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1. Introduction

What happens in the brain when humans move? Even faced with a relatively simple
movement task like switching on the light or pushing a button, the central nervous
system (CNS) faces a large variety of options on several levels. Which effector should
be used to push the button? How fast should I push, and with how much force? How
should the arm and the rest of the body be held? Which muscles should be used
to move the arm in a desired way? These question represent selections from sets of
possible solutions with the same functional result: the light is on, the button has
been pressed. Each instance where one solution out of many possible ones is selected
adds a degree of redundancy to the simple problem of switching on the light.

The problem of having more degrees of freedom available than necessary for a
given task was first established by Bernstein (1967) as one of coordination between
the abundant degrees of freedom. In the work presented here, we explore possible
principles of how the CNS achieves the required coordination. We focus on one ex-
emplary aspect of redundancy: for most common movements, the number of degrees
of freedom available to the utilized effector is larger than the number of parameters
needed to describe the movement goal. Take the example of switching on the light.
At a single point in time, the configuration of a human arm has ten degrees of free-
dom: three in the sterno-clavicular joint, three in the shoulder, one in the elbow,
one in the ulna-radial joint of the lower arm, and two in the wrist. Defining the
desired position of the finger tip constrains only three of these ten available degrees
of freedom. The sub-space of arm configurations in which the finger position is as
desired still has dimension seven. This can be called a redundancy of solutions, in
the sense that there are infinitely many arm configurations that solve the problem
with the given constraints. Even if we assume for a moment that this redundancy of
solutions has been resolved and a single solution has been selected, the CNS still has
to realize that solution by bringing the arm into the chosen configuration. The set
of trajectories that start at the current configuration and terminate in this desired
one is once more infinite, and to a much larger degree. This latter case can be called
a redundancy of trajectories.

Formally, the solutions to a movement task correspond to manifolds in a high-
dimensional vector space, e.g. the ten-dimensional configuration space describing a
human arm. Movements are completely described by trajectories through this high-
dimensional space. On the other hand, movements can also be described by specifying
trajectories for those variables that are relevant to the task, like the position of the
finger tip. Which description does the CNS use to represent and generate movements?
Which observable signatures would either mode of representation have that we can
look for in behavioral data to answer this question?
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Regardless of whether the movement goal is described in the high-dimensional
configuration space or the usually low-dimensional task space, what principles can be
used to generate a trajectory towards the goal state? One could pre-plan a complete
path globally and then move along it, where the “control” ensures that the actual
state does not deviate from the planned one. But what happens when the movement
parameters change from the values used during planning? Or one could move in a
locally optimal direction that brings the current state closer to the target. But is it
guaranteed that a global solution will be found in this fashion?

These questions can be asked from two different points of view. The natural
scientist wonders how the nervous systems of humans and other animals solve these
problems. The engineer looks for any good solution that can be utilized in machines.
These two angles are closely connected, though. One the one hand, humans are
extremely adept movers: the degree of autonomy and dextrous manipulation we
are capable of is unmatched in the animal domain and far beyond the capabilities
of current technical solutions, so engineers obviously have a lot to learn from the
human nervous system. How humans generate movement is, on the other hand,
still not well understood. The CNS is an extremely complex system which is hard
to study directly for both technical and ethical reasons. To understand how large
scale brain functions like movement generation are structured, researchers depend
heavily upon building models of contributing brain areas and the connections between
these. But in models, one always makes simplifying assumptions, with the danger of
disregarding some aspects that are integral for the functioning of the whole system.
When transforming hypothetical principles of how the CNS generates movement into
engineering solutions for generating movement for physical systems, such hidden
assumptions that were ill-founded become overt by causing the system to fail.

The work presented here contributes to the understanding of movement genera-
tion schemes for complex systems at three different points. The first aspect we focus
on in Chapter 2 is the question of movement representation: does the CNS repre-
sent goals and generate movement trajectories in the high-dimensional configuration
space, solving the redundancy problem explicitly, or in the low-dimensional task
space? One approach to decide questions of this type is to argue that those variables
that are monitored and actively controlled by the CNS during movement should be
more stable than other variables, and thus exhibit less variance over repeated trials.
To compare the variance of different aspects of movement that are inherently not
comparable because they have different units, Scholz and Schöner (1999) developed
an analysis method that performs all measures in the high-dimensional configuration
space. In Chapter 2, we develop a formal description of this method and the re-
lated hypotheses and make underlying assumptions explicit. This enables us to test
such hypotheses statistically using the parametric bootstrap method. In contrast to
the traditional comparison of variance measures on a population level, the bootstrap
method analyzes the variance structure of single subjects and is thus capable of mak-
ing more fine-grained statements in cases where the movement patterns of different
subjects have large variation.

In Chapter 3, we present a model of how the CNS might actually coordinate the
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available degrees of freedom to selectively stabilize those directions in configuration
space that are relevant to the given task. The example we chose for this is the pos-
tural stabilization of upright stance in humans. This is a special case of movement
generation in which the “movements” consist of short and relatively small modula-
tions of muscle activation that counter sensed deviations from the stable, upright
body configuration. Posture is particularly suited as an example because the lack of
active, goal-directed movement largely excludes the redundancy of trajectories be-
tween an initial and a goal state. Instead, it focuses on the redundancy of solutions
by isolating the process of stabilization and highlighting the question of how differ-
ent directions of the high-dimensional state space are stabilized selectively. In the
sensorimotor loop of balancing upright stance, sensory surfaces like the visual and
vestibular systems detect deviations from the stable state. The motor cortex and
related areas respond with activation patterns that are sent over descending path-
ways to the spinal cord, where they modulate the reflex loops that generate muscle
contraction by activating motor neurons. The functional aspects of most stages of
the sensorimotor loop are constrained by biophysical and neurophysiological data
and biomechanics. Detailed models of these stages allow us to formalize hypotheses
about the functional structure of the neural dynamics in the brain and include these
into the model, thereby closing the modeled sensorimotor loop. The hypotheses can
then be tested against by attempting to fit behavioral data via parameter adjust-
ment of the neural dynamics. In our model, we postulate that the CNS stabilizes
the body by a feedback term that counters sensed deviations of the low-dimensional
task variables given by the body center of mass, head position and head orientation.
The redundancy is resolved in the simple fashion of distributing the motor activation
over all degrees of freedom that can contribute to it in a fashion that minimizes the
total magnitude of the configuration change. The movement trajectories generated
by this model capture the variability structure of human postural sway well.

The results of Chapter 2 support the notion that humans coordinate the available
degrees of freedom to selectively stabilize variables that are relevant to the task at
hand. The model presented in Chapter 3 proposes a principle of how the solution
redundancy can be resolved during stabilization. To extend the scope of our work to
the problem of trajectory redundancy, one could attempt to augment the model for
quiet stance presented in Chapter 3 with more complex neural dynamics capable of
generating goal-directed activation patterns with specific time profiles. As the neural
dynamics increase in complexity, however, it is harder to argue that the whole system
is well-constrained by the behavioral data. To make the point that such a model
describes the functional aspects of the neural dynamics, one has to compare the time
courses of the model variables with experimental data of actual activation patterns
during movement. One way to make such a comparison is to make assumptions where
the model variables are represented in the recorded neural activation patterns and
estimate them from the experimental data. Another way is to formulate the model in
a language of neural activation patterns, so that the variables are directly comparable
to experimental data. Either of those ways relies heavily on simplifications and
assumptions about the structure of the neural representations and dynamics, though.
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To avoid the extreme increase in complexity implied by these comparisons, we
switch the scope of our study to a different style of question that is possible to answer
with different methods. Instead of making a concrete proposal of how the human
CNS solves a problem, we formulate a general principle of how it solves a whole
class of problems. To test the feasibility of this principle, we design an autonomous
movement generation scheme for a robotic agent based on this principle and show
that an agent using this system is capable of solving the tasks it is presented with.
In accordance with the results from Chapters 2 and 3, the general principle we use
is to represent a given task as desired states for several suitable, low-dimensional
variables and coordinate the available degrees of freedom in a way that selectively
counteracts detected deviations from the desired state. In Chapter 4, we present an
architecture that combines several different tasks like bringing the hand to a target
and orienting it in a way appropriate to grasp, while simultaneously avoiding collision
with other objects. For each sub-task, a vector field over the relevant low-dimensional
task variable is designed that has an attractor at the desired state. These vector
fields are transformed into the configuration space of the robotic agent, resolving the
redundancy in the same way as described before, and then superposed. The flow
of the resulting vector field is used to generate movement trajectories through the
high-dimensional configuration space. Instead of pre-planning an explicit solution,
trajectories emerge from local stabilization of the currently relevant low-dimensional
task variables in this movement generation scheme, indicating that the principle of
selective stabilization is also capable of solving the problem of trajectory redundancy.
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2. Analysis of behavioral data with
the Uncontrolled Manifold method

2.1. Introduction

For many movement tasks, humans have more degrees of freedom available than
necessary to fulfill the goal. The intuition is that we make use of this freedom in a way
related to the concrete task at hand. Bernstein (1967) first described this relationship
as redundancy of the motor system and proposed that the central nervous system
coordinates the available degrees of freedom in a way that stabilizes the task but
leaves other aspects of movement relatively uncontrolled.

The goal of this chapter is to develop a mathematical apparatus that allows us to
express this intuition in a formal way. Tasks are represented by manifolds in a high-
dimensional vector space that describes configurations of the motor system. These
task manifolds are given by the fibers of mappings from the configuration space into
another vector space that describes the state of a variable relevant to the task, e.g.
the position of the finger tip in a pointing task. A task is redundant if the dimension
of the task manifold is non-zero. Utilizing the available freedom in a motor task
corresponds to not resisting movements within the task manifold.

This formalization allows us to interpret experimental data from repeated execu-
tions of a movement task relative to the task manifold. We can quantify to what
degree humans use the available freedom by measuring how much of the variance of
repeated solutions of a movement task lies within the task manifold. We can even
formulate intuitions about principles of human movement generation as quantifiable
hypotheses and use statistical methods to test them.

2.1.1. Task representations for motor control

How does the central nervous system generate goal-directed movement? The brain
generates muscle activations and body movements based on afferent information
from sensory surfaces and internal states of other brain regions. For any attempt
to describe the dynamics of these neural activation patterns, a preliminary question
must be asked and answered first: how does the CNS represent the relevant variables
related to a movement?

For movements with redundant effector systems like human arms, there are two
general answers to this question: the effector state and movement goal can be rep-
resented in task-related variables, e.g. the current and desired position of the finger
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2.1. Introduction

tip for a point-reaching task, or it can be represented in execution-related variables,
which would be the complete configuration of the arm. These answers are not mu-
tually exclusive. It is obvious that the CNS does have knowledge about the location
of reaching targets and reach-relevant body parts in three-dimensional space, from
e.g. the visual and auditory system. This has to be combined with proprioceptive
information about the state of each muscle and joint, i.e. the configuration of the
whole body or effector in question. And ultimately, the arm is moved by a set of
muscles contracting due to activation of motorneurons, the specifics of which depend
upon the current configuration of the arm.

At some point between the visual fixation of a movement target and the neural
activation of muscle spindles the transformation between these two modes of rep-
resentation has to be made. This could either be close to the sensory surfaces,
implying that the visually sensed location of the movement target is transformed
into a representation of a desired body configuration and the remainder of the neural
processing is devoted to activating the motor system in a appropriate way to bring
the body into this desired state and deal with perturbations that are encountered on
the way. Or the transformation is made close to the motor surfaces, implying that
the movement is planned and monitored in terms of the end-effector state relative
to the target, and the details of how to realize a desired end-effector movement is
left to the low-dimensional neural circuits of the periphery. It is also possible that
both modes of representation are used in parallel during at least some stages of neu-
ral processing and different aspects of movement are processed in different reference
frames (Saltzman, 1979; Saltzman & Kelso, 1987; Lacquaniti, 1989).

Both possible answers to this question are supported by experimental data to
some degree. Soechting and Lacquaniti (1981) studied simple human point-reaching
movements and reported that the ratio of angular velocities at the shoulder and elbow
is invariant during the deceleratory phase of the movement and interpreted that as
evidence for joint-level representation of movement states.

Feldman and colleagues argue that the CNS specifies positional references for each
kinematic degree of freedom by descending commands, resulting in a state where
external load and internal muscle force acting on a joint are at equilibrium. This so-
called Equilibrium Point Hypothesis (EPH) implies that the neural processing is done
in the reference frame of kinematic configurations at least in some part (Feldman,
1986; Feldman & Levin, 1995). In a different version of the EPH, however, it is
conjectured that the CNS only specifies the equilibrium point for the end-effector,
leaving the process of stabilizing it there to the peripheral motor circuits (Bizzi &
Accornero, 1984; Flash, 1987).

Morasso (1981) was among the first to point out that in pointing movements, the
hand trajectories are very reproducible while the joint trajectories exhibit a great
deal of variance. Another invariance found at the end-effector level is the power law
relationship between the speed and curvature of the pen trajectories in drawing and
writing (Lacquaniti, Terzuolo, & Viviani, 1983), again contrasted by the lack of such
an invariance on the joint level.

A theoretical study by Flash and Hogan (1985) makes another case for represen-
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2.1. Introduction

tation on the end-effector level. The authors conjecture that the CNS attempts to
generate movements that are as smooth as possible, adhering to a minimum jerk
principle. Although some hand trajectories show complex features such as vary-
ing curvature or multiple velocity peaks, these arise naturally under the minimum
jerk constraint. Furthermore, movements that are maximally smooth in hand space
predict the joint space trajectories measured experimentally surprisingly well.

This argument received criticism from Kawato and colleagues, who point out that
the shape of hand trajectories between two points depend substantially upon the
location of those two points in the work space of the hand, specifically that movements
approaching the boundaries of the reachable work space are usually more curved
(Uno, Kawato, & Suzuki, 1989). The minimum jerk model cannot predict that. The
authors propose to minimize joint torques across the whole trajectory instead and
show that the trajectories generated by this criterion also bear remarkable similarity
to actual human movements.

2.1.2. The Uncontrolled Manifold method

The question of which variables related to the generation of movement are represented
by the CNS was approached from a different angle by Scholz and Schöner (1999).
They make the point that variables that are actively controlled by the CNS would
be more stable than other variables during goal-directed movement. Stability is used
in the dynamic systems sense as the capability of a system to react to transient
perturbations and restore the desired state of a variable (Schöner, 1995).

The formation of movement trajectories is subject to perturbations from many
different sources: the brain is an inherently noisy system, and no two patterns of
neural activation are ever completely the same (see Section 3.2.1 for a more detailed
treatment of neuronal noise). To achieve a movement goal reliably and with repeata-
bility, the CNS must counteract the perturbations induced by noise and possible
external influences by monitoring the relevant variables and changing the movement
command according to detected deviations from the desired state. The stability of
the actively controlled variables is thus expected to be higher than the stability of
the uncontrolled variables.

One observable signature of stability of a dynamic variable at a fixed point is the
variance of repeated measurements near that point (Schöner, 1990). If the CNS
employs task-related variables to generate movements, like the hand position, we
expect the variance of task-related variables to be high compared to variables that
are not task-related, like the elbow joint angle. If a movement is generated using
variables related to the motor system, no such difference in variance is expected.
This is the line of reasoning that led Morasso to favor a task-level representation
after observing that hand trajectories are substantially less variable than joint angle
trajectories in a reaching task (Morasso, 1981).

This difference is hard to quantify, though. While one class of trajectories can be
called more or less variable than another, this difference is not immediately measur-
able, because joint angles and hand trajectories have fundamentally different units
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2.1. Introduction

of measurement: the former are measured in radians, the latter in meters.
The solution to this problem proposed by Scholz and Schöner was to find a single

set of generalized coordinates that describes the movement completely, called con-
figuration space, usually the joint angles of the effector used in a given task. For
any candidate of a task variable that is actively controlled by the CNS, a given
desired state corresponds to a sub-manifold in the configuration space, called the
UnControlled Manifold (UCM). Differences in configuration space that lie within
this sub-manifold leave the candidate variable invariant, whereas differences that are
orthogonal to it affect the candidate variable. If the candidate variable is indeed
actively stabilized by the CNS, perturbations orthogonal to the UCM are expected
to be resisted more strongly than perturbations within the UCM. Thus the variance
of the configuration is expected to be larger along the UCM than orthogonal to it.

If a candidate variable is indeed actively controlled by the CNS, the resulting differ-
ence in variance along and orthogonal to the UCM should be testable by statistical
methods. Scholz and Schöner initially applied this analysis to a sit-to-stand task,
taking position of the body center of mass (CoM), head and hands in the sagittal
plane as candidate variables (Scholz & Schöner, 1999). The configuration of the body
was described by 8 angles between the body segments and the horizontal axis. The
difference of the segment angle data to their mean was analyzed at three time slices
by calculating the mean body configuration and linearly approximating the Uncon-
trolled Manifold at that mean. The segment angle differences were projected onto
the linear approximation of the UCM and its orthogonal complement. The squared
norm of the projections was divided by the dimension of the subspace to provide a
measure of the total variance within each subspace.

To support the hypothesis that a candidate variable is indeed actively controlled by
the CNS, the variance along the UCM should be larger than the variance orthogonal
to it. The difference between these two measures was tested by an Analysis of
Variance (ANOVA) and reported as significant in several combinations of condition
and candidate variable.

Analyzing the difference between these projected variances relies on the assumption
that the compared variables are distributed normally (Howell, 2010). This assump-
tion is questionable, as the difference between the total variance within each subspace
is a complex feature of the geometrical structure of the covariance in the configuration
space. In the remainder of this chapter, we will deliver a more formal treatment of the
UCM method that allows us to be more explicit about the hidden assumptions being
made. We will then describe a parametric bootstrap test as an alternative to test
statistical hypotheses about the variance structure of movement-related variables.
Several different hypotheses are presented. The merit of the parametric bootstrap
test is demonstrated by comparing it with the ANOVA method on a data set that
was previously published in the literature.

8



2.1. Introduction

2.1.3. Related work

The UCM method has been widely and successfully applied to the analysis of be-
havioral data from movement experiments. Studies on hand movements revealed
that indeed those aspects of the arm configuration that are relevant to the current
task are more stable than other, like the hand position in a point-reaching task
(Tseng, Scholz, Schöner, & Hotchkiss, 2003) or the pistol orientation in a shooting
task (Scholz, Schöner, & Latash, 2000). More recent studies showed that these effects
depend upon the handedness of the subject (Tseng, Scholz, & Galloway, 2009) and
decrease with old age (Verrel, Lövdén, & Lindenberger, 2012)

A challenging motor task that is almost unique to humans is bipedal upright quiet
stance. While postural sway has been studied extensively, this is usually done by
analyzing the patterns of low-level variables like the body center of mass or center of
pressure on the support surface. The standing human body is modeled as a single-
link inverted pendulum with one degree of freedom at the ankle, disregarding other
joints like the knee, hip and vertebrae. A UCM analysis of postural sway in the
sagittal plane in 6 degrees of freedom revealed very strong coordination effects in the
joint angle trajectories: relevant variables such as position of the CoM or head are
selectively stabilized (Hsu, Scholz, Schöner, Jeka, & Kiemel, 2007). Furthermore,
when joint movements are induced by transient perturbations, those combinations of
joint movements that affect these variables decay much faster than combinations that
do not affect them, indicating active control by the CNS (Scholz et al., 2007). Even
without artificially induced perturbations, a time-lagged auto-correlation analysis of
variability along and orthogonal to the UCM revealed higher persistence of variations
that leave important variables invariant (Verrel, Pradon, & Vuillerme, 2012). These
effects are discussed in greater detail in Chapter 3.

Later the UCM method was applied more generally both methodologically and in
terms of subject matter. Latash and colleagues used it to analyze the generation of
ramp profiles from a combination of finger forces, finding significantly more varia-
tion in force combinations that leave the sum of forces invariant (Kang, Shinohara,
Zatsiorsky, & Latash, 2004). Also on the force level, Chang and colleagues analyzed
rhythmic hopping in humans, finding that joint torque combinations are coordinated
to stabilize the vertical ground-reaction force at the time of landing and takeoff (Yen,
Auyang, & Chang, 2009; Yen & Chang, 2010).

Other researchers have approached the same general question of inferring princi-
ples of how the CNS represents and processes information about movement states
and goals from behavioral data using different techniques. Müller and Sternad ap-
proached the question by postulating that if a task variable is actively stabilized by
coordination between the configuration variables that reduces the variance of the task
variable, then removing that coordination by randomizing the configuration variables
should increase the variance of the task variable (Müller & Sternad, 2003, 2004). This
randomization method has the benefit of being independent of a metric in the config-
uration space and is better capable of dealing with strong non-linearities, but more
sensitive to the choice of basis in the configuration space. The two approaches have
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2.2. Statistical testing of hypotheses related to the Uncontrolled Manifold

been compared in detail elsewhere (Schöner & Scholz, 2007; Verrel, 2011). Cusumano
and Cesari (2006) also consider the dependency of the UCM variance analysis upon
the choice of basis in the configuration space, specifically the alignment of the UCM
relative to the basis vectors. This point, and the question of coordinate dependence
in general, is also discussed by other researchers and still remains somewhat unclear
in the community (Hogan, Sternad, Park, & Mu, 2010; Verrel, 2010).

2.2. Statistical testing of hypotheses related to the
Uncontrolled Manifold

In this section, we develop the UCM analysis method formally and present a number
of hypotheses about the covariance structure in repeated movement tasks. A para-
metric bootstrap method is used to test the hypotheses statistically, the applicability
of which is appraised in a simulation study.

2.2.1. Basic definitions and underlying assumptions

We begin by defining basic concepts and making some assumptions explicit. The
data we deal with are from behavioral experiments. Usually different subjects will
repeat a task several times in different conditions. We ignore the range of subjects
and conditions and for the time being focus on the repeated task executions of a single
subject in a single condition. All data points are measured at the same relative time
point during movement. The task is repeated N times and the result of the i-th trial
is described by a random variable

X(i) ∈ E. (2.1)

The configuration space or execution space E is a real vector space of dimension n.
The general hypothesis is that the CNS cares about some directions of E more

than others, which has an effect on the covariance matrix of the random variable
X(i). To specify such a hypothesis formally we make

Definition 1. A task function or task variable is a surjective mapping

f : E→ Tf (2.2)

from the configuration space to some vector space T of dimension k⊥, called task
space. Task functions for which n > k⊥ are called redundant.

Definition 2. For any x ∈ E, the fiber

Mf (x) = f−1
(
f(x)

)
= {x′ ∈ E : f(x′) = f(x)} (2.3)

is called the UnControlled Manifold (UCM), or space of task-equivalent solutions of

10



2.2. Statistical testing of hypotheses related to the Uncontrolled Manifold

f at x. The linear subspace

Uf (x) = {x′ ∈ TxE : Df(x)(x′) = 0} (2.4)

is called the space of null-changes of f at x.

Uf (x) is the linearization of Mf (x) at x, which we will usually abbreviate to Mf and
Uf if the choice of x is unambiguous. We will also refer to the orthogonal complement

Of (x) = {x′ ∈ TxE : 〈x′, x′′〉 = 0 ∀x′′ ∈ Uf (x)} (2.5)

of Uf , the space of changes that also affect the task variable f .

Assumption 1. For a single subject and a fixed condition, the trial data are i.i.d.
with the same normal distribution

X(i) ∼ N (µ,Σ). (2.6)

2.2.2. The UCM basis

Does the variability structure of the measured data confirm our hypothesis that the
CNS cares about a specific task variable and stabilizes directions of the configuration
space that affect it more than other directions? To answer this question, we express
the data in a basis that corresponds to these directions. Without loss of generality,
we can assume that our data set

X(i), 1 ≤ i ≤ N (2.7)

has mean µ = 0.
Let f be any hypothetical task variable. To project the data points to the space

of null changes Uf and its orthogonal complement Of , let

J = Df(x)|0 = U · S · V T (2.8)

be a singular value decomposition of the Jacobian of f at the origin, where S ∈ Rk⊥×n

is a diagonal matrix with the non-negative singular values of J in decreasing order,
V ∈ Rn×n is orthonormal.

The column vectors vi of V form an orthonormal basis, and assuming J has full
rank, the first k⊥ vectors v1, . . . , vk⊥ span Of , while the last k‖ vectors vk⊥+1, . . . , vn
span Uf . Forming

E⊥ =
(
v1 . . . vk⊥

)
∈ Rn×k⊥ , E‖ =

(
vk⊥+1 . . . vn

)
∈ Rn×k‖

gives the projection matrices

K⊥ = E⊥E
T
⊥, K‖ = E‖E

T
‖ = 1n×n −K⊥ ∈ Rn×n

11



2.2. Statistical testing of hypotheses related to the Uncontrolled Manifold

to Of and Uf .

2.2.3. Estimators

For each candidate task variable f , we have linearized the UCM at the mean, con-
structed a basis of the execution space E that separates it into directions along the
UCM and orthogonal to it, along with projection matrices to these sub-spaces. This
allows us to analyze the structure of the covariance matrix Σ relative to the candidate
task variable.

We estimate Σ by its maximum likelihood estimator

Σ̂ = Σ̂(X) =
1

N

N∑
i=1

X(i)X(i)T . (2.9)

A well known result in multivariate statistics shows that

Σ̂ ∼ Wn(N,Σ), (2.10)

where Wn(N,Σ) denotes the multivariate Wishart Distribution with dimension n, N
degrees of freedom and covariance matrix Σ (e.g., Muirhead, 1982, p. 87).

The total magnitude of the variance in each subspace can be measured by the trace
of the covariance matrix projected to that subspace. For the orthogonal space, we
estimate that quantity

tr(KT
⊥ΣK⊥) = tr(ET

⊥ΣE⊥) (2.11)

by

V⊥ =
1

k⊥
tr(KT

⊥Σ̂K⊥) =
1

k⊥

1

N

N∑
i=1

X(i)TE⊥E
T
⊥X

(i)

=
1

k⊥
tr(E⊥E

T
⊥Σ̂) =

1

k⊥
tr(ET

⊥Σ̂E⊥),

where
ET
⊥Σ̂E⊥ ∼ Wk⊥(N,ET

⊥ΣE⊥). (2.12)

Similarly, we obtain

V‖ =
1

k‖
tr(KT

‖ Σ̂K‖) =
1

k‖
tr(ET

‖ Σ̂E‖) (2.13)

with
ET
‖ Σ̂E‖ ∼ Wk‖(N,E

T
‖ ΣE‖) (2.14)

as an estimate for the total variance along the UCM.
These quantities V⊥ and V‖ estimate the variance of X projected to Of and Uf per

12



2.2. Statistical testing of hypotheses related to the Uncontrolled Manifold

degree of freedem. They can also be written as

V⊥ =
1

k⊥

1

N

N∑
i=1

‖K⊥X(i)‖2, V‖ =
1

k‖

1

N

N∑
i=1

‖K‖X(i)‖2, (2.15)

which is closer to how they were introduced in (Scholz & Schöner, 1999).
The ratio of these measures, normalized by the dimensionality of the corresponding

subspace,

Sf (X) =
V‖
V⊥

(2.16)

is called the UCM-signature of the data set X, or f -signature when confusion about
the task-variable has to be avoided.

2.2.4. Testing hypotheses

If the CNS monitors and actively stabilizes the candidate task variable f then we
expect the variance of X along the UCM, V⊥ to be small compared to the variance
of X perpendicular to it. This difference in magnitude is captured by the UCM-
signature Sf (X) – if the hypothesis about f holds, then the f -signature of the data
should be larger than 1. In this section, we formalize this and other notions as
statistically testable hypotheses and propose a parametric bootstrap method to derive
a critical value for rejecting the corresponding null hypotheses.

Hypothesis 1. (weak task-variable hypothesis) For a given task function f : E→ Tf ,
the task-equivalent variance V‖ per degree of freedom is larger than the non-task-
equivalent variance V⊥ per degree of freedom.

