
Cognitive object recognition based on
dynamic field theory

Oliver Lomp

October 18, 2016

Cognitive object recognition based on
dynamic field theory

(Kognitive Objekterkennung auf Basis der dynamischen Feldtheorie)

Oliver Lomp
Geboren in Recklinghausen

Bochum, Oktober 2016

Dissertation zur Erlangung des Grades eines Doktor-Ingenieurs der
Fakultät für Elektrotechnik und Informationstechnik an der

Ruhr-Universität Bochum.

Abstract
Our brains excel at parsing the vast amount of visual information that enters
through our eyes. Replicating this level of skill in artificial vision systems
has proven difficult. To date, the most successful approaches mimic the fast,
feedforward categorization capabilities of our visual system, but its other
important abilities, for example, quickly learning to recognize new objects
in previously unseen orientations have not yet been modeled as successfully.
In part, this is due to a gap in our understanding of the functional archi-
tecture of the visual system. One model that aims to reduce this gap uses
localized feature histograms to quickly learn to recognize objects while con-
currently estimating their pose. The system is capable of recognizing objects
in new poses based on just a small number of training views using principles
of dynamic field theory, a mathematical framework for modeling cognitive
processes. I extend this object recognition model by the capacity to sequen-
tially attend and recognize items in a scene, and the capacity to form working
memory for the results of these recognitions. This extension is based on inte-
grating the object recognition system with a model for scene representation
also based on dynamic field theory. As part of this integration, I enable the
object recognition system to recognize multiple objects in succession based
only on principles of neural dynamics. The result is a large dynamical system
that autonomously recognizes objects in a scene, fully implemented within
the framework of dynamic field theory. I assess this system on a new database
that contains multiple objects, on which the system achieves acceptable per-
formance.

I present a second extension of the object recognition system, which en-
ables an object representation that preserves the spatial arrangement of fea-
ture values better than the previously used localized histograms. Using this
new representation further grounds the object recognition system in neural
principles. It also allows the system to estimate scale and the full range of
object orientations. In addition, it uncovers some limitations of the pose
estimation and recognition process, which I address by introducing a mod-
ified dynamics for representing the recognition result. I demonstrate the
performance of the system, showing that recognition rates improve with the
new representation at comparable sampling rates. I also compare the sys-
tem’s performance to behavioral data on human object recognition and find
that this view-based object recognition system exhibits pose-invariant perfor-
mance, which contrasts with opinions in the literature that interpret evidence
of pose-invariant performance as a sign that object descriptions in the brain
are not view-based.

Contents

1 Introduction 1

I Dynamic field theory and cognitive vision 6

2 Architectures in dynamic field theory 7
2.1 Dynamic neural fields and nodes 7

2.1.1 Instabilities in fields and nodes 10
2.2 Coupling neural fields and nodes to form architectures 13
2.3 Behavioral organization . 15

2.3.1 Dynamics of a single behavior 16
2.3.2 Constraints between behaviors 19

2.4 Implementing dynamic field theory 21
2.4.1 Solving dynamics numerically 22
2.4.2 Synchronizing real and simulated time 23
2.4.3 Sampling space . 25

2.5 Notational conventions . 26

3 Object recognition based on localized receptive field histo-
grams 28
3.1 The spatial channel . 32

3.1.1 Matching object identity in the bottom-up path 32
3.1.2 Matching pose in the top-down path 34

3.2 Neural dynamics . 34
3.2.1 Pose representation . 35
3.2.2 Identity representation 37

3.3 Localized color and edge orientation histograms 38
3.3.1 Histogram extraction 39
3.3.2 Translating histograms 40
3.3.3 Rotating histograms 41
3.3.4 Matching histograms 42

i

CONTENTS ii

3.4 Fusing feature channels . 42
3.5 Learning object views . 43

4 Scene representation 45
4.1 Saliency . 45
4.2 The attention field and the looking working memory 47
4.3 Space-feature fields and working memory 49
4.4 Sequential scanning through behavioral organization 51

5 Biologically inspired multiscale keypoints 54

6 Image databases 57
6.1 The tabletop database . 57
6.2 The transformed database . 60
6.3 The COIL database . 60
6.4 Multi-object database . 60

II Attention and working memory for object recog-
nition 65

7 Behavioral organization of object recognition 68
7.1 The reset behavior . 69
7.2 The recognize behavior . 71

8 Integration with the scene representation architecture 73
8.1 Space-feature fields for labels 73
8.2 Guiding object recognition based on attention 75
8.3 Interacting with the supervisor 76

8.3.1 The learn behavior . 78
8.3.2 The prepare learning behavior 79
8.3.3 The learn view behavior 81
8.3.4 Changes to the scene representation architecture 82

9 Evaluation 84
9.1 Experimental protocol . 84
9.2 Evaluation criteria . 85
9.3 Results . 86

10 Discussion 91
10.1 Examples of errors . 91
10.2 Conclusion, related work and outlook 93

CONTENTS iii

III Object recognition based on space-feature pat-
terns 99

11 Object recognition based on space-feature patterns 103
11.1 Pose-transformations and matching for space-feature patterns 103

11.1.1 Pose-transformations in the bottom-up path 104
11.1.2 Matching space-feature patterns 105
11.1.3 Saturating the superposition of learned views 106
11.1.4 Pose-transformations in the top-down path 107

11.2 Gradually increasing competition in pose and identity repre-
sentation . 108

11.3 Learning space-feature patterns 110
11.4 Evaluation methods . 112

11.4.1 Training procedure . 112
11.4.2 Recognition and testing procedure 112
11.4.3 Performance measures 113

12 Space-edge patterns 115
12.1 Pattern extraction . 116

12.1.1 Input scale selection 120
12.2 Pose-transformation and matching architecture 120
12.3 Performance evaluation . 123
12.4 Characterization of the system’s behavior 134

12.4.1 Effects of in-plane transformations 134
12.4.1.1 Effects on recognition performance 134
12.4.1.2 Effects on convergence times 136

12.4.2 Effects of depth rotations 141
12.5 Discussion of the results . 144

12.5.1 Performance . 144
12.5.2 Relation to behavioral data 146

13 Space-color patterns 152
13.1 Pose-transformation and matching architecture 153
13.2 Extraction of space-color patterns 153
13.3 Belongingness and object boundaries 155
13.4 Evaluation . 156

13.4.1 Tabletop performance 157
13.4.2 Demonstration of masking 157

14 Discussion of space-feature patterns for object recognition 165

CONTENTS iv

IV Conclusion 170

15 Major contributions and outlook 171

16 Bibliography 176

V Appendix 187

A Index of notation 188

B Clustering peaks 189

C Mapping scales 191

Chapter 1

Introduction

For most of us, vision is one of the primary senses we use to perceive the
world. Our vision system is, in fact, so well-adapted to the task that we often
do not realize the complex problems involved in the process of understanding
the world around us. Consider the following example: your favorite technical
gadget breaks. You suspect a simple malfunction such as a loose connector
and feel confident that you can repair it, even though you are not familiar
with the insides of this particular type of device. You therefore decide to
carefully take the gadget apart, and while doing so make sure to remember
the arrangement of the parts you remove. Already, this is a challenging task
for your vision system because you may have never seen these exact parts
before. Of course, you may categorically recognize, for example, screws,
but the exact types of screws may be unfamiliar to you, and differentiating
between them may be important when you reassemble the device. Moreover,
to properly handle the screws, you must have a good estimate of their location
and orientation in space, as well as their size and boundaries. To help you
in your repair task, you may carefully lay out each component on your work
surface, using space to help you remember how to reassemble the device. By
moving components around, you will see them in positions and orientations
in which you have never seen them before. But even then, you will likely be
able to reidentify them. You will also be able to recognize the components if
the lighting conditions change, say, if your repair takes long enough for the
sun to start setting, even though this may drastically change the appearance
of the objects. This is again true not only for classes of components that you
have experienced before, but also for individual components that are entirely
unfamiliar to you.

The example illustrates powerful capacities of the human vision system.
Being able to reproduce these in artificial cognitive systems is desirable, but
requires an understanding of how they come about. Unfortunately, despite

1

CHAPTER 1. INTRODUCTION 2

extensive knowledge of the anatomical structure of the vision system in hu-
mans and other primates, we have not yet reached such an understanding,
and reproducing the brain’s capabilities for visual perception in artificial sys-
tems thus remains an unsolved problem (Kourtzi and Connor, 2010; DiCarlo
et al., 2012; Krüger et al., 2013).

Early attempts to understand biological vision were concerned with ques-
tions about the representation of objects in the brain, and how this repre-
sentation may be matched to visual input. Marr and Nishihara (1978), for
example, argue that objects are represented in an object-centered coordinate
frame that has to be aligned with the object in the input image to recognize
it. The authors further argue that objects are represented as a combination of
smaller parts (also referred to as a structural description), a concept later ex-
tended by Biederman (1987) into the recognition by components framework.
In this framework, objects are represented as an arrangement of geometric
primitives called geons. Recognizing an object in an image therefore means
finding the geons it contains and matching their arrangement to one of the
stored representations.

Later, evidence arose that the brain represents different view points of
objects rather than representing each object by a single structural descrip-
tion (for a review, see Peissig and Tarr, 2007). This evidence lead to the
development of the influential HMAX model of the visual cortex (Riesenhu-
ber and Poggio, 1999). Inspired by the findings of Hubel and Wiesel (1962,
1968), HMAX postulates alternating layers of simple and complex cells. The
first layer consists of simple cells which are sensitive to edges of specific orien-
tations in small subregions of the retina. The second layer consists of complex
cells which pool over small regions of the output of the simple cells, passing
only the maximal activation values in the pooled area to the next level of
the hierarchy. Over the next layers, the receptive fields of the cells increase
in size, and the stimuli that induce maximal responses in the cells become
increasingly complex. In the highest level of the hierarchy, view-tuned cells
respond maximally to specific object views over the whole retina (though
later models based on HMAX, for example Serre et al., 2007, do not use
view-tuned units).

Though the HMAX model initially dealt mostly with the recognition of
computer generated images showing bent wires, it has since been extended to
perform classification tasks by learning more complex features (Serre et al.,
2004), and has achieved high performance in real-world classification scenar-
ios (Serre et al., 2004, 2007). Backed by experimental evidence, it is viewed
as the ‘standard model’ of the early (feedforward) stages of visual process-
ing (Riesenhuber and Poggio, 2003; Serre et al., 2004) and provides support
for the predominantly feedforward picture of visual processing. Further evi-

CHAPTER 1. INTRODUCTION 3

dence for the feedforward picture comes from studies showing that humans
can detect stimuli of certain classes with exposure durations as short as 20
milliseconds, and that visual processing in these cases takes less than 150
milliseconds (Thorpe et al., 1996). Arguably, such a time constraint is too
short to allow for top-down influences based on slower recurrent processes.
Motivated, in large part, by the evidence reviewed here, many artificial vision
systems have adopted the feedforward picture (Fukushima, 1980; LeCun and
Bengio, 1995; LeCun et al., 1998; Riesenhuber and Poggio, 1999; Serre et al.,
2007; Wiskott and Sejnowski, 2002).

Recently, feedforward image processing is dominated by deep convolu-
tional networks (LeCun et al., 1998; Hinton et al., 2006; Bengio et al.,
2007). The structure of these networks shares similarities with the HMAX
model (Schmidhuber, 2014), and they have achieved performance similar to
and even exceeding that of humans (Cireşan et al., 2012). However, their
biological plausibility is questionable (Schmidhuber, 2014).

Though the feedforward picture appears to be a good model for the brain’s
categorization process, it does not address all capabilities of the human vi-
sion system. For example, fast recognition as described in Thorpe et al.
(1996) does not include subordinate level information, nor does it include
information on the location or feature values of the perceived object (Mack
and Palmeri, 2011). Feedforward models usually also require extensive train-
ing because class invariances must be learned from many examples (though
exceptions exist, for example Fei-Fei et al., 2003). This contrasts with the
ability of humans to learn to recognize individual object instances even in
poses in which they were not perceived before, from just a small number of
training views (for example, Jolicoeur, 1987; Nazir and O’Regan, 1990).

A model that addresses some of these issues is described by Faubel and
Schöner (2009, 2010) and Lomp et al. (submitted 2016). The model is capable
of recognizing individual objects and estimating their pose based on a small
number of training views. Objects are represented by histograms of color and
edge orientations as well as a heuristic shape description. During recognition,
the system concurrently determines the best matching learned view for the
current input, as well as the transformation between this view and the input.
The model is based on dynamic field theory (DFT; Schöner, 2008; Schöner
et al., 2015b), a framework for building neural-dynamic architectures that has
been used widely to model cognitive processes (for example., Johnson et al.,
2009; Zibner et al., 2011b; Schneegans and Schöner, 2012). At the core of
DFT are dynamic neural fields which describe the activation of populations
of neurons over metric feature spaces. In the object recognition system,
these feature spaces are the parameter values of the transformation between
learned object views and the current input. Each learned view is indexed

CHAPTER 1. INTRODUCTION 4

by a label, and the activation of the labels is represented by dynamic neural
nodes, a variant of the dynamic field equation.

The model provided a first neural-dynamic implementation of the princi-
ples of the map-seeking circuit introduced by Arathorn (2002). As such, its
aim was to prove that the iterative model of Arathorn (2002) could be real-
ized by the continuous-time differential equations underlying dynamic field
theory, and to prove that such a model could achieve sufficient performance
in the context of a robotic vision system.

In my thesis, I develop this model further toward biological plausibility.
To do so, I address two aspects that were previously not solved in a neu-
rally plausible way. The first concerns the sequential scanning of multiple
objects. Thus far, external control, either by the user or an algorithmic struc-
ture, is necessary to transition from recognizing one object to recognizing the
next. In Part II, I address this by integrating the object recognition system
with a scene representation system (Zibner et al., 2011b; Zibner and Faubel,
2015), which models the biological processes of sequentially attending salient
locations in the input image and committing their feature values to work-
ing memory using the principles of dynamic field theory. In the combined
system, attention from the scene representation model determines the input
for the object recognition system, which in turn provides identity informa-
tion to be stored in working memory. Dynamic field theory provides tools
for achieving such an integration. However, this requires that the involved
architectures are fully realized within the DFT framework. For the scene
representation, this is the case, but the transition from recognizing one ob-
ject to recognizing the next is solved outside this framework in the object
recognition architecture presented in Faubel and Schöner (2009, 2010) and
Lomp et al. (submitted 2016). Part of the integration therefore consists of
replacing these nonneural aspects by mechanisms realized within the DFT
framework.

Second, I address the representation of object views. Thus far, the model
mainly uses histograms of feature values for recognition. Though most of the
mechanisms for extracting these histograms can be implemented neurally, the
representation itself deviates from the principles of dynamic field theory (they
are not stable distributions of activation over a feature space). In Part III, I
therefore introduce representations that are closer to these principles.

An advantage of this new representation is that it allows the system to
estimate scale, which was not estimated by the histogram based system. As I
describe in Part III, the new representation also reveals additional constraints
for the neural dynamics of the object recognition process. In particular, the
new representation is less discriminative than the histograms of the original
architecture during the initial stages of recognition. This results in ambi-

CHAPTER 1. INTRODUCTION 5

guities which may lead the dynamics of the system to converge to wrong
estimates, effectively resulting in worse recognition performance. I address
this by introducing competition in the neural dynamics that gradually in-
creases over the time, which brings the process closer to the competition
function central to the map-seeking circuit (Arathorn, 2002). The new ob-
ject representation also allows to distinguish between foreground and back-
ground locations in the input image. I describe how such a distinction may
arise from the object recognition system, qualitatively demonstrate it in the
presence of occlusion, and investigate its usefulness for masking the input.

Previous evaluations of the object recognition system mainly focused on
recognition and pose matching performance in a robotic context. In my
thesis, I adopt this setting, but perform further evaluations to characterize
how the system’s behavior depends on the pose of the object in the image.
I relate these results to the literature, in particular on view-based versus
structural descriptions and on mental rotation mentioned above in order to
draw conclusions about the suitability of the model to explain part of the
brain’s vision system.

Part I

Dynamic field theory and
cognitive vision

6

Chapter 2

Architectures in dynamic field
theory

The architectures I present build on dynamic field theory (DFT; Schöner,
2008; Schöner et al., 2015b), a modeling language for cognitive architectures
that is based on the principles of neural dynamics (Grossberg, 1978). In this
chapter, I formally describe the relevant principles of DFT. I start with its
core elements, dynamic neural fields and nodes, then describe how multiple
instances of these elements can be coupled to form larger architectures, and
how the stable states in these architectures may be organized to fulfill an
intended function. I then describe the numerical implementation of DFT
that I use and, finally, introduce some notation aimed at simplifying the
equations throughout the rest of this thesis.

Please note that some of the text in the present chapter is based on Lomp
et al. (accepted 2016).

2.1 Dynamic neural fields and nodes
At the core of the DFT framework are dynamic neural fields (which I also
refer to as fields), which describe how the distribution of activation, u(x, t),
of a population of neurons evolves in time, t ∈ R+. Activation is defined over
a feature space indicated by x ∈ Rn, which defines the field’s dimensionality,
n ∈ N. The feature space can, for instance, be a one-dimensional represen-
tation of color (x = c where c is a color) or a two-dimensional location on
the retina (x = (x, y)). The activation of a field evolves according to the

7

CHAPTER 2. ARCHITECTURES IN DYNAMIC FIELD THEORY 8

dynamics

τ u̇(x, t) =− u(x, t) + h+ wξ ξ(x, t)

+ s(x, t)

+ [ku ∗ (g ◦ u)] (x, t) , (2.1)

where τ is a timescale that determines the speed with which activation
changes, s(x, t) ≥ 0 is input to the field which may come from sensors or
other fields (see below), h ≤ 0 indicates the resting level to which activation
relaxes in the absence of input (s(x, t) = 0 ∀x) and ξ(x, t) is a Gaussian white
noise term with unit variance which is scaled by the factor wξ ≥ 0. The last
term in the equation brings about interaction in the field by convolving the
field’s output, g (u(x, t)), and the interaction kernel, ku,

[ku ∗ (g ◦ u)] (x, t) =

∫
ku(x− x′)g (u(x′, t)) dx′ (2.2)

The interaction kernel may be realized as a combination of Gaussians,

ku(x− x′) =
∑
i

ai Gσi (x− x′)− γ, (2.3)

where γ ≤ 0 defines global inhibition that acts on all field sites, and Gσi is a
Gaussian function centered around zero that has width σi for dimension i,

Gσi (x− x′) = exp

(
−(x− x′)2

2σ2
i

)
. (2.4)

I use a “Mexican hat” kernel which comprises two Gaussians: one expresses
local excitation between neighboring sites with strength a1 ≥ 0 in a region
of width σ1, and the other expresses local inhibition with strength a2 ≤ 0
around this region with width σ2 > σ1.

The output of the field lies between zero and one and determines which
sites of the field contribute to interaction. I use two variants for the out-
put function, g (u). One is a computationally efficient approximation of the
logistic function,

g (u) = σabs (u) =
1

2

(
1 +

βu

1 + β|u|

)
, (2.5)

where the parameter β > 0 controls the steepness of the function around
zero. I also use the Heaviside function,

H (u) =

{
1 : u > 0
0 : u ≤ 0

, (2.6)

CHAPTER 2. ARCHITECTURES IN DYNAMIC FIELD THEORY 9

input 1 input 2

x

s(x, t) + h
u(x, t)

10 · g (u(x, t))

Figure 2.1: An example of a neural field defined over a single dimension, x,
and its input (plotted relative to the resting level as h + s(x, t)), activation
(u(x, t)) and output (g (u(x, t)), here multiplied by a factor for improved
visibility). Two equally strong localized inputs are present. The field has
formed a suprathreshold (activation above zero) peak over the left input,
marked input 1. Via global inhibition, this peak suppresses the right input,
marked input 2, and the field is therefore said to be selective.

which may be seen as a computationally efficient approximation of the limit
case β →∞ in Equation 2.5.

The field dynamics were introduced by Amari (1977), who showed that
localized regions of suprathreshold activation called peaks (see Figure 2.1)
are a stable solution for an appropriate choice of parameters. Peaks arise in
response to localized inputs, and their location encodes feature values. They
are thus the elementary unit of representation in dynamic field theory and
this kind of representation is referred to as space code.

Dynamic neural nodes (which I also refer to as nodes) are, in a sense,
zero-dimensional fields, that is, their feature space is reduced to a single
point, and their activation is therefore reduced to a single dynamical variable.
Analogous to Equation 2.1, the dynamics of this variable is governed by

τ u̇(t) =− u(t) + h+ wξ ξ(t)

+ s(t)

+ wu g (u(t)) , (2.7)

where, again, h ≤ 0, s(t) ≥ 0, wξ ≥ 0, and ξ(t) is a Gaussian white noise
term with unit variance. The lack of a feature space implies that there is no
explicit metric to relate such nodes to each other. The only interaction in the

CHAPTER 2. ARCHITECTURES IN DYNAMIC FIELD THEORY 10

u

u̇
s(t) = 0

s(t) = 1
2w

u

s(t) = wu

(a)

s

u(t∗)
u(0) < 0

u(0) > 0

(b)

Figure 2.2: (a) shows the phase plot of a node for varying input strengths.
Attractors are marked with circles and the repellor is marked with a square.
(b) probes the attractors of the node for different input strengths by showing
the activation of the system after a time t∗ that allows for sufficient conver-
gence, starting from different initial conditions.

equation is therefore self-excitation of strength ku ≥ 0. Note, however, that
multiple nodes can interact with each other through the input, s(t). Such
couplings are the topic of the next subsection.

2.1.1 Instabilities in fields and nodes

The functional states of fields and nodes are attractors, solutions of the dy-
namics for which the rate of change, u̇, is zero, and to which nearby solutions
converge.

First, consider the dynamics of a node (Equation 2.7). Attractors can
be calculated analytically, but they may also be seen directly in the phase
plot of the dynamics (Figure 2.2(a)) as the locations at which the graph
intersects the u-axis. As Figure 2.2(a) illustrates, different input levels lead
to different configurations of attractors. For zero input (s(t) = 0), only a
single attractor exists at an activation level below threshold. In this case, all
solutions converge to it: if the state of the node, u, is below the attractor,
the rate of change is positive, and the state therefore changes toward the
attractor over time; conversely, if the state is above the attractor, the rate
of change is negative, and the state again moves toward it. Thus, no matter

CHAPTER 2. ARCHITECTURES IN DYNAMIC FIELD THEORY 11

in which state the system starts, it will always converges to a subthreshold
state (a state in which the node is said to be inactive or off). At moderate
levels of input (s(t) = 1

2
wu), there are three fixed points. Two are attractors,

one of which is an inactive state (< 0) and one of which is an active state
(> 0). A repellor, which also has a rate of change of zero but from which
solutions diverge, delineates the basins of attraction between the two states.
States below this unstable point converge toward the inactive (off) state,
whereas states above it converge to the active (on) state. For high levels of
input (s(t) > wu, the system again shows only a single attractor, this time
an on state.

How does the system transition between these different configurations of
stable states? This may be investigated by continuously varying the param-
eter relevant to these changes over time and plotting the attractors for each
configuration. The relevant parameter here is the strength of input, and
the corresponding plot is shown in Figure 2.2(b), which shows that a single
attractor “splits” into multiple attractors as the input becomes larger. At
high levels of input, multiple attractors merge together. The exact points
at which the number or stability of fixed points changes are called bifurca-
tions or instabilities, and the parameter being varied (in this case the input
strength) is called the bifurcation parameter.

Instabilities play an important role in dynamic field theory. They mark
discrete events in a system that evolves in continuous time. In the example
above, we can observe two such instabilities. The first is the detection insta-
bility. It occurs at the level of input at which no off -state is stable, and the
only remaining fixed point corresponds to an on-state. The reverse detection
instability describes the opposite case; it occurs for levels of input at which
no on-state is stable and the only remaining fixed point corresponds to an
off -state.

Between these instabilities, the system is bistable, that is, both the on-
and off -state coexist as stable solutions. This is an important property of
the system, which can be illustrated by a system that starts with zero input
and in an off -state. If input is slowly increased, the system remains below
threshold until the detection instability occurs, at which point the input
is said to be detected. When input is lowered again, the system remains
in the active state, even when the level of input goes below the level that
induced the initial detection. This is considered an elementary cognitive
act: the ‘decision’ to detect the input is stabilized against fluctuations by
the hysteretic properties of the system. The system becomes inactive only
when the level of input drops significantly, to the point at which the reverse
detection instability occurs.

How strongly the system resists fluctuations in the input level depends,

CHAPTER 2. ARCHITECTURES IN DYNAMIC FIELD THEORY 12

u

u̇
wu = 0

wu = 3

wu = 6

wu = 9

(a)

s

u(t∗)
wu = 0

wu = 3

wu = 6

wu = 9

(b)

Figure 2.3: (a) shows the phase plot of a node for s(t) = 0 and different levels
of self-excitation. At high levels of self-excitation, the node may be bistable
even without input. (b) demonstrates this by plotting the approximated fixed
points of the node for different levels of self-excitation (Figure 2.2 explains
how these are obtained).

in part, on the node’s self-excitation, wu. This can be visualized by a looking
at the stable states that arise when self-excitation is varied. An exemplary
plot of this is shown in Figure 2.3. As the figure demonstrates, increasing
self-excitation lowers the input level for which the reverse detection instabil-
ity occurs. Above a critical level of self-excitation, the reverse-detection no
longer occurs for valid (that is, nonnegative) input levels. This means that
if the node becomes activate, it will not deactivate even if the input is set
to zero. The node is therefore said to have memory of the detection that
initially activated it.

To analyze the stable states of dynamic neural fields, a more complex
mathematical analysis is necessary. Such an analysis may be found in Amari
(1977). Of interest for my thesis are peak solutions which are localized con-
nected regions of suprathreshold activation form in response to localized in-
puts (see Figure 2.1). Analogs for the detection and reverse detection insta-
bilities occur for peaks. The detection instability can be induced by gradually
increasing the strength of localized input. As long as the input strength is
small, the field relaxes to a subthreshold attractor which has the shape of the
input, offset by the resting level, analogous to the sub-threshold solution of
the node dynamics. Once the input is strong enough, the detection instability

CHAPTER 2. ARCHITECTURES IN DYNAMIC FIELD THEORY 13

occurs. Activation in parts of the field becomes suprathreshold, and inter-
action takes effect. Self- and local excitation stabilize the peak analogous
to the self-stabilization of the node. When lowering the input strength, the
peak again persists even for input strengths below the one originally induc-
ing detection. Finally, the peak decays when the reverse detection instability
occurs.

Neural fields may also exhibit (working) memory. With sufficient local
excitation, a peak that is formed is stabilized sufficiently so that it remains
active even if the inducing input disappears.

Fields exhibit another instability that is not present in (uncoupled) nodes.
When the interaction contains strong global inhibition, peaks strongly inhibit
other field sites. When the input contains multiple locations that are suf-
ficiently strong to push the field above threshold (an example is illustrated
in Figure 2.1), both locations may initially induce suprathreshold activation
in the field. Because this means that they both contribute to interaction,
they also inhibit each other. One location them may reach higher activation
due to random fluctuations such as noise and thus inhibits the other location
more strongly. Over time, this advantage amplifies, and activation at the
losing site falls below threshold. Effectively, the field has performed a selec-
tion of one of multiple candidates (Figure 2.1 illustrates the result of such a
selection).

2.2 Coupling neural fields and nodes to form
architectures

Individual fields and nodes already have cognitive functions such as detec-
tion, selection and memory. Models for more complex cognitive functions,
however, require multiple fields and nodes that are coupled together into an
architecture (Zibner et al., 2011b; Zibner and Faubel, 2015). In this section,
I describe the principles for these couplings using two fields, a source field
indexed with A, and a target field indexed with B. The source field has di-
mensionality a, and the target field has dimensionality b. Field A is coupled
to field B by providing input sB(x, t) = sB,A(x, t) (note that sB may be a sum
of multiple coupling terms and other inputs; for simplicity, I do not include
this in the notation here).

In the one-to-one coupling, both fields have the same dimensionality (a =
b). The input to the target field is the output of the source field, g

(
uA(x, t)

)
,

CHAPTER 2. ARCHITECTURES IN DYNAMIC FIELD THEORY 14

convolved by a coupling kernel, kB,A(∆x),

sB,A (x, t) =
[(
g ◦ uA

)
∗ kB,A

]
(x, t)

=

∫
kB,A(x− x′)g

(
uA(x′, t)

)
dx′. (2.8)

This assumes that both fields are defined over the same dimensions, that
the dimensions are aligned, and thus that the fields are defined over the
same vector, x. The coupling kernel, kB,A, may, for example, be a zero-
mean Gaussian (see Equation 2.4). Note that the kernel is assumed to be
independent of time, and the convolution is assumed to disregard the time
argument in any such couplings.

When the target field represents more metric dimensions than the source
field (b > a), the coupling is an expansion. In this case, the vector xB that
describes the dimensions of the target field contains all dimensions present
in the vector xA that describes the dimensions of the source field, but has
additional entries. The input to the target field is

sB,A
(
xB, t

)
=

[(
g ◦ uA

)
∗ kB,A

] (
xA, t

)
=

∫
kB,A(xA − x′)g

(
uA(x′, t)

)
dx′. (2.9)

Because the right hand side does not depend on the extra dimensions in xB,
the input is constant along these dimensions. Zibner et al. (2011b) describe
this as ridge inputs for two-dimensional target fields and one-dimensional
source fields, as tube inputs for three-dimensional target fields and two di-
mensional source fields, and as slice inputs for three-dimensional target fields
and one-dimensional source fields.

When the target field represents fewer metric dimensions than the source
field (b < a), the coupling is a contraction. In this case, some of the dimen-
sions represented by xA are not represented by xB. For notational conve-
nience, assume that the first b dimensions are shared between both vectors,
and that the extra dimensions are in the last slots, xA

b+1, . . . , x
A
a . These di-

mensions are contracted by integration,

sB,A
(
xB, t

)
=

∫
· · ·
∫
g
(
uA(xA, t)

)
dxA

b+1 . . . dxA
a . (2.10)

Note that the result may be further convolved with a coupling kernel; I leave
this out in the equation to prevent notational clutter.

A source node indexed with A and with activation uA(t) may be coupled
to a target node indexed by B by providing coupling input sB(t) = sB,A(t)

CHAPTER 2. ARCHITECTURES IN DYNAMIC FIELD THEORY 15

(note that again, sB may be a sum of multiple coupling terms and other
inputs). This input is given by

sB,A(t) = kB,A g
(
uA(t)

)
, (2.11)

where kB,A ∈ R is the strength of the coupling.
When the source node A is coupled to a target field B, it may provide a

boost to the entire field:

sB,A (x, t) = kB,A g
(
uA(t)

)
, (2.12)

where kB,A is the strength of the coupling. Such a coupling may be used to
induce a detection instability. The coupling strength may also be given by
a function that depends on space, kB,A(x), so that the source node induces
a localized input in the target field. For example, a ‘red’ node may have a
Gaussian-shaped connection function that is centered around the value for
red.

When a source field A is coupled to a target node B, the coupling input
is analogous to a contraction of all field dimensions,

sB,A (t) = kB,A

∫
g
(
uA(x, t)

)
dx. (2.13)

When the coupling strength, kB,A, and the parameters of the node are chosen
appropriately, a sufficiently strong (and broad) peak in the field A induces a
detection instability in the node. The node is thus a peak detector. Through-
out my thesis, I refer to the activation of such peak detectors by upd

idx(t),
where idx indexes the field for which the node detects peaks, and the index,
pd, indicates that the node is a peak detector.

2.3 Behavioral organization
Complex cognitive models may place constraints on the temporal organiza-
tion of the stable states of activation of the model’s elements. As an example,
think of a robot trying to grasp an object on a table. First, the robot must
detect the object, for example by forming a peak in a field defined over space.
This peak may then drive the motor system to move the robot’s hand to-
wards the target. Simultaneously, a one-dimensional field defined over the
state of the robot’s hand may control the opening and closing of the hand. To
grasp an object, it is necessary to open the hand before attempting to grasp.
Therefore, a peak at a specific position in the hand-state field may need to be

CHAPTER 2. ARCHITECTURES IN DYNAMIC FIELD THEORY 16

present before moving the hand towards the target. Such constraints must
be realized by controlling instabilities and fields.

Richter et al. (2012) propose a system for behavioral organization that
realizes such constraints by controlling the instabilities of fields and nodes
through elementary behaviors.1 Each behavior consists of two dynamic neural
nodes. The intention node represents the intention to execute a behavior.
The condition of satisfaction node signals that the behavior is complete. The
intention node may be associated with an intention field which contains a
metric representation of the intention (for example, the intention to create a
peak representing an open hand), and the condition of satisfaction node may
be associated with a condition of satisfaction field that represents completion
of the behavior by forming a peak.

Next, I formally define such behaviors and the dynamics of their nodes
and fields. I then describe how two kinds of constraints between behaviors
may be realized. A suppression prevents two or more behaviors from becom-
ing active at the same time. A precondition ensures that a behavior only
activates if another has already been completed. For the formalizations, I
adopt the framework proposed by Richter et al. (2012).

2.3.1 Dynamics of a single behavior

Each behavior is activated by a task input, stask(t) ∈ {0, 1}. The value of
this input is determined externally, for example, by a user or a program
controlling the architecture. As defined above, a behavior comprises two
nodes: the intention node, whose activation I denote by uint(t), and the
condition of satisfaction node, whose activation I denote by ucos(t). It may
also comprise two fields: the intention field, whose activation I denote by
uintf(x, t), and the condition of satisfaction field, whose activation I denote
by ucosf(x, t), where x is a feature space as defined for the field equation (see
Equation 2.1).

When the intention node is active, this signals that a behavior should
be enacted (what this means concretely depends on the architecture; it may,
for example, mean that a robot should start moving towards a target). The

1Note that in the following, I use the term behavior instead of elementary behavior
because in the context of the architectures I present, behaviors may drive other behaviors
and thus are no longer elementary.

CHAPTER 2. ARCHITECTURES IN DYNAMIC FIELD THEORY 17

node’s dynamics is analogous to the dynamic node equation (Equation 2.7):

τ u̇int(t) =− uint(t) + h+ wξ ξ(t)

− wint,cos g (ucos(t)) + sint(t) + wint,taskstask(t)

+ wint g
(
uint(t)

)
. (2.14)

Here, sint(t) stands for a collection of inputs from the architecture in which
the behavior is embedded. This input may be inhibitory, preventing acti-
vation of the node from becoming suprathreshold, for example, to realize
constraints between behaviors (see Section 2.3.2).

The intention node may excite the intention field, which is governed by
the dynamics

τ u̇intf(x, t) =− uintf(x, t) + h+ wξ ξ(x, t)

+ kintf,int(x) g
(
uint(t)

)
+ sintf(x, t)

+
[
kintf ∗

(
g ◦ uintf

)]
(x, t) , (2.15)

where sintf(x, t) represents input that comes from other fields in the archi-
tecture and kintf,int(x) is a pattern that encodes the intended outcome of the
behavior. For an example, think of a ‘look for red’ behavior. The intention
field may be defined over color, and kintf,int(·) may be a Gaussian centered
on the value for red.

The condition of satisfaction node has the dynamics

τ u̇cos(t) =− ucos(t) + h+ wξ ξ(t)

+ wint,int g (ucos(t))

+ scos(t) + wcos,taskstask(t)

+ wcos g (ucos(t)) . (2.16)

Activation is driven by the input, scos(t). With sufficient input, the activa-
tion reaches threshold and the behavior is considered complete. The exact
equation for the input depends on the context of the behavior; it may, for
example, be a sum of outputs from condition of satisfaction nodes of other
behaviors, so that the behavior completes only when all connected behaviors
are complete as well. If the behavior has a condition of satisfaction field, this
input may be the contraction of that field’s activation (denoted by ucosf),

scos(t) = wcos,cosf

∫
g
(
ucosf(x, t)

)
dx, (2.17)

so that the condition of satisfaction node is a peak detector (see Section 2.2).

CHAPTER 2. ARCHITECTURES IN DYNAMIC FIELD THEORY 18

explore

look for 'red' behavior

int cos

color

activation
intention output
perceived color

color

activation
intention

intention field cos field

Figure 2.4: Graphical representation of a behavior. The gray box groups
the intention (int) and condition of satisfaction (cos) node in the exemplary
behavior look for ‘red’. This behavior is part of a task explore, as indicated
by the small box at the top-right side of the behavior. Lines ending in an
arrowhead indicate an excitatory coupling. Lines ending in a circle indicate
an inhibitory coupling.

One way in which the condition of satisfaction field may detect com-
pletion is by overlaying the current state in the world (given by an input,
scosf(x, t)) with the intended state (the output of the intention field). Think
again of the example behavior ‘look for red’; the activation of the intention
field represents the color red, and feeds into the condition of satisfaction field.
However, the coupling is not strong enough, and on its own does not induce
a peak. A peak is induced only when this input overlaps sufficiently with the
perceived color. The dynamics of the condition of satisfaction field,

τ u̇cosf(x, t) =− ucosf(x, t) + h+ wξ ξ(x, t)

+ wcosf

[
Gσcosf ∗

(
g ◦ uintf

)]
(x, t)

+ wcosf

[
Gσcosf ∗ scosf

]
(x, t)

+
[
kcosf ∗

(
g ◦ ucosf

)]
(x, t) , (2.18)

realize this with an appropriately chosen coupling weight, wcosf .
To make the overall structure of a behavior concrete, Figure 2.4 illus-

trates the exemplary behavior ‘look for red’. When the task is activated, the

CHAPTER 2. ARCHITECTURES IN DYNAMIC FIELD THEORY 19

intention node receives positive input and becomes active. This projects a
pattern into the intention field, the Gaussian centered on the color value for
red described above. In turn, this induces a peak in the intention field, which
projects into the condition of satisfaction field. The intention of the behavior
is also assumed to drive the agent controlled by the architecture to explore
its environment in a way not represented here. The color of the object in the
center of a camera on the agent provides input to the condition of satisfac-
tion field. When the agent perceives red, this input increases activation in
the condition of satisfaction field around the value for the perceived color. If
this value is close enough to the intended value, it overlaps with the input
from the intention, and a peak forms. This peak, in turn, drives the condi-
tion of satisfaction node above threshold. The inhibitory coupling from the
condition of satisfaction node subsequently deactivates the intention node.
The agent therefore stops looking for the color red and may perform further
actions such as memorizing that red was found at the current location.

Dedicated intention or condition of satisfaction fields may not necessarily
be part of a behavior. Instead, the condition of satisfaction, for example, may
be driven by peaks arising in fields that fulfill other roles in the architecture.

It may be necessary to remember that an action was completed even if
the condition of satisfaction is no longer perceived. In this case, the condition
of satisfaction node may be made self-sustained by strong self-excitation. I
indicate this by a loop on the condition of satisfaction node (see Figure 2.4
for an example).

Multiple behaviors may be combined to organize the behavior of an archi-
tecture and must be distinguished in the architecture’s formalization. Anal-
ogous to the notation for fields, I name behaviors, and add an index to the
different variables of the behavior. For example, the activation of the inten-
tion node of the behavior look for red may be indexed with ‘lfr’, and is thus
denoted as uint

lfr (t).

2.3.2 Constraints between behaviors

When an architecture contains multiple behaviors, there may be constraints
between these behaviors. For example, two behaviors may drive a common
resource such as a robotic arm, implying that the behaviors cannot be active
at the same time. In the behavioral organization framework, this is expressed

CHAPTER 2. ARCHITECTURES IN DYNAMIC FIELD THEORY 20

task

behavior 1

int cos

task

behavior N

int cos

suppression
s

task

...

