, (4.20)

where v̂i is the ball incoming velocity predicted at xhp. From n̂ = [nx , ny]
T

we can compute the desired racket orientation φdes = arctan(ny/nx) at the hitting
point. To obtain the required orientation φdes, the cycle time Thit of the ‘Move
hand forward’ EB is updated during the first half cycle of the movement using

Thit =
2 rhit btim
d(t)

, (4.21)

where d(t) = |φdes − φeef| is the current angular distance to the desired ori-
entation φdes. The update rule of Eq. 4.21 adapts the movement’s profile (by
accelerating or decelerating the dynamics) to realize the desired orientation at
the hitting moment. Consequently and after few consecutive hits, the ball is
brought to the middle of the hitting line along x-axis as shown in Figure 4.17.
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Figure 4.17: Trajectories of the ball and the racket during several consecutive hits
in simulation. The ball is brought to the middle of the hitting line to facilitate
future interceptions and keep the ball always in play.

The performance of the stroke movement can also be well demonstrated using
a multiple trials scenario in a simulated setup. The trials were organized in the
form of several (1000) hitting sequences. During every sequence, the robot keeps
hitting the ball continuously until a failure or a miss occurs which leads to start
the next sequence. Before starting any sequence, the ball was re-launched on the
inclined plane with a random speed and launching angle.

As shown in the histograms of Figure 4.18, the derived reflection rule and the
timed hitting movements permitted efficiently to accomplish the goal.
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Figure 4.18: Histogram plots to demonstrate the performance of the reflection
rule in simulation during multiple trials scenario. It can be clearly seen that
most of the ball hits occurred approximately at the middle of the inclined plane
x-axes.

While the desired racket orientation can be obtained by timing the hitting
movement, the mechanism doesn’t ensure a maximum speed at the hitting instant
in order to provide the ball with maximum momentum. To overcome that, the
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initiation time of the movement can be tuned so that the desired orientation
can be obtained approximately at a peak speed while respecting the hardware
limitations of the robot. The angular distance ∆φ traveled during a hitting time
∆t and inside the movement range ζ = 10◦ of the azimuth orientation φeef can
be approximated by

∆φ =
ζ

2
(cos(ω∆t)− 1), (4.22)

where ω = 2π
T ′

hit

defines a pre-selected cycle time T ′
hit for the hitting component

φeef and ∆t = t−tinit is the duration between the current time t and the initiation
instant tinit. From Eq. 4.22, the desired racket orientation φdes can be written as

φdes = φinit +
ζ

2
(1− cos(ω∆t)), (4.23)

where φinit = 95◦ is the initial orientation. Using Eq. 4.23 and given T ′
hit, we

can extract the time ∆t needed to reach the desired orientation by

∆t =
T ′
hit

2π
arccos

(
2 (φdes − φinit)

ζ
+ 1

)

. (4.24)

∆t represents the shortest time required to reach φdes given a cycle time
T ′
hit. T ′

hit can be tuned to respect the hardware speed limitation of the robot
manipulator. To obtain the hardest hit on the ball while respecting the robot’s
constraints, the time threshold tthr (see Section 4.2.3) is set to ∆t and the hitting
movement is initiated when btim < tthr. This disposition ensures that small
angular distances (φdes−φinit) are executed in shorter periods compared to larger
distances. Additionally, the system permits to have a variable initiation time
depending on the prediction of the desired racket orientation φdes at the hitting
point. However, this approximation had a limited effect during task execution
due to the small movements range (ζ = 10◦) and the updating cycle time Thit.

Figure 4.19 depicts the first three hitting movements of Figure 4.17 as racket
speed and orientation. It can be clearly seen that the hit occurs almost every
time at peak speed.
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Figure 4.19: Trajectory of the racket as speed and orientation during three con-
secutive hits in simulation. The hit occurs at peak speed almost every time.

4.3 Results

In this section, the dynamical model is evaluated both in simulation and in a
hardware implementation of the robotic hitting task. The obtained results il-
lustrate that the robot performed successfully the required task. Moreover, the
robot was able to react autonomously and flexibly to different external pertur-
bations on the ball trajectory due to obstacles placed on the inclined plane.

4.3.1 Simulation results

The following experimental results are obtained from a physically realistic Matlab
simulation of the whole setup. The experiments include several perturbation
scenarios in addition to statistics about the robotic task. The solutions of the
continuous time dynamics that compose the model are approximated numerically
using the Euer method.

Successfully hitting the ball

Figure 4.20 shows that the robot was able to hit the ball successfully.
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Figure 4.20: Trajectories of the ball and the racket for a successful hit.

The detailed time course of the relevant variables and parameters is shown
in Figure 4.21. At t = 0 s, the ball is launched upwards from the bottom of the
inclined plane. At t ≈ 2.56 s, the ball starts rolling down and the visual system
provides a prediction of the hitting point xhp and time-to-impact btim, forming
a peak in the perceptual field. The intention node of the ‘move to ball’ EB (ab-
breviated by ‘mtb’) turns on and drives the end-effector xeef and yeef positions
toward the predicted xhp. At this phase, you can clearly see the stability and ro-
bustness of the system in presence of fluctuating sensory information due to noise
so that the movement is not interrupted or restarted. As the ball approaches the
hitting point and the current time-to-impact falls bellow the variable threshold
tthr (depicted by the blue line) at t ≈ 3.95 s, the ‘move hand forward (mhf)’ EB
gets activated and starts a timed movement for the racket orientation φeef to hit
the ball at t ≈ 4.42 s. The hit drives the ball back up the inclined plane, removes
the ball prediction, and leads the perceptual field to loose its peak activation.
The intention nodes of the EBs ‘move hand backward (mhb)’ and ‘move to base
line (mtbl)’ switch on and initiate the movements that drive φeef back to the
initial orientation and xeef and yeef back to the initial posture. At the same time,
the end-effector starts tracking the ball horizontal motion.
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Figure 4.21: Trajectories of the significant parameters and variables during a
successful hit and return to the base line. The top three plots represent the ball
reachability criterion as extracted from the perceptual field, time-to-impact, and
time courses of the higher level EBs intention nodes. The bottom three plots
illustrate the timed end-effector trajectories.