The corresponding null hypothesis

H0 : V‖ ≤ V⊥ (2.17)

states that the variance per degree of freedom in task-relevant directions (V⊥) is
larger or equal to the the variance in task-irrelevant directions (V‖).

For a given data set, we need a statistical test that rejects the null hypothesis 2.17
when the f -Signature of the data is significantly larger than 1. As the distribution of
the random variable Sf (X) is comparatively complex, finding an analytical solution
for the critical value c1−α for the test which rejects the null hypothesis whenever

Sf =
V‖
V⊥

> cα, (2.18)

we use the following parametric bootstrap procedure.

13



2.2. Statistical testing of hypotheses related to the Uncontrolled Manifold

2.2.4.1. Bootstrap method

A statistical test provides an answer to the question: “How likely is it that an effect
was observed just by chance and would disappear if more data was examined?” The
parametric bootstrap method attempts to decide this by first asking: “If the effect
was not there, how are the data expected to look like?” This is done by finding
parameters for a distribution that fit the data set as closely as possible under the
constraint that the observed effect is not present. A large number of data sets, the
bootstrap data, is generated from this distribution. The original data set is then
compared to these bootstrap data sets. If the effect measured in the original data is
very extreme compared to what is expected from the bootstrap data sets, then it is
very unlikely that the effect was observed just by chance. This line of reasoning is
translated into a formal test in the following paragraphs.

Let 0 < α < 1 be the level of the test.

(A) Estimate the covariance matrix Σ from the original data using the maximum

likelihood estimator Σ̂ specified in Equation 2.9. Determine the matrix

Σ∗ = arg min
A

tr
(

(Σ̂− A)T (Σ̂− A)
) ∣∣∣∣∣∣∣

A = AT

A > 0
tr(KT

⊥AK⊥)

k⊥
=

tr(KT
‖ AK‖)

k‖

 . (2.19)

This is the covariance matrix that is closest to the estimated Σ̂ while satisfying
the constraint that the total variances in the two relevant subspaces Uf and Of

are the same, i.e. that “just barely” satisfies the null hypothesis 2.17.

(B) For b = 1, . . . , B, generate N data points

X(1)(b), . . . , X(N)(b)

from a N (0,Σ∗) distribution. Calculate the statistics Sf (b) of this data set.
This gives a series of B bootstrap data sets and corresponding values of Sf (b)
that we can compare with the original data set.

(C) Sort the B values obtained in step (B) in ascending order, such that

S(1) ≤ S(2) ≤ . . . ≤ S(B).

Use
ĉ1−α = S(b(1−α)Bc)

as an approximation of the critical value c1−α. This is the UCM-signature of
the bootstrap data set at the (1 − α) quantile, indicating that a value that is
even higher can be regarded as extreme.

14



2.2. Statistical testing of hypotheses related to the Uncontrolled Manifold

The bootstrap test is now defined by rejecting the null hypothesis (2.17) whenever

Sf > ĉ1−α,

where Sf is calculated from the original data. One can prove that for N →∞, this
test has level α, i.e.

PH0(Sf > ĉ1−α)
N→∞−→ α. (2.20)

Alternatively, we can use the bootstrap method to compute the p-value for the
given measure Sf , i.e. the probability that the hypothesis is true and a UCM-signature
as extreme as Sf or larger is observed. The bootstrap method is used in the same
way as detailed above. Then we count how many bootstrap samples have a UCM-
signature S that is even larger than the one from the original data

bp = B −max
b
S(b) < S(X). (2.21)

The ratio of the number of bootstrap samples with a UCM-signature even larger than
what was measured over the total number of bootstrap samples yields the p-value

p =
bp
B
. (2.22)

2.2.4.2. Simulation study

The statement (2.20) is asymptotical, it does not say much about the probability
for finite N . We use a simulation study to check whether the statement is also
approximately correct for small sample sizes N . To test the limit case, we choose
a feasible covariance matrix Σ for which the null hypothesis 2.17 is satisfied with
equality. Then we create a large number of simulated data sets with sample size N
similar to what is feasible in an experiment. For each data set, we run the bootstrap
test as detailed above. Although the Null hypothesis 2.17 is satisfied, some of these
tests will reject it, i.e. result in a false positive. If the ratio of these false positives
much larger than the expected value α, the bootstrap method has to be rejected as
not applicable for small sample sizes N . If, on the other hand, the ratio is close to
the expected value α, the simulation study confirms that the bootstrap method is
valid.

In detail, the simulation study consists of the following steps:

(0) Choose a covariance matrix Σ for which

1

k‖
tr(KT

‖ ΣK‖) =
1

k⊥
tr(KT

⊥ΣK⊥). (2.23)

(1) Set f̃ = 0. This variable counts the false positives.

(2) For s = 1, . . . , R do
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2.2. Statistical testing of hypotheses related to the Uncontrolled Manifold

(a) Generate independent random variables X(1), . . . , X(N) from a N (0,Σ)
distribution and calculate the statistics Sf .

(b) Calculate the critical value ĉ1−α by using the bootstrap procedure de-
scribed above.

(c) If Sf > ĉ1−α, then set f̃ = f̃ + 1.

(3) Set

f̂ =
f̃

R
.

If for a realistic sample size N the error ratio f̂ of false positives is close to α,
the critical value c1−α is calculated approximately right by the bootstrap procedure.
Several of these simulation studies were carried out, please see Section 2.3.1 for the
results.

2.2.4.3. Other hypotheses

Often it is not clear what behavioral aspects the CNS really controls, a variety of
different task functions is conceivable. Testing these for the weak task-variable hy-
pothesis might not help much: a positive result just means a failure to falsify the
assumption that the CNS cares about one specific task function f . Geometrically,
this means that the extension of the covariance ellipsoid is larger in the task-irrelevant
directions of execution space than in task-relevant directions, which is a rather weak
statement and leaves much of the shape of the covariance ellipsoid unknown. The fol-
lowing hypothesis provides some more insight in the shape by comparing two different
hypothetical task functions in how well they describe the covariance ellipsoid.

Hypothesis 2. (task-variable comparison hypothesis) Let f1 : E → T1, f2 : E → T2

be two task functions. The f1-signature of the data set is larger than the f2-signature.

To obtain the critical value cα for which to reject the null hypothesis

H0 : Sf1 ≤ Sf2 (2.24)

whenever
Sf1
Sf2

=
V
‖
1 V
⊥
2

V ⊥1 V
‖
2

> c1−α, (2.25)

we use the same bootstrap procedure as described in section 2.2.4.1. In the case of
Hypothesis 2 the covariance matrix of the critical case is given by

Σ∗ = arg min
A

tr
(

(Σ̂− A)T (Σ̂− A)
) ∣∣∣∣∣∣
A = AT

A > 0
(∗)

 , (2.26)
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2.2. Statistical testing of hypotheses related to the Uncontrolled Manifold

where the last constraint

(∗) :

1

k
‖
1

tr(K
‖
1

T
AK

‖
1) 1

k⊥2
tr(K⊥2

T
AK⊥2 )

1
k⊥1

tr(K⊥1
T
AK⊥1 ) 1

k
‖
2

tr(K
‖
2

T
AK

‖
2)

= 1 (2.27)

means that Equation 2.24 is satisfied with equality.
So far we analyzed data that consisted of repetitions of the same behavioral task in

the same, controlled condition. A standard experimental method is to probe a system
by letting it perform the same task under different experimental conditions while
keeping all other influences as constant as possible and observing how the change
affects the behavior. In many cases, different conditions are set up by introducing
perturbations like distractors or physical constraints. These perturbations usually
increase the variance of the data (Schöner & Kelso, 1988). Often this increase in
variance is not homogeneous, though. Under our basic assumption that the CNS
stabilizes the task-relevant directions of execution space more than the task-irrelevant
directions, we expect the increase in goal-equivalent variance V‖ to be larger than the
increase in non-goal-equivalent variance V⊥, as the latter is actively reduced by the
CNS. This expectation translates into

Hypothesis 3. (data comparison hypothesis) Let f : E → T be a task function, X
and Y two data sets. The UCM-signature of X is larger than the UCM-signature of
Y .

As before, we obtain the critical value c1−α for which to reject the null hypothesis

H0 : Sf (X) ≤ Sf (Y ) (2.28)

whenever

F ′′f (X, Y ) =
Sf (X)

Sf (Y )
=
V‖(X)V⊥(Y )

V⊥(X)V‖(Y )
> c1−α, (2.29)

by the bootstrap procedure. We calculate

(Σ∗X ,Σ
∗
Y ) = arg min

AX ,AY


tr
(

(Σ̂X − AX)T (Σ̂X − AX)
)

+ tr
(

(Σ̂Y − AY )T (Σ̂Y − AY )
)
∣∣∣∣∣∣∣∣∣∣
AX = ATX
AY = ATY
AX > 0
AY > 0

(∗)

 , (2.30)

where the last constraint

(∗) :
tr(K

‖
X

T
AXK

‖
X) tr(K⊥Y

T
AYK

⊥
Y )

tr(K⊥X
T
AXK⊥X) tr(K

‖
Y

T
AYK

‖
Y )

= 1 (2.31)

means that these are the covariance matrices that best approximate Σ̂X = Σ̂(X) and
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Σ̂Y = Σ̂(Y ) while satisfying Equation 2.28 with equality.
This is just one example of a class of hypotheses that compare the variance

structures of different data sets. A similar but weaker hypothesis is that the goal-
equivalent variance increases between the two conditions

Hypothesis 4. (data comparison hypothesis, U‖) Let f : E→ T be a task function,
X and Y two data sets. In the task-irrelevant subspace U‖, the variance of X is
larger than the variance of Y .

A critical value c1−α for a test that rejects the null-hypothesis

H0 : V‖(X) ≤ V‖(Y ) (2.32)

is determined with the bootstrap method as before. This and another version that
hypothesizes V⊥(X) > V⊥(Y ) will be used in the following section to compare the
bootstrap method with conventional methods.

2.3. Implementation and results

The methods described here were tested on simulated data and data from human
point-reaching experiments. All data sets consisted of joint angles θ1, . . . , θ10 for an
upper arm with 10 degrees of freedom.

The bootstrap test was implemented in Matlab using mostly standard routines.
In order to calculate Σ∗, i.e. determining the minima given in Equations 2.19, 2.26
and 2.30, the symmetric 10× 10 matrices were parameterized by the 55 values of the
diagonal and upper right triangle. The resulting symmetric matrix was transformed
into a symmetric positive definite matrix by taking the exponential. It can be shown
that the whole space of symmetric, positive matrices is parameterized by 55 values
in this way (Baker, 2002). The Matlab function fmincon was then invoked to find the
minimum that observes the last constraint (Equations 2.19, 2.27 and 2.31).

In all cases, B = 500 bootstrap samples were generated.

2.3.1. Simulation Study

To check whether the critical values ĉ1−α generated by the bootstrap test are actually
close to the real values c1−α for the rather low sample size of N = 20, the simula-
tion study described in section 2.2.4.2 was carried out with S = 10000 runs. For
this simulation study, a roughly anthropomorphic arm with spherical joints at the
sterno-clavicular junction and shoulder and paired hinge joints at the elbow and wrist
was simulated. For each run of the simulation study, a trial data set with N = 20
data points was generated by drawing pseudo-random numbers from a N (µ,Σ) dis-
tribution using the Matlab function randn. The mean µ was chosen in a way that
the arm configuration roughly corresponded to a human reaching for some object in
front of him. The covariance matrix was proportional to the identity matrix. See
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Hyp. task variable data distribution
ratio of

false positives

1 p(θ) ∈ R3 X ∼ N (µ0, 0.1 · I10×10) f̂ = 0.0573

2
f1 = p(θ) ∈ R3,

X ∼ N (µ0, 0.1 · I10×10) f̂ = 0.0471
f2 =

(
1 0 0
0 1 0

)
p(θ) ∈ R2

3 p(θ) ∈ R3 X ∼ N (µ0, 0.1 · I10×10)
f̂ = 0.0554

Y ∼ (µ0, 0.2 · I10×10)

Table 2.1.: Results of the simulation study for the weak task variable hypothesis (1),
the comparative task variable hypothesis (2) and the data comparison
hypothesis (3). The finger tip position p(θ) depends upon the random
joint configuration θ = X, Y .

Appendix A for details and parameters. Different simulation studies were carried out
for the hypotheses 1, 2 and 3. In each case, the null hypotheses 2.17, 2.24 and 2.28
respectively were satisfied with equality by the covariance matrix Σ. The candidate
task variables were components of the cartesian finger tip position p(θ).

If the bootstrap test generates feasible values, we expect the ratio of false positives
f̂ in the simulation study to be close to the level of the test α. This was indeed the
case in all three studies. Table 2.1 provides a summary of the tested hypotheses, the
hypothetical task variables, the varying parameters and the results. The test level
was α = 0.05 in both cases. The ratio of false positives f̂ is close to the test level in
all three cases.

2.3.2. Comparison with standard techniques

To demonstrate the benefits of the parametric bootstrap analysis presented in this
chapter, we apply the method to reanalyze a previously published study by Sandra
Freitas and colleagues (de Freitas, Scholz, & Stehman, 2007). We give a summary of
this study and the relevant results.

In this experiment, subjects were sitting at a table and reached for a target that
was presented on a touch screen in front of them. In the random condition (RD),
the target had a 1

3
chance either to jump to the left at the onset of movement, jump

to the right, or stay fixed. In the blocked condition (BL), the target was always
fixed. The two conditions were not mixed and the subjects were always aware which
condition they were currently in.

The research question underlying this study was that the CNS would control the
movement trajectory less tightly if the target was liable to jump. To answer this
question, de Freitas and colleagues measured the 10 DoF joint angles with an optical
motion capture system and projected the variances of these data sets onto the sub-
spaces Uf and Of for two different task variables movement direction and movement
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Figure 2.1.: Variance per degree of freedom, averaged across subjects and combined
across the first half (early) and second half (late) of the movement. Task
variables are movement extent (left) and direction (right). Error bars
depict standard errors, ‡ indicates significant differences.

extent for each subject. Then they averaged the variance data over two movement
phases, early and late, separated by the time of peak velocity for each single trial.
On the averaged data, separate repeated measures ANOVAs was carried out for each
hypothetical task variable to examine the effects of target condition (RD vs. BL) and
variance component (V‖ vs. V⊥). The ANOVAs showed that V‖ in the RD condition
was significant larger than in the BL condition, in both movement phases and for
both task variables. In contrast, the increase in V⊥ was significant only for movement
extent in the early movement phase. Figure 2.1, reproduced here from (de Freitas et
al., 2007) with permission of the authors, illustrates these results.

As the averaging over movement phases is at odds with the underlying assumptions
of the bootstrap method, we reanalyze the data to make the results of the ANOVA
comparable with the results of the bootstrap method. First, we do not analyze
movement extent and movement direction separately, but make one analysis with
the three-dimensional pointer position p as hypothetical task variable. Secondly, we
do not average over time, but analyze at two separate points of time, peak velocity
(t1) and movement termination (t2).

Separate repeated measures ANOVAs were run for each of these four time points to
test for differences in V‖ and V⊥ between the two conditions RD and BL. The average
across-subjects results for V‖ and V⊥ are presented in Figure 2.2. At peak velocity and
movement termination, the magnitude of both V‖ and V⊥ was significantly higher for
the RD condition compared to the BL condition (V‖, t2 : F[1,10] = 6.0, p < 0.05, η2 =
0.376), (V‖, t4 : F[1,10] = 6.9, p < 0.05, η = 0.409), (V⊥, t2 : F[1,10] = 5.1, p < 0.05, η =
.340), (V⊥, t4 : F[1,10] = 6.5, p < 0.05, η = .392).

The ANOVA asserts the statistical significance of the difference in the variance
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Figure 2.2.: Mean across subjects of the pointer tip variance per degree of freedom
along the task manifold (V‖) and orthogonal to it (V⊥) at peak velocity
(left) and movement termination (right). Significant differences reported
by the ANOVA are indicated by ∗.

structure for the test population. The bootstrap method allows us to test the same
hypotheses on the level of single subjects. We ran bootstrap tests for the data
comparison hypothesis with the two test hypotheses V‖(RD) > V‖(BL) and V⊥(RD) >
V⊥(BL) at the same time points of peak velocity and movement termination. Figure
2.3 shows these data for each of the eleven participants. The differences that were
classified as significant by the bootstrap test are marked with an asterisk. The
confidence level used in these tests was α = 0.05.

2.4. Conclusions

We presented a mathematical formalism that represents movement tasks as mani-
folds in a vector space describing the configuration of the motor system. This enabled
us to express intuitive notions about movements being task-related as formal state-
ments. We used statistical methods to transform these geometric concepts of task
representation into a scientific strategy to analyze experimental data. Several hy-
potheses about the stochastic properties of movements in relation to a given task
were formalized. A parametric bootstrap method was described to determine the
critical value for rejecting the corresponding null hypotheses.

The mathematical description of tasks we developed enabled us to test hypotheses
about the principles of movement generation used by single human subjects. Tra-
ditionally, such hypotheses were tested on a level of a whole population of subjects
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Figure 2.3.: Single subject pointer tip variance per degree of freedom along the task
manifold (V‖) and orthogonal to it (V⊥) at peak velocity (left) and
movement termination (right). Significant differences reported by the
parametrix bootstrap test are indicated by ∗.
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Hypothesis
number of subjects p-level

for which null hypothesis reported by
was rejected ANOVA

V‖(RD, t1) > V‖(BL, t1) 5 0.034
V⊥(RD, t1) > V⊥(BL, t1) 5 0.047
V‖(RD, t2) > V‖(BL, t2) 6 0.025
V⊥(RD, t2) > V⊥(BL, t2) 4 0.029

Table 2.2.: Comparison between ANOVA and parametric bootstrap test. Total num-
ber of subjects was N = 11.

using ANOVAs with the implicit assumption that the variance measures of the sub-
jects conform to a normal distribution. Our formalization showed that under the
more plausible assumption that the repeated task executions of single subjects are
distributed normally, this assumption does not hold on the population level.

To examine the effects of this discrepancy, we analyzed the variance structures in
a data set from a reaching study with 11 participants both with an ANOVA on the
population level and with a parametric bootstrap analysis on the single-subject level.
On the population level, the ANOVA resulted in significant differences between V‖
and V⊥ at two points in time. Analyzing the single subjects with the parametric
bootstrap test reveals that each of these four differences is significant for at best
only about half of the test subjects. Table 2.2 makes this comparison explicit. In
general, one is interested in effects that are prevalent throughout a whole population
of subjects sharing similar characteristics. This comparison implies that statements
about population level effects based on ANOVA have to be treated with care and
that analysis of single subjects with the parametric bootstrap method can provide
more insight of how prevalent an effect is within a population.

The detailed analysis emphasizes the large differences between the movement pat-
terns of single subjects. The fact that single subjects exhibit unique and highly
repeatable movement patterns has been acknowledged informally within the motor
control community. The lack of approaches to quantify these patterns in a meaning-
ful, task-related way has inhibited formal research of this phenomenon. The mathe-
matical apparatus presented here makes the quantitative comparison of unique move-
ment patterns possible and should enable researchers to design experiments to better
understand the origins of these patterns.
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3. A process model of quiet upright
stance

3.1. Introduction

So far we developed a formal language to express movement tasks as manifolds in
the configuration space of the motor system and described a statistical method to
test whether the central nervous system coordinates the available degrees of freedom
in a way that is consistent with principles of selective stabilization relative to the
specific task manifold. In the present chapter we will explore possible mechanisms of
how this coordination might be realized by the CNS. We approach this problem by
presenting a dynamic process model of the sensorimotor loop of postural stabilization
in quiet, upright stance. We chose postural stabilization as an example because this
allows us to focus on the redundancy of selecting a single solution to a movement
task and factors out the more complex problem of generating a trajectory.

Dealing with the postural state of the whole body also involves additional problems.
A human standing upright is inherently unstable. The only contact points are the
feet on the ground, and most of the body mass is concentrated at the upper half of
the body, far away from the ground. Small movements of the body center of mass
(CoM) lead to comparatively large gravitational torques. Without any stabilizing
forces from muscles to counter the pull of gravity, the body would collapse very
quickly.

Mechanically, the human body consists of a number of rigid bodies, the bones,
held together by muscles and ligaments that constrain the movement of the bones
relative to each other. For all means and purposes, we will restrict our discussion
to the sagittal plane. Traditionally, this complex system has been approximated
by modeling it as an inverted pendulum with a single rotational joint at the ankle,
standing upon the support surface of the foot soles. As long as the center of mass
of the body as a whole is over this support surface, the feet remain standing on the
ground. Any small deviation from the upright configuration results in a gravitational
torque upon the ankle joint that increases that deviation. If the muscle torques
counter the gravitational torques in some way, the whole system is stable. How is
this stabilizing muscle activation structured? What is the role of the central nervous
system (CNS) in modulating it? What sensory modes are used in detecting deviations
from the stable state?

One possible answer to this group of questions is to assume that the CNS does
not play an active role in the stabilization of posture at all, but completely delegates
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3.1. Introduction

the task to the reflex loops in the spinal cord. Winter and colleagues (Winter,
Patla, Prince, Ishac, & Gielo-Perczak, 1998) proposed a “stiffness control model” for
quiet stance: the CNS makes the ankle joint stiff by setting the muscle tone so high
that for any deviation from upright stance, the stabilizing pull of the muscle being
stretched is larger than the destabilizing effect of gravity, so that the system is stable
on the whole. The stabilizing force from the muscles is ascribed to both the tonic
stretch reflex and passive properties, but explicitly not to modulation from the CNS
– aside from initially setting the muscle tone, the CNS does not participate at all in
stabilization of upright stance in this model.

The stiffness control model has been criticized for a variety of reasons. As an
immediate response, Morasso and Schieppati (1999) point out that while experimen-
tal measures of ankle stiffness during quiet stance are not conclusive, none of the
values reported in the literature is sufficiently high to actually stabilize the body in
quiet stance. This evaluation was supported by subsequent studies by other groups
designed specifically to answer that question (see Section 3.3.3 for more details).

Another problem that the stiffness control model shares with the majority of mod-
els for quiet upright stance in the literature is that it approximates the biomechanics
of the body by a single-joint inverted pendulum. This simplification rests upon the
assumption that movement in other mechanical degrees of freedom along the body,
e.g. knee and hip joints, is very small compared to movement in the ankle joint. This
assumption is at odds with data from a recent study by Scholz and colleagues (Hsu
et al., 2007) showing that during quiet stance there is more movement in proximal
joints along the body than in the ankle joint, rather than less.

These two points of criticism were compounded in a theoretical study that explored
the feasibility of stiffness control in a multi-joint model (Rozendaal & Van Soest,
2008). The authors showed that assuming pure stiffness control, the threshold for
stability in a multi-segment inverted pendulum is even higher than in the traditional
single-joint model, because displacements of the center of mass from additional joints
add up. Furthermore, if stiffness is finite, the actual resting state for such a system
is not in the upright configuration, but always includes some lean. Even for the
maximally attainable stiffness values in full voluntary contraction of the leg muscles,
this lean would be significant – though somewhat reduced if taking into account
muscles that span multiple joints.

These experimental and theoretical findings indicate that the CNS is actively con-
tributing to the stabilization of the body in quiet upright stance. But what exactly
is this contribution? As has been discussed in Chapter 2, answering this question
experimentally is not straightforward. The neural substrates responsible for this
contribution are in the brain, which is hard to access directly in human subjects.
Comparatively little is known about how neural activity in the brain relates to ac-
tivity in the spinal cord related to motor control. Sensor signals play a role, but how
exactly the activation patterns of the sensory surfaces are used to modulate brain
activity, possibly after being transformed into neural representations of the body in
space, is unknown.

These difficulties of directly analyzing in detail the role of the brain in stabilizing
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3.1. Introduction

quiet upright stance make it necessary to resort to indirect approaches. One way to
do so is to probe the system by subjecting it to perturbations. These can target the
sensory surfaces, e.g. modifying the visual input using projections (Kiemel, Oie, &
Jeka, 2002; Kiemel, Zhang, & Jeka, 2011) or vibrating tendons to change propriocep-
tive signals (Goodwin, McCloskey, & Matthews, 1972; Polónyová & Hlavacka, 2001).
Or they can target the state of the motor system directly, by displacing or rotating
the support surface or applying a force at some other point on the body (Pai, Rogers,
Patton, Cain, & Hanke, 1998; Kluzik, Horak, & Peterka, 2005). As the perturbations
are targeted at the sensory surfaces, though, they allow conclusions regarding how
the brain processes the sensory data and generates representations about the body
state from them. Insights about how the motor areas transform these representations
into descending motor commands are harder to infer.

Mechanical perturbations of the motor system have similar problems. Different
parts of the complete system respond to such perturbations differently. There is a
purely mechanical resistance to any perturbation from the inertia of the body and
the passive elastic properties of the connective tissue. Low-level reflexes lead to
fast muscle contractions opposing the muscle stretch after about 30-50 ms. If the
perturbation is expected, pre-programmed reactions can be measured after ≈ 70 ms,
while voluntary responses occur as late as 150 ms after the perturbation (Latash,
2008). At the time when voluntary or pre-programmed reactions are observed, the
passive effects and reflex responses are still active, of course. The passive effects can
be estimated and isolated by modeling the musculo-skeletal system, or bypassed by
measuring muscle activation directly using electromyography.

Separating the effects of the perturbation on the higher brain areas from the reflex
response is much harder and less accessible to isolating one from the other by either
modeling or measuring the interface between them. The spinal reflex loops have
been modeled on different levels of detail (Feldman, 1972; Raphael, Tsianos, & Loeb,
2010). One class of these models, the Equilibrium Point Hypothesis (see section
3.2.2 for details), has led to a variety of studies that measure kinematic or EMG
data from behavioral experiments and use a model of the tonic stretch reflex to
estimate the trajectories of the descending commands, with a wide range of results
(Laboissière, Ostry, & Feldman, 1996; Gomi & Kawato, 1996; Ostry, Gribble, Levin,
& Feldman, 1997; St-Onge, Adamovich, & Feldman, 1997; Gribble, Ostry, Sanguineti,
& Laboissière, 1998; Micheau, Kron, & Bourassa, 2003; Pilon & Feldman, 2006).
Many of these studies were part of a controversy of whether the particular model
of the integration between the spinal reflexes and the descending motor commands
assumed by the EPH is feasible at all (Kistemaker, Van Soest, & Bobbert, 2007).
Far from being decided, this controversy underlines the limited role of the currently
available models of the spinal reflex loops: they describe the functional aspects of
the modeled neural circuitry well enough, but it is highly questionable whether the
neurophysiological detail is sufficient to be used for the isolation of descending motor
commands.

In the present study, we chose to approach the role of the CNS in the stabilization
of quiet upright stance using a process model that describes the complete sensori-
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3.1. Introduction

motor loop. The parts of the model describing the estimation of the body in space
from sensory data, the spinal reflexes, the muscle contraction dynamics, and the
biomechanics are taken from the literature. The original contribution of our study is
combining them into a single model and closing the loop by proposing a mechanism
of how the brain generates descending motor commands from estimates of the body
in space. We suggest a combination of different feedback terms based on the sensed
movement of the body center of mass and head position in anterior-posterior direc-
tion, and the deviation of the head orientation around the media-lateral axis from
the horizontal.

As explained above, no direct constraints are available for a model of the neural
dynamics for movement generation within the brain. The model as a whole, on
the other hand, is constrained by experimental data from behavioral studies. If the
complete model describes the behavioral data well, we can infer that the model of
the neural dynamics is an appropriate functional description of the role of the higher
brain areas in the stabilization of quiet upright stance – if this part was wrong, while
all other parts are right, the whole model could not be correct. As all other parts of
the model are constrained directly and locally by data from the literature, the brain
dynamics model is thus indirectly constrained by behavioral data.