Figure 2.5: Graphical representation of a suppression between competing
behaviors.

by a suppression node which has the dynamics

τ u̇sup(t) =− usup(t) + h+ wξ ξ(t)

+ stask(t) + wsup,int
∑
i

g
(
uint
i (t)

)
+ wsup g (usup(t)) , (2.19)

where i indexes competing behaviors and all other variables are defined anal-
ogous to the dynamic neural node equation (Equation 2.7). The parameters
of the suppression node are chosen such that it activates when at least one of
the competing behaviors becomes active. The node inhibits the competing
behaviors via an additional input to the dynamics of their intention nodes.
The strength of this inhibition, wsup, is chosen so that the intention nodes
may not become active if the suppression node’s activation is above threshold.
This implements selection between the suppressed intention nodes analogous
to the selection described in Section 2.1.1. Figure 2.5 shows a graphical
representation of nodes that suppress each other.

The second type of constraint, the precondition, expresses conditions that
have to be met before a behavior may become active. Preconditions are ex-
pressed by a precondition node whose activation is governed by the dynamics

τ u̇pre(t) =− upre(t) + h+ wξ ξ(t)

− spre(t) + wtaskstask(t)

+ wpre g (upre(t)) . (2.20)

The coupling strength of the task input, wtask > h, is chosen so that the node
becomes active as soon as the task activates. When it is active, it inhibits

CHAPTER 2. ARCHITECTURES IN DYNAMIC FIELD THEORY 21

task

behavior 1

int cos

task

behavior n

int cos

... precondition
p

task
task

target behavior

int cos

Figure 2.6: Graphical representation of preconditions between behaviors.
The precondition node (‘p’) is activated by the task and inhibits the intention
node of the target behavior. When the condition of satisfaction nodes of
behaviors 1 to n activate, they suppress the precondition node, releasing the
inhibition of the target behavior.

the intention nodes of the target behaviors of the constraints, preventing
them from becoming active. When all of its preconditions are met, the
precondition node is inhibited by its input, spre(t), and becomes inactive,
allowing the intention nodes of the inhibited behaviors to become active. The
precondition node’s input commonly comprises the activation of condition of
satisfaction nodes from other behaviors, ucos

i , for example,

spre(t) =wpre,cos

n∑
i=1

g (ucos
i (t)) , (2.21)

but the exact formulation again depends on the architecture. Different values
for the coupling weight, wpre,cos, lead to different types of preconditions. If
wpre,cos > h (where h is the resting level of the precondition node), then a
single active condition of satisfaction node in Equation 2.21 suffices to push
the activation of the precondition node above threshold. If, on the other
hand, wpre,cos = h

n
+ ε (where ε is a small positive value), the precondition is

only deactivated (and thus fulfilled) if all nodes connected to it are active.
Figure 2.6 illustrates the connectivity of a precondition node.

2.4 Implementing dynamic field theory
Usually, analytical solutions for the dynamics of a dynamic field theory archi-
tecture are not available. To implement the architecture, its dynamics must
therefore be approximated numerically. For more complex architectures, this

CHAPTER 2. ARCHITECTURES IN DYNAMIC FIELD THEORY 22

may mean a significant overhead in terms of the effort required for the im-
plementation, especially if performance is a concern. During my thesis work,
I co-developed cedar (cognition, embodiment, dynamics, and autonomy in
robotics; see Lomp et al., 2013, accepted 2016), a framework that reduces
this overhead by offering a graphical interface for constructing architectures
from supplied implementations of the core elements of dynamic field the-
ory.2 All architectures I present are implemented and evaluated using this
framework. In the present section, I therefore describe some of the principles
underlying the cedar framework, in particular, the method for numerically
approximating the solutions of the neural dynamics, and the synchronization
of real and simulated time necessary in robotic contexts. Please note that
some of the descriptions in this section follow Lomp et al. (accepted 2016).

2.4.1 Solving dynamics numerically

cedar numerically approximates the solution of dynamics using the forward
Euler method despite its low order of convergence when compared to more
sophisticated approaches. This choice was made for several reasons. First,
the functional states of dynamic field theory architectures are attractors. To
an extent, their stability properties transfer to the numerical approximation,
reducing the impact of the Euler method’s relatively low order of convergence.
Second, when dynamic field theory architectures are embodied, for example,
in a robot, the frequency at which the numerical approximation of the neural
dynamics is updated is constrained by the frequency at which hardware (for
example, a camera) provides new data. This may become problematic for
higher order methods. For example, the Runge-Kutta approach may require
intermediate steps to determine the update of the approximation. Evaluating
the dynamics for these intermediate steps would require a different sampling
of the sensor readings, for instance by interpolation. Third, the dynamics im-
plemented in cedar (and used for the models presented in my thesis) belong
to the class of stochastic differential equations (for example, the neural field
equation, Equation 2.1, contains a noise term), and higher-order numerical
methods thus require repeated sampling; in fact, they require many function
evaluations for each time step (Kloeden and Platen, 1999). Because these
evaluations may be costly for neural fields (especially of higher dimension-
ality), this quickly offsets the computational gain from using higher order
methods.

Thus, following the Euler approach, a stochastic differential equation

τ u̇(t) = f(u(t)) + wξ ξ(t) (2.22)
2cedar is available for download at http://cedar.ini.rub.de.

http://cedar.ini.rub.de

CHAPTER 2. ARCHITECTURES IN DYNAMIC FIELD THEORY 23

that evolves on a timescale, τ , with deterministic dynamics, f(u(t)), and
Gaussian white noise, ξ(t), with a variance of one and a mean of zero, mul-
tiplied by a factor wξ, may be approximated by

u(ti) ≈ u(ti−1) +
1

τ

(
∆tif(u(ti−1)) +

√
∆ti wξ ξi−1

)
, (2.23)

with the value from a Gaussian pseudo-random number generator, ξi−1. The
solution is approximated at discrete samples of time, ti (with i ∈ {1, 2, . . .}).
These samples are chosen approximately equidistantly (see below), so that
∆ti = ti − ti−1. Note that the stochastic term is scaled with the square root
of this time step (see Zwillinger, 1989).

The approximation error of the Euler approach scales with the time step,
∆ti. A small time step is therefore desirable, and the general stability prop-
erties of the Euler approach suggest that it should be chosen to be several
orders of magnitude smaller than the shortest time scale of the architecture.
However, too small values may be smaller than the time required for the
computation of the dynamics, which is problematic for reasons I discuss be-
low. In practice, attractor solutions support numerical stability, so that a
relatively crude sampling of the dynamics is still possible, with time steps
exceeding the limit suggested by the stability of the Euler approach when
simulating dynamic field theory architectures.

2.4.2 Synchronizing real and simulated time

Dynamic field theory architectures may be connected to sensors in the real
world, for instance, to cameras. In such a case, the time samples, ti, for
which the numerical approximation is calculated, must be aligned with phys-
ical time in the real world so that both are properly synchronized. This
creates further constraints for the choice of the Euler time step (∆ti in Equa-
tion 2.23).

If the computation of the Euler update systematically takes longer than
the chosen Euler time step, real and simulated time inevitably become desyn-
chronized and the architecture cannot be realized appropriately. Assuming
that the computation time cannot be reduced (for example, by improving
the efficiency of the implementation or using faster hardware), the Euler
time step has to be increased so that it is larger than the time required for
the computation of updates.

Ideally, the computation of the Euler update (Equation 2.23) is fast
enough, and computation time is not a concern. Even so, care must be taken
that the physical time at which the updates of the states of the dynamical
systems are provided does not become systematically desynchronized with

CHAPTER 2. ARCHITECTURES IN DYNAMIC FIELD THEORY 24

simulated time

real time

simulated time

real time

synchronized

unsynchronized

computing idlefixed time step

Figure 2.7: An illustration of the synchronization of real and simulated time.
Blue bars indicate time at which the Euler step is being actively computed,
yellow bars indicate idle times. Computing updates as fast as possible and
using the duration of computation as the time step (top panel) may lead to
a desynchronization of real and simulated time. Adding idle time so that at
least a fixed time has passed addresses this problem (bottom panel).

the simulated time. If the evaluation of the numerical solution were started
every time the last update was available, less time may have passed in the real
world than indicated by the Euler time step (see top panel of Figure 2.7).
The solution’s time, captured by ti, would thus increasingly run ahead of
physical time, and the properties of the neural dynamics would no longer be
correctly realized by the implementation.

The solution offered by cedar is to delay the initiation of a new Euler
update until enough time has passed in the real world to match the Euler
time step (see bottom panel of Figure 2.7). cedar also addresses the opposite
case, where the computation time takes longer than the Euler time step. In
this case, the Euler time step of the next update is extended by the additional
time required for the current Euler update. Again, this case should only occur
infrequently, for example, due to fluctuations in computation time arising
from an environment in which multiple threads of execution interact. cedar
monitors the occurrence of these events, and their frequency is displayed by
a meter that prompts the user to reparameterize the dynamics and lengthen
the planned Euler step.

CHAPTER 2. ARCHITECTURES IN DYNAMIC FIELD THEORY 25

More complex dynamic field theory architectures may include dozens of
fields, each with different dimensionalities (for examples, see Zibner et al.,
2011a; Richter et al., 2012; Knips et al., 2014). Numerically approximating
the dynamics of these architectures in real time may prove challenging. One
method for optimizing computational effort is to allow different Euler time
steps for different fields. Fields that require longer time to compute their Eu-
ler updates (for example, large three-dimensional fields) may then be iterated
less frequently than faster fields of lower dimensionality and size.

In cedar, architectures may therefore be divided into components that
are updated with different Euler time steps. Because the time at which an
update is calculated is linked to the Euler time step when the architecture is
synchronized with physical time, these components may also be updated with
different frequencies, allowing smaller timescales for some of the components.
In addition, each such component is its own thread of execution, potentially
making use of multiple cores common to modern CPUs.

A downside of this approach is that asynchronies may arise because each
thread reads the outputs of other threads at times that may come from time
samples that deviate from its own current time. However, synchronization
via physical time ensures that all threads of execution always read data from
approximately the same time. Asynchronies caused by threading thus do not
accumulate and remain small in relation to the time scales in the architecture.

2.4.3 Sampling space

Fields are defined over continuous feature dimensions (see Section 2.1) that
must be sampled for the numerical evaluation. In cedar, this sampling takes
the form of a regular grid. Each node in this grid is its own dynamic equation
and implements part of a simple rectangle rule that discretizes the integral
in the field equation (Equation 2.1). The dynamics of these grid points are
approximated using the Euler approach (Equation 2.23).

The implementation of the rectangle rule for the interaction also involves
a discretization of the interaction kernel. cedar ensures that the discretized
kernel has an uneven size, thus avoiding potential biases. For computational
efficiency, convolutions are split up into separable components where possible.
In addition, the fast Fourier transform may be used to speed up convolutions
when the size or dimensionality of the field or kernel becomes larger.

CHAPTER 2. ARCHITECTURES IN DYNAMIC FIELD THEORY 26

2.5 Notational conventions
For the precise specification of architectures, I write down the equations for
the involved fields and nodes as well as other components. For more complex
architectures, notation may become cumbersome because the equations have
several parameters which all have to be kept apart. In this section, I introduce
some notational conventions that exploit the regularity of the equations in
dynamic field theory. These conventions aim to improve the readability of
the equations, and I use them throughout the rest of my thesis. An index of
the notation may also be found in Appendix A.

When describing field equations, I indicate a specific field by an index
on the activation variable. Because architectures may have many fields, this
index usually consists of three to four letters indicating the function of the
field. For example, uattn(x, t) may refer to the activation of an attention field.
When writing down the dynamics of this field, all variables need to inherit
this index. For example, the field’s resting level is hattn. However, I usually
suppress this index, instead writing just h. Consequently, variables without
any index are meant to be specific to the field, that is, two fields for which the
resting level is denoted by h may still have different values for their resting
level. If they share the same resting level, I indicate this by an additional
index that differs from the field name, for example, hshared.

I indicate the concatenation of functions by the “◦” symbol. This means
that f ◦ g(x) is equivalent to f(g(x)). This is in particular used to describe
the convolution with an interaction kernel. Generally, I write the convolution
of two functions f and g as

[f ∗ g] (x) =

∫
· · ·
∫
f(x1 − x′1, . . . , xn − x′n) g(x′1, . . . , x

′
n) dx′1 . . . dx′n,

(2.24)
where x = x1, . . . , xn.

A similar problem arises when fields are coupled. I may express coupling
kernels as ktar,src and connection weights as wtar,src, where ‘src’ is the index
of the field from which the connection originates (the source) and ‘tar’ is the
index of the target field of the connection. However, from the context, it is
often clear what the source and target of the connection are, and I thus forgo
a special index for the weight term. For example, in the equation

τ u̇tar(x, t) = . . .− w [Gσ ∗ (g ◦ usrc)] (x, t) , (2.25)

it is clear that the activation of the target field receives input from the source
field, and the connection weight is thus abbreviated to w, which again follows
the convention above in that its value is not shared with other equations.

CHAPTER 2. ARCHITECTURES IN DYNAMIC FIELD THEORY 27

Note, that these weights are always meant to have a positive sign (w > 0),
and that the “+” and “−” signs in front of the weights indicate excitatory and
inhibitory interactions, respectively. In addition, the convolution disregards
the time index (see explanation around Equation 2.2).

A related issue arises when parameters such as connection weights appear
multiple times in the same equation. To differentiate these, I index them
by numbers, for example, w1. Again, these parameters are unique to the
equation in which they appear. Other equations may reuse w1, but the
values may be different.

I often refer to active and inactive fields and nodes. An active field is
one where a peak has formed, that is, a field with a region XP for which
g (u(xp, t)) ≈ 1 ∀ xp ∈ XP (where u is the field’s activation). Inactive fields
are those for which such a region does not currently exist. Similarly, a node is
active if g (u(t)) ≈ 1 (where u is the node’s activation) and inactive otherwise.
Implicitly, this means that the threshold for activation, determined by the
sigmoid function, is always set to zero.

Chapter 3

Object recognition based on
localized receptive field
histograms

Models for cognitive processes developed in dynamic field theory often sim-
plify visual perception. For example, Johnson et al. (2009) present a model
for detecting changes in visual displays in which the input is simplified to
Gaussians along a one-dimensional axis representing space. Such simplifica-
tions are useful for isolating specific aspects of the cognitive process being
modeled, but leave open the question of how the complex processes involved
in the brain’s visual system may be integrated into such models and dynamic
field theory as a whole.

These issues becomes more relevant when dynamic field theory models
are embodied in artificial cognitive agents such as robots. In such a context,
Faubel and Schöner (2008) developed a model for object recognition based on
dynamic field theory. In the model, objects are described by a combination of
low-dimensional feature values such as color and aspect ratio. These feature
values are represented using space code and are bound together by a shared
label dimension in label-feature fields. During a supervised training phase,
peaks form in these fields at intersections between the feature values from
the input and the label provided by a supervisor. These peaks, in turn,
lead to increased activation in a memory trace that stores the information,
forming a representation in which a banana, for example, is described as
elongated and yellow. When the system recognizes an object in a test image,
the label information must be retrieved. Features extracted from the input
again provide ridge inputs to the feature dimensions of the label-feature fields.
These ridges overlap with the preshape from the memory trace and thus
excite specific labels associated with the individual feature values. Over

28

CHAPTER 3. THE OBJECT RECOGNITION ARCHITECTURE 29

time, the competitive dynamics of the system settle on a single label, ideally
the one with feature values that best match the object in the test image.

A successor to this model is presented by Faubel and Schöner (2009,
2010) and Lomp et al. (submitted 2016). The successor departs from the
space coded representation of objects and instead uses localized histograms
based on the assumption that they are similar to the high-dimensional feature
vectors thought to be represented in visual cortex (Serre et al., 2007). It
is capable of learning new objects from a small number of training views
and recognizes them while concurrently estimating their pose. Because this
successor is the basis for the models I develop in my thesis, I describe it
in greater detail over the next sections. Please note that these descriptions
follow the ones in Lomp et al. (submitted 2016).

The model represents the estimated pose of an object in the input image
using dynamic neural fields. Concretely, position in the image plane is rep-
resented by a two-dimensional field, whereas orientation in the image plane
is represented in a one-dimensional field. Information on the identity of the
matched object is represented by dynamic neural nodes, each of which is as-
sociated with one of the object views learned by the system. The dynamics
of these fields and nodes form the core of the object recognition approach,
and I begin with a sketch of how recognition and pose estimation emerges
from these dynamics. A formal description is given in the next sections.

Figure 3.1 illustrates the initial state of the dynamics. Here, the capac-
ity of space code to represent the absence of information is used to indicate
that no concrete recognition or matching has taken place yet. All fields are
equally (in)active, and so are all nodes representing identity. In the top-down
path (right column of Figure 3.1), a superposition of learned object views is
formed using the approach described by Arathorn (2002). Each view con-
tributes to this memory superposition proportional to the activation of the
corresponding identity estimate. In the initial state, the overall identity esti-
mate is unspecific, and all object views therefore contribute equally. Further
along the top-down path, the memory superposition is transformed by the
current pose estimates. This is achieved again by calculating all possible
transformed versions of the memory superposition and then summing them,
again weighted by the corresponding pose estimates. In the first stage, the
memory superposition is rotated. Because the rotation estimate is unspe-
cific, all orientations again contribute equally, and the rotated superposition
contains the memory superposition in all orientations. The rotated superpo-
sition is further transformed by the (again unspecific) position estimate to
yield a top-down pattern.

In the bottom-up path, the input is analogously transformed by the current
pose estimate, with the inverse order and direction of the transformations in

CHAPTER 3. THE OBJECT RECOGNITION ARCHITECTURE 30

T T

M

T

M

position

identity

input top-down
pattern

T

T

M

learned views

to
p

-d
o
w

n
 p

ath

orientation

estimates

b
o

to
m

-u
p
 p

at
h

Figure 3.1: An illustration of the object recognition architecture in its initial
state. Circles marked with a ‘T’ indicate pose transformations, while circles
marked with an ‘M’ indicate matching operations. Yellow lines indicate the
input to the pose representations, blue lines indicate their current state.

the top-down path. Again, since both position estimates are unspecific, all
positions and orientations contribute equally, and the bottom-up path yields
an unspecific pattern in the initial stage of the recognition process.

Only the matching of position yields specific results in the initial state.
In the figure, this is symbolized by Gaussian-shaped input to the position
estimate toward which the position representation converges over time. With
an increasingly accurate estimate of position, the transformation by the po-
sition estimate in the bottom-up path centers the object in the input (see left
side of Figure 3.2). This aligns the image with the learned views and allows
for more precise matching of the object’s orientation. The orientation esti-
mate subsequently starts converging towards the more specific estimate, and

CHAPTER 3. THE OBJECT RECOGNITION ARCHITECTURE 31

T T

M

T

M

input top-down
pattern

T

position

orientation

identity T

M

estimates
learned views

T T

M

T

M

input top-down
pattern

T

position

identity T

M

learned views

orientation

estimates

Figure 3.2: Evolution of the state of the object recognition architecture (con-
tinued from Figure 3.1).

the result of the transformations in the bottom-up path therefore becomes
more specific as well (see left side of Figure 3.2). When matched against the
learned views, the correct object view thus matches better than the other
object view, giving stronger input to the correct label.

This recurrent process continues and, over time, further refines the posi-
tion, orientation and identity estimates, until it converges to the final recog-
nition decision shown in the right panel of Figure 3.2. In this final state, the
pose and label estimates are specific, and the input and top-down patterns
are aligned with each other at each stage of processing.

Figure 3.1 and 3.2 only illustrate the shape channel, whereas a total of
five feature channels is used in parallel by the full architecture. In the next
section, I formalize the transformations in the shape channel. In Section 3.2, I
formally describe the neural dynamics of the pose and identity representation.

CHAPTER 3. THE OBJECT RECOGNITION ARCHITECTURE 32

In Section 3.3, I describe the transformations of the remaining four feature
channels. The fusion of evidence from all feature channels into combined
pose and identity estimates is described in Section 3.4. Finally, I describe
how object views can be learned in Section 3.5.

3.1 The spatial channel
The basis for representing objects in the spatial channel are spatial patterns,
Isp : R2 × R+ → R, extracted from the input image, I(x, y, t), where x and
y are image coordinates, and t ∈ R+ represents time. Such a spatial pattern
could be, for example, the magnitude of the response of an edge filter.

3.1.1 Matching object identity in the bottom-up path

In the bottom-up path, the spatial pattern is first transformed by the current
shift estimate, psh ∈ [0, 1] (described in more detail in Equation 3.14),

Ish
bu(x, y, t) =

∫∫
psh(x− x′, y − y′, t) Isp(x′, y′, t) dx′ dy′. (3.1)

This corresponds to the transformation operation in the position stage of
Figure 3.1 and 3.2. It is analogous to a convolution of the input pattern,
Isp, with the current shift estimate, psh, as kernel. In the sense of Arathorn
(2002), this equation can also be seen as the superposition of all possible
shifted versions of the input pattern, weighted by the corresponding shift
estimate.

To apply rotation, the coordinate system of the transformed pattern is
changed to log-polar coordinates. In this coordinate system, where ρ denotes
the distance from the origin of the Cartesian coordinate system and φ the
angle, rotations can be realized as shift operations along the angle dimension.
Thus, analogous to Equation 3.1, the rotated version of the shifted pattern
is

Irot
bu (ρ, φ, t) =

∫
prot(φ− φ′, t) Ish

bu(ρ, φ′, t) dφ′, (3.2)

where prot ∈ [0, 1] is the current orientation estimate described in Equa-
tion 3.14. Figure 3.3 gives an illustration of such an orientation estimate.
Irot

bu (ρ, φ, t) corresponds to is the transformation in the orientation stage in
Figure 3.1.

In Cartesian coordinates, the result of Equation 3.2 is the input pat-
tern, rotated and shifted according to current pose estimates.1 We can now

1Note that this transformation to Cartesian coordinates is not strictly necessary, and

CHAPTER 3. THE OBJECT RECOGNITION ARCHITECTURE 33

0

0.2

0.4

0.6

0.8

1

-180 -90 0 90 180

ac
ti
va
ti
on

orientation [◦]

Figure 3.3: An illustration of the pose representation, here for orientation.
Two orientation candidates are represented in the orientation estimate shown
in the left panel. When applied to an image, they create a superposition,
which is illustrated in the right panel.

compare this pattern with all learned views, Wl, where l ∈ {1, 2, . . .} is an
arbitrarily chosen label for a view learned in the training procedure described
later. For each label, the inner product yields a match value

matchsp
l (t) =

∫∫
Îrot

bu (x, y, t) Ŵl(x, y, t) dx dy. (3.3)

Here I introduce the notational convention that for a function, F (x, t), its
normalized version (disregarding time) is indicated by a “hat” and calculated
as

F̂ (x, t) =
F (x, t)− F̄ (t)

‖F (t)‖2

, (3.4)

where F̄ (t) is the mean value of F (x, t), and ‖F (x, t)‖2 indicates the L2-
norm of F (x, t) (the time argument, t, is ignored in the calculation of both
the mean and the L2-norm). matchsp

l (t) corresponds to the match operations
in the identity stage in Figure 3.1.

the patterns may be stored in the log-polar representation. However, inspection of the
transformed and stored patterns is more convenient in Cartesian coordinates.

CHAPTER 3. THE OBJECT RECOGNITION ARCHITECTURE 34

3.1.2 Matching pose in the top-down path

In the top-down path, the memorized views, Wl(x, y, t), are superposed to
yield

Ptd(x, y, t) =
∑
l

pl(t) Wl(x, y, t), (3.5)

where pl(t) ∈ [0, 1] (described in more detail in Equation 3.18) is the cur-
rent identity estimate for the view which has been assigned the label, l ∈
{1, 2, . . .}. This memory superposition corresponds to the transformation in
the identity stage of the top-down path in Figure 3.1. The superposition is
cross-correlated with the shifted bottom-up pattern to obtain a match value,

matchsp
rot(φ, t) =

∫∫
P̂td(ρ′, φ+ φ′, t) Îsh

bu(ρ′, φ′, t) dρ′ dφ′. (3.6)

This match value serves as input to the neural fields that represent the ori-
entation estimate (described in more detail in Section 3.2.1) and corresponds
to the matching operation in the orientation stage in Figure 3.1 and 3.2.

To determine the shift between the memory representation and the input,
the superposition is first transformed according to

P rot
td (ρ, φ, t) =

∫
pinv

rot(φ− φ′, t) Ptd(ρ, φ′, t) dφ′. (3.7)

Here, pinv
rot(φ−φ′, t) = prot(φ

′−φ, t) is the inverse of the orientation estimate.
P rot

td (ρ, φ, t) corresponds to the transformation operation in the orientation
stage in Figure 3.1. It is matched with the input to obtain

matchsp
sh(x, y, t) =

∫∫
P̂ rot

td (x+ x′, y + y′, t) Îsp(x′, y′, t) dx′ dy′, (3.8)

which serves as input to the fields that represent the shift estimate (described
in more detail in Section 3.2.1) and corresponds to the matching operation
in the position stage in Figure 3.1.

3.2 Neural dynamics
Pose is represented by functions that assign for each pose parameter value
how much that value is estimated to match the input. As an example, as-
sume that an object is rotated by 45◦ to the correspond learned view. This
could be represented by an orientation estimate with the shape of a Gaussian
centered on 45◦. The advantage of such a representation is that multiple pose

CHAPTER 3. THE OBJECT RECOGNITION ARCHITECTURE 35

candidates may be encoded at the same time. For example, the representa-
tion could have the shape of the sum of two Gaussians, one at 45◦, and one
at 135◦, to express pose uncertainty due to symmetries in the object.

This capacity to represent multiple candidates is crucial to the neural
dynamics of the estimation process. Initially, the pose estimates are flat,
meaning that all pose parameter values are estimated to match equally well.
The resulting patterns in the top-down and bottom-up path are thus broad,
but in accordance with the ordering property of superpositions (Arathorn,
2001, 2002), they can be used to refine the pose and identity estimates over
time by gradually reducing the contribution of mismatching poses. Such
a refinement is realized by the neural dynamics of the pose and identity
representation described next.

3.2.1 Pose representation

All pose parameters are represented using the same principle. I therefore de-
scribe the neural representation of pose in terms of a generic pose parameter,
which I denote by r. For translation, r = (x, y), and for orientation, r = φ.

The value of each estimated pose parameter is represented in two layers
of dynamic neural fields, both governed by neural dynamics analogous to
the dynamic neural field equation (Equation 2.1). For the first layer, this
dynamics is

τ1u̇1(r, t) =− u1(r, t) + h1 + wξ ξ(r, t)

+ s1(r, t)

+ [ku1 ∗ (g ◦ u1)] (r, t) , (3.9)

with parameters defined analogous to Equation 2.1. Note that because this
equation describes all pose fields, each variable would need an additional
index to indicate the transformation parameter. However, to avoid clutter, I
suppress these indices. The inputs, s1(r, t), are the match functions described
above. That is, for translation,

s1(x, y, t) =
[
ksh,sp ∗matchsp

sh

]
(x, y, t) , (3.10)

where ksh,sp defines an excitatory coupling, and for rotation,

s1(φ, t) =
[
krot,sp ∗matchsp

rot

]
(φ, t) , (3.11)

where again krot,sp defines an excitatory coupling.

CHAPTER 3. THE OBJECT RECOGNITION ARCHITECTURE 36

The activation of the fields on the second layer is governed by the dy-
namics

τ2u̇2(r, t) =− u2(r, t) + h2 + wξ ξ(r, t)

+ w [Gσ ∗ (σ+ ◦ u1)] (r, t)

+ [ku2 ∗ (g ◦ u2)] (r, t) , (3.12)

where the parameters are again defined analogous to Equation 2.1. The
activation of the first layer is coupled into the second layer through a semi-
linear transfer function,

σ+ (u) =

{
u : u ≥ 0
0 : otherwise. (3.13)

The current estimate for the pose parameter value of the system is a
multiplicative mixture of the two field layers:

pT (r, t) = m(t)σ(u2(r, t)) + (1−m(t))σ+ (u1(r, t)) , (3.14)

where T is an index for a transformation. The factor of the mixture is
m(t) = σ(upd(t)), the output of a peak-detector (see Equation 2.2) whose
dynamics is given by

τ u̇pd(t) =− upd(t) + h+ wξ ξ(t)

+

∫
kp,1σ(u1(r, t)) dr

+ wpd g
(
upd(t)

)
, (3.15)

with time scale, τp, resting level, hp, and self-excitation, wpd > 0, and where
the indices for the specific transformation have again been dropped. This
dynamics is parameterized so that the activation, upd(t), grows above the
threshold when a peak forms in the first layer of the pose representation.

The first layer has weak global inhibition (here denoted as γ1 in analogy to
the definition of the interaction kernel in Equation 2.3). Multiple candidates
for the pose of the object may thus become active. Candidates that are strong
enough to pierce the threshold are further strengthened by local excitation,
while weak candidates are suppressed by global inhibition. The candidates
from the first layer excite the second layer. However, global inhibition on the
second layer is stronger (that is, γ2 > γ1), so that the strongest candidate is
selected.

The timescales of the layers are constrained by τ1 < τ2, so that the first
layer converges faster than the second layer. Thus, candidate poses initially

CHAPTER 3. THE OBJECT RECOGNITION ARCHITECTURE 37

become active in the first layer. Because of the slower time scale of the second
layer, it forms a peak much later than the first layer. Thus, the pose mixture
(Equation 3.14) initially contains multiple candidate values which transform
the input image and the superposition of the memorized views. Over time,
this leads to increasingly accurate estimates for the object’s pose. When
the second layer becomes active, it makes a decision on this reduced set of
candidates, selecting the strongest as the final estimated pose and stabilizing
that decision against perturbations.

3.2.2 Identity representation

The system learns individual object views. Each view, Wl, is given an ar-
bitrary label, l ∈ {1, 2, . . .}, during training. In analogy to pose, identity is
represented by two layers of dynamic neural nodes called label nodes. The
activation, u1,l, of the first-layer node for label l is governed by the dynamics

τ1u̇1,l(t) =− u1,l(t) + h1 + wξ ξ(t)

+ s1,l(t)− γ1

∑
l′ 6=l

g (u1,l′(t))

+ wu1 g (u1,l(t)) , (3.16)

where the parameters τ1, and h1 are defined analogous to the parameters
of the dynamic neural node equation (Equation 2.7), s1,l(t) = matchsp

l (t),
wu1 defines the self-excitation of the node, and γ1 > 0 creates competition
between all active label nodes on the first layer.

The activation of the nodes on the second layer is governed by the dy-
namics

τ2u̇2,l(t) =− u2,l(t) + h2 + wξ ξ(t)

+ w2,1 σ+ (u1,l(t))− γ2

∑
l′ 6=l

g (u2,l′(t))

+ wu2 g (u2,l(t)) , (3.17)

where the parameters τ2 and h2 are again defined analogous to the param-
eters of Equation 2.7, wu2 defines the self-excitation, and γ2 > 0 creates
competition between all active label nodes on the second layer.

The current estimate for label l is again a multiplicative mixture of these
two layers of nodes:

pl(t) = m(t)σ(u2,l(t)) + (1−m(t))σ+ (u1,l(t)) , (3.18)

CHAPTER 3. THE OBJECT RECOGNITION ARCHITECTURE 38

where the factor of the mixture is m(t) = σ(upd(t)), with upd(t), the activa-
tion of a node that detects the presence of an active label node on the second
layer with dynamics analogous to a peak detector,

τ u̇pd(t) =− upd(t) + h+ wξ ξ(t)

+
∑
l

kp,1σ(u1,l(t))

+ wpd g
(
upd(t)

)
, (3.19)

with time scale, τ , resting level, h, and self-excitation, kp,1 > 0.
As with the pose representation, the nodes on the first layer evolve on a

faster timescale than the second layer (τ1 < τ2), and the selectivity in the
second layer is greater than in the first one (γ2 > γ1) so that only a single
node may be active on the second layer. This winning node represents the
label recognized by the system and, ultimately, the final recognition decision
of the system.

3.3 Localized color and edge orientation histo-
grams

In the previous section, I explained the architecture for spatial patterns
because they serve as a good illustration of the principles. However, the
concrete extraction of the spatial pattern in the original work (Faubel and
Schöner, 2009, 2010; Lomp et al., submitted 2016) relies on relatively coarse
spatial patterns. These patterns have low discriminative power and mainly
serve segmentation purposes. The main discriminative power of the archi-
tecture comes from its other feature channels, which use locally extracted
histograms of color (hue from the HSV color model) and edge orientations
(extracted by applying steerable filters (Freeman and Adelson, 1991) sepa-
rately to the luma, Y, and chroma, Cr and Cb, channels of the image) as
features. This approach yields five different match values for pose and la-
bels (one for the color histograms, three for the different edge histograms,
and one for the spatial pattern channel). These match values are all input
to the fields and nodes representing pose and labels. They are combined
by weighted addition, with the weights chosen to reflect the discriminative
power of each feature channel.

CHAPTER 3. THE OBJECT RECOGNITION ARCHITECTURE 39

3.3.1 Histogram extraction

The localized histograms for a feature channel, F , are extracted from a fea-
ture image, IF (x, y) (this could, for example, be the responses from an edge
orientation filter). For computational efficiency, histograms are extracted on
a regular two-dimensional grid that samples the image space at positions
ci,j, where i and j index positions on the grid. Histograms are extracted
according to

hFi,j(f, t) = nF (t)

∫∫
Gσh,ci,j (x, y)mF (x, y, t)χ[f,f+∆f] (IF (x, y, t)) dx dy.

(3.20)
Here, f is a feature value (for example, color), Gσh,ci,j is a Gaussian with
width σh, centered on ci,j:

Gσ,c (x) = Gσ (x− c) = exp

(
−(x− c)2

2σ2

)
, (3.21)

and χ[f1,f2] is the characteristic function,

χ[f1,f2] (f) =

{
1 : f ∈ [f1, f2]
0 : otherwise, (3.22)

with a sampling interval ∆f that reflects the discrete sampling of the feature
space in the implementation. The masking term,

mF (x, y, t) = θF (x, y, t) P sh
td (x, y, t), (3.23)

is determined by the predicted top-down pattern from the spatial channel,

P sh
td (x, y, t) =

∫∫
psh(x′ − x, y′ − y, t) P rot

td (x′, y′, t) dx′ dy′, (3.24)

and another mask θF (x, y, t) ∈ {0, 1} obtained by applying a threshold to
the input. For the color channel, this is

θcol(x, y, t) =

1 : saturation(x, y, t) > θsat

∧ value(x, y, t) > θval

0 : otherwise
, (3.25)

where saturation(x, y, t) is the saturation channel from the HSV color model,
and value(x, y, t) is the value channel of the HSV color model, and θsat, θval ∈
R are thresholds. For the edge channels, the threshold is

θedge(x, y, t) =

{
1 : energy(x, y, t) > θenergy

0 : otherwise , (3.26)

CHAPTER 3. THE OBJECT RECOGNITION ARCHITECTURE 40

where energy(x, y, t) is the energy of the output of steerable filters (Free-
man and Adelson, 1991) and, again, θenergy ∈ R is a threshold. Finally, the
normalization term is given by

nF (t) =

(∫∫
θF (x, y, t) dx dy

)−1

. (3.27)

3.3.2 Translating histograms

The goal is to match memorized histograms with the current input. The cur-
rent shift estimate defines which of the localized histograms extracted from
the input contribute to this matching. To achieve this, the input histograms
of the feature dimension, F (sampled by f) are mapped to a single bottom-up
histogram, weighted by the shift representation:

hF,shbu (f, t) =
∑
i,j

pmax
sh (ci,j, t) h

F
i,j(f, t). (3.28)

Because the input space is subsampled, the shift estimate must be subsam-
pled as well. This is expressed by pmax

sh (ci,j, t), which describes the maximum
value of the shift estimate in a rectangular region around the histogram cen-
ter, ci,j. The rectangular regions are non-overlapping and correspond to a
region covering the sampling grid so that together, they cover the entire range
of possible shift estimates. Sampling the shift estimate using the maximum
better preserves the locations of peaks that might otherwise be lost in the
subsampled estimate due to the coarseness of the sampling.

To determine the match value for the shift parameter, the top-down his-
togram, hFtd(f, t) is correlated with the localized histograms in the input
according to

matchFsh(ci,j, t) =

∫
ĥFi,j(f

′, t)ĥFtd(f ′, t) df ′, (3.29)

where the accent (“hat”) again indicates mean-freeing and normalization (see
Equation 3.4). As before, this match value serves as input to the dynamics
for pose representation. However, due to the subsampling by the histogram
centers, ci,j, matchFsh(ci,j, t) first has to be lifted back to full image sampling
before being input into the position representation. In implementations, this
is achieved by bicubic interpolation.

For the color channel (F = col), no further transformations are necessary,
and hcol

td (f, t) corresponds to the weighted superposition of the histograms
memorized during training (denoted by hcol

mem,l):

hcol
td (f, t) =

∑
l

pl h
col
mem,l(f, t), (3.30)

CHAPTER 3. THE OBJECT RECOGNITION ARCHITECTURE 41

where, as before, l indexes an object view and pl is the current label estimate
(see Equation 3.18).

For the edge feature channels, the superposition must be rotated before
it can be used for matching. Thus, the top-down histogram is given by
hedge

td = hedge,rot
td , the rotated superposition of the memorized histograms,

described in the next section.

3.3.3 Rotating histograms

Due to the use of isotropic Gaussian weights for the extraction of the color
histograms, they are invariant under rotation around the Gaussian’s center.
The edge channels, however, vary with rotation. In the present section, I
describe how the current rotation estimate can be applied to edge histograms.
In the full system, there are three edge channels (see Section 3.3), however,
I write down the equations for a single edge channel as the equations are
analogous for all channels.

In the bottom-up path, the shifted edge histogram is rotated by trans-
forming along the orientation dimension:

hedge,rot
bu (θ, t) =

∫
prot(θ − θ′, t) hedge,sh

bu (θ′, t) dθ′, (3.31)

where prot is the current rotation estimate (see Equation 3.14). In the top-
down path, the weighted superposition of the histograms memorized during
training is transformed according to

hedge,rot
td =

∫
pinv

rot(θ − θ′, t) h
edge
td (θ′, t) dθ′, (3.32)

where pinv
rot is the inverse of the rotation estimate, and hedge

td , in analogy to
Equation 3.30, is calculated as the weighted superposition of the memorized
patterns, hedge

mem,l,
hedge

td (θ, t) =
∑
l

pl h
edge
mem,l(θ, t). (3.33)

The localized edge histograms contribute to the estimation of shift as
described in Section 3.3.2. They are also sensitive to the orientation of the
object and thus contribute to its estimation by correlation with the shifted
bottom-up pattern,

matchedge
rot (θ, t) =

∫
hedge,sh

bu (θ + θ′, t) hedge
td (θ′, t) dθ′. (3.34)

This match function contributes to the dynamic neural fields for representing
the object’s orientation (Equation 3.9).