Hitting abortion after ball reflection

In the first perturbation scenario, shown in Figure 4.22, the ball is reflected by
an obstacle while the racket is moving toward the predicted xhp. The robot
autonomously reacted to this unexpected change by interrupting the movements
sequence and initiating a fixed time movement back to the initial posture ready
to initiate the next hitting actions.
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Figure 4.22: Trajectory of the racket when the ball is reflected by an obsta-
cle during the racket movement. The thin black lines show the unperturbed
trajectories of the ball and the racket.

Figure 4.23 depicts the time courses of the most relevant variables during the
experiment. The direct coupling to sensorial information about the ball motion
allowed the robot to handle autonomously the perturbation.
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Figure 4.23: Trajectories of the relevant parameters and variables when the ball
gets reflected by an obstacle during racket movement.

Reactivating a hitting sequence

The experiment result shown in Figure 4.24 illustrates the flexible reaction of
the robot in reactivating, while in the backward movement, a supplementary
hitting sequence if the initial one was not sufficient to provide the ball enough
momentum and bring it sufficiently far up the inclined plane.
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Figure 4.24: A new hitting movement sequence is re-initiated while the racket is
moving back to the initial posture.

As illustrated in Figure 4.25, the new hitting sequence is started from the
current end-effector state before the robot reaches the resting posture. This
demonstrates the system feature in flexibly reorganizing on the fly the timed
behaviors in response to new sensorial contexts.
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Figure 4.25: Time courses of the system’s relevant variables and parameters
during the re-initiation of a new hitting sequence.

Updating hitting movement after ball deviation

During this experiment, the ball trajectory is deviated by an obstacle during
racket movement as illustrated in Figure 4.26. Consequently, the model updated
the dynamics and the robot accelerated toward the new predicted xhp with the
aim to preserve the correct movement timing and successfully execute the hit.
This reaction demonstrates the system capacity to update on-line the movement
parameters when subjected to external disturbances that shift the spacial or
temporal constraints of the timed behaviors.
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Figure 4.26: Trajectory of the racket when the ball is deviated by an obsta-
cle during the racket movement. The thin black lines show the unperturbed
trajectories of the ball and the racket.

Figure 4.27 depicts the system’s relevant parameters and variables during the
experiment.
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Figure 4.27: Trajectories of the system’s relevant variables and parameters when
the ball is deviated during the racket movement.

The perturbation occurs right after initiating the ‘move to ball’ EB at t ≈
0.66 s. This leads to accelerate the movement along x-axis and decelerate along y-
axis by updating the dynamics cycle times according to Eq. 3.3 (see Section 3.2.1)
as can be seen in Figure 4.28.
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Figure 4.28: Trajectories of the racket along x- and y-axis as the ball is deviated
during racket movement. The thin black lines show the unperturbed trajectories
of the racket.

Flexibly reacting to multiple perturbations

The last scenario (Figure 4.29) combines multiple perturbations on the ball tra-
jectory.
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Figure 4.29: Trajectory of the racket when the ball is perturbed by many obsta-
cles during the racket movement.

The robot was able to handle this complex situation by flexibly (re-)organizing
the sequences of timed movements (Figure 4.30) and manages to adapt and suc-
cessfully hit the ball at the hitting line.
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Figure 4.30: Time courses of the system’s variables and parameters when the
ball is perturbed by many obstacles during the racket movement.

Results of statistical tests

During a multiple trials scenario in simulation, statistics data has been gathered
in order to evaluate the performance of the model. The test consisted of (re-
)initiating a new sequence of hits after every failure or miss by injecting the ball
on the inclined plane with random speed (∈ [0.6m s−1, 0.8m s−1]) and launching
angle (∈ [95◦, 120◦]). In the following, the results of 1000 hitting sequence for
two different plane inclinations are shown. If the ball lands on the safety margins
along the hitting line, it is re-injected without starting a new sequence.
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Figure 4.31: Histograms plot of the results obtained from a multiple trials sce-
nario (1000 sequence).

The histograms of Figure 4.31 illustrate the robot performance in continu-
ously hitting the ball back up the inclined plane and keeping it in play as long
as possible.

Plane incl. Success rate Mean Average dev. ball⇆racket
(◦) (%) (hits) (mm)

5 95.442 20.938 21.2
10 92.432 12.214 18

Table 4.1: Performance of the robot on successive ball hits in simulation.