What kind of behavioral data is appropriate to constrain a model such as this?
Stabilization of a mechanically unstable system means reacting to perturbations that
drive the system away from the stable state. In quiet stance, all of these perturba-
tions are quasi-random. Specific movement trajectories of postural sway during quiet
stance are essentially a random walk that is kept within the bounds of stability by
the CNS. As it is impossible to estimate the random perturbations throughout that
the CNS reacted to, constraining the model by fitting specific movement trajectories
is not applicable.

While we cannot measure or reconstruct the random influences in single movement
trajectories, the general characteristics of the perturbations can be captured statis-
tically. We have chosen to constrain our model by three different measures of the
variability of quiet stance trajectories. The joint excursion variance (JEV) measures
the general magnitude of the postural sway. The geometrical structure of the sway
trajectories is revealed by an uncontrolled manifold analysis (UCM, see Chapter 2
for details). The temporal structure of the sway is captured by the Power Spectral
Density (PSD) of the trajectories.

3.1.1. Related work

Stabilizing the body in quiet, upright stance can be divided into the two sub-problems
of estimating the deviations from the stable state based on the sensory signals and
generating appropriate motor commands that counter these deviations. Most mod-
eling work has focused on one of these points.

Models about the sensory estimation aspect of upright stance describe how the
different sensory surfaces related to the body posture are integrated into a single es-
timate of the current deviation from the stable state. The methods used to model the
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integration process vary. A comparatively simple weighted addition of independent
channels to a common torque output (Peterka, 2002; Maurer, Mergner, & Peterka,
2006) is similar to what we will use in our model. More sophisticated models use
Kalman filters with parameters that are adapted to fit experimental data (Kiemel et
al., 2002; Kuo, 2005). All these models use torque as the motor output. Some take
into account the additional passive torques generated by the elastic and viscous prop-
erties of the tissue (Peterka, 2002), but do not account for the dynamics of the spinal
reflex loops. One could argue that these are models of motor command generation
in the CNS and the spine is part of the CNS, so they include these aspects implicitly.
Still, modeling the motor command by a simple torque feedback might ignore the
stabilizing properties of modularity between the brain and the spinal reflex loops.

On the motor side, models are concerned with identifying the control strategies
used by the CNS to transform sensory information into motor commands. There is
some agreement that purely feedforward controllers like the stiffness control model
proposed by Winter et al. (1998) are neither feasible nor necessary (Morasso & San-
guineti, 2002; Lakie, Caplan, & Loram, 2003; Masani, Vette, & Popovic, 2006). Even
taking into account considerable time delays, feedback control models have success-
fully reproduced many aspects of the sway trajectories of one-dimensional variables
like the center of pressure, center of mass or ankle joint angle (Qu, Nussbaum, &
Madigan, 2007).

The origin of other phenomena are still debated, like the mechanisms responsible
for the two distinct components of sway: Trajectories of sway-related variables like
the center of pressure have a high-frequency component that oscillates at ≈ 2 Hz.
The center of this oscillation is not fixed, but oscillates itself with a lower frequency
of ≈ 0.2 Hz (Zatsiorsky & Duarte, 1999). Using systems analysis approaches, Kiemel,
Oie, and Jeka (2006) have shown that the slow oscillation is part of a neural feedback
loop instead of a feedforward component. Zatsiorsky and Duarte (1999) have named
the reference of the fast oscillation the “instant equilibrium point” and speculated
that the fast component is related to spinal stretch reflexes, while the slow component
represents changes of the physiological threshold of these reflexes. They interpret this
as support for the Equilibrium Point Hypothesis of motor control, postulating that
the fast oscillations are the result of the stretch reflexes stabilizing the system around
the point of equilibrium where tonic muscle activation and gravitational forces are
equal, while the slow oscillations represent shifts in the underlying muscle tone. A
study by Micheau et al. (2003) made this line of reasoning explicit, modeling the
tonic stretch reflex based on the EPH and inverting it to calculate the trajectories
of the muscle tone threshold parameters from experimentally observed joint angle
trajectories. That study was purely descriptive, though, and did not propose any
mechanism for how these changes in the threshold parameters might be generated
based on sensory data.

Another ongoing debate is about whether the neural dynamics that stabilize the
body in upright stance are active continuously or only intermittently (Loram, Gollee,
Lakie, & Gawthrop, 2011). The feedback models inspired by control theory were tra-
ditionally using continuous feedback (Mergner, 2010). This is at odds with observed
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patterns of muscle activation, as pointed out by Lakie and Loram (2006): in quiet
upright stance, muscle activation is not continuously changing but comes in short,
temporally well separated bursts. A model trying to replicate these patterns of in-
termittent control based on suppressing feedback when the estimations of relevant
variables are within a region of uncertainty due to sensory noise was proposed by
Bottaro, Yasutake, Nomura, Casadio, and Morasso (2008). In a broad comparison
study, van der Kooij and de Vlugt (2007) try to replicate data from perturbation
experiments with different models using either continuous or intermittent feedback.
The continuous models provide a better fit for the experimental data, though the
authors report some remnants of low-frequency body sway that could not be ex-
plained by the purely continuous models and might be due to intermittent effects. A
purely theoretical analysis by Asai et al. (2009) compares a continuous PD-controller
with an intermittent dynamic controller that switches between two response func-
tions when the estimated state exits a “dead zone” around the nominal equilibrium
state. They show theoretically that the stability region in parameter space is much
larger for the intermittent controller and demonstrate that it is capable of resisting
larger perturbations in a simulation study. In another theoretical study, Gawthrop,
Loram, Lakie, and Gollee (2011) show that the movement pattern generated by an
intermittent controller with small activation thresholds cannot be distinguished from
those generated by a purely continuous controller. According to the authors, this ex-
plains why data from some experimental conditions support the continuous control
hypothesis even if the general control strategy is intermittent.

Most of the modeling work quoted so far describes the upright body as an inverted
pendulum with a single rotational joint at the ankle. This is an appropriate simplifi-
cation in general. The existence of stabilization strategies utilizing a combination of
hip and ankle joints has long been acknowledged (Nashner & McCollum, 1985). It
was generally assumed that this “hip strategy” is predominantly used to cope with
sudden perturbations, while in unperturbed quiet stance the control patterns accord
to the “ankle strategy”, where active, central control feeds into the ankle joint and
motions in the hip joint are minimal (Horak & Nashner, 1986). That view has been
challenged by studies using a wider range of perturbation magnitudes. The results
suggest that the ankle strategy and hip strategy are two extremes of a continuous
range of postural responses rather than discrete choices (Runge, Shupert, Horak, &
Zajac, 1999; Creath, Kiemel, Horak, Peterka, & Jeka, 2005). Investigating the rela-
tionship between these two patterns and modulation of sensory information, Zhang,
Kiemel, and Jeka (2007) report that addition or removal of sensory modes predomi-
nantly affects the sway component related to the ankle strategy. Subsequent work by
the same group indicates that the CNS applies a single control strategy to activate
all muscles related to postural control (Kiemel et al., 2011) and that the two distinct
sway patterns are largely a result of the interplay between the inertial properties of
the body segments and the experimental conditions (Alexandrov, Frolov, & Massion,
2001). Kuo (2005) has shown that a proportional-derivative feedback controller is
capable of stabilizing a two-link inverted pendulum and can reproduce the geometri-
cal properties of the sway trajectories in the space spanned by the two joint angles.
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An experimental analysis of these patterns in six degrees of freedom using the UCM
method was carried out by Hsu et al. (2007), revealing a high degree of coordination
between the joint angles that selectively stabilizes important task variables.

3.2. The model

Stabilizing the human body in upright stance is a closed action-perception loop.
Sensor systems estimate the configuration of the body in space and how it changes.
The brain generates adequate motor signals that counter the sensed deviations and
sends them along descending neural pathways to the motor-neurons in the spine. The
spinal reflex loops transform the descending signals into α-motorneuron activation,
factoring in the current state of the muscles and joints. The motorneuron activation
is transformed into muscle force by biophysical processes that make the muscles
contract or relax. The muscle force changes the configuration of the body in space,
closing the loop. An overview of the whole loop is given in Figure 3.1.

In the following sections, we will present each of these phases in detail. At different
points, different influences act as random perturbations on the system state, so we
begin with a treatment of how these are modeled (3.2.1). Because the loop is closed
and each phase depends upon the previous one, there is no natural place to begin
describing it. As the original contribution of this work modeled the neural dynamics
between sensory information and spinal reflex loops, we have chosen to organize the
presentation in a way that starts with the spinal dynamics (3.2.2) and then follows
the loop to muscle contraction (3.2.3), the biomechanical equations of motion (3.2.4)
and forming representations of the body in space from sensory data (3.2.5). The loop
is closed by describing our proposed model for the neural dynamics transforming the
represented body state into descending motor commands 3.2.6.

3.2.1. System noise

The elementary information processing unit in the nervous system is a single neuron.
Information is transmitted between neurons by spikes, electrical action potentials
traveling along axons and across synapses between neurons. The activation level of
a neuron can be captured by the firing rate, measured in spikes per second.

An action potential is a probabilistic event, and a model of neural activation pro-
cessing must take this randomness into account. There are different methods of how
to do that appropriately, though. According to Smith and Ratcliff (2004), any model
trying to explain behavioral data on a neural basis needs to account for noise on
three levels of analysis: the individual neurons, populations of neurons, and behav-
ioral data. Accounting for the noise of behavioral data is what constrains our model,
so the model as a whole deals with this level. For a single neuron, the spiking prob-
ability depends largely upon the membrane potential, and the spike trains can be
modeled by a Poisson process (Shadlen & Newsome, 1994). As we model neural ac-
tivity on a relatively abstract, functional level that does not capture single neurons,
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Figure 3.1.: Overview of the complete sensorimotor loop for balancing the body in
quiet, upright stance.

we can disregard this level of detail and focus on randomness at the population level.
Firing rates of individual neurons are often weakly correlated (r ≈ 0.15−0.2) when

they are physically close to each other in the cortex (Zohary, Shadlen, & Newsome,
1994; Bair, Zohary, & Newsome, 2001). One cannot disregard this noise by assuming
that the fluctuations in individual neuron firing rate cancel out over whole popula-
tions. In an in-vivo study of the cat visual cortex, Arieli and colleagues compare
real-time optical imaging data to local field potentials and single neuron firing rate
(Tsodyks, Kenet, Grinvald, & Arieli, 1999). They were able to predict the seem-
ingly random response in single trials from the fluctuations in neural firing rates and
the deterministic response, and conclude that the neural activity is an important
source of the variability. A later study by the same group provides further evidence
of the correlation between single neuron firing rate and population activity, both in
spontaneous and stimulus-driven cases.

The spatio-temporally correlated variability of neural population activation can
be modeled by an Ornstein-Uhlenbeck process (Smith, 2010; Ricciardi & Sacerdote,
1979; Lánský & Sacerdote, 2001). This is expressed mathematically by the solution
of the stochastic differential equation

η̇ = −αηη + ξ, (3.1)

where η is the colored noise, αη the relaxation time parameter and ξ is Gaussian white
noise with zero mean and parameterized by the variance of the integrated noise after
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one second

var

(∫ 1

0

ξdt

)
= σ2. (3.2)

We will use random signals η(t) as noise for several different neural activation
variables throughout our model. It is usually an acceptable simplification to use
additive noise for neural activation variables (Faisal, Selen, & Wolpert, 2008). For
motor-neural activation, though, the noise level has been empirically shown to de-
pend upon the mean activation level (Matthews, 1996). A behavioral consequence of
this is the speed-accuracy trade-off known as Fitt’s law, which says that faster move-
ments are less accurate – because they require larger muscle forces which are noisier
(Fitts, 1954). Harris and Wolpert (1998) postulated that this signal-dependency of
motor noise is the deciding factor in the shape of goal-directed movement trajectories
and show that the trajectories of both saccadic eye movements and upper extremity
reaching movements can be predicted by assuming that the CNS attempts to min-
imize the end-point variance of the movement. We follow this line of reasoning by
using multiplicative noise for the activation level of motor neurons.

3.2.2. Neural dynamics in the spinal cord

The spinal cord is the interface between the descending neural commands and the
actual motor output in the form of muscle activations. While much is known about
the connectivity of spinal cord neurons and the feedback loops, many functional
aspects of how these low-level neural dynamics interact with high-level commands
and how meaningful movement is generated is still debated. For the model of upright
stance presented here, we chose to follow the Equilibrium Point Hypothesis (EPH).

The Equilibrium Point Hypothesis

One well-understood function of the spinal cord is the tonic stretch reflex (Latash,
2008). This is a monosynaptic reflex loop in which Ia-afferents from the muscle
spindle excite α-motorneurons of the same muscle. The Ia-afferents are sensory
fibers sensitive to changes in muscle length. When these sensory afferents signal an
increase in muscle length, they excite the α-motorneuron, which leads to contraction
of muscle fibers, generating force to counteract the muscle stretch. The amount
of force generated depends upon the amount of stretch via the activity of the Ia-
afferents.

This dependency has been measured experimentally in some detail (Feldman, 1972;
Ostry et al., 1997; Adamovich, Levin, & Feldman, 1997). It can be described as an
exponential force-length relationship:

F =
[
eα(L−L

0)
]+
− 1, (3.3)

where L is the muscle length, L0 a threshold length below which no force is generated,
α a physiological form parameter and F the generated force. The shape of the curve

32



3.2. The model

describing this relationship depends upon α, it is more or less constant for each
muscle and is sometimes referred to as the invariant characteristic of the muscle.
The position of the curve along the length-axis, on the other hand, is variable and
depends upon the threshold parameter L0. (Latash, 2008)

The Equilibrium Point Hypothesis states that this reflex loop is essential for both
stabilizing posture and generating movement. Consider a single joint actuated by a
pair of agonist and antagonist muscles, e.g. the elbow with biceps and triceps brachii,
flexed at 90◦. The state of this system can be described by the joint angle θ as a
single parameter, as muscle length is uniquely determined by the joint angle and
muscle force uniquely determines the joint torque T

T = TAG − TAN (3.4)

TAG =
[
eαAG(θ−θ0AG)

]+
− 1, TAN =

[
e−αAN(θ−θ0AN)

]+
− 1. (3.5)

A perturbation in the form of a small elbow extension generates a resisting torque
from activation of the stretched muscles via the reflex loop, while a perturbation in
the opposite direction is resisted by other muscles spanning the same joint. We will
refer to such opposing muscle groups as agonist/antagonist pairs. The combination
of the responses from these pairs leads to a negative feedback loop with a single
equilibrium point.

This system has one stable equilibrium point. Its position depends upon the thresh-
old parameters θ0AG and θ0AN of the agonist and antagonist acting upon the joint. For
αAG = αAN and in the absence of external torques, the equilibrium point is given by

λ =
θ0AG + θ0AN

2
. (3.6)

Fixing the equilibrium point λ leaves one free variable, which is defined as

ρ =
θ0AG − θ0AN

2
, (3.7)

describing the co-contraction of the muscle pair. High values of ρ imply high forces
of the individual muscles at the equilibrium point, while the resulting joint torque
is still zero. This allows us to reformulate the motorneuron activation in terms of λ
and ρ.

EAG = e[αE(θ−λ+ρ)]
+

− 1, EAN = e[−αE(θ−λ−ρ)]
+

− 1. (3.8)

So far, this model of α-motorneuron activation takes only position information
into account, i.e. muscle length or join angles. The α-motorneurons receive afferent
information from both type Ia and type II sensory fibers, though. While the latter
are sensitive to the length of a the static muscle, the former primarily fire when
the muscle length changes, i.e. they encode velocity information. De Lussanet and
colleagues have shown that it is beneficial to model this velocity dependence as being
relative to the rate of change of the threshold, i.e. depending upon (θ̇− λ̇) instead of
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just on the absolute velocity θ̇ (de Lussanet, Smeets, & Brenner, 2002). We add the
velocity term and make the activation dependent upon the proprioceptive signals of

the state variables θ̂ for θ and ̂̇θ for θ̇ (see below, Section 3.2.5) to get

EAG =e

[
αE

(
θ̂−λ+ρ+µ(̂̇θ−λ̇))]+ − 1,

EAN =e

[
−αE

(
θ̂−λ−ρ+µ(̂̇θ−λ̇))]+ − 1.

(3.9)

Adding up the activation for agonist and antagonist motorneurons with the ap-
propriate sign and including signal-dependent noise (see Section 3.2.1) gives an ex-
pression for the idealized total motorneuron activation

E = (−EAG + EAN) ηm ∈ R3, (3.10)

which is proportional to the total torque generated from active muscle contraction
in both agonists and antagonists.

3.2.3. Torque generation in muscle-tendon systems

Activation of motor neurons is transformed into force by muscle contraction. Muscles
are connected to different bones in the skeleton via elastic tendons that can store and
release energy. The muscle itself has elastic properties as well (Van Soest & Bobbert,
1993; Brown, Scott, & Loeb, 1996). We model the muscle-tendon complex as a
contractile element in parallel with a viscoelastic element.

The physical characteristics and dynamics of muscle force generation have been
modeled on various levels of detail. Many optimal control models of motor con-
trol assume that the central nervous system can directly generate joint torques or
even accelerations (Peterka, 2000; Todorov & Jordan, 2002; Kiemel et al., 2002).
This is physiologically implausible, due to the spinal reflex loops described in the
previous section. The equilibrium point hypothesis does take these spinal circuits
seriously, assuming that the control variables available to descending commands are
the thresholds of the stretch reflex (see Section 3.2.2). Other researchers have mod-
eled the spinal reflex loop in even more detail (Mileusnic, Brown, Lan, & Loeb, 2006;
Raphael et al., 2010), but the level of complexity of these models is beyond the scope
of the present study.

The λ-model specifies how the α-motorneuron activation depends upon the propri-
oceptive signals encoded by the activity of the sensory afferents – the E in Equation
3.10 signifies a correspondence to electromyographic data (EMG). The relationship
between the motorneuron activation and the actual force or torque generated by the
muscle is not trivial, though (Kandel, Schwartz, Jessell, Siegelbaum, & Hudspeth,
2012). The activity of the α-motorneuron causes calcium to be released in the mus-
cle fiber. The calcium facilitates the sliding of actin against myosin layers within
the fibers. The calcium is transported back out of the muscle fiber during this pro-
cess. The sliding process continues as long as calcium is available, i.e. the length of

34



3.2. The model

the muscle contraction depends on the amount of calcium initially released, which
depends upon the activity of the α-motorneurons. This transformation of neural
activity into force takes time. It is usually modeled as a second order low-pass fil-
ter. There are different versions available in the literature, for the present model we
choose to follow the model of Gribble and colleagues (Gribble et al., 1998):

T̃act = AE ∈ R3, (3.11)

τ 2mT̈act + 2τmṪact + Tact = T̃act ∈ R3, (3.12)

where T̃act is the steady state torque, τm a time constant and Tact the instantaneous
torque generated by the active contraction process. The physiological parameter
A describes the relationship between motorneuron activity or EMG and generated
torque.

In addition to the active feedback loops that counteract stretch by the reflex loop
described above, muscles also have viscoelastic properties that resist stretch pas-
sively. In addition to that, the tendon is a purely viscoelastic element that cannot be
actively modulated by the nervous system. Joint torques generated by these passive
elastic properties of the muscles and tendons along the leg have been measured ex-
perimentally by Riener and Edrich (1999). These researchers found that the passive
torques can be described well by a double exponential curve of the general form

Tela,j = exp(aj0 +
3∑
i=1

ajiθi)− exp(bj0 +
3∑
i=1

bjiθi) + cji, (3.13)

where j indicates the joint. For the knee joint, an additional exponential term ac-
counts for the steep increase in torque when the knee is fully extended (see Section
3.5.1 for further discussion). We adopt this formulation for our model.

The passive viscous properties of muscles and joints are difficult to determine for
lack of experimental data. The viscosity of muscles and tendons has been modeled
by a linear (Hatsopoulos, 1994; Flash, 1987; Hogan, 1984) or nonlinear (Barto, Fagg,
Sitkoff, & Houk, 1999; Gribble et al., 1998; Loeb, Brown, & Cheng, 1999; Tee, Burdet,
Chew, & Milner, 2004) damping element. As the range of movement in quiet stance
is not large enough for the non-linearity to be significant, we chose to model viscosity
by a linear term

Tvis = −Bθ̇ ∈ R3. (3.14)

The total force generated by the muscle-tendon complex is given by the sum of the
active torques generated by muscle contraction and the elastic and viscous passive
torques

T = Tact + Tela + Tvis, (3.15)

which corresponds to a contractile element in parallel with a viscoelastic element.
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Figure 3.2.: Sketch of the kinematic model of the body in upright stance as an in-
verted pendulum with three segments. The body configuration is de-
scribed by the three angles θi of the ankle, knee and hip joints.

3.2.4. Biomechanics of the skeleton

The configuration of the body in space can be described by specifying the configura-
tion of each bone as a rigid body and neglecting the shifts of muscle, skin and other
tissues around the bones. The bones do not move freely, though, but are connected
to each other as joints, by structures of muscles, tendons, ligaments and cartilage.

The exact structure of the connection between two bones varies from joint to joint.
A common feature is that parts of two or more bones moving against each other
without losing the surface connection. The two surfaces are usually rounded, implying
that if described in an appropriate coordinate frame, the motion is mostly rotational
and the translational components can be neglected. The relative configuration of
the femur (thigh) and the tibia (shank), e.g., is specified by defining a single axis
of rotation somewhere between the lateral and medial condyles of the femur and an
angle of rotation around that axis relative to some arbitrary reference configuration.

The configuration of the whole body in the sagittal plane can be described by
a number of segments connected by rotational joints. The lower body consists of
the leg segments foot, shank and thigh, connected by the ankle joint between foot
and shank and the knee joint between shank and thigh. The upper body is more
complicated: the spine consists of 24 articulate vertebrae and the fused vertebrae
of the sacrum. The head is attached to the spine by the atlanto-occipital joint,
describing movement between the uppermost vertebra of the cervical spine (atlas, or
C1) and the base of the skull (occipital bone). We have chosen to mostly neglect this
complexity in the current model: The movement of two single vertebrae against each

36



3.2. The model

other is quite restricted. Furthermore, adding 24 degrees of freedom would make the
model computationally infeasible. Instead, we model the trunk and head as a single
rigid body, linked to the lower body at the hip joint. The body configuration is thus
described by a set of three generalized coordinates θi: the angles of the ankle (θ1),
knee (θ2) and hip joints (θ3), as illustrated in Figure 3.2.

The equations describing the kinematics and dynamics of the body can be derived
explicitly using basic trigonometry and mechanics. For the three degrees of freedom
model, the equations are provided in Appendix C. For more degrees of freedom, the
equations become too long to be derived explicitly.

While the equation for the position of the head in anterior-posterior direction p
is comparatively simple, the equations for the dynamic terms are more complex and
depend upon large numbers of parameters, most notably the locations of the joint
axes and segment centers of mass and the weight and moments of inertia of the
segments. These parameters were derived for an ideal male subject of 1.8 m height
and 80 kg weight using the methods specified by Winter (Winter, 1990). The values
of the biomechanical parameters are listed in Appendix B.

The configuration of the body in space changes according to torques acting on the
joints, both from muscle-tendon complexes and gravity. The equations of motion
relating the torques to accelerations are given by

M(θ)θ̈ + C(θ, θ̇)θ̇ +N(θ) = T, (3.16)

where M is the inertia matrix, C a matrix representing Coriolis and centrifugal forces,
N the vector of gravitational forces and T the vector of torques generated by the
muscle-tendon complexes defined in Equation 3.15.

3.2.5. Sensor data and neural representations

Having modeled how the state of the body in space changes depending upon internal
and external forces, we now move on along the sensorimotor loop to how the CNS
senses these changes of body configuration and derives estimates of variables that
are important for body stability from those sensations. For upright stance, the most
important sensory surfaces are the eyes, the vestibular system, proprioceptive muscle
spindles and pressure sensors in the soles of the feet. Among these sensor modes,
the role of proprioception is unique, because besides contributing to the formation
of central estimates of the body in space, the activation of the proprioceptive muscle
spindles also play a vital role for the stretch reflexes in the spinal cord. We will first
treat this special role of proprioception in the activation of α-motorneurons, then
move on to deal with the formation of central estimates of the body in space from
fusing multiple different sensory channels, including perception.

Proprioception is of paramount importance for postural stability. Nevertheless, the
term is loosely defined and refers to a collection of several different sensory surfaces
(Taylor, 2009). There are three different types of afferent: Ia, Ib and II. Type Ia and
II afferents terminate in the muscle fibers. Type Ia afferents mostly fire when the
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muscle length changes and can be said to encode the velocity of the muscle stretch.
Type II afferents mostly fire when the muscle remains still, they encode the muscle
length itself and fire in static muscles.1 Type Ib afferents terminate in Golgi tendon
organs. The firing rate in the Ib afferents depends upon the stretch of the tendon,
which is directly determined by the total force currently generated by the muscle, so
Ib afferents can be said to encode force.

Physiologically, the neural activation in these pathways depends upon muscle
length, rate of change, and force. The important aspect of information about the
body in space is not so much the length of the skeletal muscles, though, but rather the
configuration of the joints. Muscles are connected to joints via elastic tendons (Van
Soest, Bobbert, & van Ingen Schenau, 1994). The relationship between the joint
angle and the muscle length is not unique, but depends upon the tendon length.
Kistemaker and colleagues have shown recently that it is feasible to assume that
the tendon length is known to the proprioceptive system: the relationship between
tendon length and muscle force is unique, and muscle force is coded by activity of
the Ib afferents (Kistemaker, Van Soest, Wong, Kurtzer, & Gribble, 2013). It is
thus reasonable to represent the processes and activation variables described above

as estimates of the joint angles θ̂ and their rate of change ̂̇θ which we used to describe
the stretch reflex in Equation 3.9.

The other sensory channels included in our model are much further removed from
neurophysiological data. Loosely speaking, vision and the vestibular system provide
information about the kinematic state of the body in space, while the pressure sensors
in the sole of the feet provide kinetic information (Peterka, 2002). We assume that
the brain processes the information into single estimates for kinematic states of three
variables that describe aspects of the body in space: the center of mass position
in anterior-posterior direction, the head position in anterior-posterior direction, and
the orientation of the head around the media-lateral axis. This process of combining
different, possibly conflicting sensory estimates for the same or related values into
a single representation is known as multisensory fusion or multisensory integration
(van der Kooij, Jacobs, Koopman, & Grootenboer, 1999; Maurer et al., 2006). Models
of multisensory fusion often adopt Kalman filters to optimally combine the different
sensory modes into a single estimate by adapting weights based on the reliability of
each channel (van der Kooij et al., 1999; Kiemel et al., 2002). Instead of modeling
the multisensory fusion process explicitly, we assume that it results in an unbiased
but delayed estimate of the variable in question.

All these signaling processes are not instantaneous. The creation of action po-
tentials in the muscle spindles and Golgi tendon organs and the transmission along
the axons and the synapse to the α-motorneuron take time. The neural processes of
fusing the different sensory modes to a unified estimate of important variables takes
even more time. Again, we cannot account for these processes in detail, but capture
them by adding a fixed time delay to the sensory estimates, as is common practice in

1 This difference is one of preferred firing rather than a complete division of labor: both type Ia
and II are active in both static and changing muscles.
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functional models on this level (van der Kooij et al., 1999; Maurer & Peterka, 2005;
Asai et al., 2009).

After these considerations, we can state the sensory estimates of our model as

θ̂(t) = θ(t− dθ) + ηθ,
̂̇θ(t) = θ̇(t− dθ) + ηθ̇,̂̇p(t) = ṗ(t− dp) + ηṗ, ̂̈p(t) = p̈(t− dp) + ηp̈,̂̇c(t) = ċ(t− dc) + ηċ, ̂̈c(t) = c̈(t− dc) + ηc̈,

ô(t) = o(t− do) + ηo,

(3.17)

where θ ∈ R3 is the vector of joint angles, p, c ∈ R the head and CoM positions in the
anterior-posterior direction, and o is the head orientation around the media-lateral
axis. The η∗ are random processes as described in Section 3.2.1.