CHAPTER 3. THE OBJECT RECOGNITION ARCHITECTURE 42

3.3.4 Matching histograms

Object identity is estimated by matching the transformed bottom-up histo-
grams, hFbu, to the learned patterns, hFmem,l (where l again indexes the object
views). Similar to the spatial channel, this match is obtained with the mean-
free normalized correlation, here along the feature dimension,

matchFl (t) =

∫
ĥFbu(f, t) ĥFmem,l(f, t) df. (3.35)

For the color channel (F = col), f = c is a color, and the shifted bottom-
up histogram is used for matching (hcol

bu (c, t) = hcol,sh
bu (c, t)). For the edge

channels (F = edge), f = θ is an edge orientation, and the shifted and
rotated histogram is used for matching (hedge

bu (θ, t) = hedge,rot
bu (θ, t)).

3.4 Fusing feature channels
The match values for object identity and pose from the five feature channels
are fused by providing additive input to the first-layer identity and pose
representations. Different channels contribute to different dimensions of the
pose estimate, as illustrated in Figure 3.4. Formally, the input to the first
layer pose fields (cf. Equation 3.9) is thus

s1(r, t) =
∑
F

[
kP,F ∗matchFP

]
(r, t) , (3.36)

where kP,F ∈ R is an excitatory coupling kernel for the feature channel
F ∈ {sp, col,Y edge, Cr edge, Cb edge}. The pose parameter is indicated
by P ∈ {sh, rot, sc}, and matchFT is one of the match functions described
above.

Analogously, the input to the first layer label nodes (cf. Equation 3.16)
is

s1,l(t) =
∑
F

kL,F matchFl (t), (3.37)

with weight, kL,F ∈ R, and F and defined as above.
Because edges have no polarity, the edge channels provide orientation

estimates in the range 0◦ to 180◦, whereas the shape channel provides orien-
tation estimates up to 360◦. In principle, shape could thus disambiguate the
orientation estimate from the edge channels. However, the shape channel is
usually coarse and thus has low discriminance. Therefore this is not done,
and the rotation estimate is instead restricted to the smaller range.

CHAPTER 3. THE OBJECT RECOGNITION ARCHITECTURE 43

3.5 Learning object views
The architecture learns object views in a supervised training phase. During
training, the time-continuous dynamics of the system are simulated while
objects are presented one by one. For each image, the system first undergoes
an externally triggered reset in which the resting level of all fields and nodes
is lowered. This leads to a decay of residual activation from previous trials.
After the reset, the resting levels are restored, and the supervisor provides
label and pose information to the system. This is necessary because the sys-
tem cannot properly match the pose and label of the object before learning
it. The supervisor biases the first layer pose estimates by adding a Gaus-
sian input centered around values corresponding to identity transformations.
These inputs are strong enough to induce a peak at the cued location which
then suppresses, via global inhibition, any other peaks that may form due to
matches with objects that are already known. Note that the induced peaks
have a non-zero width, and only the means of these peaks correspond to
an identity transform. As a result, the learned pattern is a slightly blurred
version of the input.

Analogously, an arbitrary label is provided by the supervisor in the form
of an additive bias to a label node on the first layer. The cued label node
thus becomes active and excites the corresponding node on the second layer.
The strong global inhibition on the second layer suppresses all other nodes,
ensuring that only the cued label is represented.

The pattern for a label, l, is learned for each feature channel, F , in
a pattern memory, W F

l (f , t). These pattern memories adapt based on the
dynamics

τmemẆ
F
l (f , t) = −

(
W F
l (f , t)− P F (f , t)

)
blrn(t) pl(t). (3.38)

Through the linear term, −
(
W F
l (f , t)− P F (f , t)

)
, the dynamics converges to

the feature pattern, P F (f , t) with timescale τmem. The factor blrn(t) ∈ {0, 1}
enables and disables learning and is controlled externally. After the second
layer converges to the cued label, the current label parameter estimate, pl(t)
(see Equation 3.18), is one for the cued label and zero everywhere else. The
modulation by this value ensures that only the pattern memory of the cued
label changes.

The pattern to be memorized, P F (f , t), is the fully transformed pattern
from the bottom-up path. For the spatial channel, it is given by P sp(x, y, t) =
Irot

bu (x, y, t). For the color histogram channel, P col(c, t) = hcol,sh
bu (c, t). For the

edge channels, P edge(θ, t) = hedge,rot
bu (θ, t).

CHAPTER 3. THE OBJECT RECOGNITION ARCHITECTURE 44

identity

orientation

position

shape

color

masking

T
M

T
M

T
M

T
M

T
M

T
M

T
M

T
M

edge

input

color

...

edge

...

shape

...

view
memories

Figure 3.4: Connections between the different feature channels and pose
parameters. Boxes labeled “T/M” indicate transformation and matching of
the patterns.

Chapter 4

Scene representation

In the second part of my thesis, I investigate how attention may guide the
recognition of multiple objects in an input image that contains multiple ob-
jects, and how the recognized identities may be committed to a working
memory representation. This is based on a scene representation model (Zib-
ner et al., 2011b; Zibner and Faubel, 2015), which I describe in the present
chapter. This model may, for instance, extract the color and size for each
salient location in a scene (that is, an image containing one or more objects)
and store this information in a space-color working memory and a space-size
working memory field. Once a representation is formed for the objects in the
scene, the architecture offers ways to query the representation, indicating
the location of cued features values, or the values memorized for attended
locations (though I omit these querying capacities in the description because
I do not use them in my model).

In the present chapter, I describe the dynamics of the scene representation
architecture for an exemplary color channel. Additional feature channels
merely require duplicating the structures specific to the feature channel and
do not require changes to the underlying framework.

4.1 Saliency
The goal of the saliency computation in the scene representation architec-
ture is to indicate locations of the input image, I(x, y), that are part of the
foreground based on heuristics extrapolated from the human vision system.
Saliency is computed by first entering feature information from the input im-
age into an early space-color field (shown in the middle of Figure 4.1). The
activation of this field is given by uespc(x, y, c, t), where (x, y) is a location
in the input space, c is a color, and t is the time argument. The activation

45

CHAPTER 4. SCENE REPRESENTATION 46

feedforward
color

color
query

color
mismatch

color
match

color
mismatch

color
to WM

spatial
inhibition

input

early
space-color

color
saliency

attention

space-color
query

space-color
working
memory

looking WM

preshape

working
memory
updating

saliency &
feature extraction

color
working
memory

2D DNF1D DNF 3D DNFDNN

excitatory
coupling

inhibitory
coupling

elementwise
multiplication

Figure 4.1: An overview over the scene representation architecture.

follows the dynamics

τ u̇espc(x, y, c, t) =− uespc(x, y, c, t) + h+ wξ ξ(x, y, c, t)

+
[
kespc,I ∗ sespc

]
(x, y, c, t)

+ [kespc ∗ (g ◦ uespc)] (x, y, c, t) . (4.1)

The field’s input derives from the image as

sespc(x, y, c, t) =

{
S (x, y, t) : H (x, y, t) = c
0 : otherwise, (4.2)

where H (x, y, t) and S (x, y, t) are the hue and saturation values (from the
HSV color model) at the location x, y of the input image. The field’s interac-
tion kernel is defined so that similar colors compete when they are spatially
distant, whereas they excite each other when they are spatially close. For-
mally, the interaction is

kespc(∆x,∆y,∆c) = wexc Gσd (∆x,∆y,∆c)− winh Gσc (∆c) , (4.3)

CHAPTER 4. SCENE REPRESENTATION 47

where wexc > winh > 0, Gσ is a zero-mean Gaussian with width σ, and
σc, σd > 0. Through the inhibition of similar colors, colors that occur fre-
quently tend to induce a lower activation level in the early space-color field
than those that occur less frequently, leading to pop-out effects.

The saliency information in the early space-color field is contracted (see
Chapter 2) to the two spatial dimensions and convolved to obtain a color
saliency map,

ssal
col (x, y, t) =

∫∫∫
GσS (x− x′, y − y′) g (uespc(x′, y′, c, t)) dx′ dy′ dc. (4.4)

This color saliency map serves as input to a color saliency field (also shown
in the middle of Figure 4.1) whose dynamics is

τ u̇csal(x, y, t) =− ucsal(x, y, t) + h+ wξ ξ(x, y, t)

+ ssal
col (x, y, t)

+
[
kcsal ∗

(
g ◦ ucsal

)]
(x, y, t) . (4.5)

The field suppresses weak local maxima through global inhibition so that
locations with low saliency are inhibited. It also strengthens boundaries be-
tween salient locations through local inhibition, leading to a better distinction
between them.

4.2 The attention field and the looking working
memory

The attention field (top right corner of Figure 4.1) is not specific to any
feature channel, but instead receives additive input from each channel’s sa-
liency field. From this combination, it determines which location should be
attended by selecting the most salient location using global inhibition. Its
dynamics are

τ u̇atn(x, y, t) =− uatn(x, y, t) + h+ wξ ξ(x, y, t)

+ w1

[
Gσ1 ∗

(
g ◦ ucsal

)]
(x, y, t)

− w2

[
Gσ2 ∗

(
g ◦ ulwm

)]
(x, y, t)

+ w3

∫∫∫
Gσ3 (x− x′, y − y′)uscq(x′, y′, c, t) dx′ dy′ dc

+ satn
bhv(t)

+
[
katn ∗

(
g ◦ uatn

)]
(x, y, t) , (4.6)

CHAPTER 4. SCENE REPRESENTATION 48

where uscq is the activation of the space-color query field described in Equa-
tion 4.12, and satn

bhv is an input from behavioral organization that is described
in Section 4.4. ulwm (looking WM in the top-right corner of Figure 4.1) is
a field that memorizes which locations were recently inspected and inhibits
these locations in the attention field. This inhibition prevents the attention
field from selecting the same salient location again immediately after it was
inspected and is at the core of the sequential scanning of salient locations.
The dynamics of the looking working memory is

τ u̇lwm(x, y, t) =− ulwm(x, y, t) + h+ wξ ξ(x, y, t)

+ w1

[
Gσ1 ∗ plwm

]
(x, y, t)

+

∫∫∫
Gσ2 (x− x′, y − y′) uscm(x′, y′, c, t) dx′ dy′ dc

+
[
klwm ∗

(
g ◦ ulwm

)]
(x, y, t) , (4.7)

where the triple integral is the contracted and convolved output of the space-
color working memory field (uscm(x, y, c, t), see Section 4.3) and slwm

bhv is an
input from the behavioral organization described in Section 4.4. plwm(x, y, t)
(see preshape in the top-right corner of Figure 4.1) preshapes the looking
working memory field so that only locations with sufficiently strong input
from the preshape may form working memory peaks. The preshape’s dy-
namics follows that described in Zibner et al. (2011b),

ṗlwm(x, y, t) =
g (uatn(x, y, t))

τbuildup

(
−plwm(x, y, t) + g

(
uatn(x, y, t)

))
+

1− g (uatn(x, y, t))

τdecay

(
−plwm(x, y, t).

)
(4.8)

This dynamics consists of two terms. The first term with timescale τbuildup

builds up activation at locations which are above threshold in the attention
field. The second term lets activation decay at locations at which the at-
tention field is below threshold. This decay happens on a slower timescale,
τdecay > τbuildup. Through this preshape, the attended location is pushed into
the working memory regime so that self-sustained peaks may form. When
the attention field focuses on another object, preshape decays until a criti-
cal level at which the looking working memory locations leave the working
memory regime. Peaks in the looking working memory thus decay, and the
locations may be attended again.

CHAPTER 4. SCENE REPRESENTATION 49

4.3 Space-feature fields and working memory
To memorize the feature value at the attended location, it is first read out
by a feedforward color field (lower left corner of Figure 4.1), whose dynamics
reads

τ u̇ffc(c, t) =− uffc(c, t) + h+ wξ ξ(c, t)

+Gσ

(
c− cffc(t)

)
+ g

(
uapd(t)

)
+
[
kffc ∗

(
g ◦ uffc

)]
(c, t) , (4.9)

where uapd is the activation of a peak detector for the attention field (cf.
Equation 2.2), and

cffc(t) = max H (x, y, t) g
(
uatn(x, y, t)

)
, (4.10)

withH (x, y, t), the current hue of the input image at location (x, y) according
to the HSV color model.

The color query field (also shown in the lower left corner of Figure 4.1)
reads out the color for the attended location from working memory using the
dynamics

τ u̇cq(c, t) =− ucq(c, t) + h+ wξ ξ(c, t)

+ w [Gσ ∗ (g ◦ uscq)] (x, y, c, t)

+ [kcq ∗ (g ◦ ucq)] (c, t) . (4.11)

Its input is the contracted activation from the space-color query field (right
side of Figure 4.1), which combines attention (expanded to a tube input over
color) with the output of the space-color working memory (denoted by uscm,
see below),

τ u̇scq(x, y, c, t) =− uscq(x, y, c, t) + h+ wξ ξ(x, y, c, t)

+ w1

[
Gσ1 ∗

(
g ◦ uatn

)]
(x, y, t)

+ w2 [Gσ2 ∗ (g ◦ uscm)] (x, y, c, t)

+ [kscq ∗ (g ◦ uscq)] (x, y, c, t) , (4.12)

The color mismatch field (again shown in the lower left corner of Fig-
ure 4.1) receives input from both the color query field and feedforward color
field:

τ u̇cm(c, t) =− ucm(c, t) + h+ wξ ξ(c, t)

+ wm

[
Gσm ∗

(
g ◦ uffc

)]
(c, t) + kcm,cmi g

(
ucmi

)
− wm [Gσm ∗ (g ◦ ucq)] (c, t)

+ [kcm ∗ (g ◦ ucm)] (c, t) , (4.13)

CHAPTER 4. SCENE REPRESENTATION 50

where ucmi is the activation of a color mismatch node described in Equa-
tion 4.20. Together, the color mismatch field, color query field and feedfor-
ward color field implement the structure of the three-layer change detection
model presented by Johnson et al. (2009). Input from the feedforward color
field is canceled out by the input from working memory (read out via the
color query field) if both represent the same color. The color mismatch field
therefore only forms a peak either when there is no color stored in working
memory (it is excited by the feedforward input, which induces a peak), or
when the stored color does not match the color in the input (the excita-
tion from the feedforward input is not canceled out by the working memory
contents).

The mismatch information is input to the color to working memory field
(color to WM in Figure 4.1):

τ u̇c2wm(c, t) =− uc2wm(c, t) + h+ wξ ξ(c, t)

+ w [Gσ ∗ (g ◦ ucm)] (c, t)

+
[
kc2wm ∗

(
g ◦ uc2wm

)]
(c, t) , (4.14)

which, together with the attention field, is input to the space-color working
memory (right-hand side of Figure 4.1):

τ u̇scm(x, y, c, t) =− uscm(x, y, c, t) + h+ wξ ξ(x, y, c, t)

+ w1

[
Gσ1 ∗

(
g ◦ uc2wm

)]
(c, t)

+ w2

[
Gσ2 ∗

(
g ◦ uatn

)]
(x, y, t)

− w3

[
Gσ3 ∗

(
g ◦ uspin

)]
(x, y, t)

+ [kscm ∗ (g ◦ uscm)] (x, y, c, t) . (4.15)

The spatial inhibition field (bottom of Figure 4.1), uspin(x, y, t), inhibits the
attended location across all colors and thus ensures that any previously stored
color information is deleted from working memory when new information is
written. Its dynamics is given by

τ u̇spin(x, y, t) =− uspin(x, y, t) + h+ wξ ξ(x, y, t)

+ w2

[
Gσ2 ∗

(
g ◦ uatn

)]
(x, y, t)

+ sspin
bhv (t)

+
[
kspin ∗

(
g ◦ uspin

)]
(x, y, t) . (4.16)

The input from the behavioral organization, sspin
bhv (see Section 4.4), ensures

that the field only forms a peak when there is a mismatch between the stored
and perceived color.

CHAPTER 4. SCENE REPRESENTATION 51

4.4 Sequential scanning through behavioral or-
ganization

A task input (see Section 2.3) called explore (indexed by exp) enables the
sequential scanning of salient locations. This scanning is mediated by the
behaviors explore scene and inspect object.

The intention node of the explore scene behavior has the dynamics

τ u̇int
exps(t) =− uint

exps(t) + h+ wξ ξ(t)

+ stask
exp (t)

+ wint
exps g

(
uint

exps(t)
)

(4.17)

A condition of satisfaction is not formalized for this behavior. The dynamics
of the intention node of the inspect object behavior is

τ u̇int
ins(t) =− uint

ins(t) + h+ wξ ξ(t)

+ stask
exp (t) + wins,exps g

(
uint

exps(t)
)
− wins,cma g

(
uint

cma(t)
)

+ wint
ins g

(
uint

ins(t)
)
. (4.18)

The intention node is inhibited by the activation of a color match node,
uint

cma(t). This node is part of the three-layer match structure that signals when
the feature values of the currently attended locations have been committed
to working memory successfully (more details on this are given below). It
functions as the condition of satisfaction node of the inspect object attention.

When the intention to inspect an object activates, it boosts the attention
field by providing input satn

bhv(t) = watn,ins uint
ins(t). This causes the attention

field to select an object based on salience and the memory of previously
inspected locations. Subsequently, the selected object is inspected, that is,
its color is extracted and matched to the working memory contents by the
three layer match structure. The fields involved in the change detection
(color query field, feedforward color field and color match field) are described
in Section 4.3. For their behavioral organization, two additional nodes are
necessary that detect whether the fields signal a match or mismatch (or
neither). The first is the color match node, which signals that the color
stored in working memory and the input match. Its activation is governed
by the dynamics

τ u̇cma(t) =− ucma(t) + h+ wξ ξ(t)

+ g
(
upd

ffc (t)
)

+ g
(
upd

cq (t)
)
− wcma,cmi g

(
ucmi(t)

)
+ wcma g (ucma(t)) , (4.19)

CHAPTER 4. SCENE REPRESENTATION 52

where upd
ffc (t) is the activation of a peak detector for the feedforward color

field, and upd
cq (t) is a peak detector for the color query field. The second is the

color mismatch node, which signals that the color stored in working memory
and the input do not match. Its activation is governed by the dynamics

τ u̇cmi(t) =− ucmi(t) + h+ wξ ξ(t)

+ g
(
upd

ffc (t)
)

+ g
(
upd

cq (t)
)

+ g
(
upd

cm(t)
)

+ wcmi g
(
ucmi(t)

)
, (4.20)

where upd
cm(t) is the activation of a peak detector for the color mismatch field.

When the color in working memory and input match, the peak in the
color query and feedforward color field have a similar shape, so that the
effective input to the color mismatch field is close to zero (see above). The
mismatch field is therefore the only of the three fields that does not form a
peak. The peaks in the query and feedforward fields excite both the match
and mismatch node. However, the mismatch node is parameterized so that
it may only become active when all three fields form a peak. For the match
node, these two peaks are sufficient for it to become active, and thus a match
is signaled.

When input color and memorized color are misaligned, a peak is also
formed in the mismatch field, and the mismatch node becomes active. Be-
cause its timescale is chosen to be slightly faster than that of the match node,
the inhibitory coupling to the match node takes effect before the its activation
reaches threshold. This inhibition is chosen to be so strong that suprathresh-
old activation of the match node is not possible when the mismatch node is
active.

In a third case, there may not be any color information in working memory
for the attended location, for example, because the location is inspected for
the first time. In this case, a peak forms in the feedforward field and the
mismatch field, and both the match and mismatch node remain inactive.
Importantly, this means that no match is signaled, leading to the currently
perceived color being committed to working memory before the next location
is attended (see below).

When a mismatch is detected, this leads to an update of the feature
values stored in working memory. The mismatch node excites the spatial
inhibition field, uspin(x, y), by providing input sspin

bhv (t) = g
(
ucmi(t)

)
, and thus

destabilizes any previously memorized color information for the attended
location. The mismatch field also forms a peak at the color of the input (this
also happens when no working memory entry is present because the color
query field is empty and thus does not suppress the peak in the mismatch

CHAPTER 4. SCENE REPRESENTATION 53

field). This peak raises activation around the input color in the space-color
working memory field through a slice input. A peak forms at the locations
at which the slice overlaps with the attention, and the new color is thus
committed to memory. The color query field reflects this update by forming
a peak at the newly committed color and thus suppresses the peak in the
mismatch field. This destabilizes the mismatch node, releasing inhibition of
the match node, which subsequently may become active.

The match node provides the condition of satisfaction for the inspect
object behavior. Its intention therefore becomes inactive, and the boost
to the attention field is deactivated. Without attention, the peak in the
feedforward color field dissolves, and the match node deactivates. The inspect
object intention is no longer suppressed, and the next object may be selected,
starting the process anew.

Chapter 5

Biologically inspired multiscale
keypoints

In the third part of my thesis, I use edge orientation histograms to describe
local image regions. Extracting these features is computationally costly, and
it is therefore desirable to do so only at regions of the image that are highly
informative. Rodrigues and du Buf (2009) describe a method for finding
points in an image that identify such regions. These points, referred to as
keypoints, are extracted from the maxima of complex cell responses based
on mechanisms inspired by the responses of orientation-sensitive simple and
complex cells found in visual cortex (Hubel and Wiesel, 1962, 1968). They
can be calculated fast and have been shown to reduce the amount of data
necessary for image description (Terzić et al., 2013).

In the first stage of keypoint extraction, the image, I(x, y), is convolved
with a set of Gabor wavelets at different orientations, θ, and wavelengths, λ
(which correspond to a scale, σ = 0.56λ, see Terzić et al. 2013). The wavelets
are described by

gλ,θ (x, y) = exp

(
− x̃

2 + 0.5ỹ2

2σ2

)
exp

(
i
2πx̃

λ

)
(5.1)

where
x̃ = x cos (θ) + y sin (θ) (5.2)

and
ỹ = y cos (θ)− x sin (θ) . (5.3)

Convolving the image with this filter yields the simple cell responses,

Rλ,θ(x, y) = [I ∗ gλ,θ] (x, y) . (5.4)

54

CHAPTER 5. BIOLOGICALLY INSPIRED KEYPOINTS 55

-10 -5 0 5 10
x

-10

-5

0

5

10

y

(a) Real part (even wavelet).

-10 -5 0 5 10
x

-10

-5

0

5

10

y

-1

-0.5

0

0.5

1

(b) Imaginary part (odd wavelet).

Figure 5.1: The real and imaginary part of a Gabor wavelet with orientation,
θ = 0, and wavelength, λ = 5.

The complex cell responses are given by the magnitude of the simple cell
responses,

Cλ,θ(x, y) = |Rλ,θ(x, y)| =
√

Re (Rλ,θ(x, y))2 + Im (Rλ,θ(x, y))2. (5.5)

Due to the complex exponent in the second factor of the Gabor wavelet
equation, the real and imaginary parts of this equation represent responses of
filters that are phase-shifted versions of each other. The real part corresponds
to an even wavelet with its maximal value aligned with its main axis (see
Figure 5.1(a)), whereas the imaginary part corresponds to an odd wavelet
with its maximal value offset from its main axis (see Figure 5.1(b)). The
even wavelet thus responds maximally to lines that fall directly onto the
center of the receptive field, whereas the odd wavelet responds maximally to
edges.

Line crossings at finer scales may lead to gaps in the responses of the even
and odd wavelets. Similarly, line terminations may be difficult to locate pre-
cisely because responses decay smoothly past them (Rodrigues and du Buf,
2009). To address these issues, an additional layer of processing is added in
which the complex cell responses are modified based on a set of inhibitory
kernels. These kernels are defined relative to the main axes of the Gabor
filters, using ds = 0.6λ sin (θ) and dc = 0.6λ cos (θ).

In this additional layer, double stopped kernels as well as tangential and

CHAPTER 5. BIOLOGICALLY INSPIRED KEYPOINTS 56

radial inhibition are applied. The double stopped kernels are given by

kD
λ,θ (x, y) = δ (x, y)− 1

2
· (δ (x− 2ds, y + 2dc) + δ (x+ 2ds, y − 2dc)) , (5.6)

where δ (x, y) is the delta function (one when x = 0 and y = 0, zero other-
wise). The tangential inhibition kernel is given by

kTI
λ,θ (x, y) = −2δ (x, y) + δ (x+ dc, y + ds) + δ (x− dc, y − ds) . (5.7)

Finally, the radial inhibition kernel which is effective across orientations (see
Equation 5.9) is given by

kRI
λ,θ (x, y) = δ

(
x+

dc
2
, y +

ds
2

)
+ δ

(
x− dc

2
, y − ds

2

)
. (5.8)

With these kernels, the final keypoint activation map for a wavelength,
λ, is calculated as

Kλ(x, y) =
π∑
θ=0

σ+

([
Cλ,θ ∗ kD

λ,θ

]
(x, y)

)
−

2π∑
θ′=0

σ+

([
Cλ,θ′ ∗ kTI

λ,θ′

]
(x, y)

+
[
Cλ,θ′+π

2
∗ kRI

λ,θ′

]
(x, y)− Cλ,θ′(x, y)

)
. (5.9)

Keypoints are the local maxima of these keypoint activation maps and may
be found by thresholding the activation and then fitting parabolas onto the
local maxima (Terzić et al., 2013).

Chapter 6

Image databases

To quantitatively evaluate the object recognition systems I describe and to
compare their performance, I rely on four databases which I describe in
the present chapter. One is a tabletop dataset from prior work on object
recognition in dynamic field theory (Faubel and Schöner, 2008, 2009, 2010;
Lomp et al., submitted 2016). The second is a variant of this database that
specifically tests the recovery of in-plane transformations. The third dataset,
the COIL-100 dataset (Nene et al., 1996), is an established dataset that
investigates performance for depth rotations. The fourth dataset is a custom
database which consists of images containing multiple objects. In the next
sections, I describe these databases in more detail.

6.1 The tabletop database
The tabletop database1 was initially developed to test the label-feature field
based object recognition system (Chapter 3, Faubel and Schöner, 2008), and
a variant was later used to evaluate the histogram-based object recognition
system described in Chapter 3 (Faubel and Schöner, 2009, 2010; Lomp et al.,
submitted 2016). The dataset contains images of thirty common household
objects (shown in Figure 6.2). Each image shows a single object in one
of ten different poses on a white tabletop in front of the robotic platform
CoRA (Iossifidis et al., 2003). Of the ten poses, one is a training pose which
shows the object in the center of the image with its elongated axis aligned
with the vertical axis of the image plane (see Figure 6.1(a)). The other nine
poses, shown in Figure 6.1(b), are used for testing recognition performance.

1The database is available online at https://www.ini.rub.de/pages/publications/
LompFaubelSchoener2016.

57

https://www.ini.rub.de/pages/publications/LompFaubelSchoener2016
https://www.ini.rub.de/pages/publications/LompFaubelSchoener2016

CHAPTER 6. IMAGE DATABASES 58

(a) Training pose.

5

4

6 2
1

3
8

7

9

(b) Test poses.

Figure 6.1: Training and test poses for the tabletop dataset. Numbers indi-
cate different test poses. Rectangles indicate the region used as input. In the
test set, the region indicated by the dotted blue rectangle is used for poses
4–6, the region indicated by the solid red rectangle is used for poses 1–3, and
the region indicated by the dashed green rectangle is used for poses 7–9. The
image showing the test poses is synthesized from multiple test images.

Images were captured using one of CoRA’s Sony DFW-VL500 color cam-
eras at a resolution of 640×480 pixels. Lighting conditions as well as camera
parameters were kept constant for the acquisition of the database.

To evaluate recognition performance, a subregion of 256 × 256 pixels is
cut out from the test images. This subregion provides the input to the object
recognition architecture. It reflects attentive processes that would focus the
input onto the vicinity of an object (much like the one described in Part II).
The placement of the region depends on the pose of the object in the image;
for poses 1–3, the region is placed in the center of the image. For poses 4–6,
it is placed at the top-left corner. For poses 7–9, it is placed at the lower
right corner. Figure 6.1 illustrates these regions for an exemplary object.

It is worth noting that even with the cutting-out, objects in this database
take up only a small portion of the input image. For example, the pencil
sharpener, one of the smaller objects, covers an area of roughly 40×60 pixels
in the training image. Furthermore, the elevated position of the camera along
with the way that objects are placed on the table mean that the objects are
often seen from a single side, and that the different poses of the objects often
correspond approximately to transformations in the image plane. Also, the
uniformly white background simplifies the problem of segmenting foreground
and background.

CHAPTER 6. IMAGE DATABASES 59

bit box blue-black
screwdriver

blue
boxcutter

blue-green
screwdriver

blue pliers

blue tape can cassettes cookies deodorant

fishes glue gravy green
screwdriver

green stapler

hanuta honey multimeter pencil
sharpener

razor

red
boxcutter

red pliers red
screwdriver

shampoo sunscreen

tape
dispenser

toothpaste yellow
boxcutter

yellow
screwdriver

yellow
stapler

Figure 6.2: Training views of the thirty objects of the tabletop database.

CHAPTER 6. IMAGE DATABASES 60

6.2 The transformed database
In the transformed database, the training images are the same as in the
tabletop database. The test images, however, are generated by algorithmi-
cally transforming the training images by applying, in the following order,
scaling by a factor from the interval [0.8, 1.2], rotations of up to 360◦, and
translations in the range of [−50, 50] pixels separately in the x and y direc-
tion. The exact transformation applied to the images is selected by sampling
uniform random distributions over the specified intervals, and test images
are generated online, so that in theory, infinitely many test images may be
obtained, sampling part of the continuous range of parameter values of the
pose transformations estimated by the object recognition system.

6.3 The COIL database
The Columbia object image library (COIL-100; Nene et al., 1996) comprises
color images of 100 different objects. During image acquisition, the objects
were placed on a rotating plate in front of a uniformly black background.
Color images were taken at 5◦ intervals, so that a total of 72 images per object
are available, showing the objects from different viewing angles sampled from
the horizontal viewing plane.

In accordance with previous work on object recognition in dynamic field
theory (Faubel and Schöner, 2009; Lomp et al., submitted 2016), I use only
the first thirty objects of the COIL database (see Figure 6.3 for the zero-
degree views of these objects). In addition, because the images were originally
recorded at a resolution of 128×128 pixels, I pad them to twice that resolution
by adding a border of 64 pixels to achieve a format similar to the tabletop
database. This border has a uniform color sampled from the background of
the original images to avoid artifacts at the borders.

6.4 Multi-object database
One of the architectures I propose is designed specifically to recognize mul-
tiple objects in a single image. In order to evaluate the performance of
the system, I created a database containing pictures of twenty everyday ob-
jects in a setting analogous to the tabletop database presented above. The
database is available online.2 Pictures were taken with the camera of the
robotic platform Caren (the successor to the CoRA platform) and therefore

2https://www.ini.rub.de/pages/publications/LompPhDThesis

https://www.ini.rub.de/pages/publications/LompPhDThesis

CHAPTER 6. IMAGE DATABASES 61

object 1 object 2 object 3 object 4 object 5

object 6 object 7 object 8 object 9 object 10

object 11 object 12 object 13 object 14 object 15

object 16 object 17 object 18 object 19 object 20

object 21 object 22 object 23 object 24 object 25

object 26 object 27 object 28 object 29 object 30

Figure 6.3: Training views of the thirty objects from the COIL-100 database.

CHAPTER 6. IMAGE DATABASES 62

allen keys blue cutter brush cookies cough drops

wire stripper fish can flashlight glue gravy

green stapler mints pin razor screwdriver

tissues toy car toy gun yellow cutter yellow
stapler

Figure 6.4: Single-object training views of all twenty objects of the multi-
object database. Images are cropped to show only the relevant part.

have a viewing angle that is relatively close to a bird’s-eye view. Effects of
viewing angle were further rectified by inverting perspective effects with es-
timated parameters of the camera transformation in order to align the pixel
coordinate system with an arbitrarily chosen coordinate frame on the table.
As in the tabletop database, the background is a relatively uniformly white
table, and camera settings as well as illumination were kept constant for
the acquisition of the images. Images are captured in color, using a Sony
XCD-SX90CR camera at a resolution of 800× 600 pixels.

The database contains two types of training data that allow for different
training methods. In the single object training set, objects are presented
individually in a standard pose (placed in the center of the image, with
their long axis pointing up as in the tabletop dataset). Figure 6.5(a) shows
examples of full training images. Figure 6.4 shows the training images of

CHAPTER 6. IMAGE DATABASES 63

(a) Training image containing a single
object.

(b) Training image containing multi-
ple objects.

Figure 6.5: Examples for the types of training images of the multi-object
database.

all twenty objects, cropped to remove excess background. In the multiple
object training set, sets of three objects are arbitrarily paired into training
images (the last training image contains only two objects), for a total of
seven training images which show each objects exactly one time. An example
training image from this set is shown in Figure 6.5(b).

The database has a total of 102 test images. Each image contains one,
two, three or seven objects, which I again paired arbitrarily. Figure 6.6 shows
examples for these images. Each test image is also assigned to either the close
or spaced category to indicate the spatial arrangement of the objects (see
bottom row of Figure 6.6 for examples). I annotated the pose of all objects
in the test set by manually aligning single-object training images overlaid on
top of the objects in the test image.

CHAPTER 6. IMAGE DATABASES 64

(a) Image containing one object.

(b) Image containing two objects. (c) Image containing three objects.

(d) Image containing seven objects,
large separation (spaced)

(e) Image containing seven objects,
small separation (close)

Figure 6.6: Examples of different types of test pictures in the multi-object
database.

Part II

Attention and working memory
for object recognition

65

Introduction

Introspection tells us that our visual perception of the world is instantaneous
and without gaps. When we look at a picture, we feel that we immediately
see and recognize all objects in it. However, there is much more sequentiality
in our perception than we are aware of (see, for example, Simons and Levin,
1997; Simons and Chabris, 1999). This sequentiality is likely due to the
overwhelming amount of information that enters through our eyes at any
given moment (Koch et al., 2006). Processing all of this data at once would
exceed the capacities available to our brain. Instead, we sequentially focus
attention on individual locations in the image, shifting focus either overtly by
moving our eyes, or covertly without any physical movement (Posner, 1980).
How such sequentiality may arise from the continuous-time dynamics of the
nervous system is an open question.

Though the object recognition system presented by Faubel and Schöner
(2009, 2010) and Lomp et al. (submitted 2016, see also Chapter 3) is not in-
tended as a model of such sequential attention, some analogies to attentional
mechanisms in the brain can be found. When the system has estimated the
position of an object, the features at this position are brought into the focus
of the object recognition system, which uses them as the basis for identifi-
cation. In that sense, the system attends this recognized object. However,
the architecture only ever attends a single object. Without external control,
it would attend the recognized object forever. Furthermore, when external
control does trigger a new recognition, the old recognition is forgotten imme-
diately because there is no mechanism in the system that forms a memory
of past recognitions. Questions about sequential recognition of objects are
therefore not answered by this system alone.

The scene representation architecture presented in Chapter 4, on the other
hand, models sequential processing of the input using mechanisms inspired by
processing of visual information in the brain. However, the object descrip-
tions that the model uses rely on basic features such as color, and object
identity is not part of the model.

Both systems thus solve complementary aspects of the sequential pro-

66

67

cessing of visual input. Integrating them with each other is therefore the
main topic of the present part. This integration is supported by modularity
inherent to dynamic field theory architectures (Lomp et al., accepted 2016).
However, to make full use of this modularity, both architectures need to be
formulated entirely within dynamic field theory. This is not true for the ob-
ject recognition architecture as described in Chapter 3, because transitioning
from one object to the next requires external control, and because the input
region of the image must still be provided externally.

I therefore begin the present part with a chapter that describes how the
recognition process may be realized within the framework of dynamic field
theory. In the chapter following this description, I make use of the fully
neuro-dynamic object recognition architecture and integrate it with the scene
representation architecture. I finish the present part with an evaluation of the
combined architecture, as well as a discussion of the results and a comparison
to similar approaches in the literature.3

3Please note that the work presented here is based on initial implementations presented
in the Master’s thesis of Philipp Hebing, which I supervised.

Chapter 7

Behavioral organization of object
recognition

The transition between recognition of different objects in the object recogni-
tion system presented by Faubel and Schöner (2009, 2010) and Lomp et al.
(submitted 2016) is solved externally, using algorithmic processes outside of
the framework of dynamic field theory. To address this, two problems must
be solved. First, the system must detect that a new recognition should be
started. I realize this with a set of transient detectors that detect changes
in the input image and trigger a new recognition when the magnitude of
these changes exceeds a threshold. Second, when the transient detectors
trigger a new recognition, the object recognition architecture may still rep-
resent the previous recognition decision. A new recognition started in this
state would be biased strongly towards the object recognized due to the sta-
bilization mechanisms inherent to the label nodes and pose fields. Thus, a
mechanism is needed that overcomes this stabilization. In the experiments
on the original architecture (Faubel and Schöner, 2009, 2010; Lomp et al.,
submitted 2016), this is achieved by an externally activated inhibitory boost,
which resets all label nodes and pose fields. To achieve a similar effect with-
out external control, behavioral organization (see Section 2.3) is required. I
therefore introduce a new behavior recognize. When this behavior is inactive,
the label nodes and pose fields relax to their negative resting levels, which
correspond to the inhibitory boost of the external reset. Because this makes
the activation of the nodes and fields fall below threshold, potential biases
due to self-stabilization are removed when this behavior is inactive. Once
the behavior does become active, the intention node of the recognize behav-
ior boosts the fields and nodes back to a resting level that allows recognition
to take place.

The reset behavior precedes this behavior and ensures that a reset takes

68

CHAPTER 7. BEHAVIORAL ORGANIZATION 69

prec. reset
p

recognizerecognize

reset behavior

cosint

peak detectors
of pose and

label
representation

recognize behavior

int cos

recognize

transient
detectors

...

boost
pose and label

dynamics

...

Figure 7.1: Connectivity of the behaviors involved in recognition.

place every time the input changes. Change of the input is indicated by a set
of transient detectors. Because their signal is only above threshold for a short
duration, the behavior’s intention node forms a memory of the signal, which
is erased when its condition of satisfaction is reached. This is the case when
activation in the layer two label nodes and pose fields falls below threshold
and all biases have been removed.

The decay of activation in the second layers of the pose and label fields, in
turn, is triggered because the condition of satisfaction of the reset behavior
is a precondition for the intention node of the recognize behavior (see Sec-
tion 2.3). Reactivation of the behavior is prevented because the behavior’s
condition of satisfaction node is in memory mode.

Over the next sections, I formalize this behavioral organization.

7.1 The reset behavior
Following the scheme described in Berger et al. (2012), the transient detectors
that drive the reset behavior (see left side of Figure 7.1) consist of two layers
of neural fields each. One layer is an inhibitory layer with the dynamics

τtriu̇
tri
C (x, y, t) = −utri

C (x, y, t) + sC(x, y, t), (7.1)

where x, y are image coordinates and sC(x, y, t) is the input from an image
channel C (either the hue, saturation or value channel of the HSV color

CHAPTER 7. BEHAVIORAL ORGANIZATION 70

-1

-0.5

0

0.5

1

0 2 4 6 8 10 12 14
time [s]

s(t)
utri
C (t)

utre
C (t)
str
C(t)

Figure 7.2: An exemplary time course of the signals involved in transient
detection. For the illustration, the involved fields and signals have been
reduced to a single point by omitting the spatial dimension. The transient
signal, str

C(t), briefly becomes active when the input, s(t), changes its value.

space). This layer inhibits the excitatory layer, whose dynamics is given by

τtreu̇
tre
C (x, y, t) = −utre

C (x, y, t) + sC(x, y, t).− utri
C (x, y, t) (7.2)

The timescales of the layers are constrained by τtre < τtri. As a result, the
activation of the excitatory layer becomes non-zero for a brief period of time
whenever the input signal changes (see Figure 7.2). The sign of the activation
of the excitatory layer depends on the change in the input (if the value of
stri

C (x, y, t) increases, the sign is positive, if it decreases, the sign is negative).
To get the final transient signal for a channel, I use the absolute value of the
contracted activation of the excitatory layer,

str
C(t) = H

(∫∫ ∣∣utre
C (x, y, t)

∣∣ dx dy − θ) , (7.3)

with the Heaviside function, H (·). A transient detector thus activates when
the change of the input exceeds a threshold, θ. An exemplary time course of
str
C(t) and its terms is shown in Figure 7.2.