Table 4.1 shows the most relevant statistical data of the experiment. It can
be clearly observed that the success rate and the hits mean number decreases as
the ball motion gets quicker after increasing the plane inclination. This decrease
in performance can be explained by the diminished capacity of the model to react
fast enough and accelerate the movements when the ball starts rolling faster. As
discussed in Section 3.5, the states update phases and the switching dynamics
induce a systematic delay (almost fixed in average) before starting any behavior.
Consequently, adapting to a fast rolling ball will require generating very rapid
movements that are generally harder to update on the fly. This is due to the
dynamics reaction time as can be observed in the average deviation between
the racket and ball positions at the hitting moments. Additionally, flexibly re-
organizing the timed behaviors in response to perturbations of the type discussed
earlier will take too much time leading to increase the number of failures.
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Figure 4.32: Histograms plot of the ball time-to-impact btim, recorded at every
hitting moment (1000 sequence).

Figure 4.32 shows histograms of the ball time-to-impact btim recorded when
the hitting occurs. Ideally, the ball should be hit at btim = 0.0 s. The histograms
illustrate how precise the timing of the movements was and reveal that the mean
btim for the two plane inclinations (5◦ and 10◦) is respectively (btim ≈ 0.0474 s and
btim ≈ 0.0413 s) which confirms the effect of the plane inclination on movement
generation discussed earlier.

4.3.2 Hardware implementation results

The dynamical model has been successfully ported to the real manipulator CoRA.
The test in the hardware platform suffered from several implementation problems
like the limited speed and precision of the robotic arm movements. In addition,
the low frame rate (30 frames/s) of the robot’s camera affected ball tracking and
prediction.

Figure 4.33 shows the ball and racket trajectories during a successful hit by
the robot manipulator.
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Figure 4.33: Trajectories form the hardware implementation of the ball and the
racket during a successful hit.

Trajectories of the significant parameters and variables during the successful
hit are depicted in Figure 4.34. It can be clearly seen how direct coupling to
noisy perceptual information is used to initiate, steer, and terminate to different
actions which illustrates the stability and robustness of the dynamical model.
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Figure 4.34: Trajectories form the hardware implementation of the significant
parameters and variables during a successful hit. The top three plots represent
the ball reachability criterion as extracted from the perceptual field, time-to-
impact, and time courses of the higher level EBs intention nodes. The bottom
three plots illustrate the timed end-effector trajectories.

Figure 4.35 depicts snapshots of the robot manipulator during a successful
ball hit.

96



Chapter 4. Application of the dynamical model to a robotic hitting task

Figure 4.35: Snapshots of the robot manipulator during a successful ball hit.
(1) Ball tracking before initiating the hitting sequence. (2) Initiating the hit-
ting movements through the ‘Move to ball’ EB. (3) Executing the hit by the
‘Move hand forward’ EB. (4) Returning to the base posture by the ‘Move hand
backward’ and ‘Move to base line’ EBs.

The robot was able to perform several consecutive hits and keep the ball in
play for several minutes (the robot had to be stopped after ≈ 5min to prevent
any damage). Figure 4.36 shows sample trajectories of the robot and the ball
for seven successive hits. As can be observed, the robot tried to keep the ball on
the middle of the inclined plane’s x-axes by timing the stroke movements (see
Section 4.2.4 for more details). Nevertheless, the robot failed to do so and the ball
was continuously balanced around the hitting line center. This illustrates that
the performance of the update rule was considerably reduced in the hardware
implementation due to the limited speed and movements precision of the real
manipulator.

Statistical data from 25 hitting sequences are gathered in Table 4.2. The
performance of the real robot is equivalent to the results obtained from sim-
ulation. Even though, the hardware limitations prevented us from conducting
higher number of hitting sequences with larger plane inclinations.

Plane incl. Success rate Mean Average dev. ball⇆racket
(◦) (%) (hits) (mm)

2 94.32 18.9 28.2
4 93.56 14.52 32.11

Table 4.2: Performance of the real robot on successive ball hits.

The hardware implementation has been also tested using perturbation scenar-
ios equivalent to those performed in simulation (see Section 4.3.1). In Figure 4.37,
the ball is reflected by an obstacle during racket movement toward the predicted
hitting point xhp. Consequently, the robot aborted the hitting sequence and
started a backward movement to the initial posture.
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Figure 4.36: Sample trajectories of the real robot and the ball for seven successive
hits.

Figure 4.37: Snapshots of the robot as the ball is reflected by an obstacle during
racket movement. (1) The ball is introduced in the scene and starts rolling down.
(2) A prediction of the hitting point xhp is provided and the hitting sequence is
started. (3) The ball is reflected up on the way by an obstacle. (4) A backward
movement to the initial posture is initiated.

In the next experiment (see Figure 4.38), the ball is first reflected by an
obstacle during racket movement before it starts rolling down with a new xhp

prediction. As a result, the robot re-initiated a new hitting sequence toward the
new prediction and successfully executed the hit.
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Figure 4.38: Snapshots of the robot manipulator during a hitting sequence re-
initiation. (1) The ball is introduced in the scene and starts rolling down. (2)
A hitting sequence toward xhp prediction is started. (3) The ball is reflected by
an obstacle but starts rolling down again somewhere on the left side. (4) A new
hitting sequence is initiated in the direction of the new xhp prediction from the
current end-effector state. (5) The ball is successfully hit up the inclined plane
by the robot. (6) Backward movements to the initial posture are initiated.

For the last experiment shown in Figure 4.39, the ball is deviated by an
obstacle during racket movement. In response to that, the model updated the
movement dynamics and the robot accelerated toward the new xhp prediction
and successfully hit the ball.