Different sensory modes that estimate the same functional variable have different
levels of accuracy (Fitzpatrick & McCloskey, 1994). Adding or blocking a sensory
channel during quiet stance has a significant effect upon the magnitude of the postural
sway. A well known phenomenon is that the postural sway increases when subjects
close their eyes (Nashner, Black, & Wall, 1982; Kiemel et al., 2002; Krishnamoorthy,
Yang, & Scholz, 2005; Hsu et al., 2007). If, on the other hand, an additional sensor
mode is provided by lightly touching a fixed reference object with a finger, sway is
reduced (Zhang et al., 2007; Wing, Johannsen, & Endo, 2011). We model the loss of
reliability when closing the eyes by an increase in the noise for estimates of variables
where vision plays a role, i.e. the position and orientation of the head.

3.2.6. Neural dynamics in the brain

How does the central nervous system utilize the available sensor information to gen-
erate descending commands that generate appropriate muscle activations to stabilize
the body in space? While all other parts of the motor loop described in the preceding
sections are constrained by anatomical or physiological data to some degree, these
constraints apply much less to the dynamics of the brain areas involved in movement
generation.

The interfaces for these neural dynamics are the sensory signals ̂̇c, ̂̈c, ̂̇p, ̂̈p and ô,
on one side and the descending motor commands λ̇ on the other side. The neural
dynamics then formalize as any function

λ̇(̂ċ, ̂̈c, ̂̇p, ̂̈p, ô) ∈ Rn. (3.18)

The role of the brain dynamics is to detect deviations from the stable state of
upright stance and counter them with appropriate motor commands. The stable
state is usually defined as any state where the center of mass position in anterior-
posterior direction is within the support surface, i.e. between the toes and the heel of
the feet when standing on normal ground. This is a region in the three-dimensional
state space defined by the joint angles. Regardless of where exactly within that region
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the system is at any given point in time, if it moves in any direction for a substantial
length of time, it will leave the stability region. One approach to stabilizing the
system is thus to detect any movement and generate a descending command that
reduces that movement to zero.

Movement is indicated by the estimates of the velocity and acceleration of the head
and center of mass. Even if a velocity is zero, a non-zero acceleration results in a
non-zero velocity over time. For any variable v, a negative feedback law of the form

v̈ = −α1v − α2v̇ (3.19)

with positive gain parameters αi is a system with a single asymptotically stable fixed
point (Perko, 1991). We can translate that into feedback terms

fc = −αċ̂̇c− αc̈̂̈c, fp = −αṗ̂̇p− αp̈̂̈p (3.20)

for the variables head velocity and center of mass velocity. If the brain could generate
descending signals resulting in

...
c = fc,

...
p = fp, (3.21)

i.e. the equation 3.19 holding, then this feedback law would reduce any movement
of the center of mass and head to zero.

Realizing this feedback directly as specified by equation 3.21 is not possible, though.
The available descending commands are modulations λ̇ of the activation thresholds
of the spinal reflex loops. The nervous system has to transform the desired feedback
for center of mass and head movement states into appropriate shifts in these thresh-
olds λ. In the following paragraphs, we propose one solution to this transformation
problem for the center of mass.

The first step is to account for the kinematic structure of the body. The effect
of joint motion on center of mass displacement is different for each joint. The rela-
tionship between these is captured in the Jacobian matrix Jc = dc

dθ
. The relationship

between the movement states is given by

ċ = Jcθ̇,

c̈ = Jcθ̈ + J̇cθ̇,
...
c = Jc

...
θ + 2J̇cθ̈ + J̈cθ̇.

(3.22)

In the regime of quiet stance, though, the changes in the Jacobian matrix are very
small, so it is safe to assume that

J̇c = J̈c = 0, implying (3.23)

...
c = Jc

...
θ . (3.24)

The descending motor commands λ̇ affect θ directly and c only indirectly by its
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dependency on θ, so we have to solve this equation for
...
θ . As the Jacobian Jc is

not square, we cannot invert it. We can use a right inverse to get the relationship
we want, though. We choose the Moore-Penrose pseudo-inverse (Siciliano & Khatib,
2008), given by

J+
c = JTc (JcJ

T
c )−1. (3.25)

This specific choice of right inverse has the property of minimizing the summed
squares of the resulting solution in joint space.

Using this right-inverse, we arrive at the implication

...
θ = J+

c fc =⇒ ...
c = Jc

...
θ = JcJ

+
c fc = fc. (3.26)

For any desired center of mass jerk
...
c , we can now calculate a joint jerk

...
θ that will

result in the desired center of mass jerk.
How can the brain generate this joint jerk vector? Deriving the equation of motion

3.16 by time yields
M

...
θ + Ṁθ̈ = Ṫ − Cθ̈ − Ċθ̇ − Ṅ . (3.27)

Again we can assume that during quiet stance, the inertia matrix M is constant,
so Ṁ = 0. The term of velocity-dependent forces is so small that we neglect it as
well, assuming C = Ċ = 0. The changes in the gravitational force matrix depend
nonlinearly upon θ̇. While these changes are not small, it is not feasible to assume
that the CNS can estimate them fast and accurately enough to actually benefit from
doing so. Instead, we can assume that the changes in N are treated as a quasi-
random perturbation that has to be stabilized against: we set Ṅ = 0 as well. The
equation then simplifies to

M
...
θ = Ṫ , (3.28)

which can be used to transform a desired joint jerk vector into a desired torque
change vector.

From the point of view of the brain, each joint can be seen as a damped mass-spring
system that can be influenced by shifting its threshold parameter λ. How should the
threshold parameters be changed in order to get a desired change in torques? Again,
we need several simplifications to approach this question. First, we neglect changes in
the passive stiffness – while they are not zero, estimating them is not straightforward,
so we assume they are treated as unpredictable perturbations similar to changes
in gravitational force. Furthermore, we neglect the time delay introduced by the
transformation of motorneuron activation into muscle force (Equation 3.12). With
these simplifications and equation 3.11, we get

T = T̃act = AE. (3.29)

Deriving this by time and applying the chain rule yield

Ṫ = A
d

dt
E = A

dE

dλ

dλ

dt
= ARλ̇, (3.30)
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where the active stiffness matrix

R =
dE

dλ
. (3.31)

describes the relationship between changes in lambda and changes in muscle activa-
tion.

Calculating the partial derivatives that make up R is rather straightforward: The
muscle activation is the sum of agonist and antagonist activation, as specified in
equation 3.10. The diagonal terms of R are given by

∂(EAG)i
∂λi

= −αE
[
e
αE

(
θ̂i−λi+ρ+µ( ̂̇θi−λ̇i))]+ = −αE (EAG + 1) (3.32)

and analogously
∂(EAN)i
∂λi

= αE (EAN + 1) , (3.33)

whereas the off-diagonal terms simply vanish.
Combining equations 3.28 and 3.30 provides a relationship

M
...
θ = ARλ̇ (3.34)

between joint jerks and threshold changes. This allows us to refine the implication
3.26 to

λ̇ = R−1A−1MJ+
c fc =⇒ ...

c = fc. (3.35)

With the simplification we made, this implication holds because

...
c

3.24
= Jc

...
θ (3.36)

3.28
= JcM

−1Ṫ (3.37)
3.30
= JcM

−1ARλ̇ (3.38)
premise

= JcM
−1ARR−1A−1MJ+

c fc. (3.39)

Using the actual feedback term we stated in equation 3.20 we arrive at the formula

λ̇ = Fc = R−1A−1MJ+
c

(
−αċ̂̇c− αc̈̂̈c) ∈ R3 (3.40)

describing the neural dynamics that stabilize upright stance by reducing sensed move-
ment of the center of mass.

3.2.6.1. Sensory integration

The brain has more sensory information available than just about the movement
state of the center of mass. Sensory integration is the process of combining different
sensory channels into a coherent percept of the body in space. There are two layers
to the problem of sensory fusion. The first problem is to integrate two or more
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sensory channels that provide different, possibly conflicting estimates of the same
state variable. As stated in section 3.2.5, we do not deal with this problem explicitly,
but assume it is being solved somehow by the central nervous system. The second
problem is how to combine information from sensory channels that estimate different
state variables. In our concrete case, how do we combine the feedback term for center
of mass position 3.40 with feedback for the other state variables head position and
orientation?

For head position, our solution is simple and straightforward. First we calculate a
similar feedback term depending on sensed head movement states. Analogous to the
derivations above, the visual feedback term is given by

Fp = R−1A−1MJ+
p

(
−αṗ̂̇p− αp̈̂̈p) ∈ R3. (3.41)

As they both provide modulations of λ, we can add the center of mass feedback and
the head feedback terms as two contributions to a single solution

λ̇ = Fc + Fp ∈ R3. (3.42)

This simple version of sensory integration works because the directions given by
the pseudo-inverses of the Jacobians for center of mass and head position are more or
less collinear in joint space, so the two terms mostly support each other, and errors in
one contribution are mitigated by the other one. For head orientation, the situation
is different. The pseudo-inverse of the head orientation Jacobian is

J+
o =

1

3

1
1
1

 ∈ R3, (3.43)

i.e. changes of head orientation are distributed equally across all joints. As the Moore-
Penrose pseudo-inverse minimizes joint changes, a little change in head orientation
can and usually does induce a rather large change in the other relevant state variables
center of mass and head position. This is obviously not desirable, therefore we suggest
a different right-inverse of Jo to transform changes of head orientation into changes
of joint angles. To prevent the undesirable effect, this right-inverse should have the
property of leaving the center of mass position invariant. This can be achieved by
the augmented Jacobian technique (Siciliano, 1990), setting

J̃o =

(
Jo
Jc

)
(3.44)

and defining

Fo = R−1A−1MJ̃+
o

(
fo
0

)
, (3.45)
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where the
fo = −αoô (3.46)

and 0 in the rightmost term correspond to the desired changes in orientation and
center of mass. The orientation feedback depends upon the current head orientation
with a gain factor αo, instead of on the movement state like the center of mass and
head position feedback terms. This is mostly because for head orientation, the state
itself is available from the sensory system, in contrast to the other two variables.

Again, we can integrate the feedback contributions from the different sensory
modes by adding them up. The final equation for the neural dynamics in the brain
transforming sensory information into descending motor commands is

λ̇ = Fc + Fp + Fo + ηλ̇. (3.47)

The noise term ηλ̇ represents the random factors of the neural processes corresponding
to the transformations expressed in the equations above.

3.3. Parameters

In this section, we discuss the choice of some of the model parameters and pro-
vide constraints on them from the literature. For a complete overview of all model
parameters, please see Appendix B.

3.3.1. Time delays

Many of the variables used in our model depend upon time. Some of the processes
described by transformations between variables are instantaneous, while others are
abstract descriptions of processes that need time to perform an action. Time delays
are a general problem for error feedback systems in general and the stabilization of
quiet upright stance in particular (Mergner, 2010).

One tractable case is the second-order low pass filter describing how muscle force is
generated in response to motorneuron activation by calcium kinetics (Equation 3.12).
This process has been studied in great detail and is theoretically well understood.
The relaxation speed of the current torque to the steady state torque specified by
the motorneuron activation is described by the time parameter τm. Feldman and
colleagues used a value of τm = 10 ms (St-Onge et al., 1997), while Gribble and
colleagues use a slightly higher value of τm = 15 ms (Gribble et al., 1998). Micheau
and colleagues use an even higher value of τm = 20 ms, but approximate the low pass
filter by a fixed time delay of 2τm = 40 ms (Micheau et al., 2003). In our model, we
chose the middle ground with τm = 15 ms.

The spinal reflex loops transforming deviations sensed by muscle spindles into
motor-neuron activity also take time. We do not model the dynamics of these pro-
cesses explicitly. Instead, we assume a fixed time delay dθ for the sensor signal to
arrive in the spinal cord and be transformed into motorneuron activation there. The
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value of dθ is constrained by experimental data. Values for different physiological
reflex loops vary. The fastest response times are found in monosynaptic reflex loops.
The latency between the electrical stimulation of human calf muscles (triceps surae)
and motorneuron activation is between 30-35 ms, the range depending mostly upon
the distance between the muscle spindles and the motorneurons, i.e. the subject’s leg
(Rothwell, 1987; Latash, 2008). Polysynaptic reflexes have a longer delay time, due
to the additional time requirements of the neural processing involved. Depending
upon the specific reflex loop and the muscle involved, the reported delay time lies
within 30–70 ms (Matthews, 1994; Latash, 2008). We choose the lower end of this
interval as time delay dθ in our model. This value well within the range of time delays
used in similar models of motor control. Gribble and colleagues use 25 ms (Gribble
et al., 1998) for upper extremity reaching. For postural control, van Soest and col-
leagues use 35 ms (Van Soest, Haenen, & Rozendaal, 2003). Most other models of
quiet upright stance do not differentiate between the short delays of proprioception
in the spinal feedback loop and the long delays of afferent sensory information in the
brain.

The time requirements of the neural processes in the brain are much less con-
strained by neurophysiology. One constraint is the measured latency of responses to
movement-related perturbations that are processed in the brain. In one experiment,
Smeets and colleagues studied hand movements towards targets that could be iden-
tified among other objects by a number of different characteristics like color, shape
or orientation. During the movements, the target sometimes swapped location with
another object unexpectedly. The time after which the perturbed movements started
to differ from the unperturbed ones varied between ≈ 120–220 ms, depending on the
identification characteristics (Veerman, Brenner, & Smeets, 2008). These numbers
are delay times for the complete visuomotor loop, of course, so they include the time
delays that we already accounted for explicitly, most notably the processing time of
the spinal reflexes and the force generation of muscles. Other researchers have fitted
the time-delay in feedback models to experimental data. Time delays in the range
of ≈ 160–200 ms between sensory stimuli and observable change in the behavioral
sway are reported by Peterka (2002) and Maurer et al. (2006). The models used
in these studies do not distinguish between time delays from neural processing in
the brain and spine, and force generation from the calcium kinetics in the muscle,
so reported values have to be interpreted as the sum of these three effects. As we
already accounted for the other two delays with values that sum up to ≈ 70− 80 ms,
we choose the value dc = 120 ms to reach a total delay in the appropriate range.

All other processes are modeled by differential equations, so the dependency on
time is explicitly included.

3.3.2. Muscle contraction

The equation we have used for the λ-model of the Equilibrium Point Hypothesis
was used in the same or similar form in several modeling studies over the last years
(Laboissière et al., 1996; St-Onge et al., 1997; Gribble et al., 1998; Micheau et al.,
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2003; Kistemaker, Soest, & Bobbert, 2006; Martin, Scholz, & Schöner, 2009). Most
of these models deal with different motor systems like arms or jaw, though, and
none of them uses exactly the same equations as our model, which makes parameter
comparison difficult.

The model that is closest to our case is the one used by Micheau and colleagues in
a simulation study of upright stance (Micheau et al., 2003). In this study, the gain
between muscle spindle and motorneuron activation αE varies between 30–55 rad−1

for αE, with the time constant µ set to 90 ms. The transformation parameter between
motorneuron activation and joint torque is A = 5 Nm. One difference between their
model and ours is that they do not include passive stiffness and damping of the
muscle-tendon complex, nor co-contraction.

A study of single-joint movements was done by the group of Anatol Feldman (St-
Onge et al., 1997). They simulate elbow movements by assuming time-shifting de-
scending commands for λ, ρ and µ. They use values of αE = 0.05 deg−1 ≈ 2.86 rad−1

with µ varying between 0.05 and 65 ms and A = 1.2–1.4 N m.
Many studies model on a level of single muscles rather than single joints. Paul

Gribble and colleagues used a model of the upper arm with two joints and six muscles
to fit the parameters of a λ-model to experimental data (Gribble et al., 1998). For the
static case, they used fixed values of αE = 0.112 mm−1, µ = 60 ms and A = 1 N cm−2.
Transforming these into joint angles from muscle length results in values similar to
those of St-Onge et al.

Are these parameter settings used by different groups for different effector systems
consistent? The difference between the form parameter αE in the two models is
difficult to understand. Gribble and colleagues state that αE is a form parameter
that is the same for all muscles (Gribble et al., 1998). This statement holds for actual
muscles though, not joint-muscles that model combinations of several actual muscles
acting on one joint. The transformation between parameter values relative to joint
angles and values relative to muscle lengths is done via the moment arm of the muscle
(Shadmehr & Arbib, 1992). For the elbow joint, a moment arm of 0.02 m transforms
the value αE = 0.122 mm−1 (Gribble et al., 1998) into 2.44 rad−1, which is close to
the 2.86 rad−1 used by St-Onge et al. For the ankle joint, a moment arm of 0.044 m
results in αE = 5.36 rad−1, which is still very different from the range 30–55 rad−1

reported by Micheau et al.
The method used by Micheau and colleagues to determine αE consisted of a per-

turbation from a ball swinging on a pendulum that hit the subject into the lower
back during quiet stance with a force of well-defined, fixed magnitude (Kron, 1997).
These perturbations resulted in resisting ankle torques that peaked at about 10 Nm
and vanished after 2 s. The authors fitted a linearized version of the λ-model invari-
ant characteristic (compare equations 3.9, 3.10) to these responses to determine αE,
assuming that λ is constant over the measured interval and having estimated µ and
A using other methods.

Two effects are disregarded in this method. First, the assumption that λ is constant
during the relevant interval after the perturbation is disputable. As discussed above
in section 3.3.1, a reasonable estimate of the interval between a perturbation and
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neural response in the brain is around 120–220 ms, not 2 s. As demonstrated by other
researchers, it is not feasible to assume that the spinal reflex loops alone can stabilize
the body in upright stance (Morasso & Schieppati, 1999; Morasso & Sanguineti, 2002;
Van Soest et al., 2003). We must assume that Kron’s estimate for αe includes shifts
in the activation threshold λ that generate additional torque. The second factor
neglected by Kron is torque generated by passive elasticity of the tissue. Considering
these two factors, we conclude that the range of 30–55 rad−1 for αE is a significant
overestimation.

During the development of the model it turned out that both the value range used
by Micheau and colleagues, αE = 30–55 rad−1, and the transformed value from St-
Onge and colleagues, αE = 5.36 rad−1 do not work. For small values of αE, strong
neural feedback gains αp, αc and αo can prevent the body from falling down. For our
case of stabilizing quiet stance of a multi-segment inverted pendulum however, we
were unable to generate a parameter setting for which the feedback holds the body
in a stable configuration. Substantial oscillations with low frequency persisted for a
low parameter value of αE = 6 rad−1. For a high value of αE = 30 rad−1, the body
inevitably started oscillating with high frequency of ≈ 5 Hz and increasing amplitude
in a mode where ankle and hip were in-phase and the knee phase shifted by almost
exactly 180◦, even in the absence of feedback in the brain. For these reasons, we
chose an intermediate value of αE = 12 rad−1 for our model.

The difference in the parameter A between the models of Micheau and St-Onge
is easier to explain. The parameter A describes the capabilities of a muscle system
to generate force or torque relative to motorneuron activation. It depends upon the
physiological cross-sectional area (PCSA) of the actuating muscle(s). The PCSA
is a combination of the anatomical cross-sectional area (ACSA) and the pennation
angle of the muscle fibers (Winters & Woo, 1990). Gribble et al. define A relative
to the PCSA of the modeled muscle system and use a value of 1 N cm−2. The total
PCSA of the ankle plantarflexors is estimated as 124.3 cm2 (Ward, Eng, Smallwood,
& Lieber, 2009). Transformation from muscle forces to joint torques is done via the
moment arm of the muscles in question (Shadmehr & Arbib, 1992). The main ankle
plantarflexors are the soleus and the gastrocnemius. Both muscles share a tendon
that is fixed to the heel behind the ankle, with a moment arm of 0.044 m (Van Soest
et al., 2003). This yields a value of A = 1 N cm−2 · 124.3 cm2 · 0.044 m = 5.47 N m,
which is very close to the value used by Micheau and colleagues.

What are the values A for the knee and hip joints? Ward and colleagues report
the combined PCSA of the knee extensors as 88.4 cm2 and of the hip extensors as
73.4 cm2 (Ward et al., 2009). Moment arms of the major muscles in each group are
0.042 m at the knee for the vasti and 0.062 m for the glutei at the hip (Van Soest et
al., 2003). This results in parameter values 3.71 N m at the knee and 4.55 N m at the
hip.

The main contributors in each muscle group are mono-articular, i.e. they act only
on one joint. Nonetheless, we have to account for the presence of bi-articular muscles
that span the ankle and knee or the knee and hip. The relevant bi-articular muscle
actions are the gastrocnemius, semitendinosus and semimembranosus on the knee
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PCSA moment arms (m)
(cm2) ankle knee hip

gastrocnemius 30.8 +0.044 +0.018
hamstrings 23.2 +0.026 +0.077
rectus femoris 13.5 –0.042 –0.035

Table 3.1.: Physiological cross-sectional area and moment arms for the relevant bi-
articular muscles in the leg. PCSA according to Ward et al. (2009),
moment arms according to Van Soest et al. (2003). Gastrocnemius in-
cludes medial and lateral head, hamstring stands for semitendinosus and
semimembranosus.

and the rectus femoris on the hip. Their PCSA and moment arms are summed up in
table 3.1. The presence of these bi-articular muscles is captured by the off-diagonals
in the matrix A of our model. The action of the gastrocnemius on the knee results
in a value of 0.55 N m, the semitendinosus and semimembranosus on the knee in
0.60 N m and the rectus femoris on the hip in 0.47 N m. Combining these with the
single-joint values from above, and multiplying by two for having two legs, results in
the parameter matrix

A =

10.94 1.1 0
0 7.43 1.2
0 0.94 9.10

 N m. (3.48)

3.3.3. Passive effects

Passively generated torques consist of elastic torques depending on the joint angle
configuration and viscous torques depending upon the velocity of joint angle motions.
Passive elastic effects at the ankle joint during quiet stance have been extensively
studied using a wide range of methods. Usually it is formulated as a linear stiffness
parameter, relating displacements in joint angle to the magnitude of ankle torque in
the opposite direction generated by the passive structures around the joint. We have
chosen to adopt the explicit dependency of passive torque on joint angles proposed
by Riener and Edrich, along with the parameters estimated in their study (Riener &
Edrich, 1999). To compare the elastic torques to stiffness parameters in other models,
we linearize these equations around the initial configuration used in our simulation
study (see below, 3.50), which yields an ankle stiffness of K = 52.3420 N m rad−1.

The starting point for extensive research into passive ankle joint stiffness during
quiet stance was a study by Winter and colleagues (Winter et al., 1998). The authors
argue that long delays of more than 150 ms in the postural control cycle would be
evident in the temporal relationship between center of pressure and center of mass
trajectories. As experimental data do not exhibit such delays, control cannot be
reactive. Instead, Winter and colleagues proposed a “stiffness control model”, hy-
pothesizing that the CNS stabilizes the body as a single-link inverted pendulum by
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setting a constant muscle tone at the ankle and then leaving the control to the fast
spinal feedback loops. By fitting the amplitude spectrum of the mechanical system to
experimental data, they estimated a stiffness parameter value of K = 802 N m rad−1

in normal conditions.
In a subsequent paper, Morasso and Schieppati (1999) argue against the “biological

inevitability” of that model by stating that the short time-lag between CoP and
CoM is simply a result of the biomechanical features of the intrinsically unstable
inverted pendulum. They further argue that the stiffness of the muscles from the
spinal feedback loop is not large enough to stabilize the inverted pendulum, citing
estimates from several studies that are reproduced and extended in table 3.2.

The difference of methods used in this study makes it hard to compare the re-
sults directly. Four studies out of six attempted to separate active effects from
purely passive torques. These estimates are all larger than the value from the purely
passive experiment with relaxed muscles by Riener and Edrich. It is possible that
taut muscles also exhibit some passive elastic properties that are responsible for this
difference. Some studies report that the passive elastic stiffness depends upon the
baseline muscle force (Hof, 1998; Blanpied & Smidt, 1992; Weiss, Hunter, & Kearney,
1988; Mirbagheri et al., 2000), while others state that it does not (Loram & Lakie,
2002), though the increase in baseline torque analyzed in the latter study was small
compared to the others. Another source of the difference in results might be that
stiffness depends upon the magnitude and velocity of perturbations (Joyce, Rack, &
Westbury, 1969).

We have decided to use the formulas from Riener and Edrich, for several practical
reasons, although they likely underestimate the torques by neglecting the increased
stiffness from taut muscles. First, when modeling the passive elastic effects as a
rotational spring with a stiffness parameter, one must specify the resting angle of
that spring. While the stiffness parameter is estimated in the cited studies, the
resting angle is not specified. Second, while there are several studies that estimate
stiffness at the ankle, there are almost no similar studies that estimate stiffness at the
knee and hip joints (but see Whittington, Silder, Heiderscheit, and Thelen (2008);
Silder, Heiderscheit, and Thelen (2008) for studies in walking). The off-diagonal
elements of the stiffness matrix that represent passive elastic torques from bi-articular
muscle-tendon complexes have not been estimated experimentally, to the best of our
knowledge. While it is possible to determine these parameters making some broad
generalizations, the effects they describe are well captured by the model by Riener
and Edrich. Lastly, it turns out that with the model as presented here, the magnitude
of the passive elastic effects does not have a major effect on the characteristics of the
generated movement trajectories.

Passive viscous effects of the leg joints have received much less attention than
elastic torques in the literature. Some of the studies examining parameters for ankle
stiffness have also estimated damping parameters, as summarized in table 3.2. Again,
the range of reported parameters varies by an order of magnitude. Passive viscosity
is often assumed to be non-linear, being large for small velocities and then decreasing
as velocity magnitudes get larger (Tee et al., 2004; Loeb et al., 1999; Barto et al.,
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1999). This is a potential explanation for the discrepancies in the viscosity estimates
between different studies.

As the velocities are always small during quiet stance, we have neglected the non-
linearity of the viscosity and choose the magnitude parameter for the ankle joint from
the upper end of the reported values. For the upper joints and the off-diagonal entries
of the viscosity matrix, we determine values in a way such that B is proportional to
the muscle PCSA matrix A, resulting in

B =

25 2.5137 0
0 16.9790 2.7422
0 2.1481 20.7952

N m s rad−1. (3.49)

3.3.4. Free parameters

The parameters discussed in Section 3.3.1–3.3.3 describe physiologically well under-
stood relationships and are strongly constrained by the literature. The model of
the how representations of the body in space are are established using sensory data
and the neural dynamics transforming these into descending motor commands are
functional and not constrained by the physiological data. They are considered free
parameters for the process of fitting the model to experimental data. These are the
parameters

• feedback gain parameters: αċ, αc̈, αṗ, αp̈, αo

• noise magnitude parameters: σċ, σc̈, σṗ, σp̈, σo, σλ̇, σm, σθ, σθ̇

These 14 parameters are constrained by the data obtained from behavioral exper-
iments on quiet upright stance. As the concrete trajectories of the postural fluctu-
ations are a result of how the CNS reacts to estimation imperfections and random
perturbation within the neural processes and motor systems, reproducing the mea-
sured trajectories explicitly would be equivalent to estimating these random factors,
instead of providing insight of how the CNS deals with them (though Micheau et al.
(2003) did fit λ-trajectories of a similar model to joint angle trajectories). Instead of
fitting explicit trajectories, we attempt to reproduce the variability patterns shown
by these data sets. We choose three different classes of variability measures: the vari-
ance within each joint, the variance relative to different task variables as defined by
a UCM analysis, and the frequency dependence of the fluctuations (see Section 3.4.1
below). The free model parameters listed above were fitted by hand to reproduce
these measures reasonably well.