Recognition is enabled by the task recognize. The associated task input,

CHAPTER 7. BEHAVIORAL ORGANIZATION 71

stask
rcgn(t), is input to the intention node of the reset behavior:

τ u̇int
res(t) =− uint

res(t) + h+ wξ ξ(t)

+ w1 s
task
rcgn(t)− w2 g (ucos

res (t))

+ wint
res g

(
uint

res(t)
)
. (7.4)

The reset behavior’s condition of satisfaction node inhibits the intention
node, and thus the intention is deactivated when the condition of satisfaction
is achieved. The dynamics of the condition of satisfaction node is

τ u̇cos
res (t) =− ucos

res (t) + h+ wξ ξ(t)

+ w1 s
task
rcgn(t) + w2 g

(
uint

res(t)
)

− w3

∑
C

str
C(t)− w4

∑
T

g
(
upd
T (t)

)
+ wcos

res g (ucos
res (t)) . (7.5)

The node may only become active when the output of all peak detectors of
the pose and label fields, g(upd

T (t)), is close to zero (T is again the set of pose
parameters estimated by the object recognition system, for example, posi-
tion, orientation and label, and upd

T (t) is the activation of the corresponding
layer two peak detectors; see Equation 3.15 on page 36). Thus, the condi-
tion of satisfaction (and hence the reset of the object recognition system)
is achieved whenever peaks in the pose and label fields have decayed (this
decay is triggered because the fields and nodes must be boosted by the rec-
ognize behavior to be able to form peaks; this is described in detail below).
The condition of satisfaction node is in memory mode and therefore remains
active once the reset is completed. Inhibition from the transient detectors’
outputs str

C(t) destabilizes this memory, causing the condition of satisfaction
node to deactivate whenever the input image changes sufficiently. Because
the transient signal decays after a short time, inhibition also decays, and the
condition of satisfaction may once again activate when the label nodes and
pose fields are reset.

7.2 The recognize behavior
Recognition may begin when the reset behavior described above is complete,
that is, when its condition of satisfaction is achieved. This dependency is

CHAPTER 7. BEHAVIORAL ORGANIZATION 72

expressed by a precondition node (see center of Figure 7.1),

τ u̇pre
res(t) =− upre

res(t) + h+ wξ ξ(t)

+ w1 s
task
rcgn(t)− w2 g (ucos

res (t))

+ wpre
res g (upre

res(t)) , (7.6)

that is shown in the center of Figure 7.1. The intention node of the recognize
behavior, shown on the right side of Figure 7.1, follows the dynamics

τ u̇int
rcgn(t) =− uint

rcgn(t) + h+ wξ ξ(t)

+ w1 s
task
rcgn(t)− w2 g

(
ucos

rcgn(t)
)
− w3 g (upre

res (t))

+ wint
rcgn g

(
uint

rcgn(t)
)
, (7.7)

where ucos
rcgn(t) is the activation of the condition of satisfaction node of the rec-

ognize behavior (described in more detail below). The intention to recognize
induces detection instabilities in the pose fields and label nodes of the object
recognition architecture. This is achieved by choosing the resting levels for
the fields and nodes to only allow the input from the match functions (see
Section 3.2) to push activation of the labels and nodes above threshold when
it is combined with the input from the recognize behavior’s intention node.

Recognition is considered complete when peaks are formed on the second
layers of the pose representations, and when a second-layer label node is
active at the same time. This is expressed by the condition of satisfaction
node of the recognize behavior (right side of Figure 7.1),

τ u̇cos
rcgn(t) =− ucos

rcgn(t) + h+ wξ ξ(t)

+ w1 s
task
rcgn(t) + w2 g

(
uint

rcgn(t)
)

+ w3

∑
T

g
(
upd
T (t)

)
+ wcos

rcgn g
(
ucos

rcgn(t)
)
. (7.8)

Here, T is again the set of pose parameters estimated by the object recogni-
tion system, and upd

T (t) is the activation of the corresponding layer two peak
detectors (see Equation 3.15). The weight, w3, for the input from these peak
detectors is chosen to only allow the condition of satisfaction node to become
active when all peak detectors are active while the inputs from the task and
intention node are present as well.

Chapter 8

Integration with the scene
representation architecture

In the previous chapter, I describe how externally controlled processes in
the object recognition architecture in the original formulation (Faubel and
Schöner, 2009, 2010; Lomp et al., submitted 2016) may be controlled us-
ing principles of behavioral organization. In the present chapter, I describe
how the process of recognizing objects may be integrated into the scene rep-
resentation model described in Chapter 4. This involves a description of
the representation used for binding labels to space in working memory, and
includes a description of how the behavioral organization of the two architec-
tures is combined. I also describe how the process of learning object views
may be organized to reduce the required amount of external input so that
users only need to provide a label on request.

8.1 Space-feature fields for labels
The object recognition architecture constitutes another feature channel for
the scene representation model. In this channel, labels are bound to spatial
locations, using dynamics analogous to the feature-specific fields in the color
channel. However, instantiating these dynamics is not trivial because the fea-
ture to be stored—the recognized label—is encoded in individual label nodes
rather than a field defined over a continuous feature dimension such as color.
The one-dimensional fields of the label-feature channel must therefore be re-
placed by sets of nodes as well. These nodes, however, are governed by the
same dynamics as the label nodes (self-excitation and global inhibition), and
these nodes are parameterized to fulfill the same role as their counterparts in
the color channel. For example, the label mismatch nodes are analogous to

73

CHAPTER 8. INTEGRATION WITH SCENE REPRESENTATION 74

the color mismatch field. Therefore, a node in the label mismatch field may
become active only if the label in the working memory representation does
not match the one at the currently attended location.

Another exception are the three-dimensional space-feature fields (work-
ing memory and the feature query field). I realize these as a set of two-
dimensional fields defined over space. Each of these fields represents loca-
tions at which a specific label l is present. The dynamics of the space-label
working memory fields are given by

τ u̇slwm
l (x, y, t) =− uslwm

l (x, y, t) + h

+ inputs

+
[
kslwm

intra ∗
(
g ◦ uslwm

l

)]
(x, y, t)

+
∑
l′ 6=l

([
kslwm

inter ∗
(
g ◦ uslwm

l′

)]
(x, y, t)

)
, (8.1)

where ‘inputs’ is a shorthand for connectivity analogous to that of the space-
color working memory field defined in Equation 4.15. Interaction between
these space-label working memory fields is defined by two kernels: kslwm

intra

realizes interaction of the field with itself, while kslwm
inter realizes interaction

between fields for different labels. Taken together, the space-label fields for
all labels effectively act like a three-dimensional space-label field with a kernel
that is discrete in one dimension and can thus be thought of as analogous to
the space-feature working memory fields.

Extending the scene representation architecture presented in Chapter 4 by
a label channel is straightforward (connectivity and equations remain analo-
gous, merely the indices of the variables and functions change). Space-label
working memory fields are introduced together with space-label query fields.
Similarly, label match and mismatch fields are introduced to provide input
to the space-label working memory fields. However, the feedforward feature
field does not receive input from a bank of filters, as this is not possible for
the labels. Instead, it receives input from the second layer of the label nodes
(again, these are considered here to be a field defined over a discrete feature
dimension). On its own, this input is not strong enough to yield suprathresh-
old activation. Only when coupled with a global boost from the condition
of satisfaction node of the recognize behavior (described in Section 7.2) does
one of the label nodes form suprathreshold activation. This ensures that the
label information is only committed to working memory when the recognition
process is complete. The unavailability of a feedforward path for the labels
also means that labels do not contribute to saliency computation.

CHAPTER 8. INTEGRATION WITH SCENE REPRESENTATION 75

prec. reset
p

exploreexplore

reset behavior

cosint

peak detectors
of pose and

label
representation

recognize behavior

int cos

explore

transient
detectors

...

boost
pose and label

dynamics

...

prec. attention
p

explore

attention

Figure 8.1: Connectivity of the behaviors involved in recognition in conjunc-
tion with the scene representation.

8.2 Guiding object recognition based on atten-
tion

Besides the addition of the label-feature channel to the scene representa-
tion architecture, the integration of the two architectures requires further
modifications of the principles of object recognition and scene representa-
tion architectures described in Chapter 7 and Chapter 4, respectively. The
scene representation’s explore task replaces the recognize task of the modi-
fied object recognition approach from Chapter 7. Additionally, the center of
the region of interest of the object recognition system is determined by the
attended location,1

ICattn(x, y, t) =

∫∫
g
(
uatn(x+ x′, y + y′, t)

)
I(x′, y′, t) dx′ dy′.∫∫

g
(
uatn(x′′, y′′, t)

)
dx′′ dy′′.

, (8.2)

1In the implementation, this convolution is approximated to increase efficiency. The
location of the highest activation in the attention field is determined, and a subregion of
the image corresponding to that location is extracted programmatically. This also includes
border handling, which extends the values at the borders for regions not covered by the
image.

CHAPTER 8. INTEGRATION WITH SCENE REPRESENTATION 76

where C is again one of the channels of the input image (hue, saturation or
value). Note that for simplicity of notation, I assume that the center of the
input image, I, is located at the origin. The result of Equation 8.2 serves as
input to the object recognition system.

This attentional control gives rise to another constraint for the behavioral
organization: recognition is only meaningful when a location is attended,
that is, when a peak is present in the attention field. I therefore introduce a
precondition attention (see Figure 8.1), whose precondition node is governed
by the dynamics

τ u̇pre
attn(t) =− upre

attn(t) + h+ wξ ξ(t)

+ w1 s
task
exp (t)− w2

∫∫
g
(
uatn(x, y)

)
dx dy

+ wpre
attn g (upre

attn(t)) . (8.3)

The node’s activation is pushed above threshold by input from the explore
task of the scene representation (see Section 4.4). Once enough suprathresh-
old activation is present in the attention field, the inhibitory coupling (with
weight w2) pushes the precondition node below threshold again. The output
of the precondition node, g (upre

attn), provides an additional inhibitory input to
the intention node of the recognize behavior (Equation 7.7).

Although the saliency mechanisms driving attention are only heuristics,
they already provide coarse information on the location of attended objects.
Ideally, these objects should be at the center of the attended locations. This
is reflected by an additional broad Gaussian input that is added to the first
layer shift estimation field. This input is relatively weak and provides bias
toward the center of the image early in the recognition process. Stronger
evidence that arises during the convergence process of the object recognition
system may override this bias.

8.3 Interacting with the supervisor
The object recognition system reviewed in Chapter 3 can learn new objects
quickly. However, the learning process in that implementation is controlled
externally, either by a program or the user (Faubel and Schöner, 2009, 2010;
Lomp et al., submitted 2016). Learning thus requires a fixed sequence of
steps, wherein an image is first presented along with information on the pose
and identity of the object, followed by a period in which the weights are
adapted, in turn followed by a reset.

In this section, I describe an extension of the behavioral organization
structure described in Chapter 7 and 8. This extension integrates the learn-

CHAPTER 8. INTEGRATION WITH SCENE REPRESENTATION 77

“match”
nodes

learn behavior

int cos

learn

attention prec.
p

explore, learn

prepare learning beh.

int cos

learn

reset prec.
p

explore, learn

supervision
required l1 ln... label information

from supervisor

l1 ln... supervision
memory

l1 ln...label int l1 ln... label cos

l1 ln... layer 2 label nodes

memorize view beh.

int cos

learn

prepared prec.
p

learn

match
values
of cued
label

memory
adaptation

rate

inspect
intention int

learned prec.
p

learn

scene
represen-

tation

suppression
s

learn

attention

Figure 8.2: An overview of the behaviors involved in the learning process.

ing process into the neural-dynamics of the architecture. Users may activate
a learning mode, in which the architecture sequentially scans objects in the
scene, querying label information from the supervisor (that is, either the user
or an algorithm) when a to-be-learned object is attended. When the super-
visor provides this information, the learning process continues autonomously
and repeats until all objects in the scene have been learned. The behavioral
organization underlying this process is sketched in Figure 8.2 and described
formally in the following subsections.

CHAPTER 8. INTEGRATION WITH SCENE REPRESENTATION 78

8.3.1 The learn behavior

The learning mode is enabled by a task learn. This task activates the pre-
condition location attended (described in Section 8.2) by providing additional
excitatory input to the node. It also activates a behavior learn (top of Fig-
ure 8.2). The intention node of this behavior follows the dynamics

τ u̇int
lrn(t) =− uint

lrn(t) + h+ wξ ξ(t)

+ w1 s
task
lrn (t)− w2 g (ucos

lrn (t))

+ wint
lrn g

(
uint

lrn(t)
)
, (8.4)

where stask
lrn (t) is the input from task learn. When the behavior’s intention

node becomes active, it excites a suppression node,

τ u̇sup
lsup(t) =− usup

lsup(t) + h+ wξ ξ(t)

+ w1 s
task
lrn (t) + w2 g (usup

lrn (t))

+ wsup
lsup g

(
usup
lsup(t)

)
, (8.5)

which inhibits the inspect object intention node, uint
ins, with an additional

inhibitory input to Equation 4.18 (see page 51). Suprathreshold activity
in the intention node also prompts the scene representation architecture to
attend a previously unattended location by providing excitatory input to the
attention field (indicated by the dotted arrow in Figure 8.2; see Section 8.3.4
for details). It also activates a chain of behaviors responsible for organizing
the steps of the learning process (described in more detail below). The first
step is a reset mediated by the reset behavior described in Section 7.1. It
is followed by the prepare learning behavior, which queries label information
from the supervisor. Finally, the memorize view behavior is responsible for
learning the current object view. The sequence between these behaviors is
brought about by a set of precondition nodes activated by the learn intention
node.

The condition of satisfaction for the learn behavior follows the dynamics

τ u̇cos
lrn (t) =− ucos

lrn (t) + h+ wξ ξ(t)

+ w1 s
task
lrn (t) + w2 g

(
uint

lrn(t)
)

+ g
(
ulma(t)

)
+ wcos

lrn g (ucos
lrn (t)) , (8.6)

where ulma is the activation of the label match node (analogous to the color
match node described by Equation 4.20 on page 45).

CHAPTER 8. INTEGRATION WITH SCENE REPRESENTATION 79

8.3.2 The prepare learning behavior

To learn an object view, the supervisor must provide a label.2 The prepare
learning behavior (center of Figure 8.2) ensures that such information is
present whenever a location is attended. The dynamics of the behavior’s
intention node reads

τ u̇int
prep(t) =− uint

prep(t) + h+ wξ ξ(t)

+ w1 s
task
lrn (t) + w2 g

(
uint

lrn(t)
)

− w3 g (upre
attn(t))− w4 g (upre

res (t))

+ wint
prep g

(
uint

prep(t)
)
. (8.7)

It is mainly driven by the input from the task and the learn intention, and
is inhibited by the activation of the location attended precondition, upre

attn (see
Equation 8.3). Thus, it is deactivated whenever the peak in the attention
field decays and nothing is attended. This happens, for example, when the
currently attended object has been learned successfully, allowing the behavior
to reactivate when multiple objects are present in the scene. Inhibition from
the activation of the reset precondition node, upre

res (see Equation 7.6), simi-
larly ensures that when the input changes and a reset happens, the learning
intention is reset as well.

The intention node excites a supervision required node that is meant as
a shorthand for a system that communicates to the supervisor that label
information for the attended location is required. The supervision required
node has the dynamics

τ u̇sup(t) =− usup(t) + h+ wξ ξ(t)

+ w1 g
(
uint

prep(t)
)
− w2

∑
l

g
(
ucosfl
l (t)

)
+ wsup g (usup(t)) , (8.8)

where ucosfl
l (t) is part of the condition of satisfaction structure of the behavior

described below. When the supervision required node is active, the supervisor
is expected to provide information on the label to be associated with the
attended object via an input, ssup

l (t), to a set of label supervision memory
2Previously, pose information was also provided for evaluating the object recognition

architecture. I forgo this here because it is only necessary to determine the precision
of pose estimation, which I omit in the evaluation of the system. However, the same
principles used for memorizing label information provided by the supervisor may be used
to analogously represent pose information.

CHAPTER 8. INTEGRATION WITH SCENE REPRESENTATION 80

nodes. For a label l, the dynamics of the corresponding label supervision
memory node is given by

τ u̇supm
l (t) =− usupm

l (t) + h+ wξ ξ(t)

+ w1 s
sup
l (t)− w2

∑
l′ 6=l

g (usupm
l′ (t))

+ wsupm g (usupm
l (t)) . (8.9)

These nodes compete with each other (through inhibition of strength w2),
and at most one node may be active at any given time. The nodes are also
in the working memory regime and thus memorize the information provided
by the supervisor.

The goal, now, is to ensure that the label information provided by the
supervisor is correctly represented in the architecture. Specifically, the nodes
corresponding to the label cued by the supervisor must be active on the first
and second layer nodes of the identity representation in the object recogni-
tion architecture. I realize this with a structure analogous to the intention
and condition of satisfaction fields introduced in Section 2.3 (again, I substi-
tute discrete nodes for the continuous feature space of the fields). The label
intention nodes follow the dynamics

τ u̇intf,l
l (t) =− uintf,l

l (t) + h+ wξ ξ(t)

+ w1 g (usupm
l (t)) + w2 g

(
uint

prep(t)
)

+ wintf,l g
(
uintf,l
l (t)

)
, (8.10)

where, again, l is a label. The weights, w1 and w2, are chosen to only allow
the node corresponding to the memorized information from the supervisor
to become active if the prepare learning intention is active.

These nodes provide excitatory input to their corresponding label nodes
in the first layer of label nodes in the object recognition system. Thus, the
label cued by the supervisor is activated in the identity representation. The
label condition of satisfaction nodes detect whether this has been achieved
using the dynamics

τ u̇cosf,l
l (t) =− ucosf,l

l (t) + h+ wξ ξ(t)

+ w1 g
(
uintf,l
l (t)

)
+ w2 g (u2,l(t))

+ wcosf,l g
(
ucosf,l
l (t)

)
, (8.11)

where u2,l(t) is the activation of node l on the second layer of the label nodes
of the object recognition system. The weights, w1 and w2, are chosen to

CHAPTER 8. INTEGRATION WITH SCENE REPRESENTATION 81

only allow such a node to become active if both inputs are active, that is, if
g(uintf,l

l (t)) ≈ 1 and g (u2,l(t)) ≈ 1.
Finally, the label condition of satisfaction nodes drive the condition of

satisfaction node of the prepare learning behavior. The node’s dynamics is

τ u̇cos
prep(t) =− ucos

prep(t) + h+ wξ ξ(t)

+ w1 s
task
lrn (t) + w2 g

(
uint

prep(t)
)

+ w3

∑
l

g
(
ucosf,l
l (t)

)
+ wcos

prep g
(
ucos

prep(t)
)
. (8.12)

Here, the interaction through w2 and w3 only allows the condition of satis-
faction to become active if the intention is active, and if there is an active
label condition of satisfaction node.

8.3.3 The learn view behavior

A precondition for learning the current view is that information from the
supervisor has been obtained, and that this information is represented in the
object recognition architecture. This is expressed by a precondition node
with activation, upre

prep (prep for ‘learning prepared’), governed by the dynam-
ics

τ u̇pre
prep(t) =− upre

prep(t) + h+ wξ ξ(t)

+ w1 s
task
lrn (t) + w2 g

(
uint

lrn(t)
)
− w3 g

(
ucos

prep(t)
)

+ wpre
prep g

(
upre

prep(t)
)
. (8.13)

The precondition node is activated as soon as the intention of the learn
behavior becomes active, and is inhibited by the condition of satisfaction node
of the prepare learning behavior. This precondition inhibits the intention
node of the learn view behavior (center of Figure 8.2),

τ u̇int
lrnv(t) =− uint

lrnv(t) + h+ wξ ξ(t)

+ w1 s
task
lrn (t) + w2 g

(
uint

lrn(t)
)

− w3 g (ucos
lrnv(t))− w4 g

(
upre

prep(t)
)

+ wint
lrnv g

(
uint

lrnv(t)
)
. (8.14)

The activation of this intention node controls the adaptation of the weights
that store the current object view. That is, the control factor in Equation 3.38
(page 43) is set to blrn(t) = H

(
uint

lrnv(t)
)
.3

3The Heaviside function is used here because the logistic function and its approximation
approach zero but never actually reach it; this would mean that weights for all labels would

CHAPTER 8. INTEGRATION WITH SCENE REPRESENTATION 82

The condition of satisfaction node of the learn view behavior has the
dynamics

τ u̇cos
lrnv(t) =− ucos

lrnv(t) + h+ wξ ξ(t)

+ w1 s
task
lrn (t) + w2 g

(
uint

lrnv(t)
)

+ w3 s
lrnv(t)

+ wcos
lrnv g (ucos

lrnv(t)) . (8.15)

When the behavior’s intention node is active, the condition of satisfaction
node may become activated by the input, slrnv(t), which indicates sufficient
similarity between the input pattern and the learned pattern for the cued
label using the equation

slrnv(t) =
∑
F

∑
l

H
(
g (u2,l(t)) matchFl (t)− θF

)
, (8.16)

where matchFl (t) is defined by Equation 3.35 (on page 42), u2,l(t) is the
activation of the view node for label l on the second layer of the object
recognition system’s label representation, and θF is a threshold parameter for
feature channel F (color histograms, edge histograms on different channels,
or shape; see Section 3.3). The condition of satisfaction is thus activated
when the similarity between memory and input for the label provided by
the supervisor exceeds a threshold for all feature channels. The condition
of satisfaction node also excites both the spatial inhibition field (uspin in
Chapter 4) and the label to working memory nodes and color to working
memory field (the latter is denoted by uc2wm in Chapter 4, the former is the
analogous structure for the label-feature channel).

The condition of satisfaction node inhibits a learned precondition node,

τ u̇pre
lrnd(t) =− upre

lrnd(t) + h+ wξ ξ(t)

+ w1 s
task
lrn (t)− w2 g (ucos

lrn (t))

+ wpre
lrnd g (upre

lrnd(t)) , (8.17)

which in turn inhibits the match nodes of the scene representation, preventing
the scene representation from attending another object before learning of the
currently attended object is complete.

8.3.4 Changes to the scene representation architecture

In its explore behavior, the scene representation sequentially scans salient
locations in the input. It transitions from one object to the next when the

always adapt at least slightly, and the quality of the memory representation would thus
decay over time.

CHAPTER 8. INTEGRATION WITH SCENE REPRESENTATION 83

feature values for the currently attended one are committed to memory. For
learning, more explicit control of these processes is needed. That is, the
learning behavior must be able to query the selection of a previously unat-
tended object. This object must stay in the attentional focus until learning
is complete.

This requires a modification of the scene representation architecture. The
intention node of the learn behavior globally excites the attention field and
thus induces the selection of a salient location. The looking working memory,
as before, memorizes this attended location, preventing repeated inspection
of the object.

The condition of satisfaction of the memorize view behavior feeds into
the scene representation architecture. It excites the spatial inhibition fields
of the color and label channel as well as the color and label to working memory
fields. The currently attended object is therefore only memorized when it
has been learned completely.

The memorize view behavior’s condition of satisfaction also excites the
condition of satisfaction of the learn behavior (see Equation 8.6), which in-
hibits the intention node of the learn behavior. When the latter becomes
inactive, all nodes in the associated behaviors become inactive as well, which
lets the condition of satisfaction node of the learn behavior fall below thresh-
old. This, in turn, releases the inhibition of the intention node of the learn
behavior. Because it still receives excitatory input from the task, it becomes
active again, and a new object is attended and learned.

Chapter 9

Evaluation

In the present chapter, I describe the methods I used for quantitatively eval-
uating the performance of the integrated scene representation and object
recognition architecture, as well as results of these evaluations.

9.1 Experimental protocol
Before evaluation, the architecture first learns to recognize the objects in the
multi-object database (see Chapter 6) using either the single- or the multi-
object training images. During the entire training procedure, the dynamics
of the architecture are simulated without restarts. Images from one of the
training sets of the multi-object database are presented to the architecture
one by one. For each image, the training procedure begins by activating
the task learn. When the supervision required signal is above threshold, the
location of the maximum in the attention field is determined, and the label
of the closest annotated object is provided by boosting the corresponding
supervision node. After a fixed duration, the task learn is deactivated. An
externally controlled homogeneous boost inhibits the looking working mem-
ory and space-feature working memory fields in the scene representation until
their activation falls below threshold. After a fixed duration during which
the preshape in the looking working memory is allowed to decay, training
continues with the next image.

When the architecture is fully trained, it may be evaluated by presenting
test images from the multi-object database. Again, the architecture’s dy-
namics are simulated continuously for the entire duration of the test, and no
hard resets take place. For the quantitative evaluation, images are presented
to the system in an arbitrary order until each image is presented exactly
nine times. For each image, the test begins by enabling the task explore.

84

CHAPTER 9. EVALUATION 85

Figure 9.1: Peaks at locations that are within the red circles are assigned to
the object in the center of the circle. In case of ambiguities due to overlap,
peaks are assigned to the object closest to their center.

The system may then explore the scene for a predetermined duration (to
speed up the overall evaluation procedure, this duration is adapted to the
number of objects in the image, allotting 20 seconds per object rather than
using the same duration for all trials). When this duration is exceeded, the
current contents of the space-label working memory are recorded for evalu-
ation. The explore task is deactivated, and as in training, a homogeneous
external boost inhibits the looking working memory and space-feature work-
ing memory fields in the scene representation. The process waits for a fixed
duration to let the looking working memory preshape decay. Afterwards,
testing continues with the next image.

9.2 Evaluation criteria
Only the space-label working memory is evaluated. Each recorded working
memory state, obtained at the end time of the trial marked by tend, is summed
to obtain

P (x, y) =
∑
l

g
(
uslwm
l (x, y, tend)

)
. (9.1)

In addition, the label for each location is determined as the maximally active
label at that location:

L(x, y) = arg max
l

{
g
(
uslwm
l (x, y, tend)

)}
. (9.2)

CHAPTER 9. EVALUATION 86

The peaks in P are clustered to obtain peak locations, xi = (xi, yi)
(see Appendix B for details on the clustering approach). Together with
the label information in L, this yields a list of working memory entries,
mi = (xi, L(xi, yi)).

Each working memory entry is matched to the annotated objects in the
scene by determining the object closest to the entry’s location. This yields
the closest annotation, m∗ = (x∗, l∗) that indicates an object with label,
l∗, with its center at x∗ = (x∗, y∗). If the distance between match and
annotation is below a threshold, θ, that is, if |xi − x∗| > θ, the match is
counted, otherwise, it is discarded from evaluation. For the experiments I
report here, I choose θ = 150px (Figure 9.1 illustrates the resulting circle for
objects in an exemplary test image). This radius is chosen to include even
the largest objects in the database (for example, the cookies in Figure 9.1)
in this circle. Ambiguities that may result from overlaps of the individual
circles are resolved by assigning peaks to the object closest to them.

These matches serve to calculate how well the objects in the input are
represented by the system. For each object in the input, one of three cases
may occur. In the first case, the object is not represented in working mem-
ory; that is, no working memory entry was found close enough to its location
(I label this case unrepresented). This may be due to a failure of the scene
representation to form a memory item, for example, because the object did
not induce enough salience. Relatedly, this failure may also occur because
the strongest saliency induced by the object does not coincide with the cen-
ter of the object. As a result, the working memory peak may form too far
away to be matched to the object. In the second case, exactly one working
memory entry is matched to the object. The label of this entry may either
match the annotated label (denoted correct) or not (denoted incorrect). In
the third case, multiple working memory peaks are matched to one object.
This case may be further subdivided into cases in which all working memory
entries have the correct label (overrepresented/correct), cases in which some
working memory items have the correct label (overrepresented/mixed), and
cases in which no working memory item has the correct label (overrepre-
sented/incorrect).

9.3 Results
In the single-object training case, the system formed a single correct peak for
67.1% of the objects in the database. Multiple correct peaks were associated
with a single object in 7.7% of the cases. For 1.1% of the objects, both correct
and incorrect peaks were associated with an object (in these cases, 54.8% of

CHAPTER 9. EVALUATION 87

the peaks had the correct label). Multiple incorrect peaks were associated
with 0.2% of the objects, whereas a single incorrect peak was associated with
5.3% of the objects. No peaks were associated with 18.5% of the objects.

In the multi-object training case, the system formed a single correct peak
for 67.4% of the objects. Multiple correct peaks were associated with a single
object in 5.8% of the cases. Both correct and incorrect peaks were associated
with 3.3% of the objects (in these cases, 51.6% of the peaks had the correct
label). Multiple incorrect peaks were associated with none of the objects,
whereas a single incorrect peak was associated with 4.4% of the objects. No
peaks were associated with 19.1% of the objects.

Figure 9.2(a) shows the frequency of different outcomes over the number
of objects in the image. The plot suggests that as the number of objects
increases, performance deteriorates. I test the results for significance with
Pearson’s χ2-test of independence, which confirms that the results are signif-
icant for the architecture that was trained with images containing a single
object (χ2(15, N = 2430) = 400.3, p < 0.001; because the sample count is
low for some combinations, I also performed Fisher’s exact test, which yields
a probability, p ≈ 0.0, confirming the significance result of the χ2-test). For
the architecture trained using images of multiple objects, the results are also
significant (χ2(15, N = 2430) = 348.5, p < 0.001).

Figure 9.2(b) shows the frequency of different outcomes over the dis-
tance between objects. Here, the plot suggests that as the objects get closer
together, performance deteriorates. To test whether there is a significant
relation between the distance between objects and the outcomes, I again
performed Pearson’s χ2-test of independence, which confirms that the rela-
tionship is significant for the architecture trained on single object images
(again, I performed Fisher’s exact test due to low sample counts and ob-
tained p ≈ 0.0) and also significant for the architecture trained using images
containing multiple objects (χ2(5, N = 2430) = 358.6, p < 0.001).

Of the 2226 peaks generated by the architecture trained with images
showing a single object, 17 could not be matched to an object by the criteria
defined above. On average, these unmatched peaks were 189.4 px away from
the nearest annotated object. The peaks that were matched to objects had,
on average, a distance of 51.0 px. The average distance of matched peaks
that encoded the correct label was 49.6 px, whereas the average distance of
peaks encoding incorrect labels was 67.2 px.

The architecture trained with images containing multiple objects gener-
ated 2220 peaks over all test images, of which 18 could not be matched to an
object. On average, the unmatched peaks had a distance of 285.1 px, whereas
the matched peaks had an average distance of 51.6 px. The matched peaks
that encoded the correct label had an average distance of 49.6 px, whereas

CHAPTER 9. EVALUATION 88

0

20

40

60

80

100

S M S M S M S M S M

fr
eq
ue
nc
y
of

ca
se
s
[%

]

overall 1 object 2 objects 3 objects 7 objects

(a)

0

20

40

60

80

100

S M S M

fr
eq
ue
nc
y
of

ca
se
s
[%

]

spaced close

under
incorrect

over/wrong
over/mixed
over/correct

correct

(b)

Figure 9.2: Frequency of different outcomes plotted (a) over the number of
objects in the test image and (b) their spatial arrangement in the image. The
left bars (marked “S”) refer to the results from an architecture trained using
images containing a single object, while the right bars (marked “M”) refer
to the results from an architecture trained using images containing multiple
objects.

CHAPTER 9. EVALUATION 89

the peaks encoding an incorrect label had an average distance of 72.8 px
From the plots, the distributions of outcomes for the different training

types appear similar. However, Pearson’s χ2-test of independence for the
overall outcomes (the leftmost two bars of Figure 9.2(a)) reveals that, though
the differences are small, the results are significant (χ2(5, N = 4860) = 37.0,
p < 0.001).

Figure 9.3 further illustrates how well individual objects are recognized by
the system. The brush posed the greatest difficulty and was rarely recognized
and represented correctly. Likely, this is caused by its low saturation, leading
to low saliency and a sparsely populated color histogram.

CHAPTER 9. EVALUATION 90

0
20
40
60
80
100

fr
eq
ue
nc
y
[%

]
1
object

0
20
40
60
80
100

fr
eq
ue
nc
y
[%

]
2
objects

0
20
40
60
80
100

fr
eq
ue
nc
y
[%

]
3
objects

0
20
40
60
80
100

allen
keys

blue
cutter

brush
cookies
cough-drops
fish

can
flashlight
glue
gravy
green

stapler
m
ints

pin
razor
screw

driver
tissues
toy

car
toy

gun
w
ire

stripper
yellow

cutter
yellow

stapler

fr
eq
ue
nc
y
[%

]
7
objects

under
incorrect

over/wrong
over/mixed

over/correct
correct

Figure 9.3: The frequency of different outcomes for each object, plotted
separately for images containing one, two, three, or seven objects. As in
previous plots, the left bars for each object refer to the results from an
architecture trained using images containing a single object, while the right
bars refer to the results from an architecture trained using images containing
multiple objects. The bars for the green stapler are missing in the seven
objects plot because this combination does not occur in the database.

Chapter 10

Discussion

In the present chapter, I first discuss exemplary cases in which the system
made errors, followed by a discussion of the results and conclusions.

10.1 Examples of errors
Figure 10.1 shows four exemplary scenes onto which the working memory
entries read out after scanning the scene have been superimposed. The fig-
ure demonstrates different possible outcomes of the scanning process: In
Figure 10.1(a), all objects have been recognized correctly. However, two spa-
tially distinct peaks have formed for the Allen keys (this is the case labeled
correct/over). Figure 10.2 illustrates the cause for this duplicate entry. The
elongated shape of the object induces above-average saliency over an equally
elongated region (Figure 10.2(a)). When the object is attended, the attention
field forms a peak close to the center of the object (Figure 10.2(c)), and this
peak increases activation in the looking working memory that is too small
to cover the entire salient region induced by the Allen keys (Figure 10.2(b)).
Consequently, the attention field may still form further peaks for the object,
which may therefore be inspected multiple times. Peaks from later inspec-
tions repel working memory peaks, leading them to drift and thus cause the
locations of the working memory observed in the figure. All other objects in
the image are sufficiently small, and therefore only a single peak forms that
is close to their visual centers (labeled above as correct).

Figure 10.1(b) shows two different types of errors. The brush was in-
correctly recognized as the yellow stapler, an object with a similar color
distribution (this is labeled the wrong case above). The pin and mints were
not attended (labeled under in the results section). This likely happened
because the looking working memory preshape from previous trials did not

91

CHAPTER 10. DISCUSSION 92

decay sufficiently to allow inspection of these objects. Scanning the scene
again with a preshape that is initially zero everywhere results in the working
memory entries shown in Figure 10.3. Although not all objects have been
recognized correctly in this case, at least one peak formed for each object.

Figure 10.1(c) shows another type of error (labeled mixed above): the
cookies induced working memory entries at two distinct locations, again due
to their aspect ratio and size. One of these working memory entries has
the correct label. However, the other has the wrong label, screw driver,
presumably because both objects are predominantly yellow in color.

Finally, Figure 10.1(d) shows another issue that occurs when objects are
located close together. In this case, multiple objects are included in the region
used as input to the object recognition architecture. The figure illustrates
this for the pin (labeled incorrectly as yellow cutter). The blue-white square
indicates the input region of the object recognition system. The yellow cutter
is still inside this region, and the recognition is therefore not necessarily
incorrect, but rather refers to the wrong object.

One problem, exhibited also in Figure 10.1(b) and Figure 10.3, is that
the original scene representation architecture models the process of scanning
a single scene, but not the switch to another scene. Instead, the scene repre-
sentation has an updating mechanism (change detection through the match
and mismatch nodes in the three-layer structure described in Chapter 4).
However, existing peaks and preshape inhibit attentional fixations on ob-
jects that occur at the same location previously occupied by other objects.
For new objects in these locations to be properly attended, some time has to
pass during which both the preshape and working memory peaks are allowed
to decay. This increases the time required for a full evaluation of the archi-
tecture. To speed up processing, I addressed this with the external inhibitory
boost that clears working memory described above, as well as a wait time
between trials. However, the time allotted may not suffice for preshape to
decay in all cases.

The slow decay of the preshape is a result of parameterization, and in
previous scene representation implementations, preshape decays faster. In
the implementation of the combined model, this decay time is extended to
compensate for the longer time required to extract label information, because
the faster decay would otherwise lead to a decay of the preshape before all
objects in the scene are inspected, leading the system to only inspect a small
number of objects before reinspecting the first.

CHAPTER 10. DISCUSSION 93

10.2 Conclusion, related work and outlook
When individual objects are shown, the recognition rates of the combined
architecture are comparable to the object recognition architecture on its own
(see results in Faubel and Schöner, 2009, 2010; Lomp et al., submitted 2016).
This suggests that neither the behavioral organization of the recognition pro-
cesses nor the integration of the two architectures negatively impacted the
functionality of the object recognition system. There is also a clear rela-
tionship between the number of objects and the performance. This can be
explained because an increasing number of objects also implies an increased
likelihood of distractors entering the input region of the object recognition ar-
chitecture. Moreover, there are limits on the capacity of the working memory
fields of the scene representation architecture (Zibner et al., 2010; much like
there are limits to the working memory capacity of humans). Also, saliency
may no longer be placed close enough to an object center when objects are
close to each other. Further evidence for this is given by the large discrepancy
of the recognition rates for the spaced and close category images.

Ideas similar to attention and saliency have previously been used in com-
puter vision (a review can be found in Borji and Itti, 2013). The object
detection system described by Viola and Jones (2001) uses a pipeline of fil-
ters to process the image using a sliding window approach. Filters at the
start of the pipeline are good at detecting a large portion of faces, but at
the same time falsely detect many non-faces. Along the pipeline, the rate
of false detections decreases, and the final classification therefore achieves a
high accuracy. This approach allows the system to discard non-target regions
early in the processing hierarchy, reducing the number of filter applications
down the pipeline. As a result, the full pipeline is only applied to a few sub-
windows of the image, saving computation time. Implicitly, the early stages
of this pipeline are a form of saliency and attentional selection.

Miau et al. (2001) incorporate an explicit saliency computation that uses
biologically inspired features, a winner-take-all network and an inhibition of
return mechanism to determine a scan path, which determines a sequence of
image regions that is passed to an object detection system. They test two
different systems for object detection, one based on support vector machines,
and one based on the HMAX model. They show that attention greatly re-
duces the amount of data that must be processed by the system with only
a small loss of precision, and show that good performance in pedestrian de-
tection may be obtained on real-world images with support vector machines,
whereas the HMAXmodel is tested with artificial stimuli only. This approach
again supports the view that attention reduces the computational demand
for the vision system.

CHAPTER 10. DISCUSSION 94

Walther and Koch (2006) present a similar combination of saliency-guided
attention with the HMAX model, aiming to provide a more biologically plau-
sible approach. Saliency is again extracted using basic image features and a
winner-take-all network and an inhibition of return mechanism. To perform
recognition, the image is first scanned by the saliency network. The result-
ing salient locations are recorded and presented sequentially to a feedforward
HMAX system, which detects paperclips in one experiment and faces in an-
other with high accuracy. Performance depends on the distance between the
objects; if the objects are close together, the system also experiences prob-
lems properly recognizing the target objects, much like the issues encountered
for the combined system I presented above.