Figure 4.39: Snapshots of the robot manipulator as the ball is deviated by an
obstacle during racket movement. (1) The ball is introduced in the scene and
starts rolling down. (2) A hitting sequence is initiated in the direction of the
xhp prediction. (3) The ball is deviated to the left by an obstacle. (4) The robot
updates on the fly the movement parameters and accelerates toward the new xhp

prediction. (5) The robot succeeded to catch up and successfully hit the ball.
(6) The robot is going back to the initial posture.
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4.4 Discussion

In this chapter, I have demonstrated the core properties of the dynamical model
for timed movements sequence generation in a robotic hitting task. The robotic
application entails coordinating multiple different actions in time and space with
a ball rolling on an inclined plane. The architecture is directly coupled to the task
environment through perceptual parameters and variables that encode sensorial
events and are computed algorithmically by the visual system. The extension
of the model was easy due to the standard design of the different elements that
compose the architecture.

In simulation, the evaluation results showed that the robot succeeded to
achieve the task goal: continuously hit the ball and keep it in play. Moreover,
the system was able to react autonomously in response to external perturbations
on the ball by initiating, aborting, or re-initiating inactive behaviors at any time.
Furthermore, the system could update the movement parameters such as the am-
plitude and movement time on the fly when such perturbations shift the timing
and spatial constraints. However, I have observed that the model performance
was directly influenced by the reaction time of the dynamics. The effect of this
influence significantly increased when faster movement sequences are involved,
for example when the ball motion speed was incremented by elevating the plane
inclination.

For the hardware test, the dynamical model has been successfully ported
onto a real manipulator. The robot was able to hit the ball continuously for
several minutes. In addition, equivalent performance to that obtained from sim-
ulation were demonstrated during similar perturbation scenarios. Nevertheless,
the implementation suffered from numerous limitations. These include the mod-
est maximal speed of the robot, the large inertia of the 8 DoF manipulator that
affected the overall reaction time of the system, and the lack of precision during
movements. Moreover, the robot’s camera low frame rate affected ball tracking
and prediction during task execution.

The obtained results, both from simulation and hardware, illustrated the abil-
ity of the model to generate and flexibly organize sequences of timed movements
in coordination with perceived events. Both the sequencing mechanism and the
movement dynamics adapted to sensorial changes detected through noisy and
fluctuating sensory information. These characteristics could be obtained only
because the different states of the system were stabilized against perturbations
which demonstrates clearly the robustness of the dynamical model.
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Conclusion

5.1 Summary of contributions

In this thesis, I investigated how different movement behaviors may be timed to
sensory events while being sequentially and flexibly organized. The problem is
directly inspired by the skills demonstrated by humans in a variety of tasks in
every day life and particularly in ball sports and racket games.

For that purpose, I proposed a model for timed movements sequence gener-
ation. The model is built within the dynamical systems approach and consists
of: (a) timing dynamics that generate movements through stable oscillations and
postural states by fixed point attractors, and (b) a hierarchical architecture for
behavioral organization in which higher level EBs model the timed behaviors
and activate lower level modules to control the movement dynamics. Both layers
are coupled online to time-varying sensory information and are able to adapt to
perturbations either by updating the movement parameters or by flexibly reor-
ganizing the sequence of behaviors according to the current sensorial context.
Furthermore, mechanisms to stabilize the temporal structure of movements and
compensate for noisy predictions have been developed and integrated in the sys-
tem.

The properties of the dynamical model were assessed in simulation by two
robotic tasks, catching and hitting a ball. In addition, the model has been
successfully tested in a hardware implementation of a ball hitting task.

5.2 Overview of the results

To demonstrate the core features of the dynamical model, several experiments
have been conducted with two robotic applications, catching and hitting a ball.
The two robotic tasks require generating sequences of timed movements in co-
ordination with perceived events from the ball motion. Both from simulation
and hardware tests, the obtained results demonstrate the system ability to fulfill
these constraints and perform both tasks with success. Moreover, the robot could
react quickly and flexibly to several perturbation scenarios either by updating
the movement profile or adapting the sequence of actions by aborting ongoing
behaviors, and initiating or re-initiating inactive behaviors. These results and
particularly those obtained from the implementation on a real robot reveal the
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method’s feasibility.
The dynamical model shows up several appealing properties, such as reusabil-

ity of movement primitives and perception-action coupling for decision selection.
In addition, the standard structure of the different elements that compose the
model reduces the number of parameters and synaptic weights to be tuned and
allows a simple extension to different robotic tasks that are, still, conceptually
very close.

The movement dynamics of the model is completely sensor-driven and gen-
erate either postural states via stable fixed points to fixate the end-effector or
goal-directed timed movements by means of periodic solutions along limit cy-
cle attractors. The design assumes that complex movements can be generated
through the sequencing and reuse of simpler movement primitives modeled as
discrete and rhythmic dynamical systems. Additionally, the dynamics ensure
that the end-effector executes the trajectories while sitting at all times in an
attractor state. Moreover, the generated movements can compensate for varying
predictions by continuously updating movement parameters such as amplitude
and movement time while keeping timing stable. Being able to modify on the
fly the movement plan to respect temporal constraints is crucial in this kind of
robotic applications.