Though only loosely linked to the neurophysiology, these parameters still have
a meaning and cannot be chosen arbitrarily. One phenomenon we are trying to
explain is the difference in variability data between conditions with eyes open (EO)
and eyes closed (EC). This difference has to be reflected in the parameters for the
sensory channels containing vision. We do that by assuming that the accuracy of the
estimates for head movement and orientation suffers when the eyes are closed, i.e.
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EO EC unit

σċ 0.02 m s−1

σc̈ 0.02 m s−2

σṗ 0.015 0.02 ms−1

σp̈ 0.015 0.02 ms−2

σo 0.02 0.03 rad

σθ 0.002 rad

σθ̇ 0.002 rad s−1

σλ̇ 0.001 rad s−1

σm 0.02 –

value unit

αċ 1.5 rad−1s−2

αc̈ 0.5 rad−1s−1

αṗ 9 rad−1s−2

αp̈ 3 rad−1s−1

αo 60 rad−1s−3

Table 3.3.: Model parameters used in the simulations. Noise parameters may vary
by experimental condition (left), gain parameters are fixed (right).

the noise magnitude parameters σṗ, σp̈ and σo are larger for condition EC than for
EO. Table 3.3 sums up the values of all model parameters used.

3.4. Results

The model presented in section 3.2 was implemented and used in several simulation
studies. We explore the role of different factors for the whole system by selectively
turning them off. Then we compare the structure of the postural sway generated by
the model to experimental data.

3.4.1. Data acquisition and analysis

We reanalyze a data set of a quiet stance experiment where 10 human subjects stood
upright with arms crossed on a normal support surface for 5 minutes (Hsu et al.,
2007). Nine infrared markers 1cm in diameter were attached to the subjects’ body
(for details, please refer to Hsu et al., 2007). The marker positions were recorded
using a VICON visual motion measurement system (Oxford Metrics) at 120 Hz. For
comparison with the model, the marker data were transformed into joint angles for
the ankle, knee and hip joints.

The present model encompasses stabilizing feedback on a short and medium time
scale. Drifts in the threshold positions λ over a long time scale might still lead to
configurations that are unstable. It is assumed that the CNS has additional feedback
cycles to identify and counter these slow drifts, but these are not part of the current
model. For that reason, the experimental data was separated into episodes of 30
seconds each. Each trial yielded 8 such episodes, the first one starting 10 seconds
after trial start and each subsequent one starting where the previous one stopped.
This resulted in a total of 240 episodes from 10 subjects with 3 trials each.

The variance of the data episodes was analyzed with three different measures. To
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calculate total joint excursion variance (JEV), the variance of each joint trajectory in
each episode was calculated separately, then the mean over the episodes was taken to
get a JEV measure of each joint. In addition to that, a UCM analysis of each episode
was performed with respect to the anterior-posterior position of center of mass and
head position and the head orientation around the media-lateral axis as candidate
task variables. Again, the mean over all episodes was taken to get measures V ∗‖ , V

∗
⊥

for ∗ = c, p, o (see Chapter 2).
One important measure of postural fluctuations during quiet upright stance is the

power spectrum of the relevant variables (Collins & De Luca, 1994; Zatsiorsky &
Duarte, 1999; Saffer, Kiemel, & Jeka, 2008). We estimated the power spectrum of
the center of mass position and the joint angles for each trial with the Matlab PSD
function that implements Welch’s averaged, modified periodogram spectral estima-
tion method, using a 20s Hamming window with 50% overlap (Bendat & Piersol,
1993). Because this method already uses a time-window of medium length that is
moved in steps over the data, we analyzed the whole trials instead of the separated
episodes, resulting in 30 PSD estimates. A population estimate was formed by taking
the mean at each frequency over all subjects and trials.

3.4.1.1. Model data

The model described in Section 3.2 was implemented in Matlab. The differential
equations were solved with the Euler method, using a time step of 2 ms.

The initial kinematic state of the body was chosen to be the same as in the model
of Van Soest et al. (2003)

θ(0) =

−0.1
0.2
−0.2

 , θ̇(0) = 0, (3.50)

resulting in an initial center of mass position of c ≈ 3 cm in front of the ankle
joint. The initial values of the threshold parameters λ were chosen such that the
sum of passive and active torques exactly cancelled out the gravitational torques at
each joint. For a fixed θ, the force-length relationship 3.9 is monotonous in lambda
and thus invertible, so λ(0) is uniquely determined by 3.50 and requiring θ̈(0) = 0.
To find the actual value for λ(0), we first calculated the required initial motorneuron
activation pattern E(0) analytically from Equation 3.11, 3.13, 3.15 and 3.16 (assuming

T̃act = Tact). The vector of threshold values actually generating this motorneuron
activation via the neural dynamics of the spinal reflexes given in Equation 3.9–3.10
was found by calculating

λ(0) = arg min
λ
‖E(λ)− E(0)‖2 (3.51)

using the Matlab function fminunc. The initial conditions of all sensor estimates were
set to the actual values of the estimated variables. Time delays d were decreased to
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the current simulation time t for t < d. To prevent effects of these artificial choices
on the model results, the first 5 s of each trial were disregarded.

Simulations of the model using different settings were carried out. For each setting,
several trials of 35 s length were simulated. Excluding the initial 5 s resulted in a
number 30 s episodes for each setting. The variability characteristics JEV, V ∗‖ , V

∗
⊥ and

PSD were calculated for the model data in the same fashion as for the experimental
data.

3.4.2. Trajectory examples

The model as presented in Section 3.2 was capable of stabilizing the simulated body
against fluctuations from estimation errors, processing noise and the destabilizing
effects of gravity. This section provides example trajectories of several different im-
portant variables over a single episode in the eyes open condition. Example trajecto-
ries from a single human trial (subject VK, trial 1, EO) are also presented for visual
comparison.

Figure 3.3 shows the joint angle trajectories. Visual inspection already indicates
that the variability is similar to the experimental data: both the sway magnitude
and the oscillation patterns are not too different. The same holds for the center of
mass trajectories shown in Figure 3.3.

Figure 3.4 shows the joint torque trajectories for the ankle joint during the same
simulation trial of the model, separated into active torque Tact generated by muscle
contraction and passive torques Tela, Tvis from elastic and viscous properties. The
gravitational torque −N is also plotted, with inverse sign for easier comparison.
The trajectories show that while the level of passive elastic torque is significant
and sometimes exceeds the magnitude of the active torque, its change in magnitude
is minimal. Its contribution to counter the destabilizing effects of gravitation and
random fluctuations is small. The contribution of the viscous properties is even
smaller.

3.4.3. The functional role of spinal and higher feedback

The role of the feedback dynamics of the spine and brain can be assessed by simulating
the model in their absence. Removing the higher feedback of center of mass motion,
head motion and head orientation is equivalent to setting λ̇(t) = 0 ∀t. Removal of the
spinal feedback loop was modeled by making the motorneuron activation E constant
except for noise.

In both conditions, the model fails to hold the body upright. As these failure trials
leave the regime of quiet stance, some of the assumptions we made do not apply
anymore. This is not critical, because in these simulations we do not attempt to
model the system accurately over the whole duration of movement, but intend to
highlight the role of certain parts of the model by analyzing when and how it fails
to balance the body. One aspect that we address nonetheless is the generation of
unrealistically high torques in situations where the joint angles are very far from
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Figure 3.4.: Trajectories of the torques acting on the ankle joint from the same model
simulation as in Figure 3.3. The total torque T from the muscle-tendon
system is the sum of torque from active muscle contraction (Tact) and pas-
sive elastic and viscous (Tela, Tvis) torques. On average, the torques gen-
erated by the muscle-tendon system cancel out the gravitational torque
N .

the threshold values λ. To avoid this, we introduce a boundary Emax for the mo-
torneuron activation EAG, EAN. At a point φ0 where the combined activation of the
proprioceptive pathways

φ = θ̂ − λ+ ρ+ µ(̂̇θ − λ̇) (3.52)

pushes the motorneuron activation

EAG = e[αEφ]
+

− 1 (3.53)

to 75% of that boundary, we switch from the exponential function 3.9 to a hyperbolic
function

E ′AG =
c1

αEφ+ c2
+ c3, (3.54)

with c1, c2 and c3 chosen in a way that the function is continuous at the switching
point, has continuous derivative, and converges to Emax for φ → ∞. The maximal
motorneuron activation was set to Emax = 10 resulting in a maximal torque at the
ankle joint close to the maximal isometric torque measured in humans (Hasson,
Miller, & Caldwell, 2011).

Figure 3.5 illustrates the effect of removing higher feedback: at first the body is
partly stabilized by the spinal feedback and does not move much. But the gain of the
spinal feedback loop is not sufficient to counter the destabilizing effects of gravity:
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Figure 3.5.: Results of removing the higher feedback dynamics. The simulated body
falls over and hits the floor after ≈ 5 s. The left panel shows a series of
body configurations during falling. The right panel gives the time course
of the joint angles and the anterior-posterior position of the center of
mass.
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Figure 3.6.: Results of removing the spinal reflex loop and assuming the activation
level of the motorneurons to be constant. The simulated body buckles
and falls down after ≈ 2 s. The left panel shows a series of body configu-
rations during falling. The right panel gives the time course of the joint
angles and the anterior-posterior position of the center of mass.

after about 3 seconds the body starts falling forward. All joint angles increase under
the gravitational pull, until the body hits the floor. The center of mass in anterior-
posterior shows the same movement pattern as the joint angles. Note that the final
part of the movement is not realistic, as the heel would lift off the floor at some point.

It is worth comparing this to the case where spinal feedback is also taken away, as
shown in Figure 3.6. In this case, instead of toppling over at the ankle with all joint
angles decreasing, the body buckles: the knee angle starts increasing, while ankle and
hip angle decrease, resulting in a folding movement. The center of mass movement in
anterior-posterior direction is much smaller than for the case with spinal and without
higher feedback.

These movement patterns are persistent. Table 3.4 summarizes the results of 1000
trials each with no higher feedback and no spinal feedback by giving the percentage of
trials that are currently in the toppling mode at a given point in time, i.e. for which
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condition % of toppling trials after
1s 2s 3s 4s

no higher feedback 16.5 85.3 98.4 99.9
no spinal feedback 0.1 0 0 0

Table 3.4.: Percentage of toppling trials.

all joint angles have moved in the same direction since the beginning of the trial.
Without any feedback, that number is essentially zero at any time. With spinal but
no higher feedback, that number starts relatively low, then converges to 100% as time
increases. These results highlight the functional role of the two neural feedback loops.
The faster spinal stabilizes against buckling, the slower higher feedback stabilizes
against toppling.

3.4.4. Comparison of variability measures

To assess whether the structure of the random walk generated by the simulated model
is similar to that of the human data, an extensive simulation study was carried out.
Like the human experiment, the study consisted of two conditions, eyes open (EO)
and eyes closed (EC). A total number of 240 trials of 35 s length was simulated for
each condition. For the analysis, the first 5 s were disregarded. From this data set,
we calculated the variance measures V‖ and V⊥ for the task variables c, p and o, the
power spectral density of θi and c, and the joint excursion variability.

The UCM results are presented in Figure 3.7. They are a good qualitative match
of the experimental data. The main effect that is captured by the model is that both
V‖ and V⊥ increase when eyes are closed for all three task variables. The increase
in variance is not homogeneous. V‖ increases slightly stronger than V⊥ for all task
variables, as indicated by the increase in the UCM signature, shown in the bottom of
Figure 3.7. Again, this same inhomogeneity is also present in the experimental data.
As mentioned before, this phenomenon is counter-intuitive. We explore possible
reasons for this effect in Section 3.5.2. One difference between the experimental data
and the model results shows up in the plots comparing the UCM signatures: the
model has smaller c-signatures than the experimental data, but larger o-signatures.
The center of mass is not stable enough in the model, whereas the head orientation
is too stable, compared to humans. This effect is relatively small, though.

Figure 3.8 shows the mean power spectral density (PSD) of the experimental and
the simulation data for the three joint angles and the body center of mass in the eyes-
open condition. In general, the model is a good qualitative match of the experimental
data. Especially the center of mass power of the model is close to the experimental
data across all analyzed frequencies. The characteristic peak, or change of slope, in
the CoM spectrum around 0.2–0.3 Hz is present in the model, though slightly less
pronounced than in humans (Collins & De Luca, 1994). In the frequency range above
0.5 Hz, the ankle joint sway has less power than the knee and hip joint. While the
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Figure 3.7.: Comparison of the geometrical structure of the postural sway patterns
generated by the model with those of humans. The top row shows the
mean variance per degree of freedom along the UCM (V‖) and orthogo-
nal to it (V⊥), with eyes open (EO) and eyes closed (EC). The bottom
row shows the UCM signature S = V‖/V⊥. The three different task
variables are anterior-posterior position of the center of mass (left) and
head (middle) and orientation of the head around the media-lateral axis
(right).
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Figure 3.8.: Power spectral density of the joint angles and anterior-posterior center
of mass position during quiet stance with eyes open. Solid lines show
mean data from human subjects, dashed lines show mean data from the
model simulations.

model captures these differences in the high frequency range, the pattern in the range
below 0.5 Hz is different. While human postural sway shows a peak in the ankle joint
power around 0.2–0.3 Hz, in the model this pattern is shifted to the knee joint and
absent in the ankle joint. Again, these differences are discussed below in Section
3.5.2.

A comparison of sway power between the eyes-open and eyes-closed conditions is
made in Figure 3.9, showing the PSD in both conditions from both experimental and
model data. In general, the slight increase in power across all frequencies is captured
well by the model, with approximately the right magnitude. There is a noticeable
change in this power difference depending on the frequency: the difference between
conditions starts to disappear for frequencies above 1 Hz in the human data. For
the joint angles, this effect is reproduced by the model. For the center of mass, the
model still exhibits the same difference for high frequencies.

The mean joint excursion variability in both conditions is plotted in Figure 3.10.
The general magnitude of the human JEV is captured well by the model. The
increase in JEV between conditions is similar for the different joints, in accordance
with the human data. The distribution of the variance across joints is different
though: compared to the experimental data, the model exhibits more variance in the
ankle and slightly less variance in the knee joint.
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3.5. Conclusions

We presented a mechanistic model of the neural dynamics within the brain respon-
sible for balancing the body in quiet, upright stance. The model generates a simple
negative feedback signal based on sensed deviations from the stable state. This nega-
tive feedback is transformed into desired changes of all joint angles along the body in
a way that minimizes the total motor activation while still realizing the desired feed-
back command. The sensory estimates representing the kinematic state of the body
in space used by the system are the velocity and acceleration of the center of mass
and head position in anterior-posterior direction, and the orientation of the head
around the media-lateral axis. The descending motor commands generated muscle
activity indirectly by modulating the parameters of the spinal reflex loops.

This negative feedback system was capable of stabilizing the simulated body against
random fluctuations from sensory misestimations and neural processing noise. The
geometrical and temporal properties of the body sway were reproduced by the model,
as indicated by similar patterns of the PSD and variance in UCM space. Removing
vision was modeled by increasing the sensory noise for the estimates of the head
movement state and orientation. The homogeneous increase of V‖ and V⊥ observed
in human subjects when removing vision was reproduced by the model.

3.5.1. Differences between model and experimental data

Though the data produced by the model simulations were a good fit of the experi-
mental data, some substantial differences remain. The mean joint excursion variance
(JEV) pattern of the human subjects shows a monotonic increase from distal do
proximal joints: the knee varies more than the ankle, the hip varies more than the
knee. In the model, the knee has substantially less variance than the ankle joint, and
the hip only slightly more than the ankle.

To examine this difference further, we take a closer look at the experimental data.
Figure 3.11 shows the mean JEV for each of the 10 subjects separately (the means are
taken over the 24 episodes of 30 s length that the data from each subject were blocked
in). These plots reveal that the differences between subjects are much stronger than
the differences within the subjects between the EO and EC conditions. The JEV
patterns for EO and EC of each subject are similar to each other, indicating that
each subject has a unique pattern of postural sway that is consistent across sensory
conditions. Also, many of these patterns are as different from the mean pattern shown
in Figure 3.10 as the pattern generated by the model simulations. We conclude that
while the JEV pattern of the model does not describe the mean pattern of the human
subjects very closely, it fits well within the wide range of patterns exhibited by the
single subjects.

Another difference between the experimental and model data is the power spectral
density. The peak or change in slope of the log-log-plotted PSD of the center of mass
at ≈ 0.2–0.3 Hz is captured by the model. This is the slow component of postural
sway that is hypothesized to be the result of the higher feedback loop (Zatsiorsky
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Figure 3.11.: Joint excursion variance means for each single human subject with eyes
open (EO, solid green) and eyes closed (EC, dashed red). Note the
different scale for an outlier with extremely large variance in the top
right.

& Duarte, 1999, see Section 3.1.1). The simulated model exhibits this effect at the
knee joint instead of the ankle joint, though.

One possible reason for this discrepancy is that the principle by which the neural
dynamics in the brain distribute the error feedback signal among the joints is not
appropriate. Maybe the feedback signal is indeed transformed into ankle joint motion
exclusively, and the fluctuations of the knee and hip joints are simply side-effects
from imperfect control. To test this hypothesis, we altered the feedback distribution
among the joints given in Equation 3.41 to a different version

F̃p = R−1A−1M


(
∂p
∂θ1

)−1
0
0

(−αṗ̂̇p− αp̈̂̈p) ∈ R3, (3.55)

that exchanges the pseudo-inverse of the head position Jacobian with the inverse of
the partial derivative of the head position by the ankle joint. This means that only
the ankle joint receives descending motor commands to counter sensed deviations.
Figure 3.12 compares the PSD results of a simulation (N = 48 trials) of this alternate
model with the original and the human experimental data. The comparison shows
that the dependence of both the ankle and hip angle PSD on the choice of feedback
distribution is minimal. Furthermore, the qualitative fit of the experimental data
seems to get worse when using the alternative model: the peak in the sway power at
≈ 0.2–0.3 Hz is visibly less pronounced.

Could the differences between model and human PSD be a result of inappropriately
chosen parameters for the brain dynamics? The shape of the PSD is affected by
changes in both the noise magnitude and the gain parameters we used to fit the model
to the experimental data. During the manual fitting process, however, we were unable
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Figure 3.12.: Comparison of the PSD generated by the model with the standard
equations (solid green) and when using the alternative equation for
sending feedback only to the ankle joint (dashed red).

to find a parameter combination that changed the problematic difference that the
peak in the center of mass PSD reappears in the PSD of the knee but not of the ankle.
One indicator of this is that increasing the noise magnitude for the head position and
orientation estimates results in an increase in PSD that is relatively homogeneous
across all joints and does not affect the shape of the curves in a substantial way (see
Figure 3.9).

We speculate that the source of the problematic difference lies in the models of
the spinal reflex loops and muscle-tendon systems, particularly those acting on the
knee. The knee joint is near its maximal extension at quiet stance. This fact is
partly accounted for by an additional term in Equation 3.13 describing passive elastic
torque, which results in a sharper increase in elastic torque when approaching the
maximal knee extension. For extreme knee extensions, this is almost certainly an
underestimation: Figure 3.13 plots the passive-elastic knee torque for a range of knee
angles near the extension limit according to Equation 3.13 for ankle and hip angles
fixed θ1 = 0.1 rad, θ3 = 0 rad. The gravitational torque for the knee joint is also
plotted. This comparison reveals that the passive elastic torque is large enough to
counter the gravitational torque only for knee angles below ≈ −3.5 rad ≈ −20◦. Knee
extensions of this magnitude are anatomically extremely unrealistic. We infer from
these arguments that the physical constraints of extreme knee extensions in quiet
stance are not described properly by Equation 3.13.

Yet the limits of knee extension play a role in balancing the body. Consider a
contraction of the calf muscles that generates a positive ankle torque. Due to the
inertial properties of the body, this would result in a negative interaction torque at
the knee joint. But near maximal extension, this interaction torque is negated by
the joint limit. This means that the muscle contraction generates movement mostly
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Figure 3.13.: Torques at the knee for extreme joint extensions. The passive elastic
torque (red) exceeds the gravitational torque (green) only at extreme
values.

in the ankle joint.2 By underestimating the forces generated by the physical limits
to knee extensions, the model fails to account for this effect and generates movement
patterns in the knee that would otherwise have occurred in the ankle. One such
pattern could be the oscillatory component around ≈ 0.2 – 0.3 Hz.

3.5.2. Effects of closing the eyes

Closing the eyes leads to increased postural sway. The UCM analysis revealed that
this increase is of similar magnitude in V‖ and V⊥ for all three task variables c, p and
o, though V‖ increases slightly more than V⊥. This is puzzling, because one might
intuitively expect that making the estimate of the head movement state less reliable
would lead to erroneous corrective signals due to the decreased signal-to-noise ratio.
This would imply that V⊥ increases much more than V‖.

These considerations apply to both head position and orientation, though. The
(linear approximations of the) Uncontrolled Manifolds for these two variables are sub-
stantially different from each other: the angle between them in quiet, upright stance
is ≈ 0.3 rad ≈ 17◦. Is it possible that the additional noise in the head movement state
representations generates variance in the orientation-UCM, and vice versa? To test
this possibility, we conducted simulations (N = 240) of the model with two different
parameter settings. In one setting, TR, we increased the noise magnitude for the
head movement estimates σṗ and σp̈ to the values used for the eyes-closed condition
(see Table 3.3). In the other setting, OR, we did the same for the head orientation
noise level σo. In other words, we selectively removed the sense of head translation
in TR and the sense of head orientation in OR.

The results of this simulation study are plotted in Figure 3.14, along with the data
from the previous simulations for the EO and EC conditions. Intriguingly, the effects
of both increases in noise magnitude is quite similar. For all three candidate task

2 We neglect the hip joint in these considerations.
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Figure 3.14.: UCM results of the model with translation (TR) and orientation (OR)
sense selectively removed. Results of with eyes open (EO) and eyes
closed (EC) are reproduced for comparison. The top row shows the
mean variance per degree of freedom along the UCM (V‖) and orthogo-
nal to it (V⊥). The bottom row shows the UCM signature S = V‖/V⊥.
The three different task variables are anterior-posterior position of the
center of mass (left) and head (middle) and orientation of the head
around the media-lateral axis (right).

variables, increasing either noise level leads to increases in both V‖ and V⊥. For p
and o, the increase in V⊥ is slightly larger than the increase in V‖, as indicated by the
decrease in the signature S. This is contrary to the expectation that less reliability of
an estimate should lead to more variance in that variable doe to erroneous corrective
movements. Another unexpected effect is that the increases in variance from adding
noise to the head position and orientation sensory estimates separately in conditions
TR and OR is small compared to the increase from adding noise to both estimates
simultaneously in condition EC. Also surprising is that adding noise to both estimates
somehow reverses the effect on the UCM signature, making it slightly larger than in
EO. We conclude that the effects of adding noise to different sensory estimates on
the variance structure of the sway trajectories are complicated and non-linear, and
understanding them requires more detailed analysis.
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3.5.3. Outlook

We presented a mechanistic model of the neural dynamics in the brain responsible for
balancing the body in upright stance. A simulation study of the whole sensorimotor
loop including the neural dynamics of the brain reproduced the characteristic signa-
tures of postural sway. This is a first step in explaining how task-related movement
patterns are generated by the CNS.

The model raises interesting question about the neurophysiological foundations of
these mechanisms. Electrophysiological data from cyclic movement tasks in primates
indicates that most of the behavioral variability in the motor system can be explained
by variability in the neural activation patterns of the motor and pre-motor cortex
(Churchland, Afshar, & Shenoy, 2006). Comparing the dynamics of our model to
neurophysiological data could supply further insight into the mechanisms used by the
brain to generate movement by linking the activation variables used in the functional
description of our model to the measured activation patterns. Even a failure to
establish such a link would be valuable by indicating where and how the model
breaks down.
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4. Movement generation for
autonomous robots

4.1. Introduction

We have established a formal description of tasks as manifolds in the body configu-
ration space and described behavioral signatures of selective stabilization principles
relative to these manifolds in Chapter 2. A possible mechanism of how the CNS
might organize the available degrees of freedom in a way that generates these signa-
tures in a postural task was presented in Chapter 3. But why does the CNS achieve
this coordination? What is the functional benefit of this task-related redundancy
resolution?

Inquiries about the functional role of specific elements in a system are generally
hard to answer from a natural science perspective. To explore the benefits that a
movement generation system might receive from applying principles of selective sta-
bilization, we change our angle of approach from describing and analyzing a system
to the engineer’s point of view as a designer of a system. In this chapter, we will
describe a movement generation system for autonomous robotic agents based on prin-
ciples of selective stabilization relative to task-manifolds. The engineering approach
allows us to methodically list the capabilities we expect from a movement generation
system as formal constraints and goals and explore the functional benefits of applying
selective stabilization principles to fulfill these goals.

4.1.1. Constrained movement trajectories

Achieving a movement goal means leaving the current body configuration and finding
a new state that fulfills the task at hand. A movement trajectory between the current
state and such a goal state has to be selected out of the infinite number of possible
trajectories. One one hand, this selection process has a large number of degrees of
freedom: in most situations, the exact movement direction or speed do not matter
and small local variations will not prevent fulfilling the global movement goal. On
the other hand, there are clear constraints that have to be observed both during
the movement and at movement termination, like avoiding collision with obstacles
or orienting the hand in a way that allows grasping the target in a manipulation
task. How can the redundancy of trajectories be resolved without violating these
constraints?

We present an approach to this problem for autonomous robotic agents based
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on principles of selective stabilization. In the postural case, the current configura-
tion is always close to a desired state and a feedback law that selectively counters
task-relevant deviations is sufficient for stabilization, as shown in Chapter 3. In a
movement task, the current configuration is by definition far away from achieving
the goal, though. In simple cases, a similar feedback term on the task level can be
sufficient to achieve the movement goal. But how can we ensure that the resulting
trajectory does not violate additional constraints like obstacle avoidance?

One answer to to this question is provided by the Artificial Potential Field Ap-
proach (APFA) for robotic manipulators proposed by Khatib (1986). To move the
end-effector of a manipulator to a desired location, an artificial potential field is con-
structed in the work space of the robot with a minimum at the target location. The
gradient of this potential is then applied to the end-effector as a pseudo-force . A
viscous term ensures that the movement stops when the target is reached. This is
essentially a PD-controller for the end-effector position, reducing the error between
current and desired location to zero. Collision constraints are introduced by con-
structing additional potentials with a maximum or pole at the obstacle location, so
that the gradient points away from the obstacle. The superposition of these poten-
tials should then generate movements that arrive at the target without colliding with
obstacles on the way.

The movement trajectories generated by the APFA are not unproblematic. In the
presence of multiple obstacles, the superposed potential fields often contain minima
at locations other than the desired target, called “spurious minima”. If the trajectory
enters the basin of attraction of such a minimum, the movement terminates with-
out achieving the behavioral goal (McLean & Cameron, 1995). Even if the target
is successfully reached, the trajectories generated by descending the gradient of the
potential often have unattractive characteristics like unnecessary curves near obsta-
cles (Fajen, Warren, Temizer, & Kaelbling, 2003). There are analytic solutions to
these problems that construct the potentials in a way that avoids spurious minima,
but they are technically demanding and require complete knowledge of the whole
workspace configuration (Rimon & Koditschek, 1992).

We postulate that the source of these problems is that the APFA applies what
is essentially a stabilization principle to position-related variables. We propose that
during movement generation, the state of movement-related variables is more impor-
tant: when reaching for a target, controlling the location of my hand matters less
than controlling whether it is actually moving towards the target. In this chapter,
we propose a movement generation scheme that applies stabilization principles to
movement-related variables. The results of this approach have been published else-
where before (Reimann, Iossifidis, & Schöner, 2010a, 2010b, 2011). Here we give a
formal treatment of the underlying principles and how they relate to the methods.
The results are summarized and presented in an integrated and concise fashion.
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4.1.2. Selective stabilization of movement parameters

Any movement goal can be broken up in a number of different sub-tasks, e.g. bringing
the hand to a target, orienting it appropriately for a grasp and avoiding collisions
with obstacles. For each sub-task, we choose a relevant task-variable and formulate
the sub-task as a desired value of that variable. We distinguish between a movement
phase, during which the variable is far away from this desired state, and a postural
phase, during which the task is essentially fulfilled and the controller has to stabilize
against perturbations driving the task variable out of this desired state. During this
postural state, we will apply feedback control similar to the APFA and the model of
neural dynamics in the brain described in Section 3.2.6.