Later, Walther and Koch (2007) lifted this approach to a more general
framework for object recognition with attention. This framework describes
such a combined architecture as the extraction of different feature maps from
the input that are further processed to form the basis for object recognition.
An attentional map modulates which part of the input contributes to fea-
ture extraction and may also incorporate top-down feedback based on, for
example, the representation of a target object.

The literature cited thus far shows that saliency can reduce the compu-
tational demands of object recognition without negatively impacting perfor-
mance. By contrast, Han and Vasconcelos (2010) investigate the impact of
saliency on recognition performance. Similar to the previously cited liter-
ature, they also build on the HMAX model, but replace the model’s first
layer, the simple cells, by different saliency networks based on statistical in-
ference. They compare performance of the network with different saliency
mechanisms and find that the use of a saliency mechanism may enhance
recognition performance for a real-world dataset.

All of the reviewed approaches have shown benefits of incorporating sa-
liency and object recognition. However, a biologically plausible mechanism
for representing memory of the recognitions such as the label-feature fields in
the model I present here is absent from all of these models. Similarly, though
the networks model the process of sequential scanning, object recognition is
usually not integrated into this process.

I have demonstrated a system that successfully integrates object recogni-
tion, memory and attention into a single process. This system is capable of
learning objects presented in a scene, and it recognizes these objects in test
scenes, inspecting each object and associating its location with the recognized
label in a working memory field.

Even though the learning of objects is not fully realized without input
from the user, all that is required is the input of a label for the currently
attended object. If this label is thought of as a name for the object, this is

CHAPTER 10. DISCUSSION 95

not an unreasonable expectation; in a robotic scenario, this could mean that
the robot points to an object, indicating the need for a label, which the user
provides verbally.

Another remaining issue is that the combined system needs to be ex-
plicitly switched into a training mode. This could be replaced by a novelty
detection approach such as that of adaptive resonance theory (Carpenter and
Grossberg, 2003), though the details of such a mechanism are left for future
work.

Otherwise, training seems to work well even when multiple objects are in
the image, meaning that at least an explicit training by placing individual
objects at a fixed position, orientation and scale in the camera image is no
longer necessary. Compared to the manual approach in Faubel and Schöner
(2009, 2010) and Lomp et al. (submitted 2016), this greatly reduces the effort
required for training the architecture.

The tests of the architecture have thus far only been performed with
static images. A more rigorous test of both the learning and recognition
capacities in an actual robotic scenario in which the architecture, through
the robot, interacts with a human user is desirable. A potential scenario could
be solving a common task, such as the construction task presented by Bicho
et al. (2009). In their approach, the authors kept the vision architecture
simple, but they already use an object memory layer to keep track of the
position of relevant objects, much like the space-feature fields used in the
present work.

CHAPTER 10. DISCUSSION 96

(a) (b)

(c) (d)

Figure 10.1: Visualizations of the working memory contents after scanning
the shown scenes for a fixed duration. Red crosses indicate the location of the
working memory entry (interpolated from the lower-resolution working mem-
ory field). Recognized labels are indicated by the text next to the crosses.
The blue square indicates the input region of the object recognition system
for the example of the working memory entry at the square’s center.

CHAPTER 10. DISCUSSION 97

-0.25
0
0.25
0.5
0.75
1

(a)

-0.25
0
0.25
0.5
0.75
1

(b)

0

0.25

0.5

0.75

1

(c)

Figure 10.2: Excerpt of the architecture’s state during the exploration of the
scene shown in Figure 10.1(a). (a) shows the color saliency map prior to the
inspection of any object. (b) shows the saliency combined with inhibition
from the looking working memory after all objects have been inspected. (c)
shows the output of the attention field during the first fixation on the Allen
keys.

CHAPTER 10. DISCUSSION 98

Figure 10.3: Result of scanning the scene from Figure 10.1(b) with initially
flat preshape for the looking working memory.

Part III

Object recognition based on
space-feature patterns

99

Introduction

My goal in Part III is to investigate the biological plausibility of the histogram
based object recognition system presented in Chapter 3. In this system, pose
is represented by neural fields that inherit biological plausibility by design.
However, the biological plausibility of the pose transformations is not as ob-
vious because they require multiplying the activation of the pose fields with
the input pattern, which deviates from common neural mechanisms in dy-
namic field theory. However, such multiplicative connectivity has been used
in other neural network models before (Olshausen et al., 1993, for example,
describes a system in which attention provides a multiplicative gain value
that routes information at an attended location to the recognition system).

An alternative transformation approach is described by Schneegans and
Schöner (2012). In this approach, two patterns provide input to a two-
dimensional transformation field. The first pattern is the pattern to be trans-
formed. The second pattern is the transformation parameter and is analogous
to the fields representing pose in the object recognition system described in
Chapter 3. Both patterns provide a ridge input along one of the dimensions
of the transformation field. Peaks form where these inputs overlap, and a
diagonal readout yields the input pattern shifted by the transformation pa-
rameter. For this approach, the input pattern and transformation parameter
must be encoded in fields, or at least having an analogous structure. This
is not the case for the localized histograms, because they encode the rate
of occurrence of individual feature values, rather than encoding presence or
absence of individual values.

One of my goals in this part is therefore to provide a transformation archi-
tecture that uses patterns more closely related to the activation and output
patterns of dynamic neural fields. I refer to these patterns as space-feature
patterns because—analogous to neural fields—they are activation patterns
defined over two spatial dimensions and a feature dimension. Such patterns
may be transformed using the principles described in Chapter 3, using an
approach that combines concepts from both the shape-based channel as well
as the histogram based channels. In Chapter 11, I describe this combined ap-

100

101

proach, which is based on a prototypical implementation described in Lomp
et al., 2014.

Space-feature patterns do not only serve to increase the biological plau-
sibility of the transformation process, but also of the object representation,
because the localized feature histograms described in Chapter 3 are largely
invariant under changes in the spatial arrangement of the constituent feature
values because they aggregate feature information over space. Thus, a set
of feature values may yield the same localized histogram in different spatial
arrangements, whereas, by contrast, there is only a small degree of tolerance
to changes in the spatial arrangement of feature values in the brain (Vogels,
1999).

The main discriminative power of the histogram based recognition system
comes from color. Other feature channels mainly facilitate pose estimation
(see Lomp et al., submitted 2016 and the results in Chapter 12). How does
this compare to object recognition in the brain? Certainly, color supports
object recognition. For example, color has been shown to improve perfor-
mance in search tasks and conditions in which shape was degraded (Markoff,
1972), as well as in naming tasks (Ostergaard and Davidoff, 1985). However,
Biederman and Ju (1988) have demonstrated a paradigm in which color does
not play a role for object recognition unless shape information is unreli-
able or degraded (but see Wurm et al., 1993 for criticism), and many of the
experiments in the Biederman line use simple line drawings which are recog-
nized successfully by participants (for example, Biederman, 1987; Biederman
and Cooper, 1992). Other experiments have shown the ability to recognize
novel stimuli in the absence of color information (see, for example, Nazir and
O’Regan, 1990), and our ability to recognize grayscale images also suggests
that we can recognize objects without color information. On the anatomical
side, the prevalence of simple and complex cells found in the visual cortex
that primarily react to lines, edges and similar features (Hubel and Wiesel,
1962, 1968; Wandell, 1995) also speaks to the importance of representations
not based on color alone. To date, the exact role of color for object recog-
nition remains unclear (Hagen et al., 2016), but it does not seem to be as
critical for discrimination as it is in the histogram-based object recognition
approach.

Another issue is that during the initial stages of matching color histo-
grams, the histograms are effectively extracted from the whole image due to
the unspecific position estimate. These histograms are highly distinctive for
each object, and many objects can therefore already be discarded from the
match even before the pose is estimated. Empirically, I have found that the
initial guess of the system often already favors the correct recognition, which
greatly simplifies pose estimation. This can also be seen in Lomp et al., sub-

102

mitted 2016, where pose estimation performance has been shown to improve
only marginally when the correct label is provided for the entire recogni-
tion process. In addition, the localized color histograms are only affected by
shifts, but are invariant to rotations. Taken together, this means that the
interplay between pose and identity estimation has not yet been fully tested.

The first kind of space-feature patterns I describe are therefore based on
edge orientations rather than color features. In Chapter 12, I describe how
such patterns may be extracted, and how this representation impacts the
structure of the transformation and matching architecture.

In Chapter 13, I extend the edge orientation based architecture by an
additional space-color pattern channel. In contrast to the localized histogram
architecture, space-color patterns are a more holistic image representation,
so that the object’s full shape (in the two-dimensional image plane) may
be extracted. I show that this can be used to determine which parts of a
matched input image belong to the matched object.

Finally, Chapter 14 concludes the present part with a discussion of the
approach and the results obtained for the different types of space-feature
patterns.

Chapter 11

Object recognition based on
space-feature patterns

In the present chapter I first introduce how space-feature patterns may be
transformed and matched in a framework analogous to the one presented in
Chapter 3. Concrete formalizations for both the extraction of space-feature
patterns and any modifications to the transformation and matching architec-
ture that may ensue are described in the two chapters following the present
one.

The neural dynamics of pose representation in the systems presented here
are mostly analogous to those presented in Chapter 3, with the addition of
the behavioral organization components described in Chapter 7, as well as a
new competition scheme described in Section 11.2. In addition, two new neu-
ral fields are added for representing the estimated scale of the object. Their
dynamics are analogous to the position and orientation fields, merely the
dimension over which they are defined is changed. The scene representation
architecture is not included here, as the focus in the present part is to in-
vestigate the capacity to recognize individual objects based on space-feature
patterns.

11.1 Pose-transformations and matching for
space-feature patterns

A space-feature pattern is a function PF (x, y, f, t) with PF : R3 ×R+ → R,
where F indicates a feature channel such as color, x, y are image coordinates,
f is a feature value, and t ∈ R+ represents time. The pose-transformation
and matching approach for space-feature patterns is again divided into two
separate paths, the bottom-up path (indicated in equations by a subscript

103

CHAPTER 11. RECOGNIZING SPACE-FEATURE PATTERNS 104

bu) and the top-down path (indicated in equations by a subscript td), which
are analogous to the two paths in the pose-transformation and matching
architecture described in Chapter 3.

11.1.1 Pose-transformations in the bottom-up path

In analogy to the bottom-up path described in Chapter 3, the goal in this
section is to align the input space-feature pattern with the space-feature
patterns in memory. The space-feature pattern is therefore first transformed
by the current shift estimate, psh, which assigns a weight between zero and
one to each possible shift (see Section 3.2.1). The transformation is realized
by a convolution that is only applied to the spatial dimensions, x and y:

P sh
bu,F (x, y, f, t) =

∫∫
psh(x− x′, y − y′, t) PF (x′, y′, f, t) dx′ dy′. (11.1)

When the recognition process is converged so that only a small region of
the shift estimate contains nonzero values, this convolution shifts the input
pattern so that the object is at the same position as in the best matching
learned view.

For applying rotation, the pattern is transformed to log-polar coordinates.
Again, this transformation is only applied to the spatial coordinates x and y.
Thus, the result of the shift transformation in log-polar coordinates, where
φ is the angle and ρ the distance from the origin, is given by

P sh
bu,F (ρ, φ, f, t) =P sh

bu,F

(
exp (ρ) sin(φ), exp (ρ) cos(φ), f, t

)
. (11.2)

This pattern is transformed by the current rotation estimate, prot, which
assigns a weight between zero and one to each possible rotation (see Sec-
tion 3.2.1), by a convolution that is only applied to the angle dimension of
the log-polar representation:

P rot
bu,F (ρ, φ, f, t) =

∫
prot(φ− φ′, t)P sh

bu,F (ρ, φ′, f, t) dφ′. (11.3)

When the recognition process is converged, this equation shifts the pattern
along the angle dimension, thus rotating the input pattern in Cartesian space
so that the object has the same orientation as the object in the best match-
ing learned view. If the feature, f , is not invariant under rotation, further
transformations may need to be applied (see Chapter 12).

Because ρ represents the logarithmic distance from the center of the co-
ordinate system, scaling by a factor may also be realized as a shift. The
rotated pattern is thus convolved along the ρ-dimension by the current scale

CHAPTER 11. RECOGNIZING SPACE-FEATURE PATTERNS 105

estimate, psc, which again assigns a weight between zero and one to each
scale (see Section 3.2.1). The scaled pattern is thus

P sc
bu,F (ρ, φ, f, t) =

∫
psc(ρ− ρ′, t) P sh

bu,F (ρ′, φ, f, t) dρ′. (11.4)

When the recognition process is converged, this equation scales the input
pattern in Cartesian space so that the object has the same scale as the object
in the best matching learned view.

This pattern in Cartesian coordinates,

P sc
bu,F (x, y, f, t) =P sc

bu,F

(
log
(√

x2 + y2
)
, arctan(x, y), f, t

)
, (11.5)

is the input pattern, transformed by the current shift, rotation and scale
estimates. Although this pattern can be matched against the memorized
space-feature patterns, Pmem

F,l (x, y, f, t) using the correlative matching func-
tion described in Chapter 3, I use a modified matching approach which I
describe next.

11.1.2 Matching space-feature patterns

With the correlative matching approach used for localized feature histograms
(see Chapter 3), the entire pattern contributes to the match. For the his-
tograms, this is useful because the pattern does not distinguish between
foreground and background. However, space-feature patterns may express
the absence of feature information by locations which have activation val-
ues close to zero for all possible feature values. I define these locations as
background locations. Matching should then only take into account locations
at which either the top-down pattern indicates foreground, or at which the
input pattern indicates the presence of (valid) feature information.

The matching of two space-feature patterns P1 and P2, therefore uses a
mask,

M(x, y, t) = H

(
2∑
i=1

H

(∫
Pi(x, y, f, t)− ϑ df

))
. (11.6)

This mask assigns the value zero to locations at which none of the patterns
has valid feature information, and assigns the value one to locations at which
either (or both) of the patterns represent valid feature values (as determined
by a threshold, ϑ). Using this mask, the normalized pattern is given by

P̂i(x, y, f, t) =

{ 1
ni(t)

(Pi(x, y, f, t)−mi(t)) : M(x, y, t) > 0

0 : otherwise,
, (11.7)

CHAPTER 11. RECOGNIZING SPACE-FEATURE PATTERNS 106

0

2

4

6

8

10

(a) unsaturated superposition
0

0.2

0.4

0.6

0.8

1

(b) saturated superposition

Figure 11.1: Superposition of space-edge patterns (described in detail in
Chapter 12) of all learned views for the tabletop dataset (a) before and (b)
after saturation. In the figures, each squares shows a slice of the space-edge
map, each of which stands for a specific edge orientation (from left to right,
top to bottom, 0◦ to 180◦).

where i ∈ {1, 2}, the modified mean, mi, is given by

mi(t) =

∫∫∫
M(x, y, t) Pi(x, y, f, t) dx dy df∫∫

M(x′, y′, t) dx′ dy′
, (11.8)

and the modified norm, ni, is given by

ni(t) =

√∫∫∫
(M(x, y, t) Pi(x, y, f, t))

2 dx dy df. (11.9)

Point-wise multiplication of two normalized patterns yields a match value
which provides input to the label nodes described in Section 3.2.2. Analo-
gously, cross-correlation of two patterns yields match values which provide
input to the fields representing pose as described in Section 11.1.4.

11.1.3 Saturating the superposition of learned views

As in Chapter 3, the memorized patterns are superposed before pose transfor-
mations are applied in the top-down path. During preliminary experiments,
I observed that in the initial phase of recognition, the different views would

CHAPTER 11. RECOGNIZING SPACE-FEATURE PATTERNS 107

often combine in such a way that a single, strong feature value dominated
the entire superposition. Figure 11.1(a) illustrates this for a representation
based on edge orientations. As a result of such dominant regions, the match-
ing process often failed to form an initial position estimate that is sufficiently
broad to allow for proper localization. To avoid such dominant regions, I in-
troduce a saturation term for the superposition of the learned object views,
which is calculated as

Ptd,F (x, y, f, t) = min

{
1,
∑
l

pl(t) P
mem
F,l (x, y, f, t)

}
, (11.10)

where Pmem
F,l is the learned space-feature pattern for the object view indexed

by the label, l. Figure 11.1(b) illustrates how this saturation affects the
superposition of the memories.

11.1.4 Pose-transformations in the top-down path

In analogy to the architecture described in Chapter 3, the goal of the top-
down path is to align the top-down pattern with the input and to determine
match values for the pose parameters. The saturated memory superposition
is therefore first transformed to log-polar coordinates and matched with the
fully transformed pattern from the bottom-up path to obtain a real-valued
match for scale,

matchFsc(ρ, t) =

∫∫∫
P̂td,F (ρ+ ρ′, φ′, f ′, t) P̂ rot

bu,F (ρ′, φ′, f ′, t) dρ′ dφ′ df ′,

(11.11)

where the “hat” indicates normalization as described in Section 11.1.2. As
before, this match value servers as input to the neural fields that represent
the scale estimate (see Section 3.2.1).

To match the object’s rotation, the superposition of the memorized space-
feature patterns is scaled according to

P sc
td,F (ρ, φ, f, t) =

∫
pinv

sc (ρ− ρ′, t) Ptd,F (ρ′, φ, f, t) dρ′, (11.12)

where pinv
sc (·) is the inverse of the scale estimate (see Section 3.1.2, in the

description of Equation 3.7). The rescaled superposition is matched with the
shifted input pattern,

matchFrot(φ, t) =

∫∫∫
P̂ sc

td,F (ρ′, φ+ φ′, f ′, t) P̂ sh
bu,F (ρ′, φ′, f ′, t) dρ′ dφ′ df ′,

(11.13)

CHAPTER 11. RECOGNIZING SPACE-FEATURE PATTERNS 108

where the “hat” indicates normalization as described in Section 11.1.2. This
match provides input to the fields that represent rotation (see Section 3.2.1).

To match the shift between the memory representation and the input,
the scaled superposition is rotated according to

P rot
td,F (ρ, φ, f, t) =

∫
pinv

rot(φ− φ′) P sc
td,F (ρ, φ′, f, t) dφ′, (11.14)

where pinv
rot(·) is the inverse of the rotation estimate (see Chapter 3). Trans-

formed back to Cartesian coordinates, the rotated superposition can be
matched to the input with

matchFsh(x, y, t) =

∫∫∫
P̂ rot

td,F (x+ x′, y + y′, f ′, t) P̂F (x′, y′, f ′, t) dx′ dy′ df ′,

(11.15)

where the “hat” indicates normalization as described in Section 11.1.2. This
match value is input to the fields that represent the shift estimate (see Sec-
tion 3.2.1).

In the approach described in Chapter 13, I also make use of the inversely
shifted top-down pattern given by

P sh
td,F (x, y, f, t) =

∫∫
pinv

sh (x− x′, y − y′, t) P rot
td,F (x′, y′, f, t) dx′ dy′, (11.16)

where pinv
sh (·) is the inverse of the shift estimate (see Chapter 3). When the

label and pose estimates are converged, P sh
td,F is the top-down pattern, aligned

with the input pattern.

11.2 Gradually increasing competition in pose
and identity representation

In the histogram-based architecture, ambiguous pose and label estimates
only seldom arise because the color histograms are usually highly specific
to individual objects (as discussed in the introduction to the present part).
By contrast, edge orientation histograms, on their own, are far less discrim-
inative (see Lomp et al., submitted 2016 and the results in Table 12.1) and
are therefore more susceptible to ambiguities in the stimulus. With space-
feature patterns, the additional information provided by the spatial arrange-
ment, in part, resolves such ambiguities. However, during the initial stages
of matching, this additional information is lost because the input pattern is

CHAPTER 11. RECOGNIZING SPACE-FEATURE PATTERNS 109

transformed by unspecific pose estimates which effectively removes the spa-
tial arrangement. Pose estimates are therefore more prone to ambiguity at
this early stage, and the system may converge towards a wrong solution.
Although these solutions are not necessarily globally optimal in the sense of
maximal matches values, the competitive dynamics may prevent the system
from escaping from these states because the correct solution is no longer con-
sidered a viable candidate. This situation is, to an extent, analogous to the
problem of local minima and maxima in optimization approaches.

In practice, this means that the system often converges to an incorrect
estimate because a decision for that estimate is made too early. That is,
alternative pose candidates are inhibited too strongly too early because an
incorrect recognition temporarily yields higher match values with a transient
pose estimate. A solution for a similar problem in an architecture that also
uses a recurrent transformation and matching process has been discussed in
Lücke et al. (2008) and Wolfrum et al. (2008). I adopt a similar solution
by introducing an inhibitory node for the first layers of the label and pose
representations. These inhibitory nodes gradually ramp up the amount of
competition in the first layers of the pose and label representations and re-
place the global inhibition term in their dynamics. In the initial stage of
recognition, competition is thus weaker, and ambiguous candidates are vi-
able for a longer portion of the convergence process. This allows them to
gain higher match values as parts of the pose estimates sharpen and po-
tentially resolve ambiguities. The dynamics of the first layer of label nodes
(Equation 3.16 on page 34) thus becomes

τ1u̇1,l(t) =− u1,l(t) + h1 + wξ ξ(t)

+ s1,l(t)− winh,LuL,inh(t)

+ wu1 g (u1,l(t)) , (11.17)

where winh,L is the strength of the coupling from the inhibitory node. The
activation of the inhibitory node for the first layer of labels is denoted by
uL,inh(t). It is governed by the dynamics

u̇L,inh(t) =
g
(
sL,inh(t)− θ

)
τb

(
− uL,inh(t) + sL,inh(t)

)
+

1− g
(
sL,inh(t)− θ

)
τd

(
− uL,inh(t)

)
, (11.18)

with a threshold θ and input

sL,inh(t) =
∑
l

g (u1,l(t)) . (11.19)

CHAPTER 11. RECOGNIZING SPACE-FEATURE PATTERNS 110

The dynamics of the inhibitory node is a zero-dimensional analog for the
preshape dynamics described by Equation 4.8 (page 48). When suprathresh-
old activation is present in the layer one label nodes, g

(
sL,inh(t)− θ

)
≈ 1

and the activation relaxes to the input with the buildup timescale τb. When
all labels are below threshold, g

(
sL,inh(t)− θ

)
≈ 0 and the activation of the

inhibitory node returns to zero on the fast decay timescale, τd < τb. This
fast decay allows inhibition to quickly reset between two recognitions.

Analogous inhibitory nodes are added for the pose parameters. The dy-
namics of the first layers of the pose representation (see also Chapter 3) thus
become

τ1u̇1(r, t) =− u1(r, t) + h1 + wξ ξ(r, t)

+ s1(r, t)− wT,inhuinh
T (t)

+ [ku1 ∗ (g ◦ u1)] (r, t) , (11.20)

where T indexes one of the pose parameters (position, orientation and scale)
and wT,inh is the strength of the coupling from the inhibitory node to the
field. The activations of the inhibitory nodes for the pose fields are denoted
by uinh

T (t). Their dynamics is analogous to Equation 11.19 with input

sT,inh(t) =

∫
g (u1(r′)) dr′. (11.21)

Figure 11.2 shows a numerical simulation of selection in an exemplary one-
dimensional field driven by such an inhibitory node. The input of the field
consists of two subthreshold Gaussians of equal amplitude and width, but at
different locations. A homogeneous boost at t = 2 s drives the activation of
the field above threshold. For the next three to four seconds, activation at
both locations is above threshold and causes the inhibitory node’s activation
to rise slowly. This, in turn, creates increased inhibition which suppresses
the entire field. At a critical point, the activation at one of the input loca-
tions falls below threshold. Because this reduces the overall activation of the
inhibitory node, the active peak strengthens over time. Towards 13 seconds,
the homogeneous boost is deactivated. This allows activation in the entire
field to fall below threshold. The decay term of the inhibitory node takes ef-
fect, and the node’s activation falls back to zero, changing much more rapidly
than during the buildup. A new selection may now be started.

11.3 Learning space-feature patterns
Space-feature patterns are learned using the dynamics given by Equation 3.38
in Chapter 3. The extension of the equation to a three-dimensional space-

CHAPTER 11. RECOGNIZING SPACE-FEATURE PATTERNS 111

0

10

20

30

40

50

60

70

0 2 4 6 8 10 12
time [s]

uT,inh(t)
sT,inh(t)

(a) Time course of the input and activation of the inhibitory node.

0 2 4 6 8 10 12

po
se

pa
ra
m
et
er

time [s]

-15

-10

-5

0

5

10

15

(b) Activation of the field driving the inhibitory node.

Figure 11.2: Exemplary time course of an inhibition node connected to a
neural field.

CHAPTER 11. RECOGNIZING SPACE-FEATURE PATTERNS 112

feature pattern may be achieved trivially by appending another argument to
the function, so that the dynamics of the pattern memory becomes

τmemṖ
mem
F,l (x, y, f, t) = −

(
Pmem
F,l (x, y, f, t)− P sc

bu,F (x, y, f, t)
)
blrn(t) pl(t),

(11.22)

where τmem is the timescale of the adaptation, blrn(t) ∈ {0, 1} enables and
disables learning and pl(t) is the estimate for label l.

11.4 Evaluation methods
In this section, I describe the methods I use to evaluate space-feature pattern
architectures. These methods are used for the evaluation of all architectures
described in Chapter 12 and Chapter 13.

11.4.1 Training procedure

To train the space-feature pattern memory, I adopt the procedure described
in Lomp et al. (submitted 2016). During training, the dynamics of the ar-
chitecture is simulated. This simulation runs without interruption or direct
(algorithmic) changes to the state of the neural dynamics. Object views are
trained individually, in a fixed order. When a view is presented to the archi-
tecture, label information is provided by additive input to the layer one and
two nodes corresponding to the desired label. Analogously, Gaussian-shaped
inputs centered at the pose of the object in the training image are added to
the layer one and two fields that represent pose. The system is allowed to
relax to the cued label and pose for a fixed period of time. Learning is then
enabled by setting blrn(t) in Equation 11.22 to one. The weights are allowed
to change for a fixed duration, after which training of the current view is
considered complete and blrn(t) is again set to zero. The procedure is then
repeated with the next view, until all object views have been trained.

11.4.2 Recognition and testing procedure

For testing, I also adapt the procedure described by Lomp et al. (submitted
2016). As during training, the architecture’s dynamics is simulated with-
out interruption or direct (algorithmic) changes to the state of the neural
dynamics. At the start of the evaluation, the task recognize described in
Section 7.2 is enabled. This task remains active for the entire duration of
the evaluation. For each test image, the appropriate region of interest (see
Chapter 6) is set as input to the system. The system is allowed to relax, and

CHAPTER 11. RECOGNIZING SPACE-FEATURE PATTERNS 113

recognition is considered complete when the recognition done node becomes
active (that is, when its output of the node exceeds a threshold). When the
duration needed for relaxation exceeds a maximal duration, the trial is ended
immediately and recorded as a timeout. In both cases, the activation and
output of the label nodes and pose fields at the end of the trial are recorded
for evaluation. Afterwards, the next image may be presented to the system.

The precise method for choosing the next training image depends on the
database. For the tabletop database, an image is chosen randomly until each
image is presented once. I average results from multiple runs through this
database, so that each image is presented four times.

For the transformed dataset, an image is randomly chosen from the train-
ing images of the tabletop dataset on each trial. Before passing this image
into the architecture, the image is randomly scaled, rotated and translated
(translation is applied last so that scaling and rotation happen around the
image center) as described in Section 6.2. The transformation parameters for
each trial are recorded and may thus serve as ground truth for the evaluation,
replacing the manual annotations in the tabletop dataset. After applying the
transformation, a region of interest corresponding to the center of the image
is chosen from the resulting image and input into the architecture.

11.4.3 Performance measures

To evaluate the system’s performance, I also follow the methods described
in Lomp et al. (submitted 2016). At tend, the end time of the trial being
evaluated, the recognized label, l∗, is the label with the highest output:

l∗ = arg max
l
{g (u2,l(tend))} . (11.23)

Labels are rank-ordered based on their output level. This yields a list,
(l1, l2, . . . , ln) with li 6= lj and g (u2,li(tend)) ≥ g

(
u2,li+1

(tend)
)
∀i ∈ {1, . . . , n−

1}. From this list, the rank of a label li is determined as

rank(li) = i. (11.24)

For correct recognitions, the annotated label for the image, lC, is equal to
the recognized label, l∗, and thus rank(lC) = 1. The second choice of the
system has rank two, and so on.

To calculate pose errors, the recognized pose must first be read out. I do
this by finding the location of maximal output. Thus, the estimated position
is

x̃ = (x̃, ỹ) = arg max
(x,y)

{g (u2(x, y, tend))}, (11.25)

CHAPTER 11. RECOGNIZING SPACE-FEATURE PATTERNS 114

where u2(x, y, tend) is the activation of the layer two field of the position
representation (see Section 3.2). The position error is the Euclidean distance
between the annotated pose (or randomly chosen pose for the transformed
dataset), xC = (xC, yC), and the estimated pose:

Esh(xC, x̃) =

√
(xC − x̃)2 + (yC − ỹ)2. (11.26)

The estimated orientation, φ̃, is analogously the maximum of the output
of the layer two field of the orientation representation:

φ̃ = arg max
φ

{g (u2(φ, tend))}. (11.27)

where u2(φ, tend) is the activation of the layer two field representing shift
(please recall that the different pose fields are denoted by the same activation
variable and are only differentiated by their arguments; see Section 3.2). The
pose error is the shortest distance to the annotated (or, in the case of the
transformed dataset, randomly chosen) orientation, φC,

Erot(φ
C, φ̃) =

{
|φ̃− φC| : |φ̃− φC| < π

2π − |φ̃− φC| : otherwise.
(11.28)

The estimated scale is calculated as

s̃ = f(arg max
ρ
{g (u2(ρ, tend))}), (11.29)

where f is a function that transforms the log-polar scale argument back to
a linear scale factor. The pose error is the difference between the annotated
scale, sC, and the estimated one:

Esc(s
C, s̃) =

∣∣sC − s̃
∣∣ . (11.30)

Chapter 12

Space-edge patterns

In this chapter, I describe how space-edge patterns—space-feature patterns
that are based on edge orientations1—may be extracted and used for the pose-
transformation and matching architecture presented in the previous chapter.

I begin this chapter with a formal description of the pattern extraction.
Edge orientations are locally aggregated into histograms. This is similar to
the histograms used in the architecture described in Chapter 3, however,
histograms are here extracted from much smaller regions. The size of these
regions must reflect the scale estimated for the object, which implies that
patterns are extracted on multiple scales.

Histogram calculation is computationally costly, and reducing the number
of histograms that need to be extracted is therefore desirable. I achieve this
by using keypoints as described in Chapter 5 which identify regions where
edges of multiple orientations meet. Locations far from keypoints may thus
be dominated by a single edge orientation, so that the histograms can be
approximated by a single entry at the gradient orientation.

After formalizing pattern extraction, I describe the pose-transformation
and matching approach, which mostly follows the one described in Chap-
ter 11. An additional stage accounts for the rotation of the edge orientations
in the feature space, much like the rotation of the edge orientation histograms
described in Chapter 3. The resulting structure is shown in Figure 12.1. I
also address issues arising from the coarse sampling of the edge orientations
(which is, again, chosen due to computational constraints).

In the final sections of this chapter, I evaluate the system in different
configurations. I consider the space-edge patterns to be a more biologically
plausible representation for object views than the histograms used in the
architecture presented by Faubel and Schöner (2009, 2010) and Lomp et al.

1Technically, these should be called space-edge orientation patterns, which I shorten to
space-edge patterns for readability.

115

CHAPTER 12. SPACE-EDGE PATTERNS 116

T
M

position

view
memories

orientation

identity

scale

space-edge
patterns

(all scales)

T
M

T
M

T
M

T
M

space-edge
pattern

(estimated scale only)

T
M (along space)

(along feature)

Figure 12.1: An overview of the space-edge pattern architecture. As before,
boxes marked “T/M” stand for pose-transformation and matching steps.

(submitted 2016) because each entry in a space-edge pattern codes for the
strength of an edge of a certain orientation at a specific retinal position,
much like the simple cells described by Hubel and Wiesel (1962, 1968). I
therefore use the pose-transformation and matching architecture developed
in this chapter to characterize the system’s link to biological vision.

12.1 Pattern extraction
To extract a space-edge pattern, the black channel (Y from the YUV color
space) of the input image is first blurred by applying a Gaussian filter. This
reduces the impact of high-frequency noise. Edge orientations are approxi-
mated by the image gradient, which is calculated using a Sobel filter. The
result of this filtering is (an approximation of) the gradient’s orientation,
Θ : R2 ×R+ → [0, π), and magnitude, M : R2 ×R+ → R.

CHAPTER 12. SPACE-EDGE PATTERNS 117

Θ
θ1 θ2θenc

dθ1 (θenc)

dθ2 (θenc)

dθ1 (Θ)
dθ2 (Θ)

Figure 12.2: Illustration of the orientation subsampling function, dθj (Θ), for
two orientation samples, θ1 and θ2. The output of the functions is illustrated
for a value being encoded, θenc.

Keypoints are then extracted from the image using the approach de-
scribed in Chapter 5, and the gradient orientations around them are ag-
gregated into localized histograms. For each keypoint, i, located at image
position xi with scale σi, a histogram

hedge,kp
i (θj, t) =

∫∫
Gσi,xi (x, y) dθj (Θ(x, y, t)) dx dy (12.1)

is calculated, where Gσi,xi (x, y) is a Gaussian function centered on the key-
point with width proportional to the scale of the keypoint (a total of ten
different scales are used in the implementation). Note that I write down the
equation using evenly spaced discrete gradient orientations, θj = j ∆θ,2 to
indicate that the orientation dimension is sampled very coarsely (in practice,
by eight different orientations). This reduces the computational complexity,
but has nontrivial implications for the connectivity in the architecture. One
such implication is the assignment of the (finely sampled) gradient orienta-
tion to one of the discrete orientations by the sampling function

dθj (Θ) =

Θ−θj−1

∆θ
: θj−1 ≤ Θ < θj

1− Θ−θj
∆θ

: θj ≤ Θ < θj+1

0 : otherwise,
. (12.2)

2The indices of this sampling are meant to be cyclic within the set of sampled orienta-
tions, that is, θj−1 = θj−1 mod n, where n is the number of sampling points.

CHAPTER 12. SPACE-EDGE PATTERNS 118

This sampling function defines a linear weight between zero and one for
orientations based on their distance from sampling point j using the distance
between two samples, ∆θ. This function is inspired by the idea of tuning
curves (this is the inverse of the approach used for lifting coarsely sampled
input to a finely sampled space described in Bicho et al., 2000; Schöner et al.,
2015a). Due to the shape of this function (see Figure 12.2), I refer to it as
a simplified tuning curve. The function is designed to preserve, up to a
point, information on the sampled orientation that would be lost with other
approaches such as nearest neighbor sampling.

As an example, consider the output of the tuning curve for a single ori-
entation to be encoded, θenc, and a set of sampling points, dθj (Θ). In nearest
neighbor sampling, one of these would be assigned the value one, the oth-
ers would be zero. With the simplified tuning curve sampling from above,
the two closest bins, θj and θj−1, would both have nonzero values, as shown
in Figure 12.2. The figure also demonstrates that a single sampling value,
dθj (Θ), is not sufficient to find the encoded value, as there are two intersec-
tions with the tuning curve, and it is thus ambiguous whether the value is
lower or higher than the sampling point. However, knowledge of the value
for the other sampling point disambiguates this, making perfect reconstruc-
tion of the encoded orientation possible in this scenario. This is, essentially,
population coding.

This sampling function is designed so that it can be computed efficiently
because encoding a single value requires only to determine the two neighbor-
ing sampling points. With v =

Θ−θj
∆θ

, the value for the bins is v for the lower
bin and 1− v for the upper bin, while all other bins have the value zero.

In principle, localized gradient orientation histograms can be extracted
for each image location. However, this extraction is computationally costly,
even with the coarse sampling. Thus, I make a simplifying assumption that
image locations far from keypoints are dominated by a single edge orientation
and thus have monomodal histograms. The feature pattern at these locations
is thus approximated by

gedge(x, y, θj, t) = dθj(Θ(x, y, t)), (12.3)

and the final space-edge pattern is obtained by entering the histograms at
keypoints and the approximated patterns far from keypoints into a single

CHAPTER 12. SPACE-EDGE PATTERNS 119

(a) Input image.
0

1

2

3

4

5

(b) Extracted space-edge pattern.

Figure 12.3: An example for a space-edge pattern. (a) shows the input image.
(b) shows the extracted space-edge pattern. Each square in (b) stands for a
different range of edge orientations (starting with 0, in steps of 22.5◦ from
left to right, top to bottom).

structure,

P edge
σ̌i

(x, y, θj, t) =∑
k:σk=σ̌i

[
Gσk ∗ h

edge,kp
k

]
(x, y, θj, t)

+ σ+

(([
Gσ̌i ∗ gedge

]
(x, y, θj, t)

)
− σabs

(
ckp
σ̌i

(x, y)− 1

2

))
,

(12.4)

where σ̌i are the scales on which keypoints are extracted, and σk is the scale
of keypoint k. The function

ckp
σi

(x, y) =
∑

k:σk=σi

Gσi,xk (x, y) . (12.5)

formalizes the closeness of an image location to a keypoint. Where its value
is zero, the values of the approximation in Equation 12.3 are used for Equa-
tion 12.4. Where it is nonzero, the input from Equation 12.3 becomes propor-
tionally smaller in favor of the edge orientation histograms extracted around
the keypoint locations. An example for a space-edge pattern is shown in
Figure 12.3.

CHAPTER 12. SPACE-EDGE PATTERNS 120

12.1.1 Input scale selection

To provide input to the pose-transformation and matching architecture, the
space-edge patterns extracted on different scales are reduced to a single pat-
tern by superposing them according to

Pedge(x, y, θi, t) =
∑
i

dsc
i (t)P σi

edge(x, y, θi, t), (12.6)

where dsc
i samples the scale estimate, psc, according to

dsc
i (t) =

ms(σi+1)∫
ms(σi−1)

psc(ρ, t)d
tun
i (ρ) dρ. (12.7)

The functionms(·) maps from the domain of the scale estimate to the domain
of the input scales (details depend on the implementation and are given in
Appendix C). The sampling function, dtun

i (σ), is defined analogous to the
simplified tuning function (see Equation 12.2):

dtun
i (σ) =

σ−σi−1

∆σ
: σi−1 ≤ σ < σi

1− σ−σi
∆σ

: σi ≤ σ < σi+1

0 : otherwise.
(12.8)

12.2 Pose-transformation and matching archi-
tecture

Recall that edge histograms have to be shifted along the edge orientation di-
mension to account for rotation in the pose transformations (see Section 3.3).
An analogous transformation must be applied for space-edge patterns. This
implies additional transformation and matching steps in the architecture de-
scribed in Chapter 11 that are added between the transformation by the
orientation estimate and the scaling transformation.

In order to apply this additional transformation, the continuous orienta-
tion estimate must be sampled to match the sampling of the gradient ori-
entations. The first step in this sampling is mapping the estimate from the
larger interval, [−π, π), to the smaller interval of possible edge orientations,
θ ∈ [0, π) according to

prot
edge(θ, t) = prot(θ, t) + prot(θ − π, t). (12.9)

CHAPTER 12. SPACE-EDGE PATTERNS 121

0

0.5

1

−π
2

0 π
2

orientation estimate
triangular tuning curve

linear interpolation
normalized linear interp.

Figure 12.4: Effects of subsampling an orientation estimate with linear in-
terpolation and simplified tuning curves. The result of linear interpolation
normalized to its maximum value is also shown to make its shape more evi-
dent.