The autonomous organization of timed behaviors is performed by a DFT
based neural dynamics architecture. The elementary behaviors (EBs) of the
robot are hierarchically structured and dynamically organized into sequences
based on task specific behavioral constraints and online perceptual information.
In the architecture, low-level modules play the role of switching dynamics be-
tween the two operational regimes of the movement dynamics. In this particu-
lar framework, the action selection mechanism is tightly coupled to the agent’s
low-level sensory-motor systems and thus, fully embodied and situated. The
neural dynamics architecture enables the system to flexibly organize the behav-
iors through controlled instabilities and stabilize decisions against perturbations.
In addition, the direct coupling between the neural architecture and the timing
dynamics ensures a synchronous and a coordinated performance for the overall
dynamical model. As a result, the sequencing mechanism permits to integrate,
simultaneously, various sources of time-varying perception about the task with
an internal knowledge about the required logical order of the behaviors, their log-
ical interplay, and the historical state of the system. These properties enable the
robot to react flexibly and modify strategies in order to adapt to a dynamically
changing environment.

The dynamical model is formulated inside the dynamical systems approach.
The formulation relies on a uniform mathematical framework using nonlinear and
autonomous dynamical systems. In the model, decisions making for behavioral
organization, timed movements planning and control are generated from attrac-
tor solutions of nonlinear continuous time dynamics which leads to continuous
behaviors. This also guarantees an intrinsic stability and robustness for the states
of the system when a direct coupling to fluctuating and noisy sensory information
is used to initiate, steer, and terminate the different actions. Moreover, flexibility
properties of the dynamics permit to generate autonomously structured actions
according to the current sensorial context and the system state. These properties
emerge from bifurcations at different levels within the dynamical model: (a) in
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the neural dynamics architecture to sequence actions and stabilize selected de-
cisions, and (b) in the movement dynamics where bifurcations from fixed point
attractors to stable oscillations permit to generate timed movements. Another
distinguishable feature of the proposed approach is the analytical solvability of
the dynamics. Indeed, the explicit specification of movement parameters like
frequency and amplitude permits an online modulation of the trajectories via
a direct linkage of the dynamics to time-varying sensory information. Further-
more, the low computation cost of the approach makes it well suited for real-time
applications.

The problem of timing robot’s actions to external events has been addressed
using a plenty of methods ranging from planning algorithms (Rapp, 2011; Baetz
et al., 2009), finite-state machine (Kober et al., 2012) or learning primitives by
imitation (Kober et al., 2010; Kim et al., 2010). These approaches proved to be
robust and adaptive control techniques in a variety of robotic tasks. However,
they all showed drawbacks when it comes to react flexibly to variations in the
task environment or to adapt movements to perturbations (see Section 2.1 for a
review). By a tight coupling of planning, sensing and execution, the proposed
dynamical model generates smooth, yet flexible sequences of timed behaviors in
coordination with sensed events. I believe that these features, among others, may
enable robots to operate autonomously in changing and uncertain environments
and interact safely with human agents.

5.3 Limitations and future work

The experimental results of the proposed dynamical model proves the applicabil-
ity of the approach in addressing the problem of timing and coordinating robot’s
behaviors with perceived events. In this sense, the dynamical model represents
a first step toward generating safe and coordinated movements for robots that
operate with humans in unstructured environments.

The model presents several interesting features, nevertheless, limitations due
to various factors can be observed. In the following, I will summarize the main
points along with propositions of possible improvements:

• To track and predict the ball motion, the model relies on external pre-
processed perceptual information obtained from algorithmic processes. A
necessary improvement will be to develop a neurally grounded perceptual
system to acquire these data. Several evidences show that the brain may
rely on internal physics model (Zago et al., 2009; Hayhoe et al., 2005)
or experience-based processes (Kveraga et al., 2007) to predict upcoming
events and plan movements in anticipation of those events. In our context,
such a system should be able to produce internal prediction estimates of
the ball trajectory. This addition will represent a base to achieve a fully
neural architecture.

• In this work, the movement dynamics permit to generate adaptive discrete
movements with stable temporal structures. Elaborating a more sophisti-
cated mechanism to couple between effector’s and ball’s motions will cer-
tainly ensure a full coordination of robot’s movements and increase the
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performance of the dynamical model. In addition, using neural instead of
Hopf oscillators to produce timed behaviors will make the approach more
consistent. Also, learning these timed movements from human demonstra-
tions may represent a possibility to be explored.

• Taking profit from the different properties offered by the DFT framework to
implement cognitive functionalities in the architecture will be an important
achievement. For instance, decision making mechanisms can be built based
on sensory information, learned activity patterns, or behavioral history to
sort out adequate behavior sequences or even select among different tasks
according to the current context of the system.

• In the neural dynamics architecture, the synaptic weights that establish
couplings between the different EBs and the associated intention and condi-
tion of satisfaction fields are set and tuned by hand. A major improvement
will be to incorporate autonomous learning methods that start from early
guesses and fine tune the parameters according to sensed rewards or from
experiences during task execution. Such a step may considerably increase
the robot’s autonomy and optimize its performance. Learning methods like
value-based reinforcement learning and Hebbian learning are directions of
ongoing work in our laboratory (Kazerounian et al., 2013; Luciw et al.,
2013).

• The performance of the model can be better assessed in a more adapted
hardware platform. Transferring the implementation to another robotic
manipulator that allows much faster movements, like the KUKA lightweight
arm in our lab, will permit to evaluate the approach in absence of external
constraints and even with more challenging applications.
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Appendix A

Methods and Parameters

During this work, a simulation software of the robotic hitting task was made in
Matlab and is availabe on request. The C++ software interfaces for the hardware
implementation were built using libraries availble at the Autonomous Robotics
Lab in the Institute for Neural Computation. Several Open Source libraries for
image processing were used as well.