In the movement phase, we choose another variable that describes how the task-
variable changes relative to its desired value. This can simply be the rate of change of
the position-level task variable, or something more complex like the direction of the
hand movement relative to the target location. The desired state for this movement-
level variable is one in which the position variable moves towards the target. This can
mean simply ensuring that the change of a currently positive variable with desired
value zero is negative. Or that the angle between the hand movement direction and
the direction towards the target is zero. Having defined a movement-level variable
and a desired state for it, we can once more apply a feedback controller to reduce
the deviation from the desired state to zero. This is done by defining a vector
field over the movement variable with an attractor at the desired state. When the
movement-level variable is in the desired state, the position-level variable is moving
towards its own desired state. Once it reaches it, we switch to the position-level
postural controller. This selective stabilization of movement states that contribute
to the completion of behavioral goals resolves the trajectory redundancy. Each task
contribution will usually results in the movement state of that task variable being
stabilized at the desired value.

In some cases a state that is beneficial to the completion of one task is detrimental
for another task. Consider reaching for a cup of coffee that is standing behind a
bottle of milk: the movement state that is desired for reaching the cup conflicts
with the desired state for avoiding collision with the bottle, because the direction
towards the cup and towards the bottle are identical. One contribution pulls the
movement state towards that direction, the other contribution pushes away from it.
If the relative strength of the two contributions is chosen appropriately, the hand will
first turn sideways, away from that direction. But after it moved some distance to
the side, the direction towards the cup and towards the bottle will not be the same
anymore, and the desired value of the reaching task, “moving towards the cup”, can
be achieved simultaneously with the desired state of the collision avoidance task, “not
moving towards the bottle”. The result is a trajectory that gently curves around the
bottle and, once having cleared that obstacle, moves directly towards the cup.

The redundancy of trajectories is resolved by stabilizing low-dimensional move-
ment variables. The stabilizing vector fields have to be transformed into the high-
dimensional configuration space. We do this by identifying each sub-task with a task
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manifold (see Chapter 2) and constructing a vector field in configuration space for
which the task manifold is asymptotically stable. This presents another redundant
problem, as there are infinitely many vector fields in joint space vectors that solve
this problem. This redundancy of solutions is resolved in the same way as in Chap-
ter 3 by using a generalized inverse of the task Jacobian. Khatib did essentially the
same on a level of kinetics instead of kinematics by expressing constraints as forces in
the “operator space” and transforming them into joint space using the dynamically
consistend pseudo-inverse (Khatib, 1995).

4.1.3. Related work

Classical manipulators used to be designed in a way that largely avoided redundancy
of solutions by having exactly as many degrees of freedom as necessary, which left
a finite number of solutions for a specific task, often only one. This solution was
calculated analytically by solving the inverse kinematic problem, yielding e.g. a set
of joint angles for which the end-effector was at a desired location. Trajectories can
then be generated by moving to this desired location in a straight line in joint space
(Siciliano & Khatib, 2008). The inverse kinematics can also be solved locally by
inverting the task Jacobian, yielding a movement direction in joint space that moves
the task variable closer to the desired state. Using a pseudo-inverse, this technique
can be generalized to redundant problems (Whitney, 1972). Secondary problems can
be solved using the redundant degrees of freedom in the null-space of the primary
task solution, like avoiding obstacles with the proximal manipulator segments while
following a trajectory with the end-effector (Maciejewski & Klein, 1985).

The Artificial Potential Field Approach was among the first approaches that re-
solved the redundancy of trajectories implicitly using a gradient descent. This facil-
itated the inclusion of dynamic constraints like obstacle avoidance in the generation
of the end-effector trajectory, because the specifics of how the obstacle is avoided did
not have to be made explicit but emerged from a comparatively simple superposition
of vector fields (Khatib, 1986). Although it was initially presented for manipulator
control, the APFA was more widely applied to vehicle path planning (Arkin, 1989).
The problems of the APFA with spurious attractors have been recognized and ad-
dressed by the robotics community (Rimon & Koditschek, 1992; McLean & Cameron,
1995). Still, the APFA is not applied widely outside of laboratory environments.

The attractor dynamics approach was also initially designed for autonomous vehi-
cle path planning. Having less degrees of freedom, movement generation for vehicles
is more suitable for analytic treatment, enabling a detailed analysis of the system bi-
furcations between dynamic regimes and how they interact with behavior generation
(Schöner, Dose, & Engels, 1995). A low-level version connected input from active
infra-red sensors and passive photo-resistors to the motor output for the wheels, the
only intermediate step was the calculation of the vector field contribution from the
current sensor state (Bicho & Schöner, 1997). The first extension of the approach to
redundant manipulators was restricted to end-effector motion, combining it with a
closed-form solution of the inverse kinematics problem (Iossifidis & Schöner, 2006).
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A different perspective on trajectory redundancy was introduced by the extensive
use of machine learning techniques in robotics. Instead of selecting trajectories ac-
cording to some design principle, the movements are demonstrated by human teachers
and then imitated (Schaal, 1997). One successful method are the Dynamic Move-
ment Primitives (DMP, Ijspeert, Nakanishi, & Schaal, 2002). Observed movement
trajectories are represented by a mixture of Gaussians relative to the target location
and an implicit timing variable. This allows to generalize the trajectory locally by
small variations in the target location. Larger regions can be covered by sampling
the space with movements to different target locations and combining neighboring
samples for movements to new targets in between the learned ones. This approach
has been successfully applied to a wide range of robotic problems from biped walking
(Nakanishi et al., 2004) to table tennis (Mülling, Kober, Kroemer, & Peters, 2012).
Because DMP essentially realize pre-planned trajectories, attempts to combine them
with additional constraints like obstacle avoidance have had only limited success
(Stulp, Oztop, Pastor, Beetz, & Schaal, 2009; Hoffmann, Pastor, Park, & Schaal,
2009).

Another approach to trajectory generation using dynamical systems is proposed
by Billard and colleagues. The robot generalizes movements demonstrated by a
human teacher using statistical methods like Gaussian Process Regression or Gaus-
sian Mixture Regression and constructs vector fields that can be used to imitate
the demonstrated trajectories (Khansari-Zadeh, Kronander, & Billard, 2012). The
authors emphasize that in scenarios with robot-human interaction, the movement
generation system must be highly reactive to unpredicted perturbations and adapt
to both temporal and spatial changes of the desired movement parameters to ensure
fulfilling the movement goal and prevent harmful collisions with objects and humans.
Temporal adaptation can be achieved by coupling between the different dynamical
systems, either internally to guarantee that two processes like reaching and grasping
finish at the same time, or externally, e.g. to catch a moving object (Shukla & Billard,
2012). Obstacles, on the other hand, are accounted for by spatial modification of the
vector fields in a way that the flow moves around a convex obstacle region instead of
through it (Khansari-Zadeh & Billard, 2012).

4.2. The movement generation system

We construct a movement out of several sub-tasks that can be activated or ignored
depending upon the current state and behavioral goals. The behavioral sub-tasks
treated here are reaching for a target (Target acquisition, Section 4.2.1), avoiding
collision with obstacles (Obstacle avoidance, Section 4.2.2), orienting the hand ap-
propriately for grasping an object (Hand orientation, Section 4.2.3) and avoiding the
physical limits of the joint actuators (Joint angle limits, Section 4.2.4). In addition to
these behavior-oriented sub-tasks, we include one sub-task that dampens out residual
velocities, a side-effect of second order approaches (Homogeneous damping, Section
4.2.5).
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The configuration of a generic robotic manipulator is described by a set of joint
angles

θ = (θ1, . . . , θn) ∈ Rn.

the movement state is given by the joint velocities

θ̇ = (θ̇1, . . . , θ̇n) ∈ Rn.

For our present purposes, we can assume that the configuration and movement states
describe the complete kinematic state of the manipulator and all variables that are
relevant for movement generation are functions of (θ, θ̇). The robot is controlled by
passing a vector of joint accelerations θ̈ to the hardware interface.

4.2.1. Target acquisition

Similar to a vehicle steering towards a goal, the target acquisition is pursued by
changing the heading direction of the end-effector towards the direction of the target.
Ideally, the movement direction and the direction toward the target are identical.
The behaviorally relevant variable is thus the angular difference between these two
directions.

Let p = p(θ) ∈ R3 be the position of the end-effector. The movement state of p
is given by its velocity v = ṗ = Jpθ̇, where Jp = dp

dθ
is the Jacobian matrix of p. Let

g ∈ R3 be the location of the target and k = g − p the vector from p to the target.
We define the target deviation angle as

φ = φ(θ, θ̇,g) = arccos

(
vTk

|v||k|

)
. (4.1)

Throughout this section, we will assume that both v 6= 0 and φ 6= 0, i.e. the end-
effector is moving, but not directly towards the target. These trivial cases will be
treated separately.

The behavioral variable φ expresses to what degree the movement state is beneficial
for reaching the target. The desired value for it is φ = 0, implying that the end-
effector moves directly towards the target. We define a vector field f

(dev)
p,g over the

deviation angle φ by setting
f (dev)
p,g = −αφ sinφ, (4.2)

where αφ is a gain factor. We will usually drop the subscripts p,g where no confusion
can arise about which points are indicated. This vector field has a single attractor at
the desired state φ = 0, meaning the flow of f (dev) turns the movement of the hand
towards the target direction.

To realize this flow for the dependent variable φ, we need to find a flow for the
state variables θ, θ̇ that implies φ̇ = f (dev). This means resolving the redundancy of
solutions by selecting one out of the infinite set of joint velocity vectors θ̇ for which
this equation is satisfied. To achieve this transformation from a low-dimensional flow
of φ into a high-dimensional flow of θ̇, we make an intermediate step to Cartesian
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4.2. The movement generation system

Figure 4.1.: The target deviation angle φ measures how directly the end-effector p is
moving towards the target g. A desired change f (dev) of φ can be realized
by accelerating the end-effector in direction aφ. Accelerating the end-
effector towards as changes the movement speed of the end-effector.

workspace. For any given movement state, define the Cartesian acceleration direction
aφ for as

aφ = eω̂
π
2 v, with ω =

k× v

|k× v|
, (4.3)

where the exponential function eξ̂θ of the skew symmetric matrix

ω̂ =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (4.4)

with the factor θ is a rotation matrix around the axis given by ω by the angle θ
(Murray, Li, & Sastry, 1994). The Cartesian acceleration vector aφ is perpendicular
to the velocity vector v and lies in the plane spanned by v and k. It solves the
first part of the solution redundancy problem by selecting one acceleration for the
Cartesian end-effector position out of the infinite number that results in a desired
deviation angle change φ̇. Figure 4.1 illustrates the relationship between changes
in φ and accelerations of p in direction aφ. The following Theorem 1 shows the
relationship between the acceleration direction aφ and changes of the deviation angle
φ. Subsequently, we show the optimality of this solution in the sense of having
minimal norm in Theorem 2.

Theorem 1. Let f (dev) ∈ R be any desired velocity of φ. Then

v̇ = aφ(f (dev) − φ̄) =⇒ φ̇ = f (dev) (4.5)
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4.2. The movement generation system

where

φ̄ =
−1√

1− cos2 φ

vT k̇|v||k| − vTk|v|kT k̇|k|
|v|2|k|2

. (4.6)

Proof. For ease of notation, we choose a basis such that k =

k10
0

, v =

v1v2
0

,

ω =

0
0
1

, with k1, v2 ≥ 0. In these coordinates,

aφ = eω
π
2 v =

0 −1 0
1 0 0
0 0 1

v1v2
0

 =

−v2v1
0

 . (4.7)

Now we calculate the temporal derivative

φ̇ =
dφ

dt
=

dφ

d cosφ

d cosφ

dt
=

dφ

d cosφ

d vTk
|v||k|

dt
(4.8)

=
−1√

1− cos2 φ

(
v̇Tk + vT k̇

)
|v||k| − vTk

(
d|v|
dt
|k|+ |v|d|k|

dt

)
|v|2|k|2

(4.9)

=
−1√

1− (vTk)2

|v|2|k|2

(
v̇Tk|v||k| − vTk

=0︷︸︸︷
vT v̇
|v| |k|

|v|2|k|2
+

vT k̇|v||k| − vTk|v|kT k̇|k|
|v|2|k|2

)
(4.10)

=
−|v||k|√

|v|2|k|2 − (vTk)2
v̇Tk

|v||k|
+ φ̄ (4.11)

=
−v̇Tk√

|v|2|k|2 − (vTk)2
+ φ̄ (4.12)

=
−(f (dev) − φ̄)aTφk√
|v|2|k|2 − (vTk)2

+ φ̄ (4.13)

=
−(f (dev) − φ̄)(−v2k1)√

(v21 + v22)k21 − v21k21
+ φ̄ (4.14)

=
(f (dev) − φ̄)(v2k1)√

v22k
2
1

+ φ̄ (4.15)

= f (dev) − φ̄ + φ̄ (4.16)

= f (dev) (4.17)
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Theorem 2. Let f (dev) ∈ R be any desired velocity of φ. Let a ∈ R3 be any vector
that satisfies the implication

v̇ = a(f (dev) − φ̄) =⇒ φ̇ = f (dev) (4.18)

and is orthogonal to v. Then
|aφ| ≤ |a|. (4.19)

Proof. We express a as the solution we already know plus some difference vector

a = aφ + ã (4.20)

and then show that the difference vector ã necessarily increases the norm. Assuming
without loss of generality that v̇ = a(f (dev)− φ̄), we know from line 4.12 in the proof
of Theorem 1 above that

φ̇ =
−v̇Tk√

|v|2|k|2 − (vTk)2
+ φ̄ (4.21)

=
−(f (dev) − φ̄)aTk√
|v|2|k|2 − (vTk)2

+ φ̄ (4.22)

(4.20)
=

−(f (dev) − φ̄)aTφk√
|v|2|k|2 − (vTk)2

+ φ̄︸ ︷︷ ︸
=f (dev)

+
−(f (dev) − φ̄)ãTk√
|v|2|k|2 − (vTk)2

(4.23)

(4.13)
= f (dev) − (f (dev) − φ̄)ãTk√

|v|2|k|2 − (vTk)2
(4.24)

As a satisfies (4.18) and f (dev) is arbitrary so in general f (dev) 6= φ̄, this equation
implies that ãTk = 0. In the basis of Theorem 2, we get

ãTk = ã1k1 = 0 =⇒ ã1 = 0, (4.25)

and from the orthogonality of ã and v

ãTv = ã2v2 = 0 =⇒ ã2 = 0, (4.26)

so we know that

a = aφ + ã
(4.7)
=

−v2v1
0

+

 0
0
ã3

 =

−v2v1
ã3

 (4.27)

This yields the inequality

|a| = v22 + v21 + ã23 = |aφ|+ ã23 ≤ |aφ| (4.28)
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we were looking for.

The second part of the solution redundancy is to find a vector of joint accelerations
θ̈ that realize a desired end-effector acceleration. As before in Chapter 3, this is
done using the Moore-Penrose pseudo-inverse of the end-effector Jacobian Jp = dp

dθ
.

Analogous to the first step, this is optimal in the sense that the resulting solution has
minimal norm (Greville, 1959). The complete transformation from a low-dimensional
flow of φ into a high-dimensional flow of θ̇ is described in the following theorem.

Theorem 3. Let f (dev) ∈ R be any desired velocity of φ. Then

θ̈ = J+
p

(
aφ(f (dev) − φ̄)− J̇pθ̇

)
=⇒ φ̇ = f (dev) (4.29)

Proof. The product rule yields

v̇ = Jpθ̈ + J̇pθ̇, (4.30)

which together with Equation 4.29 implies that

v̇ = aφ(f (dev) − φ̄). (4.31)

This satisfies the precondition of Theorem 2, completing the proof.

Calculating the temporal derivative of the task Jacobian used in 4.30 in practice
is not trivial. A formula for how this can be done using screw calculus is given in
Appendix D.

Theorem 3 provides a mapping from desired changes φ̇ of the low-dimensional
task variable to changes θ̈ of the high-dimensional state variables. This allows us
to transform the vector field f

(dev)
p,g over the deviation angle into a vector field F

(dev)
p,g

over the joint velocities

F (dev)
p,g = J+

p

(
aφ(f (dev) − φ̄)− J̇pθ̇

)
∈ Rn. (4.32)

Choosing f (dev) as given in Equation 4.2, the flow of this vector field results in the
end-effector movement direction relaxing towards the target direction. Theorem 3
directly implies the task manifold for φ = 0 is asymptotically stable in the joint
velocity space.

4.2.1.1. Movement speed

The direction is just one aspect of the movement state. To get the end-effector
moving to reach the target location, we also need to control the speed s = |v| of the
hand. For the present purpose, we do this in a very simple manner, by arbitrarily
setting a reasonable desired value sdes and letting the speed relax towards it under
the flow of the vector field

f (spd)
p = −αs(s− sdes) (4.33)
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over the low-dimensional behavioral variable s with a single attractor at sdes. The
transformation into a vector field over joint velocities is given by

F (spd)
p = J+

p

(
asf

(spd)
p − J̇pθ̇

)
∈ Rn (4.34)

where the acceleration direction is just the normed velocity as = v
|v| (see Figure 4.1).

Analogous to Theorem 3, we get

θ̈ = F (spd)
p =⇒ ṡ =

d|v|
dt

=
vT v̇

|v|
=

vT v
|v|

|v|
f (spd)
p = f (spd)

p , (4.35)

i.e. the flow of the vector field F
(spd)
p over the joint velocities induces the desired flow

of f
(spd)
p that lets s = |ṗ| relax towards sdes.

4.2.1.2. Stabilization near the target location

The deviation angle is a suitable task variable for generating movements towards a
target and stabilizing the movement direction at a state beneficial for reaching the
target. In close vicinity of the target, this choice of task variable is less appropriate.
When the distance to the target |k| is small in relation to |v|, small changes in the
end-effector velocity v potentially correspond to large changes in the deviation angle
φ. That means that perturbations from other behavioral vector fields affecting the
hand position can have a large destabilizing effect on φ. For small distances d = |k|,
we switch to stabilizing the postural state instead of the movement state.

As relevant variables for postural stabilization, we use the Cartesian position p
and velocity v of the end-effector. The desired state is given by p = g and v = 0. A
vector field with an attractor at this state is given by the damped harmonic oscillator

f (pos)
p,g = −αv

(
v − αp(g − p)

)
. (4.36)

Once more, this is transformed to joint space by

F (pos)
p,g = J+

p

(
f (pos)
p,g − J̇pθ̇

)
. (4.37)

The switch between the angle-dependent vector field for directing the hand move-
ment at long-range and the position and velocity dependent vector field for stabilizing
the hand in the proximity of the target is done smoothly after the distance d falls
below a certain threshold d

(tar)
1 . Once a second threshold d

(tar)
2 is reached only the

postural stabilization vector field is used. This is done by setting

F (tar)
p,g = (1− σ(d))

(
F (dev)
p,g + F (spd)

p

)
+ σ(d)F (pos)

p,g , (4.38)
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where the sigmoid switching function σ(d) = σ
d
(tar)
1 ,d

(tar)
2

(d) is defined as

σa,b(x) =


0 : x ≤ a,

−1
2

cos
(
x−a
b−aπ

)
+ 1

2
: a < x < b,

1 : b ≤ x.
(4.39)

In the special case where v = 0, we initiate movement towards the target by setting
F

(tar)
p,g = −αpJ

+
p k. The singularity of the mapping between f (dev) and F (dev) at φ = 0

can easily be filled by setting F (dev) = 0 in that case.

4.2.2. Obstacle avoidance

In order to prevent collision of manipulator link segments with obstacles in the scene,
we change the movement vectors of link segments away from directions in which
obstacles are positioned. To describe the vector fields that achieve this, we first define
the direction in which the repelling force acts, and then its magnitude depending on
the distance and current movement states.

For the present study, we assume that all link segments and obstacles are enclosed
in spheres or cylindrical bounding volumes topped off with half-spheres at the ends.
This provides an acceptable approximation of many different types of objects. The
same approach also works with other geometric types, like the planar surface of a
table, but to present the principles of the approach and analyze it, cylinders and
spheres provide sufficient complexity.

The obstacle cylinders are always oriented towards the z-axis. For any link segment
S and obstacle O, let s and o be the points on their respective bounding volumes
with minimal distance to each other, and vS = ṡ the velocity vector of the segment
point. This velocity vector vS = ṡ, relative to the obstacle configuration, is the
relevant variable for avoiding collision of the segment S with the obstacle O. We will
construct the vector field that achieves this collision avoidance by first specifying the
direction and then the magnitude of the vector field for a given scene configuration
and movement state.

4.2.2.1. Avoidance direction

Analogous to what we did for target acquisition, we want to minimize the overall effect
of the vector field on the movement, so we look for a vector that is perpendicular to
the movement vector of the segment point ṡ = vS so that accelerating the segment
point in this direction only changes the direction of the movement state of s, not
the speed. The vector we look for should also point away from the obstacle, but
as the obstacle is a cylinder instead of a single point like the target, defining what
“away” means is more complicated. We approach this problem by considering the
normal plane of the velocity vector, representing all vectors that are perpendicular
to v. By projecting the shape of the obstacle to this plane, we can select one vector
that “optimally points away” from the obstacle.
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Let N be the plane that is normal to vS. An orthonormal base u1,u2 of N is given
by

u′2 = e3 −
〈vS, e3〉
〈vS,vS〉

vS, u′1 = vS × u2, ui =
u′i
|u′i|

,

in which the second base vector is the projection of e3, the up-axis of the world
coordinate frame, onto N .

Let a and b be the projections of the center points of the half-spheres on the top
and bottom of the obstacle bounding volume to N . Due to obstacles always standing
upright and the choice of the base u1,u2, the projected points a and b lie on a
vertical line in N . If a is the upper point, i.e. 〈a,u2〉 > 〈b,u2〉, the point on that
line segment with minimal distance to the origin of N is given by

q =


a : 〈a,u2〉 < 0,
b : 〈b,u2〉 > 0,

〈b,u1〉u1 : otherwise,
(4.40)

and the distance of the obstacle bounding volume projection to the origin of N is

h = |q| − r, (4.41)

where r is the radius of the obstacle bounding volume. Figure 4.2 shows the plane
N and how an obstacle is projected.

The “best” avoidance direction, i.e. the one changing the movement direction di-
rectly away from the obstacle, is given by −q. For some situations, though, this is
not a suitable choice: when the link segment is moving horizontally in a plane that
intersects the cylinder, then q will also lie in that plane, resulting in a horizontal
change of link segment movement. If the link segment is near the base of the kine-
matic chain, this is unlikely to result in a movement in which the whole manipulator
avoids the obstacle, because either the immobile base or the rest of the arm up to the
end-effector are still on one side of the obstacle, while the link segment in question
is trying to avoid it by moving around the other side.

To prevent this kind of deadlock, instead of choosing q itself as avoidance direction,
we use a vector that also lies in N , but is rotated towards u2 by an amount depending
upon the location of the link segment along the kinematic chain. The angle of −q
with u2 is given by

ν = arccos

(
〈−q,u2〉
|q|

)
. (4.42)

For the j-th link segment of kinematic chain with n joints, we decrease that angle by
applying the ad-hoc function

ν ′ =
3

4

j − 2

n− 2
ν, (4.43)

and set

ao =

{
− sin ν ′u1 + cos ν ′u2 : 〈q,u1〉 ≥ 0,
+ sin ν ′u1 + cos ν ′u2 : 〈q,u1〉 < 0,

(4.44)
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Figure 4.2.: Projection of an obstacle O to the plane N . N is normal to the velocity
vS of the segment point s that has minimal distance d to the obstacle. N
is spanned by the orthonormal base u1,u2, the projection of the obstacle
center line segment is the line segment between a and b in N . The
smallest distance of any point on this line segment to the projection of
vS is given by q, with h indicating the distance to the obstacle projection
boundary.

which is −q rotated towards u2 so that ∠(ao,u2) = ν ′. Figure 4.3 illustrates this
dependency of avoidance direction upon the link segment index in the chain.

Using this ao as avoidance direction is suitable for most situations. Only for the
segment nearest to the base, this does not make sense, because it only has one single
degree of freedom. For this segment only, we set the avoidance direction to

ao = − vS
|vS|

, (4.45)

essentially just braking the segment when it approaches an obstacle.

4.2.2.2. Magnitude of the repelling force

Defining the strength of the avoidance action for a given situation boils down to
deciding how likely an obstacle collision is in that situation. Three factors play a
role: the distance between the link segment and the obstacle, the movement direction
of the link segment, and how fast it is moving in that direction. For each of these
factors, we define a weight factor. The product of these weight factors will give the
magnitude of the repelling force.
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Figure 4.3.: The avoidance direction depends upon the link index. Links that are far
away from the base can avoid an obstacle in the direction ao = −q that
points directly away from the obstacle (left). For link segments close to
the base, the avoidance direction ao is tilted upwards (right).

For the dependency on distance d = |s− o|, we define

wd =
(
1− σ

d
(obs)
1 ,d

(obs)
2

(d)
)d(obs)1

d
, (4.46)

which is zero for distances d > d
(obs)
2 , 1 for d = d

(obs)
1 and grows towards +∞ for

d→ 0.
For the movement direction dependency, let m be the point on the line s+λvs, λ ∈

R, that is closest to the obstacle, and om the point on the obstacle bounding volume
with minimal distance to m. Define the obstacle angle as

ψ = atan2(|m− om|, |m− s|), (4.47)

which is the minimal angle between vs and any vector going through or touching the
obstacle bounding volume. Set

wψ =

{
0 : 〈vs,o− s〉 ≤ 0,

1− σψ1,ψ2(ψ) : otherwise,
(4.48)

which vanishes if vs is zero or ψ is too large.
Finally, as a dependency on the movement speed we just take that value itself as

wv = |vs|. (4.49)

With these three weight factors depending on distance, movement direction and
speed, we can define the magnitude of the repelling force as of the obstacle O on the
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segment S as
f
(obs)
S,O = αo · wd · wψ · wv. (4.50)

4.2.2.3. The obstacle vector field

Having defined an avoidance direction in R3 and a magnitude fSO, what remains is
to define a corresponding vector field in joint space. Let

Js =

(
∂si
∂θj

)
i,j

(4.51)

be the Jacobian of the segment point s. Then Jao
s = aToJs gives the change along ao

by changes of θ. We use the pseudo inverse of this to define

F
(obs)
O,S = f

(obs)
O,S

(
Jao
s

)+
, (4.52)

which is a vector in joint space that realizes the desired change in direction ao with
magnitude f

(obs)
O,S .

For the complete vector field of one obstacle, we just sum up the vector fields over
all obstacles O and link segments S, getting

F (obs) =
∑
O,S

F
(obs)
O,S . (4.53)

4.2.3. Hand orientation

Manipulating an object imposes certain constraints upon the orientation of the hand.
To formulate these constraints, one usually chooses coordinates for the space of hand
orientations and specifies desired orientations as vectors in these coordinates. Topo-
logically, the space of hand orientations SO(3) is isomorphic to the real projective
space RP3 (Murray et al., 1994). This means that there exists no global coordinate
system that describes all hand orientations, so for each orientation-related task, a
local coordinate frame must be chosen. The standard approach is to use systems
of Euler angles, where the specific choice of angles can vary depending on the task
(Siciliano & Khatib, 2008). Because of the different topologies, describing orienta-
tions with Euler angles always includes singularities. The approach of finding rele-
vant, low-dimensional variables for a given behavioral goal and selectively stabilizing
them allows us to bypass this problem. Instead of having to choose coordinates that
completely describe the hand orientation, we only parameterize those aspects that
are relevant for the given task.