Next, this remapped orientation estimate is sampled at the discrete edge
orientations using the simplified tuning curve defined in Equation 12.2. Thus,
the resampled orientation estimate is

p̃rot
l (t) =

1

N∆θ

θl+1∫
θl−1

dθl (θ) prot
edge(θ, t) dθ, (12.10)

where 0 ≤ l < N indexes the discrete edge orientations and ∆θ is again the
distance between two sampling points of the gradient orientation.

This last step in the sampling is necessary because only a small num-
ber of sampling points is used for the edge orientations. Standard sampling
approaches, for example, linear interpolation, are problematic at such low
resolutions because the narrow peaks in the orientation estimate may be
lost in the subsampled estimate. The proposed sampling approach addresses
this and better preserves peak positions, as illustrated in Figure 12.4: the
result of linearly interpolating a finely sampled orientation estimate down
to a coarsely sampled estimate is nearly zero everywhere. Normalizing this
result using the maximum value reveals that near the peak position, values
are still higher than the surrounding ones. However, this difference is small,
and the surrounding values do not reflect those in the original orientation

CHAPTER 12. SPACE-EDGE PATTERNS 122

estimate. When using this subsampled estimate in pose transformations, the
result would thus contain all orientations and not reflect the specificity of
the original orientation estimate. The simplified tuning curve, on the other
hand, does not have these issues. Its value is significantly different from
zero close to the rotation estimate. A second sampling point is above zero
as well and expresses that the rotation estimate does not lie precisely on
the sampling point. All other entries, however, are close to zero and thus
match the original scale estimate. Transforming by this estimate would thus
contain only orientations in a range matching the active region in the origi-
nal estimate, and those orientations closer to it are weighted more strongly,
so that the subsampled estimate reflects the original estimate more closely
than the linearly interpolated version. However, sampling with the simplified
tuning curve does not preserve the amplitude of the original orientation esti-
mate (see Figure 12.4), even though Equation 12.10 contains a normalization
term. This is not an issue for the architecture, as the transformed pattern is
normalized before it is used for matching.

The subsampled orientation estimate is applied as a transformation along
the feature dimension the bottom-up path. This transformation directly fol-
lows the spatial rotation (Equation 11.3; see also Figure 12.1, transformations
labeled ‘along feature’ and ‘along space’) and is given by

P frot
bu,edge(x, y, θj, t) =

∑
k

p̃rot
j−k(t) P

rot
bu,edge(x, y, θk, t), (12.11)

where k iterates over the edge orientations, and p̃rot
j−k is the subsampled ori-

entation estimate.3 The resulting transformed pattern, P frot
bu,edge(x, y, θj, t) re-

places P rot
bu,edge(x, y, θk, t) in the transformation by the scale estimate, Equa-

tion 11.4.
A corresponding inverse transformation along the feature dimension is

inserted in the top-down path. This transformation operates on the scaled
top-down superposition (Equation 11.12) and provides input to the spatial
rotation (Equation 11.14). It is calculated as

P frot
td,edge(x, y, θj, t) =

∑
k

p̃rot,inv
j−k (t) P sc

td,edge(x, y, θk, t), (12.12)

where p̃rot,inv
l is the inverse rotation parameter estimate (as defined in Chap-

ter 3), sampled as described by Equation 12.10.
The space-edge patterns also provide an additional match value for the

3Again, the index j − k is cyclic in the number of sampling points.

CHAPTER 12. SPACE-EDGE PATTERNS 123

orientation of the object according to

matchedge,θ
rot (θi, t) =

∑
j

∫∫
P̂ rot

bu,edge(ρ, φ, θi − θj, t) P̂ sc
td,edge(ρ, φ, θi, t) dρ dφ.

(12.13)

Inspired by the ideas from Bicho et al. (2000) and Schöner et al. (2015a), these
discrete values are lifted to the full sampling of the orientation estimate by
determining the amplitude of Gaussians centered on the sampled gradient
orientations,

matchedge,θ̃
rot (φ, t) =

∑
i

Gσθ (θi − φ, t) matchedge,θ
rot (θi, t), (12.14)

where the width of the Gaussians, σθ is proportional to ∆θ. These Gaussians,
in turn, provide input to the first layer field of the orientation representation
(see Section 3.2.1).4

Space-edge patterns may provide additional scale match values because
they are extracted on multiple scales. These values are obtained by com-
paring the top-down pattern, P sh

td,F (x, y, θj), with the input pattern for the
corresponding scale, σi:

matchF,σisc (t) =
∑
j

∫∫
P̂ σi
F (x, y, θj, t) P̂

sh
td,F (x, y, θj, t) dx dy. (12.15)

The discrete match values are lifted to the full range of scale estimates us-
ing the same idea described above, that is, by summing Gaussians centered
around the scale values,

matchF,Isc (ρ, t) =
∑
i

matchF,σisc (t) Gσρ (ms(σi)− ρ) , (12.16)

where σρ scales the range of the contribution of each discrete match value and
ms(·) maps from the domain of the scale estimate to an input scale space
as described in Appendix C. The match value thus obtained provides an
additional input to the layer one scale representation field.

12.3 Performance evaluation
I evaluate the architecture presented in this chapter in two steps. First, I
take a closer look at the performance in terms of recognition rates and pose

4In practice, each edge orientation drives the amplitude of two Gaussians, one at the
edge orientation θi, and one at θi + π, to lift the estimate to the full range covered by the
orientation representation. This is left out of the equation for clarity.

CHAPTER 12. SPACE-EDGE PATTERNS 124

Table 12.1: Performance for different databases and architectures. Results
on the histogram approach are reprinted from Lomp et al. (submitted 2016).

architecture dataset recog.
rate

avg.
rank

avg. pose errors
pos. ori. scale

histograms tabletop 87.2% 1.2 13.5 px 14.0◦ —

histograms,
no color tabletop 21.3% 11.2 22.6 px 16.8◦ —

1
4
res. tabletop 57.9% 4.4 11.0 px 81.5◦ 0.09

1
2
res. tabletop 62.8% 4.5 10.6 px 75.4◦ 0.08

1
4
res. transformed 69.0% 4.0 7.4 px 35.5◦ 0.11

1
4
res. COIL (first 30) 52.7% 6.3 — — —

errors to determine how well the object representation performs in a robotic
context analogous to that used to evaluate the original histogram-based ar-
chitecture (see Faubel and Schöner, 2009, 2010; Lomp et al., submitted 2016).
Second, I investigate how the architecture relates to behavioral and electro-
physiological data on the human and primate visual system.

Table 12.1 summarizes the performance obtained from experiments us-
ing different datasets (see Chapter 6) and different architectures. The ‘his-
tograms’ architecture refers to the full histogram architecture described in
Chapter 3. Results are reprinted from Lomp et al. (submitted 2016) for
comparison. The ‘histograms, no color’ architecture refers to a variant of
this architecture that uses all but the color histogram channels. The ar-
chitectures labeled with ‘ 1

n
res.’ refer to architectures that use space-edge

patterns as described above. The fraction indicates the spatial resolution
of the architecture: for 1

2
resolution, the space-edge patterns have half the

resolution of the region of interest provided to the architecture, that is, a
size of 128 × 128 × 8 pixels (where the first two numbers indicate the size
in image space and the latter indicates the sampling of edge orientations).
For 1

4
resolution, the patterns have a size of 64 × 64 × 8 pixels. It is worth

noting that even though the architecture’s performance is below that of the
full histogram architecture for both resolutions, it does perform better than
the histogram architecture when comparable input features are used. The
histogram architecture even used a higher feature resolution (36 rather than
8 edge orientations), and performance would suffer if the feature resolution
was further reduced (Lomp et al., submitted 2016).

CHAPTER 12. SPACE-EDGE PATTERNS 125

Results for the COIL database were obtained from 6085 trials. The archi-
tecture was trained using only a single training view for each object. Given
this low amount of training images, the relatively good performance is sur-
prising. In part, this can be explained by symmetries with respect to rotation
in depth present for some of the chosen objects (see Section 12.4.2).

The confusion matrix for the tabletop dataset obtained with the 1
4
resolu-

tion architecture is shown in Figure 12.5. It shows that objects with similar
shape, such as the red and blue box and the different screw drivers, tend to
be confused. The explanations for other confusions are not as obvious. For
example, the hanuta and the tape dispenser are often confused, even though
the hanuta has a much more complex texture than the tape dispenser. How-
ever, these particular objects are relatively small and therefore take up only
a small region of the test and training images. As a result, much of their
detailed structure is lost due to sampling as well as the blurring caused by
pose-transforming the input in the bottom-up path.

Other issues may be attributed to depth rotations. For example, the
shampoo bottle is never recognized properly. This is at least in part caused
by its upright placement in the test images, which leads to large variations
of appearance due to depth rotation. However, the system also has difficulty
recognizing it in the transformed dataset (see below), which eliminates depth
rotations.

For the transformed database, results were obtained from 13436 trials.
The confusion matrix is shown in Figure 12.6. The results are similar to
the tabletop dataset, except that some objects are recognized correctly more
often, for example, the bit box and the yellow stapler. Some of this improve-
ment may be attributed to depth rotations as discussed above.

Figure 12.7 compares the position errors on the tabletop dataset measured
for the different approaches. In all cases, the position errors are grouped
around zero. Although the errors for the space-feature patterns are grouped
around zero more closely, some outliers (up to 220 pixels) lead to a larger
average error value. When only trials resulting in correct recognitions are
averaged, all position errors are smaller than 35 pixels for the space-edge
patterns whereas the range of errors for the histogram architecture remains
close to the overall result. Increasing the spatial resolution leads to a slightly
more pronounced grouping of the position errors around zero, and the aver-
age position error consequently decreases slightly (see Table 12.1). Position
error histograms for the transformed dataset are similar to the half-resolution
results and therefore are not shown here.

Figure 12.8 and Figure 12.9 compare the orientation errors for the differ-
ent approaches on the tabletop and transformed dataset (for the transformed
dataset, half-resolution results are not available because of the computational

CHAPTER 12. SPACE-EDGE PATTERNS 126

bit box

blue black screwdriver

blue boxcutter

blue pliers

blue tape

bluegreen screwdriver

can

casettes

cookies

deodorant

fishes

glue

gravy

green screwdriver

green stapler

hanuta

honey

multimeter

pencil sharpener

razor

red boxcutter

red pliers

red screwdriver

shampoo

sunscreen

tape dispenser

toothpaste

yellow boxcutter

yellow screwdriver

yellow stapler

b
it

b
ox

b
lu
e
b
lack

screw
d
river

b
lu
e
b
ox
cu
tter

b
lu
e
p
liers

b
lu
e
tap

e
b
lu
egreen

screw
d
river

can
casettes
co
ok

ies
d
eo
d
oran

t
fi
sh
es

glu
e

grav
y

green
screw

d
river

green
stap

ler
h
an

u
ta

h
on

ey
m
u
ltim

eter
p
en
cil

sh
arp

en
er

razor
red

b
ox
cu
tter

red
p
liers

red
screw

d
river

sh
am

p
o
o

su
n
screen

tap
e
d
isp

en
ser

to
oth

p
aste

yellow
b
ox
cu
tter

yellow
screw

d
river

yellow
stap

ler

tr
ue

ob
je
ct

id
en
ti
ty

recognized object identity

0

0.2

0.4

0.6

0.8

1

fr
eq
ue
nc
y

Figure 12.5: Confusion matrix for the tabletop dataset and 1
4
resolution

architecture. Dot size is proportional to the relative frequency.

CHAPTER 12. SPACE-EDGE PATTERNS 127

bit box

blue black screwdriver

blue boxcutter

blue pliers

blue tape

bluegreen screwdriver

can

casettes

cookies

deodorant

fishes

glue

gravy

green screwdriver

green stapler

hanuta

honey

multimeter

pencil sharpener

razor

red boxcutter

red pliers

red screwdriver

shampoo

sunscreen

tape dispenser

toothpaste

yellow boxcutter

yellow screwdriver

yellow stapler

b
it

b
ox

b
lu
e
b
lack

screw
d
river

b
lu
e
b
ox
cu
tter

b
lu
e
p
liers

b
lu
e
tap

e
b
lu
egreen

screw
d
river

can
casettes
co
ok

ies
d
eo
d
oran

t
fi
sh
es

glu
e

grav
y

green
screw

d
river

green
stap

ler
h
an

u
ta

h
on

ey
m
u
ltim

eter
p
en
cil

sh
arp

en
er

razor
red

b
ox
cu
tter

red
p
liers

red
screw

d
river

sh
am

p
o
o

su
n
screen

tap
e
d
isp

en
ser

to
oth

p
aste

yellow
b
ox
cu
tter

yellow
screw

d
river

yellow
stap

ler

tr
ue

ob
je
ct

id
en
ti
ty

recognized object identity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fr
eq
ue
nc
y

Figure 12.6: Confusion matrix for the transformed dataset obtained with the
1
4
resolution architecture. The size of the dots is proportional to the relative

frequency.

CHAPTER 12. SPACE-EDGE PATTERNS 128

0

0.1

0.2

0.3

0.4

0 55 110

165

220

re
la
ti
ve

fr
eq
ue
nc
y

position error [px]
(lower bin bound)

1
2
resolution

1
4
resolution

(a) space-edge patterns

0

0.1

0.2

0.3

0.4

0 55 110

165

220

re
la
ti
ve

fr
eq
ue
nc
y

position error [px]
(lower bin bound)

(b) histograms without color

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0 35 70 105

140

re
la
ti
ve

fr
eq
ue
nc
y

position error [px]
(lower bin bound)

1
2
resolution

1
4
resolution

(c) space-edge patterns, correct only

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0 35 70 105

140

re
la
ti
ve

fr
eq
ue
nc
y

position error [px]
(lower bin bound)

(d) histograms without color, correct
only

Figure 12.7: Histograms of the position errors on the tabletop database. The
left column shows the histograms for space-edge patterns (half and quarter
spatial resolution). The right column shows histograms for the histogram sys-
tem without color. Histograms in the top row are computed over all recogni-
tions. Histograms in the bottom row are computed from correct recognitions
only. Note that the axis scaling differs between the top and bottom row.

CHAPTER 12. SPACE-EDGE PATTERNS 129

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0 180

re
la
ti
ve

fr
eq
ue
nc
y

orientation error [◦]
(lower bin bound)

1
2
resolution

1
4
resolution

(a) space-edge patterns

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

0 90
re
la
ti
ve

fr
eq
ue
nc
y

orientation error [◦]
(lower bin bound)

(b) histograms without color

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0 180

re
la
ti
ve

fr
eq
ue
nc
y

orientation error [◦]
(lower bin bound)

1
2
resolution

1
4
resolution

(c) space-edge patterns, correct only

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0 90

re
la
ti
ve

fr
eq
ue
nc
y

orientation error [◦]
(lower bin bound)

(d) histograms without color, correct
only

Figure 12.8: Histograms of the orientation errors on the tabletop database.
The left column shows the histograms for space-edge patterns (half and quar-
ter spatial resolution). The right column shows histograms for the histogram
system without color. Histograms in the top row are computed over all recog-
nitions. Histograms in the bottom row are computed from correct recogni-
tions only.

CHAPTER 12. SPACE-EDGE PATTERNS 130

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0 180

re
la
ti
ve

fr
eq
ue
nc
y

orientation error [◦]
(lower bin bound)

1
2
resolution

(a) all recognitions

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0 180

re
la
ti
ve

fr
eq
ue
nc
y

orientation error [◦]
(lower bin bound)

1
2
resolution

(b) correct recognitions only

Figure 12.9: Histograms of the orientation errors on the transformed
database. As in Figure 12.8, the left column shows the histograms for
space-edge patterns. The right column shows histograms computed over all
recognitions. The histogram in the right column is computed from correct
recognitions only.

time required to reach a sufficient number of trials). To an extent, the com-
parison between the histogram-based approach and the space-feature pattern
approach is inadequate as both approaches estimate orientation over different
ranges. Regardless, the figure shows that the space-edge pattern approach
generates a more diverse distribution of orientation errors than the histogram
approach. This likely has two reasons. First, the histogram approach samples
edge orientations much more finely, thus making a more precise estimation of
object orientation possible. Second, the orientation estimation in the space-
feature pattern approach is influenced both by rotation of the edges as well as
spatial rotation. The latter yields less precise estimates for rotation because
the patterns are transformed by the shift and scale estimates before being
matched, leading to blurring of the patterns being matched. This increases
the range of possible rotational matches, allowing for a larger error to occur.

Moreover, the figure shows a tendency for orientation errors to group
around 0◦, 90◦ and 180◦. These groupings reflect symmetries in the objects,
as demonstrated in more detail by Figure 12.10, which shows that objects
with symmetric shape such as gravy and hanuta (both close to a square
shape) tend to induce exactly such orientation errors. On the other hand,
objects such as the bit box which have no discernible “up”-direction in the

CHAPTER 12. SPACE-EDGE PATTERNS 131

bit box
blue black screwdriver

blue boxcutter
blue pliers
blue tape

bluegreen screwdriver
can

casettes
cookies

deodorant
fishes
glue

gravy
green screwdriver

green stapler
hanuta
honey

multimeter
pencil sharpener

razor
red boxcutter

red pliers
red screwdriver

shampoo
sunscreen

tape dispenser
toothpaste

yellow boxcutter
yellow screwdriver

yellow stapler

0
◦

90
◦

170
◦

orientation error (lower bound)

0

0.2

0.4

0.6

0.8

1

Figure 12.10: Per-object distribution of orientation errors on the tabletop
dataset for 1

4
resolution. The size and color of the dots indicates the relative

frequency of the error.

CHAPTER 12. SPACE-EDGE PATTERNS 132

bit box
blue black screwdriver

blue boxcutter
blue pliers
blue tape

bluegreen screwdriver
can

casettes
cookies

deodorant
fishes
glue

gravy
green screwdriver

green stapler
hanuta
honey

multimeter
pencil sharpener

razor
red boxcutter

red pliers
red screwdriver

shampoo
sunscreen

tape dispenser
toothpaste

yellow boxcutter
yellow screwdriver

yellow stapler

0
◦

90
◦

170
◦

orientation error (lower bound)

0

0.2

0.4

0.6

0.8

1

Figure 12.11: Per-object distribution of orientation errors on the transformed
dataset for 1

4
resolution. The size of the dots indicates the relative frequency

of the error.

CHAPTER 12. SPACE-EDGE PATTERNS 133

0

0.1

0.2

0.3

0 0.125

0.25

0.375

0.5

re
la
ti
ve

fr
eq
ue
nc
y

scale error (lower bin bound)

1
2
resolution

(a) all recognitions

0

0.1

0.2

0.3

0 0.125

0.25

0.375

0.5

re
la
ti
ve

fr
eq
ue
nc
y

scale error (lower bin bound)

1
2
resolution

(b) correct recognitions only

Figure 12.12: Histograms of the scale errors on the transformed database.
A small number of scale errors above 0.5 have been excluded from (a) for
readability.

representation of the space-edge patterns frequently induce orientation errors
of 180◦. This is also apparent in Figure 12.11, which shows the distribution
of orientation errors for all objects obtained with the transformed dataset.
Orientation errors due to perspective transformations are excluded by the
nature of the dataset, and effects from symmetry remain as the main expla-
nation for these errors. The figure also shows another case that occurs for
the blue tape. This is a round object with no clear markings indicating its
orientation. Consequently, the architecture cannot properly estimate its ori-
entation, and the resulting orientation errors are distributed over the entire
space of possible errors, indicating a quasi-random choice.

Figure 12.12 shows histograms of the scale errors obtained for the space-
edge pattern architecture on the transformed dataset (the tabletop dataset
does not test scale systematically). The errors again group around zero, and
most are smaller than 0.2. As for the orientation errors, this relatively large
error margin likely stems from the blurring caused by the pose transforma-
tions. This allows for a larger deviation when matching the size of patterns,
and hence results in larger scale errors. A comparison with the histogram
architecture is not possible because it does not estimate scale.

CHAPTER 12. SPACE-EDGE PATTERNS 134

12.4 Characterization of the system’s behavior
Though many aspects of the histogram-based object recognition system are
neurally plausible, its link to the human vision system has not been formally
established. In the present section, I describe additional data that provides
the basis for investigating this link. This data is based on the results I
obtained for the space-edge pattern system described in the previous section.
In Section 12.5, I relate the results to experimental data from the literature.

I first investigate how the object’s pose (both inside and outside the im-
age plane) affects the performance of the object recognition system. These
experiments qualitatively reproduce studies on mental rotation (Shepard and
Metzler, 1971; Tarr and Pinker, 1989) and experiments investigating recog-
nition of wire stimuli in different orientations (for example, Bülthoff and
Edelman, 1992).

I use two main measures for performance in these evaluations. Recogni-
tion performance measures the percentage of correct recognitions as described
in Section 11.4.3. This measure is the inverse of the error rate measured in,
for example, the experiments reported by Bülthoff and Edelman (1992). An-
other measure commonly used in experiments is response time. An exact
version of such a measure is not available for the object recognition archi-
tecture because in humans, the response includes further processes such as
pressing a button or producing a verbal response. I therefore only approx-
imate response time by the time to convergence, that is, the time from the
presentation of the image to the activation of the recognition done node (tend

in Section 11.4.3).

12.4.1 Effects of in-plane transformations

In the present subsection, I present an evaluation of the effects of transla-
tion, rotation and scaling in the image plane on the behavior of the object
recognition system. Results are aggregated from the 13436 trials with the
transformed tabletop dataset, using 1

4
spatial resolution (see also Table 12.1).

12.4.1.1 Effects on recognition performance

In Figure 12.13, recognition performance for different object poses is shown
(since the possible poses in the transformed dataset are taken from continuous
value ranges, values are assigned to bins that are 5 pixels wide for translation,
10◦ wide for orientation, and factors of 0.025 wide for scale). Note that the
last bin for position was only sampled sparsely because the position of the
object was varied in a rectangle (uniformly random x and y offset) that

CHAPTER 12. SPACE-EDGE PATTERNS 135

0
20
40
60
80
100

0–5

35–40

70–75

co
rr
ec
t
re
co
gn

it
io
ns

[%
]

distance from center [px]

0
20
40
60
80
100

-180
–
-170

-90
–
-80

0–5

80
–
90

170–180
co
rr
ec
t
re
co
gn

it
io
ns

[%
]

difference from upright [◦]

0
20
40
60
80
100

0.8
–
0.825

0.975
–
1.0

1.175
–
1.2

co
rr
ec
t
re
co
gn

it
io
ns

[%
]

scale factor
Figure 12.13: Percentage of correct recognitions for different deviations from
the learned pose.

CHAPTER 12. SPACE-EDGE PATTERNS 136

is here reduced to the distance from the rectangle’s center. The last bin
therefore contains the largest possible distances which have a lower chance
of occurring. Therefore, only a small number of trials fall into this bin, so
that the average is less precise than the averages in the other bins, possibly
explaining its deviation from the other bins.

To determine whether there is a correlation between the pose param-
eters and recognition rate, I fitted a logistic regression model with three
coefficients. The resulting model (intercept β0 = −1.6; position coefficient,
βsh = −0.0033; orientation coefficient, βrot = −0.000 80; and, scale coefficient
βsc = 2.2) is highly significant (χ2 = 30.1, p < 0.001).

I also investigated the dependence of the distance (rather than the dif-
ference) to the learned pose by again fitting a logistic regression model with
three coefficients. For the regression, orientations were mapped to the dis-
tance to the upright (learned) orientation, that is, φ′ = |φ| (where φ′ is
the mapped orientation and φ the original orientation in the range [−π, π]).
Scales were similarly mapped as s′ = |1 − s| (where s′ is the mapped scale
and s is the original scale). Position was not remapped as it is already ex-
pressed as a distance from the learned position. The resulting coefficients
(intercept β0 = 1.1; position coefficient, βsh = −0.0032; orientation coeffi-
cient, βrot = −0.0010; and, scale coefficient βsc = −4.1) are again highly
significant (χ2 = 25.6, p < 0.001).

The probabilities resulting from the logistic models (when setting all but
the variable being plotted to correspond to identity transformation) are illus-
trated in Figure 12.14. As the figure shows, the effects of position and orienta-
tion are very weak over the tested pose ranges (in both cases, the probability
of correct recognition drops by only a few percent). The strongest effect oc-
curs for scale, for which the predicted recognition rate drops by nearly 20%
at the largest tested deviations from the scale of the training stimulus.

12.4.1.2 Effects on convergence times

In the experiments, a timeout ensured the termination of recognition tri-
als (see Section 11.4.3). Trials in which this timeout was reached are ex-
cluded from the convergence time analysis because they skew the analysis
towards pose-independent performance. Figure 12.15 shows the raw conver-
gence times (also excluding cases where the timeout was reached) for correct
and incorrect recognitions over the distance between the tested and learned
position (for the following analysis of convergence time, no distinction is
made between correct and incorrect recognitions).

To check the relation between convergence time and position (here mea-
sured as the distance from the position in which the object was learned), I

CHAPTER 12. SPACE-EDGE PATTERNS 137

0

0.25

0.5

0.75

1

0 10 20 30 40 50 60 70re
co
gn

it
io
n
ra
te

(m
od

el
ed
)

d (distance from center)

nonsymmetric
symmetric

0

0.25

0.5

0.75

1

-150 -100 -50 0 50 100 150re
co
gn

it
io
n
ra
te

(m
od

el
ed
)

φ (orientation)

nonsymmetric
symmetric

0

0.25

0.5

0.75

1

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2re
co
gn

it
io
n
ra
te

(m
od

el
ed
)

s (scale factor)

nonsymmetric
symmetric

Figure 12.14: Probabilities of correct recognition predicted by a logistic re-
gression model based on observed recognitions. Each figure shows the de-
pendence of the modeled recognition rate on one of the parameters when
all other parameters have been set to correspond to identity transformations
(d = 0, φ = 0 and s = 1, respectively).

CHAPTER 12. SPACE-EDGE PATTERNS 138

40
50
60
70
80
90
100
110
120

0 10 20 30 40 50 60 70

co
nv

er
ge
nc
e
ti
m
e
[s
]

distance from center [px]
correct incorrect

Figure 12.15: Raw convergence times plotted over the distance from the
center of the image (the distance to the position of the object in the training
image).

calculated Spearman’s correlation coefficient. The resulting correlation co-
efficient, ρ = 0.017, is very weak. A two-sided t-test reveals that it is not
significant (t(11041) = 1.757, p > 0.05; t statistic calculated with the method
described on p. 640 of Press et al., 1992).

Figure 12.16 shows the raw convergence times (again excluding timed
out cases) for correct and incorrect recognitions over the difference between
tested and learned orientation. To check the relation between convergence
time and difference between learned and tested orientation, I again calculated
Spearman’s correlation coefficient. The resulting coefficient is again very
weak (ρ = −0.045), but is significant (t(11041) = −4.683, p < 0.001).

In mental rotation experiments (for example, Tarr and Pinker, 1989),
rotation depends on the distance to the upright orientation. To perform
an analogous test, I calculated Spearman’s correlation coefficient using the
distance to the learned orientation (see Section 12.4.1.1). The correlation
coefficient is again very weak (ρ = 0.038) and significant (t(11041) = 4.029,
p < 0.001).

Figure 12.17 shows the raw convergence times (excluding timed out cases)
for correct and incorrect recognitions over the scale factor between the tested
and learned object view. Spearman’s correlation coefficient for response times
vs. scale is very weak (ρ = 0.01) and is not significant (t(11041) = 1.373,
p > 0.05).

CHAPTER 12. SPACE-EDGE PATTERNS 139

40
50
60
70
80
90
100
110
120

-150 -100 -50 0 50 100 150

co
nv

er
ge
nc
e
ti
m
e
[s
]

difference to upright [◦]
correct incorrect

(a)

40
50
60
70
80
90
100
110
120

0 20 40 60 80 100 120 140 160 180

co
nv

er
ge
nc
e
ti
m
e
[s
]

(absolute) distance to upright [◦]
correct incorrect

(b)

Figure 12.16: Convergence times over (a) the full range of orientations and
(b) over the absolute value of the orientations, that is, the shortest distance
to the orientation of the training image.

CHAPTER 12. SPACE-EDGE PATTERNS 140

40
50
60
70
80
90
100
110
120

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

co
nv

er
ge
nc
e
ti
m
e
[s
]

scale factor
correct incorrect

(a)

40
50
60
70
80
90
100
110
120

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

co
nv

er
ge
nc
e
ti
m
e
[s
]

scale distance (|scale factor− 1|)
correct incorrect

(b)

Figure 12.17: Convergence times over (a) the full range of scale factors and
(b) over the distance from the scale of the training image.

CHAPTER 12. SPACE-EDGE PATTERNS 141

In analogy to distance to the learned orientation, I also investigate the
relation of convergence time to the distance to the learned scale (see Sec-
tion 12.4.1.1). Spearman’s correlation coefficient in this context is again
very weak (ρ = 0.11), but is significant (t(11041) = 11.125, p < 0.001).

12.4.2 Effects of depth rotations

In addition to rotation in the image plane, mental rotation experiments also
investigate rotations outside of it (for example, Shepard and Metzler, 1971).
To achieve an analogous scenario, I train the space-edge-pattern-based object
recognition system on the 0◦-views of the first thirty objects of the COIL-
100 database and let it recognize all available views of these objects. Because
the objects were rotated on a turntable in front of the camera, this allows
me to probe the behavior of the object recognition system specifically for
depth-rotations.

Figure 12.18(a) shows the performance averaged over all objects, plotted
over the different depth rotations. Recognition rate shows a strong improve-
ment close to the learned orientation (Pearson’s χ2 test for independence
confirms that the result is significant: χ2(71, N = 6085) = 802.2, p < 0.001).
This is most likely an effect of the appearance-based correlation function used
for matching. Objects that vary with orientation correlate most strongly with
the view in which they were learned. Slight rotations in depth only induce
relatively small changes in the objects’ appearances, and symmetric views
have a similar effect. Figure 12.18(b) illustrates this for an object that only
has limited symmetry (for rotations of approximately 180◦). The activation
of the label node corresponding to the object, an indicator for the match
value, tends to be highest around the learned orientation and around the
180◦ image which has a highly similar appearance. Orientations that deviate
more than approximately 30◦ from the learned and symmetric orientations
induce a strong decline in activation.

Figure 12.18(c) demonstrates why the system has nonzero recognition
rates for all depth orientations despite the appearance-based matching. Ob-
jects that are symmetric for all orientations induce high activation in their
corresponding label nodes in any orientation because all views in the database
are highly similar in appearance, and the object recognition system is there-
fore able to match them successfully.

Besides to recognition rates, I also investigate the convergence times for
the COIL trials. As before, I exclude trials in which the timeout was reached.
Figure 12.19(a) shows response times for the trails, separately for correct and
incorrect recognitions. Here it can be seen that correct recognitions cluster
around approximately 50 seconds. This cluster is present over the entire

CHAPTER 12. SPACE-EDGE PATTERNS 142

0
20
40
60
80
100

-180 -135 -90 -45 0 45 90 135 180

re
co
gn

it
io
n
ra
te

[%
]

depth orientation [◦]

(a) Recognition rate for different orientations.

-8
-6
-4
-2
0
2
4

-180 -90 0 90 180
0
25
50
75
100

ac
ti
va
ti
on

pe
rf
or
m
an

ce
[%

]
(b) Activation and performance for object 1.

-8
-6
-4
-2
0
2
4

-180 -90 0 90 180
0
25
50
75
100

ac
ti
va
ti
on

pe
rf
or
m
an

ce
[%

]

(c) Activation and performance for object 2.

Figure 12.18: (a) shows the performance over depth rotation for all objects.
(b) and (c) show for two exemplary objects the average activation at the
end of the trial of the layer 1 (blue) and layer 2 (yellow) label nodes corre-
sponding to the objects, as well as the recognition rate for the objects (red).
Images of the objects at exemplary depth rotations are shown below the axis.
Activation values have been averaged over all trials testing the shown objects.

CHAPTER 12. SPACE-EDGE PATTERNS 143

20
40
60
80
100
120

-180 -135 -90 -45 0 45 90 135 180co
nv

er
ge
nc

e
ti
m
e
[s
]

depth orientation [◦]
correct incorrect

(a)

20
40
60
80
100
120

-150 -100 -50 0 50 100 150

co
nv

er
ge
nc

e
ti
m
e
[s
]

difference to learned facing [◦]
(b)

20
40
60
80
100
120

0 20 40 60 80 100 120 140 160 180

co
nv

er
ge
nc

e
ti
m
e
[s
]

distance to learned facing [◦]
(c)

Figure 12.19: Convergence times over depth orientation. (a) shows the raw
convergence times. (b) shows the mean response times for correct recogni-
tions over the whole range of orientations. (c) shows the mean response times
over the distance from the orientation in which the object was learned. In (b)
and (c), squares indicate mean convergence times, while error bars indicate
the 95% confidence interval of a gamma distribution fit onto the data for
each orientation.

CHAPTER 12. SPACE-EDGE PATTERNS 144

range of depth orientations. Figure 12.19(b) shows average convergence times
for differences to the depth orientation of the object in the training view
as well as error bars indicating the 95% confidence interval of a gamma
distribution fitted on the points in each orientation bin. Figure 12.19(c)
shows the analogous plot for the distance to the depth orientation of the
object in the training view.

To determine whether there is a systematic relationship between depth
orientation and convergence time I calculated Spearman’s correlation coeffi-
cient, ρ = 0.017. This coefficient is very weak and not significant (t(3496) =
0.980, p > 0.05). For distance to the depth orientation of the learned stim-
ulus, the correlation coefficient, ρ = 0.048, is still very weak. However, it is
significant (t(3496) = 2.854, p < 0.001)

12.5 Discussion of the results
Here I characterize the object recognition system with respect to the human
vision system. First, I discuss the results from the performance evaluation in
Section 12.3. I then relate the data presented in Section 12.4 to results from
the literature.

12.5.1 Performance

I have shown that the system is capable of recognizing objects in the absence
of color information much better than the original histogram-based approach:
in a comparable setup, recognition with space-edge patterns greatly outper-
forms the histogram-based system for the tabletop database, in particular in
terms of recognition performance. Position estimation is also much more pre-
cise and even slightly exceeds the performance of the color histogram-based
system (11.0 px vs. 13.5 px).

On average, the space-edge pattern system estimates the orientation of
objects with lower accuracy than the histogram-based system. However,
the histogram-based system estimates orientations in the smaller range of
[0, 180◦), which also implies a smaller range of average orientation errors
(errors range up to 90◦ vs. 180◦ for the space-edge pattern system). In addi-
tion, some of the common problems are masked by this restricted estimation
range. As an example, take objects that are symmetric so that they look
similar or even the same when rotated by 180◦. This symmetry has no ef-
fect on the histogram-based object recognition system because both the 0◦

and 180◦ orientations are mapped to an orientation of zero degrees, which
corresponds to an orientation error of 0◦ in both cases. By contrast, the

CHAPTER 12. SPACE-EDGE PATTERNS 145

higher range of possible orientations in the space-edge patterns allows it to
misestimate the orientation of such an object and thus incur an error of 180◦.
The clustering of orientation errors in the tests indicates that such cases are
a large contributor to the overall increased orientation error.

The use of space-feature patterns allows the system to also estimate the
scale of the input with respect to the learned object view. This was not
possible in the histogram-based object recognition system, so that a compar-
ison of the scale performance is not possible. However, on average, the scale
error corresponds to deviations of approximately 10%, and the scale errors
are grouped around zero. The distribution of deviations likely represents
inaccuracies caused by the pose transformations, which effectively blur the
patterns.

Recognition performance for the first thirty objects of the COIL-100
database is surprisingly high given that only a single training view is used.
In part, this is due to objects that are symmetrical around the main axis
of rotation, such as the objects 1 and 2, which have highly similar shape in
some or all viewpoints (see Figure 12.18). To further increase performance,
multiple object views may be learned. As described in Lomp et al. (submit-
ted 2016), this may be achieved by assigning a label to each object view as
usual and then summing the output of label nodes from all labels referring to
the same object. However, my main goal for this particular evaluation was
to provide evidence for the comparison to psychophysical results below, and
this was therefore not implemented. Nonetheless, recognition seems to be
stable for deviations of up to thirty degrees in either direction, which would
imply that six object views should suffice to reliably recognize asymmetric
objects.

The logistic regression model fitted onto the results from the transformed
database indicates a weak but statistically significant relationship between
transformations in the image plane and the recognition rate, even though all
poses are treated equally in the pose-transformation and matching approach.
In part, this effect may be explained simply by implementation constraints.
At certain distances from the center, objects may no longer be fully inside
the input region of the recognition architecture. This is true especially for
larger objects. As a result, part of the object is not visible to the system,
making recognition more difficult and thus reducing the recognition rate. At
larger scales, similar effects may occur even for smaller objects, and objects
closer to the center. At smaller scales, important details may be lost due
to the spatial sampling, again making recognition more difficult. Together,
these issues may explain the relatively large influence of scale.

For orientation, the dependence indicated by the logistic model was weak.
To an extent, this is a result of the choice of model, because the relationship

CHAPTER 12. SPACE-EDGE PATTERNS 146

does not appear to be monotonic even in the case where the distance to the
upright orientation is used. On the other hand, the histogram of recogni-
tion rates indicates relatively large variation over orientation. This may be
an effect of the coarse sampling of edge orientations, and implies that the
representation may not be fully stable across all orientations.

Rotations in depth have a strong influence on recognition performance, as
shown by experiments on the COIL database. The objects are well-recognized
in the training orientation (more than 80% correct recognitions). However,
the further objects are rotated, the further recognition performance drops.
This is only the case for objects whose appearance varies with depth rota-
tions.

For convergence times, I found some significant correlations with trans-
formations in the image plane. Even in the cases in which I found significant
effects, for example, for orientation, the correlation coefficient was very weak.
These small effects are likely explained by the longer convergence times of
incorrect recognitions (the mean convergence times of correct recognitions is
55.5 seconds, and is thus lower than the mean convergence times of incor-
rect recognitions, 62.2 seconds), and the increased error rates for some poses
discussed above. Analogous to the results on recognition performance, the
strongest effect on convergence time is therefore found for scale.

The effect of depth orientation on convergence times is very small (and
significant only for the distance from the learned orientation). Because of the
relationship between recognition rate and convergence time and the strong
effect of depth orientation on recognition performance, a stronger relation-
ship would be expected. In part, however, the relation may be weakened
by symmetric objects that are recognized with comparable speeds at any
orientations. By contrast, objects whose appearance varies strongly with
orientation may lead to recognition trials exceeding the maximum duration
more often because they cannot be matched to any known view. Because
these are removed from the evaluation, this may further weaken the effect.

12.5.2 Relation to behavioral data

How do these results relate to biological vision systems? To an extent, this
can be answered by looking at behavioral studies involving human subjects.
Here, I separately review some relevant behavioral evidence on translation,
orientation (both within and outside of the image plane), and scale. Note that
this is not an exhaustive review of the available data, but rather a selection
of relevant studies. A recommended (though somewhat dated) review can be
found in Logothetis and Sheinberg (1996).

CHAPTER 12. SPACE-EDGE PATTERNS 147

Effects of translation

Experiments provide evidence both for and against translational invariance.
In the experiments by Kahn and Foster (1981) and Foster and Kahn (1985),
participants fixated on a cross in the center of a screen. After fixation, they
were presented with two random dot patterns at different distances from the
fixation point. The two patterns were either the same, but possibly rotated
and reflected, or were different altogether, which the participants had to
indicate. Performance, both in terms of discrimination as well as reaction
times, depended on the spatial separation of the stimuli.