In the following, I will provide more details about the visual system and the
algorithms used in the implementation. After that, tables will list the parameters
of exemplary elements that compose the dynamical model.

A.1 Visual system: supplement

The color-based detection process (see Section 4.1.2) permits to measure the
ball pixel position q = [u , v]T in image plane. To obtain the corresponding
position pb = [x , y]T in the inclined plane coordinate system ΣP , a perspective
back-projection is required.

First, I will explain briefly the camera perspective projection that is used to
obtain the image plane 2D location from a 3D position estimate p = [x , y, z]T

of the ball on the inclined plane. As the ball rolls on the inclined plane and
does not bounce on it, the z coordinate is set to the ball radius rb. Then, I
will describe the perspective back-projection which is the reverse operation, and
show how can we extract pb from its corresponding image pixel point.

A.1.1 Perspective projection

According to the pinhole camera model Forsyth and Ponce (2003), a scene view is
formed by projecting 3D points into the image plane via a perspective projection
in homogeneous coordinates given by

s

(
q

1

)

= [K 03]T

(
p

1

)

, (A.1)

or
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where s is a homogeneous scaling factor. The 4 × 4 homogeneous transform
T is the matrix of extrinsic parameters that describes the position and orien-
tation of the camera in an external reference frame (here, the inclined plane
reference frame ΣP ). Mathematically, the position and orientation of the camera
are defined by a 3× 1 vector c and by a 3× 3 rotation matrix R (respectively).
c = [cx , cy , cy]

T is called the camera center or the center of projection and per-
mits to define the camera coordinate system ΣC . The all zero elements column
vector is denoted by 03.

The homogeneous matrix T encodes two transforms

T = TW→C T P→W , (A.2)

where T P→W describes the position and orientation of the inclined plane with
respect to a world coordinate system ΣW centered at the robot manipulator base
and is given by

T P→W =

[
Rα

x ℓ

0T

3 1

]

, (A.3)

where ℓ = [ℓx , ℓz , ℓz]
T is a position vector encoding the shifts along the world

x-, y- and z-axes of the inclined plane and Rα
x is a rotation around the world

x-axis by the plane inclination α and can be written as

Rα
x =





1 0 0
0 cosα − sinα
0 sinα cosα



 , (A.4)

TW→C expresses the transformation from the world to the camera coordinate
system ΣC and is derived by

TW→C =

[
(Rψt

x ×Rψp

z ) 

0T

3 1

]

, (A.5)

where  = [x , z , z]
T is the camera position vector with respect to ΣW and

the rotation matrices Rψt

x and Rψp

z define the Pan and Tilt camera orientations
and are given by

Rψt

x =





1 0 0
0 cosψt − sinψt

0 sinψt cosψt



 and Rψp

z =





cosψp − sinψp 0
sinψp cosψp 0
0 0 1



 . (A.6)

The matrix of extrinsic parameters T describes the entire set of transforma-
tions between the coordinate systems ΣP and ΣC (see Figure A.1).

K is the camera matrix or the matrix of intrinsic parameters. It expresses
the geometric, digital, and optical characteristics of the camera. These includes
the focal length f which is the distance in mm from the center of projection c and
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the principal point o = [ox , oy]
T that is usually at the image plane center and

along the optical axis. The focal length f is usually multiplied by the effective
size of the individual imager element i = [ix , iy]

T and expressed in pixels. The
geometric distortion introduced by the optics and the lenses is also included in the
the matrix as correction factors and are computed during the camera calibration
process. K is used as a transformation matrix between the camera frame ΣC
and the pixel coordinate system ΣI whose origin is set at the top left corner of
the image plane (see Figure A.1).

Figure A.1: The perspective projection of the robot’s camera. The pinhole cam-
era model describes the relationship between the ball position [x , y , z]T on the
inclined plane and its corresponding 2D projection [u , v]T onto the image plane.
The ray p(λ) represents the collection of 3D points that are mapped onto the
same 2D projection [u , v]T (see the text about Perspective back-projection for
more explanations.). The matrix of extrinsic parameters T = TW→C T P→W de-
scribes the geometric transformation between the inclined plane ΣP and camera
ΣC coordinate systems. The matrix of intrinsic parameters K permits to trans-
form positions expressed in the camera reference frame ΣC to the pixel coordinate
system ΣI set at the top left corner of the image plane.

A.1.2 Perspective back-projection

The perspective back-projection is the reverse operation of Eq. A.1). Using the
perspective back-projection, we can extract the ball position p = [x , y , z]T in
ΣP from its image pixel coordinate q = [u , v]T .

Given a pixel position q, there exists a collection of 3D points that are mapped
and projected onto the same point q. This collection of 3D points constitutes
a ray connecting the camera center c = [cx , cy , cz]

T and q = [u , v]T (see Fig-
ure A.1).
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From Eq. A.1), the ray p(λ) associated to q = [u , v]T can be defined as





x
y
z



 = c + λR−1K−1

[
q

1

]

︸ ︷︷ ︸

p(λ)

, (A.7)

where λ is a positive scaling factor used to define the position of a 3D point
on the ray. Since the z coordinate of the ball is known and equal to the radius
rb, it is possible to obtain the coordinates x and y by calculating λ using the
relation

λ =
z − cz
z3

, (A.8)

where (z1 , z2, z3)
T = R−1K−1

[
q

1

]

.