For most tasks, some aspects of the hand orientation are important, while others
are not. To lay a grasped pen down on a table, the pen should be parallel to the
table, but the rotation of the hand in the table plane is irrelevant. Similarly, whether
a liquid is poured from a bottle depends upon the inclination angle of the bottle,
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but not the rotation of the bottle around its long axis. We capture this variety of
possibly relevant aspects of hand orientation by a class of behavioral variables.

Definition 3. Let w be any unit vector fixed to the end-effector, called hand vector.
Let k = o− p be the vector from the hand position to the position o of any relevant
object in the scene, called object vector. The orientation angle is defined as

γ = γp,w,o = arccos

(
wTk

|k|

)
. (4.54)

For any given desired orientation angle γdes, the vector field

− αγ
(
γ̇ − βγ(γdes − γ)

)
, (4.55)

is a damped harmonic oscillator with a single fixed point at γ = γdes, γ̇ = 0 similar
to what we used to stabilize the hand position (c. Equation 4.36). To avoid overly
fast reorientations of the hand that might go along with large motions of the upper
arm, we impose an upper bound on the absolute value of the instantaneous velocity
attractor βγ(γdes − γ), by choosing a limit ρdes for the desired magnitude of the
orientation change and setting

ρ =


−ρdes : βγ(γdes − γ) ≤ −ρdes,

βγ(γdes − γ) : −ρdes < βγ(γdes − γ) < ρdes,
ρdes : ρdes ≤ βγ(γdes − γ).

(4.56)

Then we define the vector field f (ori) as

f (ori) = f (ori)
γ,γdes

= −αγ
(
γ̇ − ρ

)
. (4.57)

To transform this low-dimensional vector field over γ into a high-dimensional vector
field over θ̇, we state a general relationship between vector fields over orientation
angles and vector fields over joint angles, analogous to Theorem 3.

Theorem 4. Let f (ori) ∈ R be any desired acceleration of γ.

θ̈ = J+
γ

(
f (ori) − J̇γ θ̇

)
=⇒ γ̈ = f (ori),

(4.58)

where Jγ = dγ
dθ

is the orientation angle Jacobian.

The proof of Theorem 4 is a direct implication of the product rule. The difficulty
lies with calculating the Jacobian and its temporal derivative.

Lemma 1. The derivatives of the orientation angle with respect to w and its time
derivative are given by

dγ

dw
=

−1√
1− cos2 γ

kT

|k|
, (4.59)
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d

dt

(
dγ

dw

)
=

γ̇ sin γ cos γ

(1− cos2 γ)
3
2

kT

|k|
+

−1√
1− cos2 γ

k̇T |k| − kT kT k̇
|k|

|k|2
. (4.60)

Proof. The first equation follows directly from the chain rule

dγ

dw
=

dγ

d cos γ

d cos γ

dw
.

The second equation also follows from straightforward application of derivation rules,

using d|k|
dt

= kT k̇
|k| .

We can now calculate the orientation angle Jacobian and its time derivative

Jγ =
dγ

dw

dw

dθ
, J̇γ =

d

dt

(
dγ

dw

)
dw

dθ
+
dγ

dw

d

dt

(
dw

dθ

)
. (4.61)

We know the derivatives of γ by w from lemma 1, calculating the other derivatives
is straightforward using screw calculus (Murray et al., 1994).

We have used the Moore-Penrose pseudo-inverse to transform the low-dimensional
vector field over γ into a high-dimensional vector field over θ. The resulting vector of
joint accelerations has minimal norm, meaning that the accelerations are distributed
over all joints as much as possible. For the generation of reaching movements, this
solution is often impractical: While it is minimal in joint space, the effect on hand
position can be quite large: to change the orientation of the hand frame z-axis, the
hand would move in a curve instead of rotating on the spot. A small change in
the orientation angle thus leads to a large perturbation in other relevant variables.
This can be prevented by choosing a different transformation to joint space, with the
added constraint that the hand position remains invariant. Define the augmented
behavioral variable, vector field and Jacobian

γ =

(
γ
p

)
∈ R4, f

(ori)
=

(
f (ori)

0

)
∈ R4, Jγ =

(
Jγ
Jp

)
∈ R4×n. (4.62)

where the added 0 ∈ R3 in the vector field f
(ori)

γ corresponds to the desired accelera-

tion of the hand position p. The transformation to joint space of f (ori) that does not
affect the end-effector position p is now given by

F (ori) = F (ori)
γ,γdes

= J+
γ

(
f
(ori)
γ,γdes − J̇γ θ̇

0

)
. (4.63)

This is similar to an augmented Jacobian (e.g., Seraji, 1989), only that in our case
the resulting task still does not have a unique solution and is transformed by the
pseudo-inverse instead.

If choosing fori as defined in Equation 4.57, Theorem 4 implies that the task
manifold for γ = γdes is asymptotically stable.
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Figure 4.4.: Vector field for joint limit avoidance. The joint angle limits are at ±π
2
.

Rate of change for θ is θ̇, rate of change for θ̇ is f (lim) = f (lower) + f (upper)

(see Equation 4.67). The upper joint limit vector field f (upper) is fully
active in the upper right region (dark red), the weight factor wγ rises
smoothly (light red region). The same areas are indicated by green for
the lower joint limit vector field f (lower).

4.2.4. Joint angle limits

Part of any movement generation system for robotic manipulators is accounting for
the hardware limits imposed on the single joints. These are defined as the bounds
of the interval [θ

(lower)
i , θ

(upper)
i ] of values the i-th joint can be moved to. When the

interface between the movement generation system and the hardware is simply a
vector of desired joint angles sent to the hardware, the joint limits can already be
guaranteed by reducing or increasing values outside [θ

(lower)
i , θ

(upper)
i ] to the nearest

value in the interval. If a joint limit is encountered, this will lead to a joint angle
trajectory that sticks to the boundary of the workspace defined by the joint limit,
resulting in a sharp change. Also, the relation between directions in joint space
and changes of a behavioral variable is misrepresented by the task Jacobian, as the
directions can point towards the joint limit, out of the allowed workspace.

To avoid the boundaries of the work space, we construct vector fields that repel
from the joint angle limits. The relevant behavioral variables for this task are the
distances

d(upper) = θ(upper) − θ, d(lower) = θ − θ(lower) (4.64)

from the joint angle limits.
One way to construct the repelling vector fields is to simply accelerate away from

the joint limits when they are approached by setting

f̃
(upper)
i = αlimσ(d(upper), alim, blim), (4.65)
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where alim and blim are tolerance limits.
Defining f̃

(lower)
i analogously, the total joint limit avoidance vector field is then

given by

F̃ (lim) =
∑
i

(f̃
(lower)
i + f̃

(upper)
i )ei, (4.66)

where ei is the i-th unit vector.
This design suffers from two problems: if a joint limit is approached with a high

velocity, the repelling contribution might not be sufficiently strong to reduce the
movement to zero before the limit is reached. If on the other hand the joint limit
is approached slowly, the magnitude of the repellation might be much higher than
necessary. These two problems are really two faces of the same problem: determining
how undesired the state of the variable is without taking into account its current rate
of change. A value close to a joint limit can be tolerable as long as the distance from
the limit is not reduced further, i.e. the joint only moves slowly towards the limit,
or not at all. On the other hand a value far away from a joint limit can still be
dangerous if the distance from the limit is rapidly shrinking.

To make a meaningful evaluation of how dangerous the current kinematic state
θi, θ̇i is in terms of hitting a joint limit that accounts for these effects, we consider

the remaining time to contact with the limit, given by θ̇
d(upper)

and define a vector
field using a hyperbolic function

f
(upper)
i = −αlimw

(upper)
d

θ̇ + c(upper)

d(upper)
(4.67)

that becomes large when the time to contact, adjusted by a safety offset c(upper), is
small. The factor

w
(upper)
d = 1− σ

(
d(upper),

θ̇ + c(upper)

2
, θ̇ + c(upper)

)
, (4.68)

is a weight that vanishes when the time to contact becomes larger than 1 second,
including cases where the joint is moving away from the limit. Figure 4.4 illustrates
the resulting vector field for θi, θ̇i and sketches the role of the single factors.

A vector f
(lower)
i is defined for the lower joint limit analogously. The complete joint

limit avoidance contribution is defined as

F (lim) =
∑
i

(f
(lower)
i + f

(upper)
i )ei. (4.69)

4.2.5. Homogeneous damping

Each behavioral task erects a vector field over θ̇. The flow of each vector field con-
tribution accelerates the joint angles in a direction that changes the low-dimensional
variable relevant to that task in the desired way. The direction of the contribution
in joint space changes over a movement, because of the non-linearities of the map-
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ping between the state variables (θ, θ̇) and the task-variable. Because of this change,
movement states that comply with a task at one time might violate it at another.

One consequence of this non-linearity in second order approaches is the well-known
problem of residual velocities building up in the null-space of a task (Hollerbach &
Suh, 1987). As the task-relevant direction in joint spaces changes over a movement,
velocity components in other directions come to lie in the null space of the task and
are unaffected by the controlling vector fields. Over time, this can lead to substantial
null-space velocities, called self-motion.

One way to counter this effect is to introduce a small homogeneous damping term

− αdampθ̇ (4.70)

that slowly reduces velocities in directions that do not affect any currently relevant
behavioral variable. This homogeneous damping also restricts the freedom in direc-
tions that are currently relevant for behavioral goals, though. To avoid this, the
damping term is only activated when the accuracy requirements on the behavioral
variables are high, i.e. when the behavioral variables of target acquisition are near
their desired values, as defined in Equation 4.37.

Fdamp = −αdampw
(tar)w(ori)θ̇, (4.71)

with
w(tar) =

(
1− σ

d
(tar)
1 ,d

(tar)
2

(d(tar))
)
, w(ori) =

(
1− σ

d
(ori)
1 ,d

(ori)
2

(d(ori))
)
,

and d(tar) = |g− p|, d(ori) = |γ − γdes|. This leaves maximal freedom by not reducing
movement in any direction during transport, but increases the stability of the whole
system by reducing movement in the null-space of the behavioral variables during
stabilization.

4.2.6. Behavioral organization

As we want to demonstrate our approach not only with simple single movements, but
also with more complex object manipulation tasks requiring a sequence of action, we
now describe a simple system of behavioral organization that can accomplish this. We
partition complex movements into sequences of behavioral phases, e.g. approaching
an object or closing the hand to grasp it. A simple, neurally inspired dynamical
system is used to switch between these phases.

Each behavioral phase is represented by one Amari neuron (Amari, 1977). For-
mally, this is a dynamical system

u̇ = −u+ αuσu0(u) + h+ input, (4.72)

where u is the dynamical variable, h a resting level and σ = (1 + exp(−β(u− u0))−1
a sigmoid function with threshold u0 and slope β. The input comes from sensor
information or activation of other neurons. With appropriate parametrization, this
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dynamical system is bistable, with two attractors that can be interpreted as on and
off (Schöner, 2008). Switching between these two stable states can be induced by
short-term inputs that briefly destabilize one of the states.

Consider one such neuron B receiving moderate excitatory input from another
neuron A, but not enough to switch it to the on state. Add another excitatory
connection from a sensory channel to B, also of moderate strength. With this con-
nectivity, B will activate when both its pre-condition A is active and the appropriate
sensory condition is given. This can be used to build a sequence of neurons represent-
ing elementary phases, where the completion of one phase activates the next phase.
The previous phase neuron can then be deactivated by adding a strong inhibitory
connection from B to A.

These dynamic networks of Amari neurons allow to code simple sequences (and
also trees or more complex graphs) of goal-directed behaviors without the use of al-
gorithmic if-then structures. The whole movement system thus consists of intercon-
nected dynamical systems, increasing the similarity to how living organisms generate
behavior. For more on this, see (Sandamirskaya & Schöner, 2010).

We use this basic approach to dynamic behavior organization in two examples:
(1) picking up a pen standing on a table and laying it down, and (2) picking up a
bottle containing a soft drink and pouring it into a glass. The different elementary
behavioral phases used to model this are: approach the current target, settle on the
target, retreat from the target, close the hand to grasp an object, open the hand
to release an object, pour liquid from the grasped object, and return to the resting
configuration.

Each behavioral phase has a number of elementary behavioral goals assigned to it,
e.g. in the approach phase the hand should be brought to an appropriate point from
which to approach the target object (see below) and the hand should be oriented in
a way that allows to grasp it. This is accomplished with three movement generating
vector fields, one for target acquisition, one for orienting the hand opening xhand and
one for orienting the grasp axis zhand (see Figure 4.6 below). Each of these vector
fields F is activated or deactivated by multiplying it with the output σ(uF ) of the
linked behavioral phase uF .

Movement is then generated by superposing all vector fields described in this sec-
tion, weighted with the appropriate behavioral activation

F =
∑
i

σ(ui)Fi. (4.73)

The flow
θ̈ = F (4.74)

of this vector field is used to generate a trajectory for θ̇ and θ.
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Figure 4.5.: The direction of the hand opening xhand is projected to the xy-plane
of the object to determine the offset wxy that is added to the object
location g to determine the goal position for approaching to grasp.

4.2.6.1. The grasp and return phases

Constraints on the hand position are different for the behavioral phases of approach-
ing a target, settling on the target, and retreating from it. Settling on the target for
a successful grasp requires the direction of hand opening to coincide with the direc-
tion towards the target. Lifting a grasped object or retreating from it after setting
it down also requires moving in a certain direction depending on object and hand
positions and hand opening.

As an intermediate step in the fulfilling of these constraints, we use different desired
hand positions in the different phases. When settling on the object, the desired hand
position g is the position of the object. When approaching or retreating from the
object, an offset vector w is added. Depending on the situation, this offset can lie in
the plane orthogonal to the object cylinder axis, or simply in direction of the world

frame z-axis. The former is given by w′xy = Pxhand, wxy = −cxy
w′xy
|w′xy |

, where P is the

matrix that projects onto the xy-plane of the object coordinate frame, xhand is the
x-vector of the hand coordinate frame and cxy is the fixed length of the offset. The
offset in direction of the world frame z-axis zbase is simply wz = czzbase, where cz is
again the fixed length of the offset. See Figure 4.5 for an illustration of how these
offsets are defined.

Using these offsets, the hand first approaches the object by moving onto the hor-
izontal circle around its center, where the exact goal position on this circle o + wxy

is determined by the current direction of the hand opening. Then it settles upon the
object by moving towards the object o itself.

When the object is reached, it can be grasped by closing the hand. For all grippers
we use, we can represent the hand opening by a scalar value between 1 and 0, where
1 stands for a fully opened and 0 for a completely closed hand. As the hand opening
is completely independent of the other state variables, we use this value η ∈ [0, 1]
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as task variable to generate the hand opening and closing movement. A vector field
over η with a linear attractor at the desired value η0 is given by

f (grasp) = −αη (η − η0) , (4.75)

the transformation into joint space is trivial, so the vector field for grasping and
releasing is

F (grasp) = F (grasp)
η,ηdes

= f (grasp). (4.76)

After a movement is completed successfully, the robot arm simply returns to a
resting configuration θ(rest). Using the joint velocities as variables, the vector field
for this is given by

F (rest) = −αθ̇
(
θ̇ − αθ(θ(rest) − θ)

)
(4.77)

4.3. Implementation and results

The movement generation system described in the previous section was implemented
in C++ and tested in with combinations of tasks for a variety of scenes. In all
experiments, the scene configuration was pre-defined and known to the system a-
priory, i.e. information about location and size of all objects was given and did not
have to be gathered from sensor information.

Two different robotic agents were used in the experiments, CoRA and the Alde-
baran NAO. CoRA (Cooperative Robotic Agent, see Figure 4.6 and Iossifidis et al.,
2002) has an anthropomorphic seven degrees of freedom arm mounted on a one degree
of freedom trunk. CoRA is assembled from modular robotic parts, each module is
servo-controlled and communicates via a CAN-bus interface with the controlling PC.
Above the trunk CoRA has a head consisting of a two DoF pan/tilt unit carrying a
stereo color camera system and microphones. The arm of NAO consists of a pitch-roll
joint at the shoulder, a yaw-roll joint at the elbow, and a yaw joint at the wrist, for a
total of five degrees of freedom affecting the hand, with a single additional degree of
freedom for the opening of the hand (see Figure 4.6). For CoRA, the arm and trunk
were used for a total of 8 DoF. For NAO, only the 5 DoFs of the arm were used.

In all experiments, a trajectory was generated by calculating the vector field given
in Equation 4.74 at each time step and passing it as a joint acceleration to the robot
interface.

4.3.1. Obstacle avoidance

To examine the obstacle avoidance scheme, a series of experiments was run with
a movement generation system that consisted only of the vector fields for target
acquisition (Equation 4.38) and obstacle avoidance (Equation 4.53). If the end-
effector was near the target, the homogeneous damping field was also activated to
reduce residual motion in the null-space of the end-effector position, as indicated in
Equation 4.71.
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Figure 4.6.: The anthropomorphic robots CoRA (right) and NAO (left). The vectors
xhand and zhand of the hand coordinate frame are relevant for grasping
and manipulating cylindrical objects.

Figure 4.7.: Sequence of CoRA successfully reaching for a toy car while avoiding
collision with five obstacles in the scene.
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The behavior generation scheme was capable of producing satisfying movement
trajectories for CoRA for scenes with several obstacles. Figure 4.7 shows CoRA
reaching for a red toy car in a scene where the direct path to the target is obstructed
by several plastic bottles. The manipulator successfully avoids all obstacles and
reaches the target with the tip of the gripper. The experiment was stopped shortly
before the car was actually touched.

For a more systematic examination of the behavior generation scheme, the method
was tested in a sequence of randomly generated scenes in the software simulator of
CoRA. In each trial, the initial configuration was randomized around a reference con-
figuration (∼ N (θinit, 0.1 rad)). The target was placed randomly in a predetermined
area, and a varying number of obstacles was also placed randomly in an area ranging
from the manipulator to around the target (uniform distributions). No obstacle was
placed closer than 9cm to the target, allowing a minimal leeway of 3cm for the end-
effector, enclosed in a 6cm radius bounding volume, to reach it. Radius and height
of the obstacles was also randomized, while the manipulator starting configuration
was fixed at θinit (see Figure 4.8).

Table 4.1 shows the results of the experiment. A successful trajectory to the target
was found in the majority of all trials, overwhelmingly so for small numbers of ob-
stacles and decreasing only significantly as the scenes got cluttered. An investigation
of the failed trials revealed that the reasons for failing to find a path to the target
fall in fairly distinct categories, which are described below, listed with the reference
letter used in the table.

Proximate obstacle (P): The most prevalent reason was a single high obstacle near
the base of the manipulator that prevented the link segments close to the base to
move towards the target, reducing the effectively reachable workspace significantly.
This resulted in failures when the target was located far out in the workspace, though
for closer targets successful trajectories could still be found (an example of this sit-
uation is shown in Figure 4.8).

Workspace boundaries (W): In a small number of cases, the manipulator reached
the end of the workspace while moving around an obstacle, and then failed to find a
way back.

Obstructed target (O): For certain combinations the target was so obstructed
by the obstacles that a configuration that reached the target without collision was
nonexistent or very hard to find. Failures of this kind did not occur for scenes with
small numbers of obstacles, and only became frequent in very cluttered scenes.

Cancellation (C): When one link segment simultaneously approached two or more
obstacles on different sides, the avoidance directions partly cancelled each other out,
until the obstacle distance had become very small and the corresponding factor wδ
in the repelling vector field so large that the simulation became numerically unstable.
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Figure 4.8.: Randomly generated scene with three obstacles. The manipulator is in
the reference configuration θinit. The target was randomly placed in the
green box, the obstacles distributed over the orange box.

Null-space drift (D): When the manipulator avoided an obstacle with a link seg-
ment close to the base, this resulted in persisting motion in the null space of the
end-effector even after the obstacle has been passed. In situations where only a tight
path towards the target was available, that null space drift prevented the manipula-
tor from successfully taking that path.

The first three categories of failures (P, W, O) are instances of the general situation
where a path that reaches the target without collision might exist, but can only be
found by first realizing a significant change of manipulator configuration. As the
behavior generation scheme presented here is a local approach, this shortcoming is to
be expected to some degree. A possible way to prevent the cancellation problems (C)
would be to include a more sophisticated method of regulating the absolute velocity
than the one given by Equation (4.33), with the additional function to reduce the
overall velocity in the vicinity of obstacles. This would allow more time to change
the movement direction away from possible collision paths. This is not the focus of
the present work, though. The persistence of null-space drift after obstacles have
been cleared (D) is problematic, but a rather academic one, as the small number
of occurrences indicates. One possible solution is to identify occurrences of strong
velocity components in the null-space of the main tasks and selectively increasing the
damping in these directions.

4.3.1.1. Special cases

In addition to the randomized scenes, we set up two special cases with obstacle
configurations for which it is particularly hard to find a successful trajectory as
qualitative demonstration of the practical applicability of our presented scheme. In
the first case, the target is encircled within several large obstacles, leaving only a
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No. of success failure Failure reasons (%)
obst. N (%) (%) P W O C D

1 1000 99.7 0.3 33.3 67.7 – – –
3 1000 99.1 0.9 77.8 11.1 – 11.1 –
6 1000 95.4 4.6 54.4 6.5 19.6 15.2 4.3
10 1000 92.7 7.3 47.9 6.8 27.4 9.6 8.2
15 500 87.0 13.0 49.2 3.0 35.4 9.2 3.0
20 200 83.0 17.0 41.1 – 47.0 8.8 2.9

Table 4.1.: Results of experiments with randomized scenes. Failure reasons are given
in percent of the total number of failures.

Figure 4.9.: Two sequences of simulated movements of CoRA reaching for a target.
The obstacles were manually arranged to pose interesting challenges.
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narrow path from above for the manipulator to reach through (Figure 4.9, upper
panel). The second scene is a borderline case of the failed random trials with a large
obstacle near the first link segments (P), but chosen in a way that the manipulator
has barely enough freedom to find a path above it (Figure 4.9, lower panel). In both
cases the behavior generation scheme finds viable trajectories that reach the target
and avoid obstacle collision.

4.3.2. Complex tasks

Our next experiment was designed to test the orientation contribution and whether
the system is capable of generating complex sequences of actions. To this end, two
tasks were set up for the NAO, both containing the grasping and manipulation of
a cylindrical object that required appropriate orientation of the hand. In the first
movement, NAO picks up a marker pen standing on the table in front of the robot
and lays it down at another place on the table. In the second experiment, NAO takes
a straight plastic container filled with a soft drink, pours the contents into a glass
and puts the container back on the table.

To generate the sequence of behavioral phases for these movements, each phase
was represented by an Amari neuron as described in section 4.2.6. The next neuron
in the sequence was activated when (a) the previous neuron was active and (b) all
active behavioral variables were near the desired values.

4.3.2.1. Pick-and-place movement

The pick-and-place movement consists of two similar parts. In the first part the target
object is approached and settled upon, then the hand is closed and the object lifted.
In the second part, the target position for the object is approached and settled upon
with the object in hand, then the object is released by opening the hand, which is
then removed. Once clear of the object, the arm returns to the resting configuration.

In the first part of the movement, to successfully grasp the marker pen, the z-axis
of the hand frame zhand must be aligned with the long axis of the pen. When the
pen is standing on the table, this is the z-axis of the world coordinate frame zworld.
The corresponding orientation angle is

γz = ∠(zhand, zworld) = arccos
(
zThandzworld

)
, (4.78)

and the desired state is γz = 0. When placing the pen on the table, the z-axis of the
hand, which is now equivalent to the long axis of the pen, must be parallel to the
table surface, corresponding to the desired state γz = π

2
.

An additional constraint when placing the pen on the table is that the direction of
the hand opening, the x-axis of the hand frame xhand, must point roughly towards the
table, so the pen actually drops to the table when the hand opens. The corresponding
orientation angle is

γx = ∠(xhand, zworld) = arccos
(
xThandzworld

)
. (4.79)
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Figure 4.10.: Sequence of NAO picking up a marker pen, rotating it parallel to the
surface and placing it on the table.

Table 4.2.: Pick-and-place movement phase sequence

vector field F
(tar)
p,x F

(ori)
γz ,γz,des F

(ori)
γx,γx,des F (grasp)

attractor x = γz,des = γx,des = ηdes =
approach qi + wxy 0 - 1

settle qi 0 - 1
close hand qi + wxy 0 - 0

retreat qi + wz 0 - 0
approach qt + wz π/2 ≥ π − 0.3 0

settle qt π/2 ≥ π − 0.3 0
open hand qt π/2 ≥ π − 0.3 1

retreat qt + wz π/2 ≥ π − 0.3 1

As the exact value of this orientation angle γx does not matter as long as it is large
enough, a whole region γx ≥ π− 0.3 was used as desired states. This was realized by
a vector field that had a one-sided point attractor at the border of the desired state
region (Equation 4.57) and vanished inside it.

Besides the orientation constraints, there are constraints on the hand position p
throughout the movement. The first desired position is the location qi of the marker,
adjusted by an approach offset wxy as described in section 4.2.6.1 above. These
locations are set as the desired state of the hand position for the target acquisition
vector field contribution (Equation 4.37).

Table 4.2 gives an overview of the sequence for this movement. For each behavioral
phase, the movement generating vector fields contributing to the total vector field
are listed. The entries represent the desired values of the behavioral variable, i.e. the
attractor of the behavioral dynamical system f∗ that the joint velocity vector field
F∗ corresponds to. A dash means that the respective behavioral variable is irrelevant
in that phase and the vector field does not contribute. The movement is finished
with a phase where the arm returns to the predefined resting configuration θres, not
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Figure 4.11.: Sequence of NAO taking a container holding a soft drink and pouring
it into a drinking glass, then putting the container back on the table.

shown in the table. During this last phase, the vector field contributions for all other
movement generators are set to zero.

NAO was able to repeatedly pick up the pen and place it on the table with this
movement generation system. An example of a successful movement is shown as
a series of stills in Figure 4.10. The range of initial positions of the pen relative
to the robot was rather limited, though we did not test this systematically. One
reason for this is the small number of available degrees of freedom in relation to the
task constraints. Incorporating locomotion and trunk movement might alleviate this
problem.

4.3.2.2. Pour liquid movement

The pouring movement consists of three parts: picking up the soft drink container,
pouring its content into the glass, and putting the container back on the table. The
container is picked up at the position qc and placed back there in the same manner
as in the first movement, except that the container is placed on the table upright
instead of horizontally. For these parts, the same orientation angle γz was used as
behavioral variable with the appropriate desired value γz = 0.

For the middle part of the movement, pouring the soft drink from the container
into a glass on the table, the mouth of the container must be kept over the glass in
order for the liquid to be poured into the glass instead of on the table. In this phase,
the contribution of the container position vector field F

(tar)
c,qg becomes active, with the

location of the glass qg plus a vertical offset as desired value for the container mouth
position c. The hand position becomes irrelevant in this phase, and the contribution
from that vector field is turned off. The pouring movement is realized by setting a
sufficiently large desired value γz = 3

4
π for the behavioral variable γz, meaning the

long axis of the container, which is collinear to the z-axis of the hand, is pointing
down towards the table at an angle of 45◦. Again, an overview of the behavioral
phase sequence for this movement is given in table 4.3.

With the movement generation system presented here, NAO successfully picked
up the container, poured the soft drink into the glass and put the container down on
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Table 4.3.: Pour liquid movement phase sequence

vector field F
(tar)
p,x F

(ori)
γz ,γz,des F

(tar)
c,x F (grasp)

attractor x = γz,des = x = ηdes =
approach qc + wxy 0 - 1

settle qc 0 - 1
close hand qc 0 - 0

retreat qc + wz 0 - 0
pour liquid - 3

4
π qg + wz 0

approach qc + wz 0 - 0
settle qc 0 - 0

open hand qc 0 - 1
retreat qc + wxy 0 - 1

the table without spilling. Figure 4.11 illustrates this action sequence with a series
of stills.