Nazir and O’Regan (1990) performed experiments based on the study by
Kahn and Foster (1981) and Foster and Kahn (1985). Stimuli were again
random dot patterns, but participants first learned to recognize a specific
target stimulus during a training phase. In this phase, the stimulus was
presented at a fixed retinal position. Upon test, the target or distractor
stimuli were presented at different retinal locations, and participants had to
indicate whether the test stimulus was identical to the target. Error rates
and response times increased when the position of the test stimulus differed
from the position at which the target was learned. This again indicates
a dependence of recognition performance on the stimulus position, which
contrasts with my findings for the transformation and matching architecture.
However, performance was above chance level even for positions in which the
pattern had not been learned, indicating that matching is possible even at
locations at which the target stimulus was never seen before.

Biederman and Cooper (1991) investigate recognition performance by
measuring effects of translations on priming. In the experiments, subjects
named line drawings of common objects. Participants fixated on a location
on the screen, and objects were presented briefly so that no saccade to the
target could be made. In the first block of trials (the priming block), im-
ages were placed at seemingly random positions. In the second block (the
primed block), they appeared either in the primed position or a different
one. Response times as well as naming errors were recorded for each trial. In
the primed block, responses were generally faster than in the priming block.
However, no significant effect of the stimulus position on response times or
error rates was found, implying that recognition performance is independent
of position. This largely matches the behavior of the object recognition sys-
tem, although there is no long-term mechanism in the transformation and
matching architecture that models priming effects, nor does the architecture
perform recognition of such highly familiar objects.

Dill and Edelman (2001) asked participants to judge whether two images
of animal shapes presented in sequence at different locations were the same or

CHAPTER 12. SPACE-EDGE PATTERNS 148

different. The authors found some relatively weak effects of translation on the
error rate that were most pronounced when the correct response was ‘same’.
Together with the conflicting evidence both for and against translational
invariance from the literature, this leads the authors to conclude that the
amount of invariance depends on the context of recognition.

Bowers et al. (2016) review literature on translation variance. The au-
thors state that a dependence on translation is presumed in the literature.
However, they also criticize the experimental design of many studies for trans-
lational dependence. They hypothesize that the exposure periods that are
often used on the test trials are too short to allow for compensation of the
translation. To address these concerns, the authors conduct experiments in
which participants learned to recognize a small set of novel objects in fixed
positions together with a label. An eye tracker ensured that participants
only perceived the stimuli at the intended locations. Upon test, the objects
were presented either at the learned position, or a different one, and subjects
responded by producing the label for the object in their own time. The au-
thors found that the correct naming rate in this scenario is far above chance
level, and that the effects of stimulus position on the correct naming rate are
small.

The study by Bowers et al. (2016) is perhaps the most fitting comparison
to the transformation and matching architecture. Certainly, the assumption
that a relatively long time is needed to compensate for translation fits with
the relatively time-consuming recurrent process modeled by the transfor-
mation and matching architecture. The setting, learning to name a small set
of novel stimuli also precisely fits the task addressed by the system. Further-
more, the stimuli used by Bowers et al. (2016), although structured, appear
relatively nonsensical and thus unrelated to previously known stimuli, which
means that influence from other known objects and general object knowl-
edge is reduced. This fits the absence of contextual information from the
transformation and matching architecture. In addition, the results on recog-
nition performance qualitatively match the results for the transformation and
matching architecture. Response times cannot be compared because they are
not reported in the study by Bowers et al. (2016).

Effects of orientation

Effects of rotation on recognition performance have been studied in the con-
text of mental rotation, which was first studied by Shepard and Metzler
(1971). In this study, participants viewed pairs of three-dimensional figures
made of cubes. Each pair showed either the same arrangement of cubes,
rotated in depth or in the picture plane, or a different arrangement. The

CHAPTER 12. SPACE-EDGE PATTERNS 149

participants were instructed to respond with ‘same’ if the objects were dif-
ferent views of the same object, and otherwise to respond with ‘different’.
Reaction times increased linearly with the angle of rotation between the two
views. This linear relationship gives rise to the hypothesis that participants
actively rotate the views in their mind analogous to the process of physically
rotating the objects (hence the term mental rotation; however, this is by no
means the only interpretation; see Thomas, 2016, for a discussion).

This result contrasts with my findings on the object recognition system.
In the system, all orientations are initially equally active, and thus there is no
systematic advantage for any specific orientation. The effects of orientation
that I found, as discussed above, are likely artifacts of the implementation.
At the very least, response times as well as recognition performance do not
depend linearly on the amount of rotation and thus do not match the mental
rotation results.

As with translation, the results may again depend on the task, and on
the type and familiarity of the objects involved in it. Evidence for this is
provided by Corballis et al. (1978), who asked participants to name images
of a small set of letters and numbers. The letters were shown in different
orientations, either in a normal or a mirror-reflected version. Significant ef-
fects on response time could only be found for the mirror-reflected stimuli.
In the same paper, a second experiment is reported that uses the same stim-
uli. Participants pressed a button whenever the presented stimulus matched
a target and pressed another button when it did not. Reaction times were
again independent of the stimulus orientation. Error rates were low and not
found to be related to stimulus orientation either.

When taking into account the implementation issues discussed above, the
transformation and matching architecture shows behavior similar to these
results. However, the naming task in the experiments by Corballis et al.
(1978) uses objects (letters) with which the participants are highly familiar,
and which are likely processed differently than other objects. Eley (1982)
cited similar concerns about the stimuli used by Corballis et al. (1978), and
thus replicated some analogous experiments with novel letter-like stimuli and
confirmed that mental rotation was not employed and orientation had no
significant effect on response times even for the novel stimuli.

Tarr and Pinker (1989) investigated these issues further using a small set
of unfamiliar stimuli trained at a small number of orientations. These stim-
uli are chosen specifically to reduce the amount of diagnostic visual features
that were present in the letter-like stimuli of Eley (1982) and similar experi-
ments. Using this set, they asked participants to perform a variety of tasks
in different experiments. In one experiment, the authors investigate naming
performance and found a relationship between response time and orientation

CHAPTER 12. SPACE-EDGE PATTERNS 150

that is consistent with mental rotation. This effect decreased as subjects
became more familiar with the stimuli. The authors therefore conclude that
objects are not represented by pose-invariant features, but rather are encoded
in some view-dependent manner, much like the learned views of the object
recognition system.

Bülthoff and Edelman (1992) also argue for a view-based representation.
In their experiments, subjects were taught to recognize a novel stimulus,
either a random wire object or a random ‘amoeba’ object, whose appear-
ance depends strongly on the viewpoint. Training consisted of short motion
sequences that showed the object rotating slightly around one of two train-
ing orientations. This was intended to allow participants to form a three-
dimensional representation of the object. In the test set, the viewpoint of
the object was varied either along the horizontal viewing plane (similar to
the rotation of the COIL dataset used above), or along the vertical axis,
and participants had to decide whether or not the test object was the same
as the target object. Error rates increase strongly for horizontal deviations
of more than 30◦ from the training view, providing evidence against three-
dimensional representations and in favor of view-based ones.

Similar effects of depth may be found in the experiments I presented
above. The overall recognition rate of the system strongly depends on the
depth orientation and decays roughly around deviations of 30◦ to 60◦ around
the learned orientation. Similarly, the average activation of the label nodes
that correspond to objects whose appearance varies with rotation decays
strongly when the orientation of the object varies by more than approxi-
mately 30◦. In contrast to the study by Bülthoff and Edelman (1992), how-
ever, objects that vary with rotation are often no longer recognized correctly
when rotated by more than 30◦, and the error rates thus no longer match.
However, participants in the experiments learned more training views than I
used in my experiments, and it is possible that such additional views might
allow for correct recognition in some cases.

Tarr (1995) describes an experiment that investigates the impact of depth
rotation on response times in naming tasks. Novel objects were again con-
structed by arranging three-dimensional blocks to form stimuli similar to
those used in the original mental rotation experiments. In various naming
tasks, the author found that response times depended monotonically on the
distance to the learned orientation. As described in the results section above,
I did not find such behavior in the transformation and matching architecture,
which has roughly constant response times for all depth orientations.

CHAPTER 12. SPACE-EDGE PATTERNS 151

Effects of scale

Participants in the study presented by Larsen and Bundesen (1978) per-
formed a same/different task on pairs of random polygon shapes presented
in sequence. The shapes were scaled relative to each other, with one object
being up to five times larger than other. The error rate was roughly constant
over the different size ratios. However, response times increased linearly with
the size ratio.

Jolicoeur (1987) presents a different task for which subjects studied a set
of shapes in a training phase and indicated whether patterns are members of
this training set in the test trials. Shapes were either arbitrary blobs or stick
figures, and subjects learned patterns in a small or large version. Upon test,
subjects were presented with shapes in both size categories. Response times
as well as error rates in the test phase were lower for objects when they were
presented in the size in which they have been learned, indicating again that
recognition depends on scale. In these experiments, the effect also seems to
be proportional to the scale ratio of the training and test stimuli.

As in the translation study, Biederman and Cooper (1992) investigated
effects of size using a priming experiment. Participants again viewed simple
line drawings of objects or animals and were asked to provide a name. In the
first block of trials (priming block), the drawings were viewed at a either a
small or large size. In the second block, the drawings were viewed in either
the primed size or a different size. Participants fixated a cross at the center
of the upcoming stimulus, and presentation of the stimulus was kept short
to avoid saccades. Response times and error rates were again lower on the
second block across all conditions, and there was no effect of scale, indicating
that recognition is independent of size.

Most likely, the effect of size again depends on the task (Logothetis and
Sheinberg, 1996). The effects of size in my experiments are more pronounced
than the other effects, but are likely explained by implementation constraints
as discussed above. The same argument I made for the independence of ori-
entation may be applied here: no scale has an inherent advantage in the
recognition process. This leads me to conclude that performance is indepen-
dent of size, and the results I present therefore best fit the results presented
by Biederman and Cooper (1992).

Chapter 13

Space-color patterns

In the transformation and matching architecture presented in the previous
chapter, the estimation of pose solely serves to facilitate the recognition of
the object in the image. At each stage of the architecture, the input is
transformed by the current pose estimate, whereas the top-down estimate is
transformed by the inverse of the current pose estimate. At the very end of
the top-down path, the system provides a prediction of the input.

Thus far, this prediction serves no purpose beyond visual inspection of
the estimation process. The goal in the present chapter is therefore to make
use of this prediction to determine which parts of the input belong to the
recognized object. This can be done by comparing the predicted feature
value to the feature values at each location of the input image. If they are
sufficiently similar, then the corresponding input location may be said to
belong to the object.

With the space-edge patterns, such a comparison is problematic because
the representation covers only a small part of the object (valid feature values
are only present at locations of edges). Though these patterns may still
serve to determine which locations of the input belong to the recognized
object, they can only assign belongingness for object locations that have an
inhomogeneous appearance, for example, locations at boundaries between
differently colored object regions.

In the present chapter, I introduce a space-color representation that is
used for transformation and matching together with the space-edge pattern
architecture from the previous chapter. Each image location with a valid hue
value that has sufficient brightness and saturation is entered into the space-
color pattern. This means—at least for colored objects—that each point on
their surface is part of the resulting representation and thus allows for a more
holistic assignment of belongingness.

Since this belongingness is effectively a foreground-background segmen-

152

CHAPTER 13. SPACE-COLOR PATTERNS 153

tation, though only for the object that was recognized, a natural approach
is to use it to mask the input, much like the predicted shape in the shape
channel of the histogram architecture is used to determine which parts of
the input contribute to the color and edge histograms used for matching (see
Chapter 3).

I begin the chapter with a formal description of the pattern extraction.
Next, I describe the calculation of a belongingness function which formalizes
the comparison between input and prediction. I then describe a quantitative
evaluation of the on the tabletop dataset for different amounts of masking
with the belongingness function. I show some qualitative demonstrations
of the belongingness function, demonstrating recognition in highly occluded
and cluttered scenarios and conclude the chapter with a discussion of the
results, in which I also relate to the literature.

13.1 Pose-transformation and matching archi-
tecture

The architecture for applying pose transformations and matching for the
space-color pattern is analogous to that described in Chapter 11. Because
color is a feature uniquely determined for each location in the input image,
multiscale extraction as described in the previous chapter is not necessary.
This also implies that the feature extraction for each location is invariant to
rotation, so that no transformations besides the spatial shift, rotation and
scaling are necessary. Space-color patterns provide an additional channel
for the space-edge pattern architecture. The individual contributions to the
pose and identity estimation are combined by weighted addition, analogous
to the different contributions of the feature channels in the histogram-based
architecture (see Chapter 3). A sketch of the overall architecture is shown in
Figure 13.1.

13.2 Extraction of space-color patterns
Space-color patterns are extracted from the input image as

P scol(x, y, c, t) =

{
M(x, y, t) : c = H(x, y, t) ∧ S(x, y, t) ≥ ϑS

0 : otherwise,
(13.1)

where c is a color, that is, a hue value from the HSV color space, H(x, y, t)
is the hue at image location x, y, S(x, y, t) is the saturation at that location,

CHAPTER 13. SPACE-COLOR PATTERNS 154

position

view
memories

orientation

identity

scale

space-edge
patterns

(all scales)

T
M

space-edge
pattern

(estimated scale only)

space-color
pattern

(single scale)

T
M

T
M

T
M

T
M

T
M

T
M

T
M

T
M

T
M (along space)

(along feature)
(along space)

Figure 13.1: An overview of the object recognition architecture based on both
space-edge patterns and space-color patterns. Boxes labeled “T/M” stand for
transformation and matching operations.

(a)
0

50

100

150

200

250

(b)

Figure 13.2: An example for a space-color pattern. (a) shows the input
image, (b) the extracted space-color pattern. Here, each square stands for a
different color range.

CHAPTER 13. SPACE-COLOR PATTERNS 155

ϑS is a threshold for saturation, and M(x, y, t) ∈ [0, 1] is a mask described in
the next section. Normally, this pattern would also be convolved by a rela-
tively narrow Gaussian; however, in the implementation, I sample color very
coarsely by ten equidistant samples, and the pattern is further distributed in
space by the transformations with the estimated pose. I thus forgo further
convolution of the pattern. An exemplary space-color pattern is shown in
Figure 13.2.

13.3 Belongingness and object boundaries
To determine belongingness, that is, which locations of the input match the
predicted pattern and which parts mismatch the prediction, I correlate the
color information from the transformed top-down pattern with the color in
the input.

In the top-down pattern, all color entries are zero for locations that were
part of the background during learning.1 The function

Pmag(x, y, t) =

∫ 2π

0

Ptd,scol(x, y, c, t) dc (13.2)

determines the magnitude of the top-down pattern, Ptd,scol(x, y, c, t), at each
location, (x, y), by integrating over the range of possible colors, c ∈ [0, 2π].
A threshold, ϑfg, is applied to this magnitude using the Heaviside function
H (·):

F (x, y, t) = H
(
P̂mag(x, y, t)− ϑfg

)
, (13.3)

where the normalization of the magnitude function, indicated by the “hat”,
is the one defined in Chapter 3. Thus, F yields a value of one for loca-
tions considered to be foreground in the top-down pattern, and zero at other
locations.

Foreground locations in the top-down pattern are matched to the input
using the correlative method described in Chapter 3, that is, by point-wise
multiplication of the functions. Applying a threshold, ϑB, to the result of
this matching and filtering out background locations by multiplying with the
foreground function, F , yields a belongingness function,

B(x, y, t) = F (x, y, t) H

(∫ 2π

0

vin(x, y, c, t) vtd(x, y, c, t) dc− ϑB

)
. (13.4)

1This requires knowledge of what parts of the training image are background, which
depends on the dataset. For the tabletop dataset, this is given because training images have
a relatively uniformly white background which is filtered out by the hue and saturation
threshold described in pattern extraction.

CHAPTER 13. SPACE-COLOR PATTERNS 156

For this matching, patterns are normalized using an approach that differs
from the one described in Chapter 3 because individual locations, rather
than the whole pattern, are matched. The input, P scol, is thus normalized to

vin(x, y, c, t) =
P scol(x, y, c, t)− 1

2π

∫ 2π

0
P scol(x, y, c′, t) dc′√∫ 2π

0
(P scol(x, y, c′′, t))2 dc′′

. (13.5)

Analogously, the transformed top-down pattern, P sh
td,col, is normalized to

vtd(x, y, c, t) =
P sh

td,col(x, y, c, t)− 1
2π

∫ 2π

0
P sh

td,col(x, y, c
′, t) dc′√∫ 2π

0

(
P sh

td,col(x, y, c
′′, t)

)2
dc′′

. (13.6)

Values of one in B indicate input locations that are considered to belong
to the recognized object. By contrast, F (x, y, t)(1 − B(x, y, t)) yields ones
at locations that are expected to be part of the object but have a feature
value that deviates from the expectation. This can indicate, for example,
perspective effects, but may also serve as an indicator of occlusion.

A natural use of the belongingness function is to apply a mask to the
feature extraction (the M(x, y, t) term in Equation 13.1). This mask may be
calculated from the belongingness function as

M(x, y, t) = (1−m) +m [Gσ ∗B] (x, y, t) , (13.7)

where m ∈ [0, 1] is a factor that determines how much the mask attenuates
the input.

Since the belongingness function specifies for each location in the input
whether or not it is part of the object, the boundaries of the object may
be defined as the borders between regions of different belongingness. In the
implementation, I extract this information by first estimating the gradient
of the belongingness function using a Sobel filter. The magnitude of the
filter response is then blurred slightly by convolving with a Gaussian, and
the result is thresholded to obtain locations that are considered to be part
of the boundaries of the object.

13.4 Evaluation
To measure how masking the input with the belongingness function impacts
on performance, I trained the architecture at 1

4
spatial resolution on the table-

top database with the training protocol described in Section 11.4. During
training, top-down masking was disabled by setting m = 0 in Equation 13.7

CHAPTER 13. SPACE-COLOR PATTERNS 157

(the masking term that separates background and foreground by applying a
threshold to the saturation of the image was still active). The procedure for
evaluating performance follows the one described in Section 11.4. Foreground
and belongingness functions as well as a mask analogous to that of the color
channel were also calculated for the edge channel presented in Chapter 12.

13.4.1 Tabletop performance

Figure 13.3 shows the performance obtained on the tabletop database for
different masking factors (m in Equation 13.7). This figure shows that as
the mask factor increases, performance decreases for most measures. The
scale error deviates from this slightly, showing a small improvement for mask
factor 0.25 over no masking. Rotation deviates more strongly and does not
show a clear trend. Overall, however, top-down masking seems to worsen
the performance of the architecture, in particular for mask factors of 0.5 and
above.

It is, however, worth noting that the system outperforms the histogram-
based object recognition system presented in Chapter 3 at the same feature
resolution when no masking is applied. The space-color and edge orientation
system achieves a recognition rate of up to 73.1% with ten color samples and
eight edge orientations samples. Comparable results, that is, a recognition
rate of 73.0% were achieved with the histogram architecture only when 36
color samples and 18 edge orientations were used (Lomp et al., submitted
2016). At the closest sampling rate investigated by Lomp et al. (submitted
2016), that is, 18 color samples and 9 edge orientation samples, the histogram
architecture achieved a recognition rate of 61.5%.

13.4.2 Demonstration of masking

The images in the tabletop database do not contain any distractors or oc-
clusions, nor is the background complex. A quantitative evaluation of the
belongingness function is therefore, unfortunately, outside the scope of the
present work. Instead, I qualitatively demonstrate the belongingness func-
tion in this section. The demonstrations are based on the same system I used
to evaluate performance on the tabletop database for different mask factors.
Unless otherwise stated, I use a mask factor of zero (m = 0) because this
yielded the highest recognition rates in the experiments above.

Figure 13.4 shows an example of the belongingness function and out-
line after the system is converged. The input image, Figure 13.4(a), is a
test image from the tabletop database with artificially generated occlusions
and distractors. The added colors are sampled from objects in the tabletop

CHAPTER 13. SPACE-COLOR PATTERNS 158

database. The resulting belongingness function is shown in Figure 13.4(b)
(red indicates locations for which the function is one, blue indicates locations
for which it is zero). In Figure 13.4(c), the belongingness function is used
to mask all locations of the image that have a belongingness of zero (black
indicates such regions). Note that in the implementation, the belongingness
is only calculated at 1

4
of the resolution of the image. The mask was there-

fore interpolated to achieve the same resolution as the input. Despite visible
artifacts from this interpolation process, the belongingness matches the ob-
ject well. Figure 13.4(d) shows the outline of the object, that is, the borders
between belongingness values calculated as described above. Figure 13.4(e)
shows the outline in yellow, superposed onto a darkened version of the input
image (the region with belongingness values of one is shown more brightly).
Again, interpolation artifacts are visible in the outline, but it appears to
otherwise match the object well.

Figure 13.5 illustrates the convergence process of the mask for the same
image. The visualizations are analogous to Figure 13.4. Initially, the pose
estimates are unspecific (top row), and thus all locations of the image that
exceed the saturation and value threshold have a belongingness of one. When
pose and label estimates become more specific (middle panel), some locations
are masked because they lie outside the range of the more specific top-down
prediction. When pose is closer to convergence (bottom panel), the system
is focused mostly on the object. However, the blue distractor blobs make
the estimate of rotation ambiguous. As a result, the rotation estimate is still
unspecific and leads to a top-down prediction that contains the top-down
pattern in all orientations. Over time, other pose estimates become more
accurate, decreasing the ambiguity of the object’s orientation. Finally, the
architecture converges to the state shown in Figure 13.4.

Figure 13.6 shows more examples of the belongingness function for differ-
ent distractor and occlusion setups. In Figure 13.6(a), the system has focused
on the green part of the input image. The system has recognized this region
as the deodorant, an elongated, green object, likely because the low spatial
and feature resolution is not sufficient to make a proper distinction. Apart
from the issue of resolution, this example illustrates another problem: if we
accept that the green section may be recognized as the deodorant, then both
answers (deodorant and bit box) would be valid, and the decision of which
object should be recognized must be provided externally.

Figure 13.6(b) shows another example of a successful recognition. The
image has been masked with random color noise. Some of the noisy locations
are also recognized as part of the object because their color is close enough to
that of the perceived object, and some of these lie outside the boundaries of
the object because the object is tilted backwards slightly, and the architecture

CHAPTER 13. SPACE-COLOR PATTERNS 159

does not estimate such a perspective transformation. As a result, the top-
down prediction is larger than the object in the input image.

Figure 13.6(c) shows the mask obtained for a simulated complex back-
ground made of colors sampled, again, from the training images in the table-
top database. Here, the system again has difficulty determining the proper
object pose due to the distractors close to the object. Though the mask is
relatively fitting, the system did not converge to a final estimate. The pose
estimate at convergence is still relatively broad, and the estimated rotation
is off by approximately 90◦, leading to the inclusion of part of the back-
ground. Nonetheless, the label was identified correctly. However, the system
is susceptible to relatively small changes in the composition of this complex
background (see below). If the background colors are more similar to objects
in the database, recognition of the label is no longer achieved and, instead,
a background location is recognized. This may again be caused at least in
part by the low spatial and feature resolution at which the input is sampled.

Figure 13.7 shows a slight variation of the complex background. On its
own, the system fails to recognize the object and instead focuses on part of
the background. However, if the label is specified by an external boost to
the correct label node, the object is located properly. In Figure 13.7(b), the
belongingness obtained with a masking factor of m = 0 is shown. Visually,
the mask fits the input well, even though in this case the pose estimate at
convergence was still broad and not all layer two fields were above threshold.
When a masking factor of m = 0.25 is applied, the belongingness shown
in Figure 13.7(c) is obtained. The result is similar to the unmasked case,
however, in this case, suprathreshold peaks form in the second layers of the
pose estimation, making the belongingness more accurate.

CHAPTER 13. SPACE-COLOR PATTERNS 160

0

20

40

60

80

100

0 0.25 0.5 0.75 1

re
co
gn

it
io
n
ra
te

[%
]

masking factor

(a)

14

16

18

20

22

24

26

0 0.25 0.5 0.75 1

po
si
ti
on

er
ro
r
[p
x]

masking factor

(b)

70

72

74

76

78

80

0 0.25 0.5 0.75 1

or
ie
nt
at
io
n
er
ro
r
[◦
]

masking factor

(c)

0

0.1

0.2

0 0.25 0.5 0.75 1

sc
al
e
er
ro
r
[fa

ct
or
]

masking factor

(d)

Figure 13.3: The figure shows the average recognition rate (a), average po-
sition error (b), average orientation error (c) and average scale error (d) for
different masking factors.

CHAPTER 13. SPACE-COLOR PATTERNS 161

(a) Input image.

(b) Belongingness. (c) Masked input.

(d) Object outline. (e) Visualization of belonging-
ness and outline.

Figure 13.4: Belongingness and outline for a test input.

CHAPTER 13. SPACE-COLOR PATTERNS 162

Figure 13.5: This figure shows the evolution of the belongingness over the
recognition process (left column) and a corresponding visualization (right
column). Time increases from top to bottom. The final state is shown in
Figure 13.4.

CHAPTER 13. SPACE-COLOR PATTERNS 163

(a)

(b)

(c)

Figure 13.6: This figure shows further examples of the belongingness func-
tion for different inputs. The left column shows the inputs themselves, the
right column shows the belongingness, where red areas again stand for be-
longingness values of one, and blue for belongingness values of zero.

CHAPTER 13. SPACE-COLOR PATTERNS 164

(a) (b) (c)

Figure 13.7: Belongingness ((b) and (c)) for a complex background (a) that
is based on minor modifications of Figure 13.6(c). The correct label was
provided to the system.

Chapter 14

Discussion of space-feature
patterns for object recognition

In Part III, I have shown that pose-transformation and matching of space-
feature patterns is possible by extending the principles used for matching
localized feature histograms (see Chapter 3). I have also shown that this
extension leads to higher recognition rates as well as several other beneficial
aspects. One such aspect is the preservation of the spatial arrangement of
feature values. The histogram-based representation discards this arrange-
ment, making it susceptible to scrambling, whereas space-feature patterns
preserve it, allowing for a more precise estimation of the transformation pa-
rameters. In addition, this enables the estimation of orientation on the full
360◦ range (as opposed to the 180◦ range available with localized histograms),
and the estimation of scale, which was not available in the histogram-based
architecture.

Another aspect is that space-feature patterns more closely resemble the
space-feature activation patterns common to dynamic field theory. By con-
trast, the localized histograms require representing the frequency of feature
values with an individual neuron, which is not part of the mathematical
framework of dynamic field theory. However, the concrete patterns I use
are also graded representations and thus deviate from the space code princi-
ples underlying dynamic field theory, but this mainly serves to address issues
arising from the coarse sampling of the feature spaces. Regardless, the result-
ing transformation and matching system can be used to match space-feature
representations such as the output of a space-color field.

As I have discussed throughout the previous two chapters, the localized
edge orientation histograms system mainly support the estimation of orienta-
tion, but contribute very little to the estimation of identity. This leaves color
as the main diagnostic feature, making recognition of non-colored objects (or

165

CHAPTER 14. DISCUSSION OF SPACE-FEATURE PATTERNS 166

grayscale images) difficult or even impossible for the object recognition sys-
tem. Space-edge patterns, on the other hand, recognize objects with much
greater success because the spatial arrangement of the edge orientations is
preserved. This is a step towards reproducing the visual system’s ability
to recognize objects based on line drawings (Biederman and Ju, 1988), and
makes the system independent of color. Although this constitutes an im-
provement over the histogram-base system, recognition rates are low when
compared to human performance. Likely, the human vision system employs
additional more complex features that aid and improve recognition (Rossion
and Pourtois, 2004). One of these features is color (Rossion and Pourtois,
2004), which I have also shown to improve the recognition performance of the
system presented here. This improvement is relatively small, but this is likely
due to the coarse sampling of the feature space chosen due to computational
constraints.

Though the space-edge patterns are based on the image gradient, this
is only meant as a shorthand for the responses of simple and complex cells
found in the visual cortex. These cells react maximally to bars of specific
orientations at specific retinal locations, a behavior that is mirrored by each
location in the space-edge patterns. I therefore also consider them more
neurally plausible than the edge orientation histograms. This has allowed
me to provided a more rigorous characterization of the system, and to draw
conclusions about the relationship between the transformation and matching
architecture and human behavior. In Chapter 12, I have demonstrated that
performance of the system in terms of recognition rate and convergence times
is largely independent of the aspects of pose estimated by the system, whereas
pose aspects not estimated by the system, such as depth rotation, system-
atically impact recognition performance. The literature provides evidence
for and against pose dependent performance, and which outcome is observed
largely depends on the task being performed by participants. In experiments
probing tasks most similar to the task solved by the object recognition archi-
tecture, performance is often pose dependent, though this is not the case for
all studies. Overall, this evidence implies that the connection to the vision
systems in the brain is questionable.

The results I present in Chapter 12 have an interesting implication for
the debate on how objects are represented in the brain. One common in-
terpretation of pose-invariant recognition performance in humans is that the
visual system extracts diagnostic features from the input in such a way that
the description itself is invariant to changes in the objects’ poses (see, for
example, Eley, 1982; and, Peissig and Tarr, 2007). When recognizing an ob-
ject, the extracted features are compared with feature descriptions stored in
memory, and the object is recognized with little to no impact on recognition

CHAPTER 14. DISCUSSION OF SPACE-FEATURE PATTERNS 167

performance because the feature is mostly invariant to pose changes.
On the other side of the argument, pose-dependent object recognition

performance in humans is often interpreted to mean that the vision system
represents objects in a view-dependent way (see, for example, Bülthoff and
Edelman, 1992; and, Peissig and Tarr, 2007). View-dependent performance
arises when the perceived stimulus does not fall exactly onto one of the
learned views, either because of reduced match values (Bülthoff and Edelman,
1992), or as a result of a processes similar to mental rotation (Ullman, 1989;
Graf, 2006) that aligns the learned object representation with the input.1

The results I show offer a third possibility that is, to my knowledge,
not considered in the literature. The view-based pose-transformation and
matching system achieves alignment without sequential transformations like
mental rotation. Instead, it uses all possible pose transformations in parallel,
aligning the input and the top-down prediction at the same time using the su-
perposition idea presented by Arathorn (2002). As my experiments confirm,
this results in pose-independent performance both in terms of recognition
rates and convergence times, thus contradicting the common interpretation
that view-based systems must show pose independent performance while the
performance of alignment based systems must be pose-dependent.

A related argument in the literature is that the qualitative differences in
recognition performance for different tasks speak either to the presence of
multiple recognition systems in the brain (Logothetis and Sheinberg, 1996
provide a good, though again somewhat dated account of relevant findings
of evidence for multiple recognition systems). Other authors that argue for a
continuum of behaviors that depend on the task include Bülthoff et al. (1995)
and Dill and Edelman (2001). More recent findings suggest the presence of
two systems, one system for holistic processing, wherein objects are stored
in a view-dependent manner, and another system which encodes objects by
their components (Peissig and Tarr, 2007).

Together, this can be interpreted to mean that the object recognition
system presented here is a part of a larger object recognition system. Fast
feedforward processes akin to the HMAX architecture (Riesenhuber and Pog-
gio, 1999) may provide additional recognition capabilities, for example, by
providing input to the identity representation. Such input can improve iden-
tification and thus also lead to more precise localization over time. Such a
combined system might lead to improved performance near the learned view
due to the supporting input to the identity representation. It might also ex-

1Note, however, that any alignment processes used in object recognition are likely
different from mental rotation, as several studies show that mental rotation and object
recognition are solved by different systems in the brain (Gauthier et al., 2002; Peissig and
Tarr, 2007).

CHAPTER 14. DISCUSSION OF SPACE-FEATURE PATTERNS 168

plain the brain’s ability to identify unfamiliar stimuli in novel poses as well as
its pose dependent performance in some tasks, making the combined system
more compatible with experimental evidence.

Prior work in the field of computer vision has also used edge informa-
tion for object recognition. The most related approach may be the original
scale invariant feature transform (SIFT) approach (Lowe, 1999, 2004). In
this approach, oriented keypoints are extracted, and histograms of gradient
orientations for each keypoint describe the region around it, somewhat anal-
ogous to the space-edge patterns. However, the structure used for SIFT is
not as rigid—descriptors are associated with keypoints rather than space—
and the matching process is therefore also solved differently. Keypoints are
matched to the most similar ones in the stored object images, and a gen-
eralized Hough transformation (Ballard, 1981) finds object hypotheses from
these matches. The transformation between the image and the stored im-
age is calculated by solving the overdetermined equation system resulting
from the transformation equations between the different points of sufficiently
matching hypotheses.

In terms of recognition performance, deep convolutional networks (LeCun
et al., 1998; Hinton et al., 2006; Bengio et al., 2007) present the state of the
art at the time of writing. They have achieved performance equal to and even
exceeding that of humans (Cireşan et al., 2012), though their relation to bio-
logical networks is unclear (Schmidhuber, 2014). Pose is usually discarded in
such networks. However, Jaderberg et al. (2015) show that extending a deep
convolutional network by a spatial transformer network that learns to trans-
form inputs to minimize the impact of pose may improve performance. This
bears some similarity to the transformation and matching architecture, as
both networks transform the input into a spatial arrangement that eases the
matching process. While the similarities are somewhat abstract, this demon-
strates the usefulness of pose estimation even for feedforward processes. As
the authors themselves argue, an alignment of reference frames, possibly by a
recurrent process, may prove useful for many systems. I discuss the relation-
ship between such convolutional networks and the systems I present further
in Chapter 15.

I have also demonstrated that the top-down prediction made by the pose-
transformation and matching architecture may deliver precise information
on which regions in the input image correspond to the recognized object. In
cases in which the recognition process is successful, visual inspection suggests
that this information is highly accurate. However, using this information to
exclude non-object locations from the matching process through masking
leads to reduced performance. This is due to problems that arise when
the representation of one object is similar to part of another object. In

CHAPTER 14. DISCUSSION OF SPACE-FEATURE PATTERNS 169

this case, if the smaller object happens to temporarily gain an advantage
during the recognition process, all evidence against the false recognition it
is excluded from matching because it is considered to be non-object. This
makes recognition of the larger, containing object unstable and thus leads to
worse recognition performance.

A similar issue has been reported by Borenstein and Ullman (2002) for a
top-down segmentation system. The authors use pre-segmented templates of
parts of a class—horses—and match them to a new input image. They find
that excluding the background from the matching process reduces suscepti-
bility to noise, but also decreases accuracy in the placement of the individual
parts. The authors solve this by including the border between figure and
ground in the matching equation, an approach that could be included in the
object recognition system I present here in future work.

This problem was not observed in the histogram-based transformation
and matching approach for two reasons. First, the mask from the shape
channel is relatively coarse due to low spatial sampling rates as well as re-
peated blurring by Gaussians as well as the transformations by the pose
estimate. Second, color histograms are sufficiently discriminative, so that
the ambiguities between the learned objects are reduced and cases in which
one object is found inside another occur only infrequently, if at all.

Part IV

Conclusion

170

Chapter 15

Major contributions and outlook

The histogram-based object recognition system described in Faubel and Schö-
ner (2009, 2010) and Lomp et al. (submitted 2016) constitutes the first
neural-dynamic process model for Arathorn’s map-seeking circuit (Arathorn,
2002) and has demonstrated the feasibility of such a model. Nevertheless,
some parts of the model required further investigation because they were
not fully realized with neural principles. In addition, the architecture’s link
to biological vision was not established experimentally. My main contribu-
tion is addressing these issues. To that end, I present two extensions of the
histogram-based architecture in Parts II and III. I have already discussed in
detail how these extensions relate to the literature in their respective parts
(Chapter 10 and Chapter 14); here, I relate the two parts of my thesis to each
other and discuss how they contribute to a more neurally grounded picture
of the map-seeking circuit and its implementations in dynamic field theory.

In my first major contribution, I replaced nonneural control mechanisms
in the original implementation of the object recognition architecture by a
neural-dynamic behavioral organization system based on dynamic field the-
ory. This allows the architecture to recognize multiple objects in succession
by detecting when a new input is presented to the system, and by detecting
when the recognition of a new input is complete. In contrast to the original
implementation, these detections happen fully within the neural dynamics
of the system. This modification therefore increases the degree to which the
architecture can claim to model the processes of biological vision.

My second major contribution is the integration of this modified object
recognition model with a biologically plausible model for scene represen-
tation. This integration addresses another nonneural part of the previous
implementation of the object recognition system, which required the input
region used for recognition to be provided externally. In the combined sys-
tem I present, this region is selected by the attentional control of the scene

171

CHAPTER 15. MAJOR CONTRIBUTIONS AND OUTLOOK 172

representation model. The integration works in both directions, and the rec-
ognized identity for the attended region is communicated back to the scene
representation, which forms a working memory representation of this recog-
nition. Overall, this provides a large-scale architecture for object recognition
that includes cognitive capabilities absent from many other models. Fur-
thermore, this model is biologically plausible and entirely built within the
framework of dynamic field theory. My demonstration of the feasibility of
such a large-scale integration also provides support for one of the central
claims of dynamic field theory, namely, that its principles scale to larger
architectures, and that the principles are modular so that individual archi-
tectures can be combined without loss of functionality (Lomp et al., accepted
2016).

My third major contribution is the introduction of space-feature patterns
for representing object views. This representation is closer to the space-
feature patterns commonly used in dynamic field theory than the represen-
tations used by the original histogram-based object recognition approach. It
also shares similarities with the simple cells found in visual cortex (Hubel and
Wiesel, 1962, 1968). Together, this again brings the pose-transformation and
matching architecture closer to neural plausibility. I have demonstrated that
such space-feature patterns are feasible for recognition, and that they lead
to better performance than the histogram-based approach when color is not
available for matching. Further, I have shown that space-feature patterns
enable scale estimation, which was not part of the histogram-based object
recognition system.

The implementation of the pose-transformation and matching architec-
ture for space-feature patterns uncovered some issues with the original neural-
dynamic implementation of the map-seeking circuit. One important issue is
the tendency of the matching process to run into local maxima. I have ad-
dressed this by adding an inhibition scheme that increases the competition
between different pose and identity candidates over time during the process
of recognizing an object. This scheme resembles the competition function
of Arathorn (2002) more closely than the fixed inhibition scheme of the two
layer architecture in the original neural-dynamic implementation of the map-
seeking circuit.

Previous evaluations of the object recognition architecture performed by
Faubel and Schöner (2009, 2010) and Lomp et al. (submitted 2016) focused
on the architecture’s performance in a robotic context rather than an evalu-
ation of the architecture’s relation to biological vision. As discussed above,
this was justified because the feasibility of the approach first needed to be
demonstrated before establishing such a relation.

While I still evaluate the architecture in a robotic context, I have provided

CHAPTER 15. MAJOR CONTRIBUTIONS AND OUTLOOK 173

a more thorough characterization of how pose and other factors influence the
architecture’s performance. Together with the increased biological plausibil-
ity obtained by replacing the representation used by the system, this allows
me to compare data from the architecture with behavioral experiments. I
could therefore rule out that the architecture’s behavior fits the mental ro-
tation picture, and provide evidence that this view-based system achieves
pose-invariant performance despite using alignment processes, a possibility
largely discounted in the literature. An important point to note is that even
though I focus on the neural-dynamic implementations of the transformation
and matching approach, these results may also be extended to the approach
proposed by Arathorn (2002). While Arathorn did not provide a process
model which could be tested in the same way, the finding that performance
is independent of pose likely transfers to his approach because the underlying
principle of weighted superpositions is common to the different implementa-
tions.