A.2 Brief review of the Kalman filter

The Kalman filter addresses the general problem of estimating the state x ∈ R
n

of a discrete-time controlled process that is governed by the linear stochastic
difference equation (Welch and Bishop, 2006) :

xk = Axk-1 +Buk-1 +wk, (A.9)

with a measurement z ∈ R
m given by

zk = Hxk + sk. (A.10)

The random variables wk and sk represent the process and measurement
noise (respectively). They are assumed to be independent (of each other), white,
and with normal probability distributions such that

p(w) ∼ N(0,Q), (A.11)

p(s) ∼ N(0,R), (A.12)

where N(µ.ν) is a Gaussian function with mean µ and covariance ν. It means
that the noise is with a Gaussian amplitude distribution and statistically uncor-
related in time. To know more about such kind of noise and its characteristics
see Maybeck (1979). Q and R are the process and measurement noise covariance
matrices (respectively) and can be defined as

Q = E[wkw
T
k ], (A.13)

R = E[sks
T
k ], (A.14)

where E[x] is the expectation function of a random variable x and defines
the weighted average of a all the possible values of x.

The n × n matrix A in Eq. A.9 relates the state at the previous time step
k-1 to the current state at k. The n × l matrix B relates the optional control
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input u ∈ R
l to the state x. The m× n matrix H in Eq. A.10 relates x to the

measurement zk. In practice, all the previously defined matrices can be made
to change with each time step or measurement, but here we assume them to be
constant during the estimation process.

The Kalman filter estimates the process state xk by minimizing the estimate
error ek = xk− x̂k through minimizing the a posteriori estimate error covariance
P k = E[eke

T
k ] where x̂k is the current a posteriori estimate of the system state

after a measurement update at time step k.
Note the recursive nature and the probabilistic origin of the filter that rep-

resent very appealing features of the Kalman estimator for various practical
applications.

A.2.1 Operations of the Kalman filter

The operations of the Kalman filter can be thought as a form of feedback control.
The filter estimates the process state (considered as a state prediction) at some
time step and then uses the noisy measurements feedback to correct (or improve)
this prediction. As such, the equations of the Kalman estimator fall into two
groups :

1. The time update equations (also called predictor equations) are responsible
for projecting forward (in time) the current state and error covariance
matrix to obtain an a priori estimates for the next time step

x̂ k̄ = Ax̂k-1 +Buk-1, (A.15)

where x̂ k̄ is an a priori state estimate computed from the discrete linear
model (Eq. A.9) with an initial a posteriori estimate x̂k-1 that is updated
later in Eq. A.18;

P k̄ = AP k-1A
T +Q, (A.16)

where P k̄ is an a priori estimate of the error covariance matrix computed
from the initial a posteriori error covariance estimate P k that is updated
later in Eq. A.19; Q is the process error covariance matrix.

2. The measurement update equations (also called corrector equations) are
responsible for the feedback, i.e., for incorporating a new measurement
into the a priori estimate to obtain an improved a posteriori estimate

Kk = P k̄H
T (HP k̄H

T +R)−1, (A.17)

where Kk is the Kalman gain that acts as a blending or weighting factor
to minimize the a posteriori error covariance matrix in Eq. A.19; R is the
measurement error covariance matrix;

x̂k = x̂ k̄ +Kk(zk −Hx̂ k̄), (A.18)
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where x̂k is an a postriori state estimate computed from the a priori error
covariance P k̄; the difference (zk − Hx̂ k̄) is called the innovation and
it is weighted by the Kalman gain Kk that is used to express the trust
either to the current measurement zk or the predicted measurement Hx̂ k̄

depending on the measurement error covariance matrix R and the a priori

error covariance estimate P k̄.

P k = (I −KkH)P k̄, (A.19)

where P k is the a posteriori estimate of the error covariance matrix and I

is the identity.

After each time and measurement update pair, the process is repeated by
projecting the previous a posteriori state estimate to predict a new a priori

estimate. For a more detailed explanation of the Kalman filter process and its
various applications see (Welch and Bishop, 2006; Mohinder, 2008; Maybeck,
1979).

A.2.2 Tunning of the Kalman filters

Defining the measurement error covariance matrix R is done by making off-line
sample measurements and computing the variance from the process ground truth
data. In the other hand, the process error covariance matrix Q is more difficult
to obtain mainly because it is, generally, impossible to observe the process we are
estimating. The values choice of these matrices is crucial for a correct functioning
of the Kalman filter since they are used during the estimation process but never
updated and so, don’t converge to any specific numbers. In practical, even
obtaining ground truth data about the measurable process quantities is hard.
Thus, the Q and R matrices are tuned, most of the time, empirically.

The initial a posteriori estimate x̂0 is set to the initial process state if known
or to any approximate value. If the initial process state value is known, the
initial a posteriori estimate of the error covariance matrix P 0 can be set to zero

P 0 =






0 · · · 0
...

. . .
...

0 · · · 0




 , (A.20)

but if there are uncertainties, P 0 should be initialized with a suitably large
number, say L, on its diagonal

P 0 =






L · · · 0
...

. . .
...

0 · · · L




 . (A.21)

For the robotic hitting task, the parameters of the two Kalman filters (Sec-
tion 4.1.2) are tuned empirically after a number of ball launch trials.