4.3.3. The complete system

A last series of experiments was carried out on CoRA to examine the complete system
with all vector field contributions active. The scene consisted of a target and a single
obstacle on the table, both cylindrical. The active vector field contributions were
target acquisition, hand orientation, obstacle avoidance, joint limit avoidance and
homogeneous damping. Orientation angle and attractor were the same as the ones
used for NAO grasping the pen in the previous section.

4.3.3.1. Systematic survey

To explore the capabilities of successfully generating movements that adhere to all
the constraints described in Section 4.2, a systematic experiment was conducted in a
simulation study. The manipulator started in one of 6 initial configurations, roughly
similar to how a human would hold the right arm when manipulating something on
a table. The gripper was located in front of the base or 40cm to the left or right,
15 or 35cm above the work table. The target was in one of 28 different positions:
20 or 40cm above the table, 60 or 70cm in front of the base, and from 60cm to the
left to 60cm to the right of the base, in steps of 20cm. The obstacle was a cylinder
with a diameter of 8cm and a length of 30cm. It was placed in one of 27 positions,
the locations of which depended upon the initial position of the gripper pinit and
the target position g: one location was halfway between the gripper and the target,
the other locations were on the corners and the centers of the edges and sides of a
cube around the first one. The side length of the cube was one sixth of the distance
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Figure 4.12.: Sketch of the experimental setup. The 6 initial gripper positions are
marked blue, the 28 target positions green. For one example com-
bination of gripper and target position, the 27 obstacle positions are
indicated by small orange markers. Two example initial configurations
of the whole manipulator are also shown.

|g−pinit|; the cube was aligned with the z-axis and the direction from pinit to g. See
Figure 4.12 for an overview of all possible combinations.

Out of these 6 ·28 ·27 = 4536 movements, 4423 were completed with all constraints
met throughout the movement, a success rate of 97.5%.

4.3.3.2. Effect of damping dependency on the behavioral state

The effect of the homogeneous damping term is to prevent velocities from building
up in the null-space of currently relevant task variables. This becomes evident in
movements where different task contributions are opposing each other. In these
situations, even small differences between the vector field contributions can build up
over time, leading to a way out of the conflict. Homogeneous damping is a hindrance
to this, as illustrated in Figure 4.13, where joint angle profiles for two movements
with the same setup are shown, one with damping depending on the behavioral state
as defined in Equation 4.71, the other with damping permanently active.

The scene for this experiment was set up in a way such that after avoiding the
obstacle with the last link segment and turning towards the target, reaching the
target would lead to the back of the “wrist” link segment colliding with the obstacle.
One way to avoid this is to turn the wrist and reach the target from a different
direction. This solution emerged almost immediately in the undamped case, after
about 10 s the movement is completed successfully. With permanent damping, the
manipulator does not leave the configuration range where the contribution for wrist
obstacle avoidance and the contribution for target reaching oppose each other for a
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Figure 4.13.: Joint angle profiles for a movement with damping depending on the be-
havioral state as described in Equation 4.71 (upper panel), and damping
permanently tuned on (lower panel).

long time – for about 20 seconds, the arm oscillates in the same general region of
state space, until a slow underlying movement component finally lets it escape and
reach the target. The solution of the permanently damped system is similar to the
one where the damping depends upon the behavioral state, but the system takes
three times as long to find it.

4.3.3.3. Joint limit avoidance

The effects of different versions of joint limit avoidance are demonstrated in an ex-
periment where the final configuration is very close to the joint limit for the 5th joint,
the “elbow”, due to obstacle placement. Figure 4.14 shows the 5th joint angle for
three different avoidance modes.

When the limit is simply guaranteed by the low-level motor system, the target
is reached, but the joint velocity goes through a very sharp drop as the limit is
encountered. With the avoidance strategy of accelerating the joint away from the
limit when it comes too close, given in Equation 4.66, the movement fails, as the
manipulator enters a cycle of approaching the target, then being forced away from
it by the joint limit vector field. Using the vector field depending on the relation of
the current distance from the joint angle limit and rate of change towards it, given in
Equation 4.69, the target is reached with a much smoother curve than without the
repelling vector field.

In order to isolate the effects of the different joint limit vector fields and minimize
influences from other behavioral goals, the hand orientation contribution was dis-

101



4.4. Conclusions

Jo
in

t 
an

gl
e 

(r
ad

)

Time (s)  

1.3

5

1.4

1.5

1.6

10 15 20 25 30

simple combined none

Figure 4.14.: Angle profile for the 5th joint (“elbow”) for the same movement with
three different modes of joint limit avoidance. In the first movement
(orange), excessive joint angle commands θ > θ(upper) were simply re-
duced to the limit θ(upper). The second movement (blue) used the sim-
ple angle-dependent repellation from the limit given by Equation 4.66,
which resulted in a cycle. The last movement (green) used the combined
angle-velocity dependent vector field given by Equation 4.69. The joint
limit θ(upper) = π/2 is indicated by the dashed line.

regarded and the damping term activated throughout the whole movement in this
experiment.

4.4. Conclusions

We presented an approach to generate goal-directed movement for autonomous robots
based on principles of selective stabilization of task-relevant variables. Each goal-
directed sub-task was expressed as the desired state of a relevant low-dimensional
task variable. To move the task variable to its desired state, the relevant aspects
of its movement states were represented with a second set of task variables. By
specifying desired values for these second-order task variables and stabilizing them
at these values, we ensured that the first-order task variable was changing in the
right direction. This movement generation scheme was phased over to a postural
stabilization scheme once the task-relevant variable came close to its desired state.

The proposed movement generation system was capable of solving a wide variety of
goal-directed movement tasks for different robotic manipulators. The system success-
fully integrated the large number of constraints and solved the complex task based
on purely local planning. The performance achieved in the systematic experiments
was surprisingly strong for a system without capabilities to compare and choose
from possible trajectories globally. Failures to fulfill the behavioral goals or globally
suboptimal trajectories can be explained by problems inherent to local approaches.
Drawbacks were mostly dealt with heuristically: a class of problems was parameter-
ized, allowing the relevant behavioral task variables and corresponding vector fields
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4.4. Conclusions

to be modified depending on that parameter.
Our approach is based on the insight that the concrete value of the movement state

is less important than the general direction of movement. Even less important during
movement is the current value of the first-order task variable. During movement, we
selectively stabilize the general direction of the task variable change at values that
bring it closer to the goal state. Because it is sufficient if the movement direction is
only generally appropriate, errors introduced by perturbations from other task con-
tributions are not critical. Instead of correcting the errors immediately with high
effort and possible violation of other constraints, they are remedied over time: the
manipulator moves into a configuration where the two sub-tasks are not in conflict
anymore. The trajectories emerging from the local application of selective stabiliza-
tion principles are usually quite smooth and appear more natural than trajectories
generated by more classical robotic approaches (Fajen et al., 2003).

Another benefit that has only been hinted at in this study is the compatibility
of our system with dynamic approaches to behavioral organization. To generate
complex sequences of movements, we essentially hard-coded when each contribution
should be activated with which parameters. This kind of decision can also be made
autonomously by more complex dynamical systems that are capable of making de-
cisions based on both sensory data and internal states (Richter, 2012). Instead of
following a pre-defined sequence, these systems can dynamically select an appropri-
ate action from a range of several possibilities. Selections and other decisions are
represented by dynamic neural fields in this system. The neural activation of these
fields can be connected to the weight with which the vector field of a sub-task con-
tributes to the movement generation. Using such a complex system of behavioral
organization instead of the simple one described in Section 4.2.6 would provide the
robotic agent with another degree of autonomy.

One aspect of movement generation we did not address here is the time profile of
the trajectory. The solution we used was to set an attractor for the end-effector speed
at an arbitrarily chosen value. While this was necessary to resolve the redundancy of
trajectories, we did not attempt to benefit from this freedom. The speed of movement
and the danger of collision with obstacles or joint limits are closely related. We
took this relationship into account in one direction by increasing the magnitude
of the avoidance vector fields large for small ratios of speed over distance to the
obstacle. But collision was still not prevented successfully in some rare cases where
contributions from two different obstacles cancelled each other out. This could be
prevented by also coupling the obstacle distance to the movement speed dynamics
in the other direction. If the movement speed is reduced in proximity of an obstacle,
there is more time to turn away from it. The small contributions from the two
obstacles that do not cancel each other out are then more likely to be sufficient to
prevent collision. This temporal aspect of trajectory generation is something that
might be addressed in future work.
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5. Conclusions

Interacting with the world in a meaningful way requires moving the body in a goal-
directed fashion. Usually there are infinitely many possible solutions to a given
behavioral task. Any process that resolves this redundancy has to coordinate the
available degrees of freedom in a way that all task-specific constraints are fulfilled.
This selection of one solution out of the infinite set of movement trajectories that
reach the behavioral goal has to be robust and flexible enough to deal with noisy
state sensors and unexpected perturbation.

Redundancy in movement generation has both local and global aspects. Any de-
sired instantaneous change of the task variable can be realized by infinitely many
changes in the body state. To form a global movement trajectory for the task vari-
able, different sequences of local changes can terminate in the same state and are
globally equivalent from a task-perspective.

We proposed a general principle of how this redundancy can be resolved: variables
that are currently relevant to a given task are stabilized, while others that are not
relevant at the moment are released from control. This notion was applied directly
to the local aspect of redundancy by selecting a change of the body state that is
minimal while still generating the desired change of the task variable. To resolve
the global redundancy of trajectory formation, we posited that at any point in time
during a movement, those variables are relevant that describe whether the system is
currently moving in the right direction.

The feasibility of this principle was examined from three different angles. First we
asked whether humans use selective stabilization principles when generating move-
ments. We presented a method to quantify signatures of selective stabilization in be-
havioral data and formalized hypotheses about whether these signatures are present.
A statistical test was developed to examine the verity of this type of hypothesis in
data from single human subjects and applied to an exemplary data set.

The second question we asked was what mechanisms the human nervous system
might use to achieve this selective stabilization. We designed a feedback controller for
the postural stabilization of the body in quiet, upright stance. Sensed deviations in
task-relevant variables are transformed into negative feedback and distributed among
the available degrees of freedom in a way that minimizes the total muscle activation.
This feedback system is integrated into a complete model of the sensorimotor loop
for quiet stance. The feasibility of our design was demonstrated by successfully
reproducing the characteristic variance patterns of body sway in quiet stance, among
them the behavioral signatures of selective stabilization presented previously.

To investigate the global aspects of redundancy in movement generation, we uti-
lized embodied robotic agents. We designed a system that formulates a behavioral
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goal as the desired value of a task variable. To generate a trajectory, a vector field
is constructed that stabilizes the movement state of that variable in a region where
it is approaching the desired value. Less relevant aspects like the exact value of
the movement state and how the rest of the robotic agent moves are released from
control. The flow of the superposed vector fields for different behavioral goals gener-
ated trajectories that fulfilled each goal simultaneously in a large number of tested
scenarios.

Based on the successful results of these three studies, we conclude that selective
stabilization is indeed a viable strategy of movement generation and that there is
substantial evidence that humans apply similar strategies to resolve the inherent
redundancy in postural stabilization and trajectory formation.

5.1. Scientific contribution

The scientific contribution of this work is twofold. On the one hand, the concrete
work described in Chapters 2–4 each extend the knowledge in the specific fields of
research. On the other hand, the general approach of describing the generation of
movement in high-dimensional state space with dynamical systems has the potential
to provide a unifying language for research questions that have traditionally been
analyzed by separate communities using disjoint methods.

In Chapter 2 we formalize the UCM method and make underlying assumptions
about the distribution of the elementary variables explicit. We formulate hypotheses
about the structure of the variance in a way that makes them testable with the
parametric bootstrap method. Similar tests have been made on the population level
before using repeated measures ANOVA. Our work allows to test these effects on the
level of individual subjects instead of whole populations. An exemplary application
of the developed test showcases possible problems in the population-level analysis.

The process model of quiet upright stance presented in Chapter 3 is one among
only a few other such models that account for the existence of multiple degrees of
freedom along the body instead of reducing the analysis to a single joint at the
ankle. To the best of our knowledge, the model presented here is the first closed-loop
process model of quiet upright stance that includes the dynamics of the spinal reflex
loops. While other researchers have pointed out that the existence of these reflex
loops might reduce the complexity of the control problem for the higher parts of the
central nervous system (Van Soest et al., 2003), our model is the first to actually
support this claim by showing that in the presence of these low-level contributions a
relatively simple feedback dynamics is sufficient to stabilize the body. Furthermore,
the model provides additional evidence that for effector systems with many degrees
of freedom, a motor system that represents and monitors movement states on a task
level rather than the high-dimensional configuration space is feasible.

This claim is extended by the results of Chapter 4, where we show that a move-
ment generation system for autonomous robotic agents that is based on principles
of selectively stabilizing task-relevant low-level variables at desired states is capa-
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ble of solving a wide variety of motor tasks with multiple simultaneous constraints.
In the field of robotics, this can be interpreted as a generalization of the widely-
used Artificial Potential Field Approach (APFA, Khatib, 1986). While the vector
fields erected by the APFA are induced by potential functions and thus restricted to
position-dependent variables only, the attractor dynamics approach presented here
allows freedom in the choice of relevant variables. This allows using vector fields over
velocity-dependent variables, an essential part of the kinematic state of the robot.
The notion of stability as a design principle for robotics had been proposed in the
attractor dynamics approach to vehicle path planning before (Schöner et al., 1995).
In the present work, we extended this notion to the principle of selective stabilization
in redundant tasks and applied it to reaching, grasping and collision avoidance for
redundant manipulators.

On a more general level, this work makes a contribution by proposing dynamic sys-
tems as a common language to describe and generate movement in high-dimensional
state spaces in and across different disciplines. Each academic discipline has a col-
lection of classical, time-proven methods, and problems that these classical methods
are ill-suited to deal with have a tendency to be marginalized.

The field of robotics is dominated by engineers and computer scientists. This has
resulted in a preference for actuators and systems that can be modeled with great
accuracy, like joints actuated by micro-controlled servo-motors that have been ana-
lyzed in detail by control theoretical approaches. For movement generation, there is a
tendency to model the kinematics and dynamics of the robotic systems and solve the
movement generation problem by inverting these forward models. This is driven to
the limits of what is possible in grasping problems, where the kinematic state of some
robotic hands is described by 20 or more degrees of freedom. Possible grasps for any
given object correspond to sub-manifolds, but these are sometimes so sensitive that
small errors in position estimation already lead to failure. Though there has been
considerable progress in dealing with these problems, in recent years increasingly
many roboticists have acknowledged that by using actuators with inherent stability
properties like elastic tendons, many of these problems are greatly alleviated: with
elastic tendons, one can just close the hand and the fingers will generate an appro-
priate amount of force against the object. The exact magnitude of force does not
matter in many cases. Doing the same for servo-controlled joints will usually result
in broken motors. Yet the robotics community is slow to adapt hardware with elastic
properties, because modeling the kinematics of these accurately is almost impossi-
ble. As we show in Chapter 3 of this thesis, for a control approach based on dynamic
systems with stable attractors such low-level elastic properties can actually reduce
the complexity of the high-level control problem.

In the field of human motor control, many researchers have acknowledged the ben-
eficial effects of redundancy and elastic properties. Additional degrees of freedom
are not seen as something problematic because the controller has to select a solution
out of an infinite set, but as an advantage because they add more freedom of ways
in which a specific movement goal can be achieved. To reflect this different view,
many researchers have begun to talk about additional degrees of freedom as motor
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abundance instead of redundancy. The “softness” induced by elastic components
and low-level reflex loops is treated with more ambiguity, though. One group of
researchers embraces it and postulate that a major part of the work is solved by the
spinal reflex loops and the control problem for the higher motor areas is as simple as
specifying a desired position for a relevant body part (Feldman, 1986). Many other
researchers approach the motor control problem from a very different angle, using
engineering techniques like optimal control to support hypotheses about trajectory
formation adhering to optimality principles (Todorov, 2004). While this direction
has had considerable success in exposing optimality characteristics of mean trajec-
tories and thus pointing out aspects that the CNS might care about in movement
generation, no satisfying explanation for how these optimality constraints might ac-
tually be used in the neural dynamics that generate descending movement commands
has been proposed yet (Loeb, 2012). One overt problem is that optimal control ap-
proaches often assume that the descending motor commands generated by the CNS
encode muscle force or joint torque directly, ignoring both the elastic properties of
the muscles and tendons and the dynamics of the spinal reflex loops. A more general
problem is that these approaches generate globally optimal trajectories, requiring
pre-planning of a complete movement in advance, and re-planning every time the
movement parameters change in some unpredicted way. In other words, the move-
ments generated by optimal controllers fail to stabilize the movement goal against
perturbations.

We propose that these problems can be overcome by adopting dynamical systems
as a general language of description for the representation and generation of move-
ment. In human motor control, describing the dynamics of the neural activation
patterns in the brain by differential equations allows the introduction of local opti-
mality principles. The principle of selective stabilization is closely related in spirit to
the “principle of minimal intervention” proposed by members of the optimal control
community (Valero-Cuevas, Venkadesan, & Todorov, 2009), and could even be called
a dynamic version of it. Models that use dynamical systems as a unifying language
have the additional benefit that the level of detail used in describing sub-modules of
a complex system can be varied relatively freely, as the interface between subsequent
sub-modules are always neural activation variables. It is, for instance, conceivable
to replace the abstract, functional description of the neural dynamics we presented
in Chapter 3 by a detailed model using dynamic neural fields (Schöner, 2008), which
would allow the comparison of the neural activation patterns generated by the model
with experimental data. In robotics, designing movement generation systems with
stability properties can simplify the high-level control problem and interface well
with soft actuators that have elastic properties. Across these disciplines, a common
language of dynamic systems thinking can provide a basis for academic exchange.
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A. Parameters of the bootstrap
simulation study

Joint and pointer positions in reference configuration

j1 = j2 = j3 =

 0
0

0.3

m, j4 = j5 = j6 =

 0
0.2
0.3

m,

j7 = j8 =

 0
0.4
0.3

m, j9 = j10 =

 0
0.6
0.3

m, p =

 0
0.75
0.3

m

Joint axes in reference configuration

ω1 =

0
0
1

 , ω2 =

0
1
0

 , ω3 =

1
0
0

 , ω4 =

0
0
1

 , ω5 =

0
1
0

 , ω6 =

1
0
0

 ,

ω7 =

0
0
1

 , ω8 =

0
1
0

 , ω9 =

0
0
1

 , ω10 =

1
0
0


Normal distribution parameters

µ =
(
0 0 0 0 −0.25 −1.4 1.25 0 0 0

)T
rad, Σ = 0.1 · I10×10 rad

B. Parameters of the posture model

Time delays

dθ = 30 ms, dc, dp, do = 120 ms

Noise

σ2
∗ = variance of integrated white noise in the Ornstein-Uhlenbeck process after 1s
σθ = 0.002 rad, σθ̇ = 0.002 rad s−1
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σċ = 0.02 m s−1, σc̈ = 0.02 m s−2

σṗ = 0.015 m s−1 (EO), σṗ = 0.02 m s−1 (EC)
σp̈ = 0.015 m s−2 (EO), σp̈ = 0.02 m s−2 (EC)
σo = 0.02 rad (EO), σo = 0.03 rad (EC)
σλ̇ = 0.001 rad s−1, σm = 0.02
time parameter of the Ornstein-Uhlenbeck process: αη = 5 s−1

Spinal reflex loop

αE = 12 rad−1, ρ = 0.01 rad, µ = 0.1 s

Muscle-tendon complex

τm = 15 ms – time constant of the calcium kinetics low pass filter

A =

10.94 1.1 0
0 7.43 1.2
0 0.94 9.10

N m – muscle activation to torque factor

B =

25 2.5137 0
0 16.9790 2.7422
0 2.1481 20.7952

N m s rad−1 – passive damping matrix

Biomechanic parameters – 3 joints

Link segment lengths

l1 = 0.4428 m, l2 = 0.4410 m, l3 = 0.7308 m

Link segment masses

m1 = 7.4400 kg, m2 = 16 kg, m3 = 54.2400 kg

Link segment center of mass distance to distal joint

r1 = 0.2511 m, r2 = 0.2500 m, r3 = 0.3245 m

Link segment moments of inertia around media-lateral axis

I1 = 0.1330 kg m2, I2 = 0.3246 kg m2, I3 = 3.5860 kg m2

Neural dynamics

αċ = 1.5 rad−1 s−2, αc̈ = 0.5 rad−1 s−1

αṗ = 9 rad−1 s−2, αc̈ = 3 rad−1 s−1

αo = 60 rad−1 s−3
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C. Kinematic and biomechanic
equations

Abbreviations

s1 = sin(θ1), s12 = sin(θ1 + θ2), s123 = sin(θ1 + θ2 + θ3)
c1 = cos(θ1), c12 = cos(θ1 + θ2), c123 = cos(θ1 + θ2 + θ3)

Head position in anterior-posterior direction

p = −l1s1 − l2s12 − l3s123,

Head position Jacobian

Jp = dp
dθ

=
(
−l1c1 − l2c12 − l3c123 −l1c1 − l2c12 −l1c1

)
Center of mass position in anterior-posterior direction

c =
−m1r1s1 −m2(l1s1 + r2s12)−m3(l1s1 + l2s12 + r3s123)

m1 +m2 +m3

Center of mass position Jacobian

(Jc)1 =
−m1r1c1 −m2(l1c1 + r2c12)−m3(l1c1 + l2c12 + r3c123)

m1 +m2 +m3

(Jc)2 =
−m2r2c12 −m3(l2c12 + r3c123)

m1 +m2 +m3

, (Jc)3 =
−m3r3c123

m1 +m2 +m3
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Terms of the equations of motion

M11 = I1 + I2 + I3 +m1r
2
1 +m2(l

2
1 + 2l1r2c2 + r22)

+m3l
2
1 +m3l

2
2 +m3r

2
3 +m3(2l1l2c2 + 2l1r3c23 + 2 ∗ l2r3c3)

M12 = I2 + I3 +m2(r
2
2 + l1r2c2) +m3(l

2
2 + r23 + l1l2c2 + l1r3c23 + 2l2r3c3)

M13 = I3 +m3(r
2
3 + l1r3c23 + l2r3c3)

M22 = I2 + I3 +m2r
2
2 +m3(l

2
2 + 2l2r3c3 + r23)

M23 = I3 +m3(r
2
3 + l2r3c3)

M33 = I3 +m3r
2
3

C11 = θ̇2((−m2l1r2 −m3l1l2)s2 −m3l1r3s23) + θ̇3(−m3l1r3s23 −m3l2r3s3)

C12 = (θ̇1 + θ̇2)
(
(−m2l1r2 −m3l1l2)s2 −m3l1r3s23

)
+ θ̇3(−m3l1r3s23 −m3l2r3s3)

C13 = (θ̇1 + θ̇2 + θ̇3)(−m3l1r3s23 −m3l2r3s3)

C21 = θ̇1((m3(l1l2s2 + l1r3s23)) + l1m2r2s2)− θ̇3
(1

2
(m3(2l2r3s3 + l1r3s23))− (l1m3r3s23)

)
C22 = −l2m3r3θ̇3s3

C23 = −θ̇1
(1

2
(m3(2l2r3s3 + l1r3s23))− (l1m3r3s23)

)
− l2m3r3θ̇2s3 − l2m3r3θ̇3s3

C31 = (θ̇1 + θ̇2)(m3l2r3s3) + θ̇1(m3l1r3s23)

C32 = (θ̇1 + θ̇2)(m3l2r3s3)

C33 = 0

N1 = −g
(
(m3(r3s123 + l2s12 + l1s1)) + (m2(r2s12 + l1s1)) + (m1r1s1)

)
N2 = −g

(
m3(r3s123 + l2s12)) + (m2r2s12)

)
N3 = −g

(
m3r3s123

)

D. Calculating the time derivative of
the manipulator Jacobian

We follow the notation of Murray et al. (1994). The joint twists of a manipulator in
reference configuration are ξi, i = 1, . . . , n. In an arbitrary joint angle configuration
θ = θ1, . . . , θn, the spatial manipulator Jacobian is given by

Js(θ) =
[
ξ1 ξ′2 · · · ξ′n

]
, (D.1)
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with
ξ′i = Ad

(eξ̂1θ1 ···eξ̂i−1θi−1 )
ξi. (D.2)

The i-th column of the spatial Jacobian ξ′i is the i-th joint twist, transformed to the
current manipulator configuration.

To calculate the columns of J̇s = d
dt
Js, we have to derive these ξ′i by time. Using

Lemma 2.13 of Murray et al. (1994), we switch to the matrix form of the twist,
getting

d

dt

(
ξ̂′i

)
=
d

dt

(
(eξ̂1θ1 · · · eξ̂i−1θi−1)ξ̂i(e

ξ̂1θ1 · · · eξ̂i−1θi−1)−1
)

(D.3)

=
i−1∑
k=1

(
eξ̂1θ1 · · · eξ̂k−1θk−1

d

dt
(eξ̂kθk)eξ̂k+1θk+1 · · · eξ̂i−1θi−1

· ξ̂i · e−ξ̂i−1θi−1 · · · e−ξ̂1θ1
)

+
i−1∑
k=1

(
eξ̂1θ1 · · · eξ̂i−1θi−1 · ξ̂i·

e−ξ̂i−1θi−1 · · · e−ξ̂k+1θk+1
d

dt
(e−ξ̂kθk)e−ξ̂k−1θk−1 · · · e−ξ̂1θ1

)
(D.4)

=
i−1∑
k=1

θ̇k

(
eξ̂1θ1 · · · eξ̂k−1θk−1 ξ̂ke

ξ̂kθkeξ̂k+1θk+1 · · · eξ̂i−1θi−1

· ξ̂i · e−ξ̂i−1θi−1 · · · e−ξ̂1θ1
)

−
i−1∑
k=1

θ̇k

(
eξ̂1θ1 · · · eξ̂i−1θi−1 · ξ̂i·

e−ξ̂i−1θi−1 · · · e−ξ̂k+1θk+1 ξ̂ke
−ξ̂kθke−ξ̂k−1θk−1 · · · e−ξ̂1θ1

)
.

(D.5)

As the derivative operator commutes with both the ∧- and the ∨-operator, we can
now calculate the i-th column of J̇s as

d

dt
ξ′i =

((
d

dt
ξ′i

)∧)∨
=

(
d

dt
ξ̂′i

)∨
. (D.6)

Knowing the time derivative of the manipulator Jacobian J̇s allows us to calcu-
late the accelerations of arbitrary points or vectors q attached to the manipulator
(in homogeneous world coordinates). As stated by Murray et al. (1994), the time
derivative of q is given by

v =
d

dt
q =

(
Jsθ̇
)∧

q. (D.7)
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In a similar fashion, the second time derivative of q is given by

a =
d2

dt2
v =

d

dt

((
Jsθ̇
)∧)

q +
(
Jsθ̇
)∧ d

dt
q (D.8)

=
(
Jsθ̈ + J̇sθ̇

)∧
q +

(
Jsθ̇
)∧

v. (D.9)

E. Parameters of the robotics
movement generation system

Target acquisition

αφ = 10, sdes = 150 mm s−1, αs = 15
αp = 5, αv = 25

d
(tar)
1 = 5 mm, d

(tar)
2 = 15 mm

Obstacle avoidance

αo = 50

d
(obs)
1 = 15 mm, d

(obs)
2 = 50 mm

ψ1 = 0.25 rad, ψ2 = 1.5 rad

Gripper orientation

αγ = 10, βγ = 15, ρdes = −0.3 rad s−1

d
(ori)
1 = γdes, d

(ori)
2 = γdes ± 0.01 rad

Joint limit avoidance

αlim = 10 (simple), αlim = 0.2 (combined)
alim = 0 rad, blim = 0.2 rad, c∗ = ±0.1 rad

Homogeneous damping

αdamp = 10
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