I have also shown how color may be reintegrated into the architecture, and
that it increases the discriminative power of the system. I demonstrated how
space-color patterns may be used to match the top-down prediction generated
by the object recognition system to the input, and how the result of this
match can be used to distinguish image locations that are part of the object
from non-object locations. Such an assignment was made possible because,
in contrast to feature histograms, space-feature patterns preserve the spatial
arrangement of the encoded feature values, and because they may encode
the absence of such information. I have also shown that removing non-object
locations from the matching process impacts performance negatively which
calls into question the role of top-down predictions in segmentation for object
recognition.

Overall, I have developed an integrative system for object recognition
based on biological principles. This is by no means a complete model of
human perception; there are more processes at work in the brain, for ex-
ample those that implement Gestalt laws. Neural dynamic models for such
implementations exist (for example, Grossberg and Mingolla, 1985), and an
integration of such models might provide further insight.

One practical issue with the systems I present in my thesis is their high
computational demand. A large factor in this are the calculations involved
in approximating the dynamics of fields, in particular the convolutions re-
quired for calculating interaction in fields with three or more dimensions.
This strongly affects the combined scene representation and object recogni-
tion architecture, which contains several three-dimensional fields. However,
the convolutions and cross-correlations in the transformation and matching
architecture also cause long cycle times. This, in turn, implies large (and

CHAPTER 15. MAJOR CONTRIBUTIONS AND OUTLOOK 174

thus slow) timescales for the neural dynamics, and the systems are no longer
capable of operating in real time scenarios. However, this problem is specific
to the discrete implementation on a CPU that is, in essence, a sequential
system. Although modern processors support multiple parallel threads of
execution and my implementation makes use of this, such a parallelization
does not nearly match the breadth of parallel processing in the brain. The
most time-consuming operations of the architectures—the convolutions and
correlations—can be computed entirely in parallel by a network of neurons, so
that an implementation of the object recognition system in neural hardware
may achieve much faster speeds.

Deep networks, the current state of the art in object recognition classify
inputs using purely feed-forward connectivity. This gives them an advantage
in terms of processing speeds and at the same time achieves classification
rates that exceed the capacities of the systems I presented here. However,
the feed-forward nature of these networks also implies that there is a deter-
ministic relationship between the image and the network’s output. Cognition
is not part of these networks because it would require the networks to have
an internal state that also influences the output of the system. A question is,
therefore, whether the cognitive aspects of the systems I present here could
also be provided for such feed-forward systems.

For the integration with the scene representation architecture, this would
certainly be possible. A convolutional network might simply take the place
of the neural-dynamic object recognition system, and as presented in Part II,
the saliency mechanisms of the scene representation architecture may provide
input regions which are then recognized by the convolutional network. As a
result, the combined architecture may label objects in natural scenes without
exhaustively applying the still costly recognition machinery. One of the main
questions in such a fusion would be whether the recognition result of the
network can be seen as instantaneously available, as is the case for the color
extraction in the color channel of the scene representation architecture, or
whether a process model for the convolutional network is appropriate or
necessary.

Another aspect concerns the integration of the neuro-dynamic object
recognition system with a deep convolutional network. The learned filters on
the first layer of the convolutional network are certainly candidates for provid-
ing more discriminative features for object recognition and pose estimation.
Their responses also constitute a space-feature pattern that could be in-
put into the transformation and matching architecture described in Part III.
However, the metric of the feature space is unclear, and it is therefore also
generally unclear how the different transformations affect this representation.
For position, responses may be spatially shifted as described in Part III be-

CHAPTER 15. MAJOR CONTRIBUTIONS AND OUTLOOK 175

cause the same filters are used throughout the first layer of a convolutional
network. How rotation and scaling may be applied, however, is unclear. The
simple shift along the feature dimension used to rotate the edge orientations,
for example, does not have an obvious analog for such filters. Instead, the ef-
fect of rotations on the representation would likely have to be learned. How
this could be done is unclear at present. If achieved, however, pose may
conceivably be used to align the input to improve the match achieved by
the convolutional architecture. As discussed before, such alignment has been
shown to be beneficial for recognition performance (Jaderberg et al., 2015).

Chapter 16

Bibliography

S.-i. Amari. Dynamics of pattern formation in lateral-inhibition type neural
fields. Biological cybernetics, 27:77–87, 1977.

D. W. Arathorn. Recognition under transformation using superposition or-
dering property. Electronics Letters, 37(3):164–166, 2001. ISSN 00135194.
doi: 10.1049/el:20010123.

D. W. Arathorn. Map-seeking Circuits in Visual Cognition: A Computational
Mechanism for Biological and Machine Vision. Stanford University Press,
2002. ISBN 9780804742771.

D. H. Ballard. Generalizing the Hough transform to detect arbitrary shapes.
Pattern recognition, 13(2):111–122, 1981.

Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy Layer-Wise
Training of Deep Networks. Advances in Neural Information Processing
Systems, 19(1), 2007.

M. Berger, C. Faubel, J. Norman, H. Hock, and G. Schöner. The Counter-
Change Model of Motion Perception: An Account Based on Dynamic Field
Theory. In A. E. Villa, W. Duch, P. Érdi, F. Masulli, and G. Palm, editors,
Artificial Neural Networks and Machine Learning - ICANN 2012, pages
579–586. Springer Berlin Heidelberg, 2012. ISBN 978-3-642-33268-5.

E. Bicho, P. Mallet, and G. Schöner. Target representation on an autonomous
vehicle with low-level sensors. The International Journal of Robotics Re-
search, 19(5):424–447, 2000.

E. Bicho, L. Louro, N. Hipólito, and W. Erlhagen. A dynamic field approach
to goal inference and error monitoring for human-robot interaction. In

176

CHAPTER 16. BIBLIOGRAPHY 177

K. Dautenhahn, editor, Proceedings of the 2009 International Symposium
on New Frontiers in Human Robot Interaction, pages 31–37, Edinburgh:
AISB 2009 Convention, Heriot-Watt University, 2009. ISBN 1902956850.

I. Biederman. Recognition by components: A theory of human image un-
derstanding. Psychological Review, 94(2):115–117, 1987. ISSN 0033-295X.
doi: 10.1037/0033-295X.94.2.115.

I. Biederman and E. E. Cooper. Evidence for complete translational and
reflectional invariance in visual object priming. Perception, 20:585–593,
1991. ISSN 03010066. doi: 10.1068/p200585.

I. Biederman and E. E. Cooper. Size invariance in visual object priming.
Journal of Experimental Psychology: Human Perception and Performance,
18(1):121–133, 1992. ISSN 0096-1523. doi: 10.1037/0096-1523.18.1.121.

I. Biederman and G. Ju. Surface versus edge-based determinants of visual
recognition. Cognitive psychology, 20(1):38–64, 1988. ISSN 00100285. doi:
10.1016/0010-0285(88)90024-2.

E. Borenstein and S. Ullman. Class-specific, top-down segmentation. Com-
puter Vision—ECCV 2002, 2351:109–122, 2002. ISSN 16113349. doi:
10.1007/3-540-47967-8.

A. Borji and L. Itti. State-of-the-art in visual attention modeling. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 35(1):185–
207, 2013. ISSN 01628828. doi: 10.1109/TPAMI.2012.89.

J. S. Bowers, I. I. Vankov, and C. J. Ludwig. The visual system sup-
ports online translation invariance for object identification. Psycho-
nomic Bulletin & Review, 23:432–438, 2016. ISSN 1531-5320. doi:
10.3758/s13423-015-0916-2.

H. H. Bülthoff and S. Y. Edelman. Psychophysical support for a two-
dimensional view interpolation theory of object recognition. Proceedings
of the National Academy of Sciences of the United States of America, 89
(1):60–64, 1992. ISSN 0027-8424. doi: 10.1073/pnas.89.1.60.

H. H. Bülthoff, S. Y. Edelman, and M. J. Tarr. How Are Three-Dimensional
Objects Represented in the Brain? Cerebral Cortex, 5(3):247–260, 1995.
ISSN 1047-3211. doi: 10.1093/cercor/5.3.247.

G. Carpenter and S. Grossberg. Adaptive resonance theory. In M. A. Arbib,
editor, The Handbook of Brain Theory and Neural Networks, number 617,
pages 1–12. MIT Press, Cambridge, Massachusetts, 2nd edition, 2003.

CHAPTER 16. BIBLIOGRAPHY 178

D. Cireşan, U. Meier, and J. Schmidhuber. Multi-column Deep Neural Net-
works for Image Classification. IEEE Conference on Computer Vision and
Pattern Recognition, pages 3642–3649, 2012.

M. C. Corballis, N. J. Zbrodoff, L. I. Shetzer, and P. B. Butler. Decisions
about identity and orientation of rotated letters and digits. Memory &
cognition, 6(2):98–107, 1978. ISSN 0090-502X. doi: 10.3758/BF03197434.

J. J. DiCarlo, D. Zoccolan, and N. C. Rust. How Does the Brain Solve Visual
Object Recognition? Neuron, 73(3):415–434, 2012. ISSN 08966273. doi:
10.1016/j.neuron.2012.01.010.

M. Dill and S. Edelman. Imperfect invariance to object translation in the
discrimination of complex shapes. Perception, 30(6):707–724, 2001. ISSN
03010066. doi: 10.1068/p2953.

M. G. Eley. Identifying rotated letter-like symbols. Memory & cognition, 10
(1):25–32, 1982. ISSN 0090-502X. doi: 10.3758/BF03197622.

C. Faubel and G. Schöner. Learning to recognize objects on the fly: a neurally
based dynamic field approach. Neural networks: the official journal of the
International Neural Network Society, 21(4):562–76, May 2008. ISSN 0893-
6080. doi: 10.1016/j.neunet.2008.03.007.

C. Faubel and G. Schöner. A neuro-dynamic architecture for one shot learn-
ing of objects that uses both bottom-up recognition and top-down predic-
tion. In Proceedings of the 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems, IROS 2009. IEEE Press, 2009.

C. Faubel and G. Schöner. Learning Objects on the Fly – Object Recognition
for the Here and Now. In Proceedings of the 2010 IEEE International Joint
Conference on Neural Networks (IJCNN), 2010. ISBN 9781424481262.

L. Fei-Fei, R. Fergus, and P. Perona. A Bayesian approach to unsupervised
one-shot learning of object categories. In Proceedings of the Ninth IEEE In-
ternational Conference on Computer Vision, 2003, number 2, pages 1134–
1141, 2003. ISBN 0-7695-1950-4. doi: 10.1109/ICCV.2003.1238476.

D. H. Foster and J. I. Kahn. Internal Representations and Operations in
the Visual Comparison of Transformed Patterns: Effects of Pattern Point-
Inversion, Positional Symmetry, and Separation. Biological Cybernetics,
51:305–312, 1985.

CHAPTER 16. BIBLIOGRAPHY 179

W. T. Freeman and E. H. Adelson. The Design and Use of Steerable Filters.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(9):
891–906, 1991.

K. Fukushima. Neocognitron: A self-organizing neural network model for a
mechanism of pattern recognition unaffected by shift in position. Biological
cybernetics, 202(36):193–202, 1980.

I. Gauthier, W. G. Hayward, M. J. Tarr, A. W. Anderson, P. Skud-
larski, and J. C. Gore. BOLD Activity during mental rotation and
viewpoint-dependent object recognition. Neuron, 34(1):161–171, 2002.
ISSN 08966273. doi: 10.1016/S0896-6273(02)00622-0.

M. Graf. Coordinate transformations in object recognition. Psychological
bulletin, 132(6):920–45, November 2006. ISSN 0033-2909. doi: 10.1037/
0033-2909.132.6.920.

S. Grossberg. A theory of human memory: self-organization and performance
of sensory-motor codes, maps, and plans. In R. Rosen and F. Snell, editors,
Progress in Theoretical Biology, volume 5, pages 500–639. Academic Press
(Elsevier), New York, USA, 1978.

S. Grossberg and E. Mingolla. Neural Dynamics of Form Perception: Bound-
ary Completion, Illusory Figures, And Neon Color Spreading. Psycho-
logical Review, 92(2):173–211, 1985. ISSN 01664115. doi: 10.1016/
S0166-4115(08)61758-6.

S. Hagen, Q. C. Vuong, L. S. Scott, T. Curran, and J. W. Tanaka. The Role
of Spatial Frequency in Expert Object Recognition. Journal of Experimen-
tal Psychology: Human Perception and Performance, 42(3):413–422, 2016.
ISSN 1939-1277. doi: 10.1037/xhp0000139.

S. Han and N. Vasconcelos. Biologically plausible saliency mechanisms im-
prove feedforward object recognition. Vision Research, 50(22):2295–2307,
2010. ISSN 00426989. doi: 10.1016/j.visres.2010.05.034.

G. E. Hinton, S. Osindero, and Y.-W. Teh. A Fast Learning Algorithm for
Deep Belief Nets. Neural computation, 18(7):1527–1554, July 2006. ISSN
0899-7667. doi: 10.1162/neco.2006.18.7.1527.

D. H. Hubel and T. N. Wiesel. Receptive fields, binocular interaction and
functional architecture in the cat’s visual cortex. The Journal of Physiol-
ogy, 160(1):106–154, 1962.

CHAPTER 16. BIBLIOGRAPHY 180

D. H. Hubel and T. N. Wiesel. Receptive fields and functional architecture of
monkey striate cortex. The Journal of Physiology, 195(1):215–243, March
1968. ISSN 00223751. doi: 10.1113/jphysiol.1968.sp008455.

I. Iossifidis, C. Theis, C. Grote, C. Faubel, and G. Schöner. Anthropomor-
phism as a pervasive design concept for a robotic assistant. In International
Conference on Intelligent Robots and Systems, 2003. (IROS 2003), num-
ber 3, pages 3465–3472, 2003. doi: 10.1109/IROS.2003.1249692.

M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu. Spa-
tial Transformer Networks. In C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett, editors, Advances in Neural Information
Processing Systems, pages 2017–2025. Curran Associates, Inc., 2015.

J. S. Johnson, J. P. Spencer, S. J. Luck, and G. Schöner. A dynamic neural
field model of visual working memory and change detection. Psycholog-
ical science, 20(5):568–77, may 2009. ISSN 1467-9280. doi: 10.1111/j.
1467-9280.2009.02329.x.

P. Jolicoeur. A size-congruency effect in memory for visual shape. Mem-
ory & cognition, 15(6):531–543, 1987. ISSN 0090-502X. doi: 10.3758/
BF03198388.

J. I. Kahn and D. H. Foster. Visual comparison of rotated and reflected
random-dot patterns as a function of their positional symmetry and sepa-
ration in the field. Quarterly Journal of Experimental Psychology Section
A, 33(2):155–166, 1981. doi: 10.1080/14640748108400782.

P. E. Kloeden and E. Platen. Numerical Solution of Stochastic Differential
Equations. Springer-Verlag, second edition, 1999.

G. Knips, S. K. U. Zibner, H. Reimann, I. Popova, and G. Schöner. A
neural dynamics architecture for grasping that integrates perception and
movement generation and enables on-line updating. In 2014 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages
646–653. IEEE, September 2014. ISBN 978-1-4799-6934-0. doi: 10.1109/
IROS.2014.6942627.

K. Koch, J. McLean, R. Segev, M. A. Freed, M. J. Berry, V. Balasubrama-
nian, and P. Sterling. How Much the Eye Tells the Brain. Current Biology,
16(14):1428–1434, 2006. ISSN 09609822. doi: 10.1016/j.cub.2006.05.056.

Z. Kourtzi and C. E. Connor. Neural Representations for Object Per-
ception: Structure, Category, and Adaptive Coding. Annual Review

CHAPTER 16. BIBLIOGRAPHY 181

of Neuroscience, 34(1):45–67, 2010. ISSN 0147-006X. doi: 10.1146/
annurev-neuro-060909-153218.

N. Krüger, P. Janssen, S. Kalkan, M. Lappe, A. Leonardis, J. Piater, A. J.
Rodriguez-Sanchez, and L. Wiskott. Deep hierarchies in the primate visual
cortex: What can we learn for computer vision? IEEE Transactions on
Pattern Analysis and Machine Intelligence, 35(8):1847–1871, 2013. ISSN
01628828. doi: 10.1109/TPAMI.2012.272.

A. Larsen and C. Bundesen. Size scaling in visual pattern recognition. Jour-
nal of experimental psychology. Human perception and performance, 4(1):
1–20, 1978. ISSN 0096-1523. doi: 10.1037/0096-1523.4.1.1.

Y. LeCun and Y. Bengio. Convolutional networks for images, speech, and
time series. In M. A. Arbib, editor, The handbook of brain theory and neural
networks, volume 3361, pages 255–258. MIT Press, Cambridge, MA, USA,
1995. ISBN 0262511029. doi: 10.1109/IJCNN.2004.1381049.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-Based Learning
Applied to Document Recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998. doi: 10.1109/5.726791.

N. K. Logothetis and D. L. Sheinberg. Visual Object Recognition. Annual
Review of Neuroscience, 19(1):577–621, March 1996. ISSN 0147-006X. doi:
10.1146/annurev.ne.19.030196.003045.

O. Lomp, S. K. U. Zibner, M. Richter, I. Rañó, and G. Schöner. A Soft-
ware Framework for Cognition, Embodiment, Dynamics, and Autonomy
in Robotics: Cedar. In V. Mladenov, P. Koprinkova-Hristova, G. Palm,
A. E. P. Villa, B. Appollini, and N. Kasabov, editors, Artificial Neu-
ral Networks and Machine Learning—ICANN 2013—23rd International
Conference on Artificial Neural Networks, pages 475–482, Berlin, Heidel-
berg, 2013. Springer Berlin Heidelberg. ISBN 978-3-642-40728-4. doi:
10.1007/978-3-642-40728-4_60.

O. Lomp, K. Terzić, C. Faubel, J. M. H. du Buf, and G. Schöner. Instance-
Based Object Recognition with Simultaneous Pose Estimation Using Key-
point Maps and Neural Dynamics. In S. Wermter, C. Weber, W. Duch,
T. Honkela, P. Koprinkova-Hristova, S. Magg, G. Palm, and A. E. P. Villa,
editors, Artificial Neural Networks and Machine Learning—ICANN 2014:
24th International Conference on Artificial Neural Networks, Hamburg,
Germany, September 15–19, 2014. Proceedings, pages 451–458. Springer
International Publishing, 2014. doi: 10.1007/978-3-319-11179-7_57.

CHAPTER 16. BIBLIOGRAPHY 182

O. Lomp, M. Richter, S. K. U. Zibner, and G. Schöner. Developing dy-
namic field theory architectures for embodied cognitive systems with cedar.
Frontiers in Neurorobotics, 10, accepted 2016. ISSN 1662-5218. doi:
10.3389/fnbot.2016.00014.

O. Lomp, C. Faubel, and G. Schöner. A neural-dynamic architecture for
concurrent estimation of object pose and identity. submitted 2016.

D. G. Lowe. Distinctive Image Features from Scale-Invariant Keypoints.
International Journal of Computer Vision, 60(2):91–110, nov 2004. ISSN
0920-5691. doi: 10.1023/B:VISI.0000029664.99615.94.

D. Lowe. Object recognition from local scale-invariant features. Proceedings
of the Seventh IEEE International Conference on Computer Vision, 2:
1150–1157, 1999. doi: 10.1109/ICCV.1999.790410.

J. Lücke, C. Keck, and C. von der Malsburg. Rapid convergence to feature
layer correspondences. Neural computation, 20:2441–2463, 2008. ISSN
0899-7667. doi: 10.1162/neco.2008.06-07-539.

M. L. Mack and T. J. Palmeri. The Timing of Visual Object Categorization.
Frontiers in Psychology, 2(July):1–8, 2011. ISSN 1664-1078. doi: 10.3389/
fpsyg.2011.00165.

J. I. Markoff. Target recognition performance with chromatic and achro-
matic displays (Research Rep. No. SRM-148). Honeywell, Minneapolis,
MN, 1972.

D. Marr and H. K. Nishihara. Representation and recognition of the spatial
organisation of three-dimensional shapes. Proceedings of the Royal Society
of London B, 200:269–294, 1978. ISSN 0962-8452. doi: 10.1098/rspb.1978.
0020.

F. Miau, C. Papageorgiou, and L. Itti. Neuromorphic algorithms for com-
puter vision and attention. In B. Bosacchi, D. B. Fogel, and J. C. Bezdek,
editors, Proc. SPIE 46 Annual International Symposium on Optical Sci-
ence and Technology, volume 4479, pages 12–23, Bellingham, WA, Novem-
ber 2001. SPIE Press. ISBN 0-8194-4193-7. doi: 10.1117/12.448343.

T. A. Nazir and K. J. O’Regan. Some results on translation invariance in
the human visual system. Spatial Vision, 5(2):81–100, 1990.

S. A. Nene, S. K. Nayar, and H. Murase. Columbia Object Image Library
(COIL-100), February 1996.

CHAPTER 16. BIBLIOGRAPHY 183

B. A. Olshausen, C. H. Anderson, and D. C. Van Essen. A neurobiological
model of visual attention and invariant pattern recognition based on dy-
namic routing of information. The Journal of neuroscience: the official
journal of the Society for Neuroscience, 13(11):4700–19, nov 1993. ISSN
0270-6474.

A. L. Ostergaard and J. B. Davidoff. Some effects of color on naming and
recognition of objects. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 11(3):579–587, 1985. ISSN 1939-1285. doi: 10.
1037/0278-7393.11.3.579.

J. J. Peissig and M. J. Tarr. Visual Object Recognition: Do We Know More
Now Than We Did 20 Years Ago? Annual Review of Psychology, 58(1):75–
96, 2007. ISSN 0066-4308. doi: 10.1146/annurev.psych.58.102904.190114.

M. A. Posner. Orienting of attention. Quarterly Journal of Experi-
mental Psychology, 32(1):3–25, 1980. ISSN 0033-555X. doi: 10.1080/
00335558008248231.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Nu-
merical Recipes in C: The Art of Scientific Computing, volume 29. second
edition, 1992. ISBN 0521431085. doi: 10.2307/1269484.

M. Richter, Y. Sandamirskaya, and G. Schöner. A robotic action selection and
behavioral organization architecture inspired by human cognition. 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 2457–2464, 2012. ISSN 2153-0858.

M. Riesenhuber and T. Poggio. Hierarchical models of object recognition in
cortex. Nature Neuroscience, 2(11):1019–1025, 1999. ISSN 1097-6256. doi:
10.1038/14819.

M. Riesenhuber and T. A. Poggio. How Visual Cortex Recognizes Objects:
The Tale of the Standard Model. In L. M. Chapula and J. S. Werner,
editors, The visual neurosciences, pages 1640–1653. Cambridge, MA: MIT
Press, 2003. ISBN 0262033089.

J. Rodrigues and J. M. H. du Buf. Multi-scale lines and edges in V1
and beyond: Brightness, object categorization and recognition, and con-
sciousness. BioSystems, 95(3):206–226, 2009. ISSN 03032647. doi:
10.1016/j.biosystems.2008.10.006.

CHAPTER 16. BIBLIOGRAPHY 184

B. Rossion and G. Pourtois. Revisiting Snodgrass and Vanderwart’s object
pictorial set: The role of surface detail in basic-level object recognition.
Perception, 33(2):217–236, 2004. ISSN 0301-0066. doi: 10.1068/p5117.

J. Schmidhuber. Deep Learning in Neural Networks: An Overview. arXiv
preprint arXiv:1404.7828, 61:1–66, 2014. ISSN 08936080. doi: 10.1016/j.
neunet.2014.09.003.

S. Schneegans and G. Schöner. A neural mechanism for coordinate trans-
formation predicts pre-saccadic remapping. Biological Cybernetics, 106(2):
89–109, 2012. ISSN 03401200. doi: 10.1007/s00422-012-0484-8.

G. Schöner. Dynamical Systems Approaches to Cognition. In R. Sun, editor,
The Cambridge Handbok of Computational Psychology, chapter 4, pages
101–126. Cambridge University Press, 2008.

G. Schöner, C. Faubel, E. Dineva, and E. Bicho. Embodied neural dynamics.
In Dynamic Thinking: A Primer on Dynamic Field Theory, pages 95–118.
2015a. ISBN 9780199300563.

G. Schöner, J. Spencer, and The DFT Research Group. Dynamic Thinking:
A Primer on Dynamic Field Theory. Oxford University Press, first edition,
2015b. ISBN 9780199300563.

T. Serre, L. Wolf, and T. Poggio. A new biologically motivated framework
for robust object recognition. Technical report, DTIC Document, 2004.

T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T. Poggio. Robust object
recognition with cortex-like mechanisms. IEEE transactions on pattern
analysis and machine intelligence, 29(3):411–26, March 2007. ISSN 0162-
8828. doi: 10.1109/TPAMI.2007.56.

R. N. Shepard and J. Metzler. Mental Rotation of Three-Dimensional Ob-
jects. Science New Series, 171(3972):701–703, 1971.

D. J. Simons and C. F. Chabris. Gorillas in our midst: Sustained inatten-
tional blindness for dynamic events. Perception, 28(9):1059–1074, 1999.
ISSN 03010066. doi: 10.1068/p2952.

D. J. Simons and D. T. Levin. Change blindness. Trends in cognitive sciences,
1(7):261–267, 1997. ISSN 1364-6613. doi: 10.1016/S1364-6613(97)01080-2.

M. J. Tarr. Rotating objects to recognize them: A case study on the role
of viewpoint dependency in the recognition of three-dimensional objects.

CHAPTER 16. BIBLIOGRAPHY 185

Psychonomic Bulletin & Review, 2(1):55–82, 1995. ISSN 1069-9384. doi:
10.3758/BF03214412.

M. J. Tarr and S. Pinker. Mental rotation and orientation-dependence in
shape recognition. Cognitive Psychology, 21(2):233–282, apr 1989. ISSN
00100285. doi: 10.1016/0010-0285(89)90009-1.

K. Terzić, J. M. F. Rodrigues, and J. M. H. du Buf. Fast Cortical Keypoints
for Real-Time Object Recognition. In 2013 IEEE International Conference
on Image Processing, pages 3372–3376. IEEE, 2013.

N. J. Thomas. Mental imagery. In E. N. Zalta, editor, The Stanford Ency-
clopedia of Philosophy. Summer 2016 edition, 2016.

S. J. Thorpe, D. Fize, and C. Marlot. Speed of processing in the human
visual system, 1996. ISSN 0028-0836.

S. Ullman. Aligning pictorial descriptions: an approach to object recog-
nition. Cognition, 32(3):193–254, 1989. ISSN 00100277. doi: 10.1016/
0010-0277(89)90036-X.

P. Viola and M. J. Jones. Rapid object detection using a boosted cascade
of simple features. Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR), 1:511–518, 2001.
ISSN 1063-6919. doi: 10.1109/CVPR.2001.990517.

R. Vogels. Categorization of complex visual images by rhesus monkeys. Part
2: single-cell study. European Journal of Neuroscience, 11(4):1239–1255,
1999. ISSN 0953816X. doi: 10.1046/j.1460-9568.1999.00530.x.

D. Walther and C. Koch. Modeling attention to salient proto-objects. Neural
Networks, 19(9):1395–1407, 2006. ISSN 08936080. doi: 10.1016/j.neunet.
2006.10.001.

D. B. Walther and C. Koch. Attention in hierarchical models of object
recognition. Progress in brain research, 165(06):1–38, 2007. doi: 10.1016/
S0079-6123(06)65005-X.

B. A. Wandell. Foundations of Vision. Sinauer Associates, 1995.

L. Wiskott and T. J. Sejnowski. Slow feature analysis: unsupervised learning
of invariances. Neural computation, 14(4):715–770, 2002. ISSN 0899-7667.
doi: 10.1162/089976602317318938.

CHAPTER 16. BIBLIOGRAPHY 186

P. Wolfrum, C. Wolff, J. Lücke, and C. von der Malsburg. A recurrent dy-
namic model for correspondence-based face recognition. Journal of Vision,
8(7), 2008. ISSN 1534-7362. doi: 10.1167/8.7.34.

L. H. Wurm, G. E. Legge, L. M. Isenberg, and A. Luebker. Color improves
object recognition in normal and low vision. Journal of Experimental Psy-
chology. Human Perception and Performance, 19(4):899–911, 1993. ISSN
0096-1523. doi: 10.1037/0096-1523.19.4.899.

S. K. U. Zibner, C. Faubel, I. Iossifidis, and G. Schöner. Scene Representation
for Anthropomorphic Robots: A Dynamic Neural Field Approach. ISR /
Robotik 2010, pages 927–933, 2010.

S. K. U. Zibner, C. Faubel, and G. Schöner. Making a robotic scene repre-
sentation accessible to feature and label queries. 2011 IEEE International
Conference on Development and Learning, ICDL 2011, 2011a. ISSN 2161-
9476. doi: 10.1109/DEVLRN.2011.6037360.

S. K. U. Zibner, C. Faubel, I. Iossifidis, and G. Schöner. Dynamic Neural
Fields as Building Blocks of a Cortex-Inspired Architecture for Robotic
Scene Representation. IEEE Transactions on Autonomous Mental Devel-
opment, 3(1):74–91, 2011b. ISSN 1943-0604. doi: 10.1109/TAMD.2011.
2109714.

S. K. Zibner and C. Faubel. Dynamic Scene Representations and Au-
tonomous Robotics. In Dynamic Thinking: A Primer on Dynamic Field
Theory, chapter 9, pages 227–246. Oxford University Press, 2015. ISBN
9780199300563.

D. Zwillinger. Handbook of differential equations. Academic Press, San Diego,
CA, USA, 1989.

Part V

Appendix

187

Appendix A

Index of notation

symbol brief description page
Gσ (x) A Gaussian function centered around zero. 8
Gσ,c (x) A Gaussian function centered around c. 39
g (u) Sigmoid (logistic) function. 8
H (u) Heaviside (step) function. 8
σ+ (u) Semi-linear transfer function. 36
f ∗ g Convolution of the functions f and g. 26
[f ∗ g] (x, t) Result of convolution of the functions f and g

at location x and time, t. Time is disregarded
in the convolution operation.

26

f ◦ g Concatenation of two functions, i.e., f(g(·)). 26
(f ◦ g) (x) Concatenation of two functions, i.e., f(g(x)). 26
F̂ Normalized, mean-free variant of a function,

F .
33

188

Appendix B

Clustering peaks

Reading out the representation in a three-dimensional space-feature work-
ing memory field requires determining the centers of peaks in the field. In
practice, I first project the field to the spatial dimensions and then apply a
clustering algorithm to find the peak centers in the reduced representation.

Algorithm 1 describes the method I use for the clustering peaks. Its input
is a matrix representing the discretized result of the projection to the spatial
dimensions. The algorithm clusters neighboring suprathreshold entries in
this matrix into a single peak. This process is started by the outer while
loop: the suprathreshold location with the highest value that has not yet
been visited is selected and added to the set, X, of locations to explore for a
new peak. In the inner while loop, the algorithm picks a location from X and
iterates over its eight direct neighbors. The ones that are above threshold are
added to the current peak and to the set of points to be explored. The inner
loop continues until no more suprathreshold neighbors are available, yielding
a set L that contains all matrix entries considered to be part of the current
peak. The location of the peak is calculated as the average of these locations.
The outer loop repeats this process until all suprathreshold locations have
been visited.

189

APPENDIX B. CLUSTERING PEAKS 190

input : A discrete matrix, σl,m, where 0 ≤ l < nl and 0 ≤ m < nm
refer to the discretized spatial dimension of the field; a
threshold θ > 0.

output: A set, P , of peaks, pk = (xk, yk) where xk, yk ∈ R are the
estimated peak centers.

//ma,b is a structure used for marking locations that have
already been assigned to a peak.

ma,b ← 0 ∀0 ≤ a < ni, 0 ≤ b < nj;
P ← ∅;
//Find maximally active location that is not yet marked as

part of a peak
while ∃i, j : mi,j = 0 ∧ σi,j ≤ σi′,j′ ∀i′, j′ ∧ σi,j > θ do

X ← {(i, j)}; //Points to explore
L← ∅; //Points that are part of the current peak

while X 6= ∅ do
take (ix, jx) from X;
X ← X \ (ix, jx);
L← L ∪ {(ix, jx)};
mix,jx ← 1;

//Iterate over neighbors, add suprathreshold ones to
the peak and queue them to be explored as well.

for i′ ← −1 to 1 do
for j′ ← −1 to 1 do

if mix+i′,jx+j′ > θ ∧ 0 ≤ ix + i′ < ni ∧ 0 ≤ jx + j′ < nj
then

X ← X ∪ (ix + i′, jx + j′);
L← L ∪ (ix + i′, jx + j′);

end
end

end
end
//Use the mean of the points in L as the position of

the peak.
il ← 1

|L|
∑

(i′,j′)∈L
i′, jl ← 1

|L|
∑

(i′,j′)∈L
j′;

P ← P ∪ (il, jl)
end
Algorithm 1: The algorithm used for clustering peak centers.

Appendix C

Mapping between keypoint scales
and scale estimates

In Part III, I describe contributions to scale estimation from keypoint scales
as well as selection of a keypoint scale based on a scale estimate. However,
the scale estimates and keypoint scales are defined over different coordinate
systems, and the nontrivial transformation between them must be taken into
account in implementation.

Keypoints have a scale σ which is proportional to the wavelength of the
corresponding Gabor wavelets, λ (see Chapter 5). The coordinate system
for the scale estimates, on the other hand, is defined by the log-polar trans-
formation used for the scale transformation. In my implementation, the
log-polar transformation of a pattern, P : R2 → R, is given by

Plp(ρ, φ) = P
(

exp
(ρ
m

)
sin(φ), exp

(ρ
m

)
cos(φ)

)
, (C.1)

where m is a magnitude parameter (used to control sampling effects in the
discretized version of the transformation) and the index ‘lp’ makes explicit
that the pattern is in log-polar space. For simplicity of notation, I assume
that the origin of the transformation is the origin of the pattern. The inverse
of this transformation is thus given by

P (x, y) = Plp

(
m log

√
x2 + y2, arctan(y, x)

)
. (C.2)

To determine how the scale estimates and match value from a specific
keypoint scale are related, the coordinate system of the fields representing
scale must made explicit. Because scale is applied by convolving with the
scale estimate, it is implied that the dimension is defined such that the origin
of its coordinate system corresponds to a scale factor of one (transforming

191

APPENDIX C. MAPPING SCALES 192

by a scale estimate that is one only at ρ = 0 and zero everywhere else
corresponds to an identity transformation). Let δρ be a position in this
coordinate system. Scaling the pattern, P , by δρ in log-polar space means
shifting its argument by this value. The scaled pattern is therefore given by

P sc
lp (ρ, φ) = Plp(ρ− δρ, φ) (C.3)

The resulting scale factor in Cartesian space can be obtained by transforming
the pattern back to this space. Substituting ρ′ = m log

√
x2 + y2 and φ′ =

arctan(y, x), the scaled pattern in Cartesian space is

P sc(x′, y′) = P sc
lp (ρ′, φ′) = Plp(ρ′ − δρ, φ′). (C.4)

By using the transformation in Equation C.1, this becomes

P sc(x′, y′) = P

(
exp

(
ρ′ − δρ
m

)
sin(φ′), exp

(
ρ′ − δρ
m

)
cos(φ′)

)
. (C.5)

From this, it follows that the relation between the x′ coordinate of the scaled
pattern and that of the original pattern is given as

x′ = exp

(
ρ′ − δρ
m

)
sin(φ′)

= exp

(
ρ′

m

)
exp

(
−δρ
m

)
sin(φ′). (C.6)

Inserting the definition of ρ′, this becomes

x′ = exp

(
m log

√
x2 + y2

m

)
exp

(
−δρ
m

)
sin(φ′)

= exp

(
−δρ
m

) √
x2 + y2 sin(φ′)

= exp

(
−δρ
m

)
x. (C.7)

For the second argument of the pattern, the relationship y′ = exp
(
− δρ
m

)
y

can be found using analogous derivations. This means that a shift of δρ in
log-polar space scales the pattern by a factor of f = exp

(
− δρ
m

)
.

With this knowledge, the function ms(σ) = δρ required for mapping a
scale estimate to an input scale (introduced in Section 12.1.1) can be derived.
First, the input scales, σ, which usually refer to the size of a Gabor wavelet,

APPENDIX C. MAPPING SCALES 193

must be converted to a scale factor. Since the scale estimate is defined
relative to the training image, the same may be done for the input scales.
Thus, fσ = σ

σtrain
(where σtrain is the scale on which the system was trained).

Because both δρ and fσ are required to be equal for the mapping function
ms to be valid, it then follows that

fσ =
σ

σtrain

= exp

(
−δρ
m

)
. (C.8)

Solving for δρ yields the mapping function,

ms(σ) = δρ = −m log
σ

σtrain

. (C.9)

	Introduction
	I Dynamic field theory and cognitive vision
	Architectures in dynamic field theory
	Dynamic neural fields and nodes
	Instabilities in fields and nodes

	Coupling neural fields and nodes to form architectures
	Behavioral organization
	Dynamics of a single behavior
	Constraints between behaviors

	Implementing dynamic field theory
	Solving dynamics numerically
	Synchronizing real and simulated time
	Sampling space

	Notational conventions

	Object recognition based on localized receptive field histograms
	The spatial channel
	Matching object identity in the bottom-up path
	Matching pose in the top-down path

	Neural dynamics
	Pose representation
	Identity representation

	Localized color and edge orientation histograms
	Histogram extraction
	Translating histograms
	Rotating histograms
	Matching histograms

	Fusing feature channels
	Learning object views

	Scene representation
	Saliency
	The attention field and the looking working memory
	Space-feature fields and working memory
	Sequential scanning through behavioral organization

	Biologically inspired multiscale keypoints
	Image databases
	The tabletop database
	The transformed database
	The COIL database
	Multi-object database

	II Attention and working memory for object recognition
	Behavioral organization of object recognition
	The reset behavior
	The recognize behavior

	Integration with the scene representation architecture
	Space-feature fields for labels
	Guiding object recognition based on attention
	Interacting with the supervisor
	The learn behavior
	The prepare learning behavior
	The learn view behavior
	Changes to the scene representation architecture

	Evaluation
	Experimental protocol
	Evaluation criteria
	Results

	Discussion
	Examples of errors
	Conclusion, related work and outlook

	III Object recognition based on space-feature patterns
	Object recognition based on space-feature patterns
	Pose-transformations and matching for space-feature patterns
	Pose-transformations in the bottom-up path
	Matching space-feature patterns
	Saturating the superposition of learned views
	Pose-transformations in the top-down path

	Gradually increasing competition in pose and identity representation
	Learning space-feature patterns
	Evaluation methods
	Training procedure
	Recognition and testing procedure
	Performance measures

	Space-edge patterns
	Pattern extraction
	Input scale selection

	Pose-transformation and matching architecture
	Performance evaluation
	Characterization of the system's behavior
	Effects of in-plane transformations
	Effects on recognition performance
	Effects on convergence times

	Effects of depth rotations

	Discussion of the results
	Performance
	Relation to behavioral data

	Space-color patterns
	Pose-transformation and matching architecture
	Extraction of space-color patterns
	Belongingness and object boundaries
	Evaluation
	Tabletop performance
	Demonstration of masking

	Discussion of space-feature patterns for object recognition

	IV Conclusion
	Major contributions and outlook
	Bibliography

	V Appendix
	Index of notation
	Clustering peaks
	Mapping scales