• For ball motion along x-axis, If I assume an acceleration in the form of
a white Gaussian noise with a standard deviation σa,x that affects the
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ball position and speed estimates, then we get the following process noise
covariance matrix

Qx = E[wk,xw
T
k,x] =

[
∆t4

4
∆t3

2
∆t3

2
∆t2

]

σ2
a,x. (A.22)

A Gaussian measurement noise with a standard deviation σz,x gives the
measurement noise covariance matrix

Rx = E[sk,xs
T
k,x] = σ2

z,x. (A.23)

The initial a posteriori state estimate x̂0,x is set to zero while the initial a
posteriori estimate of the error covariance matrix P 0,x is initialized by

P 0,x =

[
Lx 0
0 Lx

]

, (A.24)

where Lx is a suitably large number.

• For ball motion along y-axis, the tuning is similar. I assume a white Gaus-
sian noise with a standard deviation σa,y affecting the commanded acceler-
ation ay and a process noise covariance matrix given by

Qy = E[wk,yw
T
k,y] =

[
∆t4

4
∆t3

2
∆t3

2
∆t2

]

σ2
a,y. (A.25)

With a measurement noise of standard deviation σz,y, the measurement
covariance matrix is set to

Ry = E[sk,ys
T
k,y] = σ2

z,y. (A.26)

The initial a posteriori state estimate x̂0,y is also set to zero and the initial
a posteriori estimate of the error covariance matrix P 0,y is initialized by

P 0,y =

[
Ly 0
0 Ly

]

, (A.27)

where Ly is large enough number.

The parameters of the two Kalman filters are tunned according to Table A.1.

Tracking axes σa σz,y L
(m/s2) (m) (m2)

x 0.15 0.01 20
y 0.85 0.01 20

Table A.1: Numerical values for the parameters of the two Kalman filters.
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A.3 Parameters of the dynamics and their val-

ues

The parameters listed below are given with their values and are duplicated with
their assciated elements. Some parameters are adapted according to the move-
ment dimensions. When tuned, the same set of values is used both in simulations
and the hardware implementation. Units are given where applicable.

A.3.1 Timing dynamics

parameter value

fixation strength a 3.0
noise standard deviation

√
r 0.0

time scale τ 1.0 (s)
step time ∆t 0.02 (s)

Table A.2: Numerical values for the parameters of the timing dynamics.

A.3.2 Movement module

parameter value

sigmoid steepness β 5.0
sigmoid inflection point x0 0.0

noise standard deviation
√
r 0.005

resting level h -5.0
time scale τ 0.022 (s)
step time ∆t 0.02 (s)

Table A.3: Numerical values for the parameters of the dynamical neural fields
and nodes.
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‘update’ ‘move’ ‘fix’

parameter value value value

int. field kernel cexc 5.0 5.0 3.0
int. field kernel cinh 0.2 0.2 0.2
int. field kernel σ 5.0 5.0 5.0

CoS field kernel cexc 5.0 5.0 -.-
CoS field kernel cinh 0.2 0.2 -.-
CoS field kernel σ 5.0 5.0 -.-

int. node self excitation cexc,i 4.0 4.0 4.0
CoS node self excitation cexc,CoS 4.0 4.0 -.-

weight, int. node to CoS node ci,CoS 0.1 0.1 -.-
weight, int. node to int. field ci,int 4.0 4.0 5.0

weight, int. field to CoS field cint,CoS 3.2 3.2 -.-
weight, CoS field to CoS node cCoS,CoS 0.25 0.4 -.-

weight, CoS node to int. node cCoS,i -6.0 -6.0 -.-
weight, task node to int. node ct,i -.- -.- 6.0

Table A.4: Numerical values for the parameters of a movement module EBs.
Superscript relative to each EB is omitted in the parameter’s names for clarity.

parameter value

prec. node self excitation cexc,p 4.0
suppr. node self excitation cexc,s 4.0

weight, ‘update’ EB CoS node to prec. node cCoS,p -6.0
weight, prec. node to ‘move’ EB int. node cp,i -6.0
weight, ‘move’ EB int. node to suppr. node ci,s 3.0

weight, suppr. node to ‘fix’ EB int. node cs,i -6.0

Table A.5: Numerical values for the parameters of behavioral constraints. Super-
scripts relative to each constraint and EB are omitted in the parameters names
for clarity. The precondition node (prec.) is inhibited by the ‘update’ EB CoS
node while the suppression node (suppr.) is boosted by a sub-threshold input
coming from the ‘move’ EB intention node and needs an additional input from
the higher level EB intention node to become active, see bellow.
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A.3.3 Higher level elementary behavior

parameter value

int. node self excitation cexc,i 4.0
CoS node self excitation cexc,CoS 4.0

weight, int. node to CoS node ci,CoS 2.0
weight, CoS node to int. node cCoS,i -6.0
weight, offset node to int. node coff,i -6.0

weight, int. node to ‘update’ EB int. node ci,i 6.0
weight, int. node to ‘move’ EB int node ci,i 6.0

weight, int. node to prec. node ci,p 6.0
weight, int. node to suppr. node ci,s 3.0

weight, ‘update’ EB CoS node to CoS node cCoS,CoS 2.0
weight, ‘move’ EB CoS node to CoS node cCoS,CoS 2.0

Table A.6: Numerical values for the parameters of a higher level EB. Superscript
relative to the EB is omitted to keep generality. The precondition node (prec.) is
activated by the higher level EB CoS node and the suppression node (suppr.) is
activated by an additional input provided by the higher level EB intention node.
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