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Abstract

A fundamental aspect of human intelligence is our ability to express
and understand relations. For example, we can easily find an object
described by the phrase “the red car to the left of the silver car”. Just
as easily, we can describe a scene ourselves and say something like
“the red car is moving toward the intersection”. e processes in our
brain that enable us to interpret such spatial relations and movement
relations in the world may also facilitate the processing of a much
richer body of abstract relations that show up most prominently in
language. Understanding these processes is thus fundamental to un-
derstanding the link between cognition and language.
To capture how spatial and movement relations may be resolved, this
thesis introduces a neural process model based on dynamic field the-
ory (DFT), a mathematical and conceptual framework for model-
ing cognitive processes. e model receives camera input showing
a white table with colored balls on it as well as input that repre-
sents a relational phrase, similar to the examples above. e task
of the model is to bring the described object into the attentional
foreground—to ground the phrase. In another type of task, it must
generate a phrase itself, describing the visual scene.
Solving these tasks requires that the model is able to map discrete
concepts in the phrase to continuous feature dimensions, sequen-
tially guide attentional processes to search the scene for multiple
objects, put them in working memory, adjust the reference frame
of their representation, and evaluate their fit with representations of
spatial relations and movement relations. A particular challenge and
key aspect of this thesis is to have the model organize its own pro-
cesses and perform the above tasks without human interference. Es-
tablishing the model based on neural principles additionally requires
solving fundamental neural problems, such as the neural pointer
problem, the binding problem, and generating discrete processing
steps from processes that evolve in continuous time.
e model solves all of these problems and innovates over previous
work by capturing both grounding and description tasks, spatial and
movement relations, and a flexible, hierarchical organization of its
processes. is is demonstrated in 104 qualitatively different tests
that vary the task, the configuration of objects, and, in particular,
how well the given phrase matches the scene. e model is able to
correctly ground the given phrase, or generate a phrase, in all cases
where this is possible.
By demonstrating how spatial and movement relations may be cap-
tured by a neural process model, the thesis brings DFT one step
closer toward a comprehensive neural theory of cognition.
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Introduction 1

We are on the brink of a paradigm shift in computing. For decades
we have interacted with technology by typing on keyboards, press-
ing mouse buttons, and touching screens. is will be forever
changed by the advent of conversational interfaces. ey will en-
able us to interact with technology by speech alone, which will have
a major impact on our daily lives. No longer will we have to clumsily
type on the tiny screens of our smartphones. No longer will we have
to learn new interfaces with every new generation of an app. And
no longer will we have to switch back and forth between multiple
apps and websites just to schedule a meeting with someone. Con-
versational interfaces will enable us to control all of our software on
all of our devices; not only the apps on our phone and computer,
but also the navigation system in our cars, the lights and music in
our homes, and the blinds and elevators in our buildings. All we
will have to do is talk, which comes naturally to us.

is vision has been portrayed as science fiction for a long time
but it is now quickly becoming reality. From “Siri”, to the “Google
Assistant”, “Cortana”, and “Alexa”, all of the big technology compa-
nies are offering a conversational interface. And the interfaces are
quite impressive. You can say to your phone “How do I get from
here to Hamburg International Airport?” and you will be guided to
the airport along the fastest route from your current position. You
can ask “What is a grizzly bear?” and you will instantly be shown
a photo and read a description. However, conversational interfaces
neither understand what it means for a human to have to navigate
nor do they understand what a grizzly bear is. is is a critical point.
ese interfaces can only put into words information that is made
available by apps, databases, or websites on the internet. What is
missing is the connection of that information to experiences in the
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Schöner, G., Spencer, J. P., & the DFT Re-
search Group. (2015). Dynamic inking: A
Primer on Dynamic Field eory. New York:
Oxford University Press

real world. Until we dig deeper, conversational interfaces will re-
main just that—interfaces.

e grand vision that is driving researchers is much more elusive.
In that vision, we can hold an actual conversation with a machine.
It understands the meaning of words, is able to solve problems for
us, and anticipates what we may need next. It infers information
from background knowledge and understands underlying problems
as well as constraints that we have not explicitly stated. It is the
vision of a general artificial intelligence—a virtual assistant.

But how can we get there from the conversational interfaces
available today? What else is required once they reliably recognize
the words we utter? How can we create a system that understands
the meaning of words such as “grizzly bear” in a similar way that
humans do, for instance recognizing a grizzly bear in a video or
imagining one roaming in the wild? How can we get such a system
to describe what it is perceiving or imagining, be it a static scene,
an unfolding event, or an abstract conceptual structure; again, not
by simply reading off information but by analyzing images, videos,
and documents? And how can we have the system do all of this au-
tonomously, without being explicitly guided by us, while ultimately
acting in our interest? In essence, it is the question of the grounding
of language; the question of how the production and comprehen-
sion of language is rooted in more general cognitive processes, in
perception, motor behaviors, reasoning—ultimately, in experiences
and memories of the real world.

We know that the human brain holds the answers to all of
these questions. Unfortunately, bringing these answers to light has
proven to be a serious endeavor. Despite tremendous progress in
understanding the anatomy and detailed mechanisms of the human
brain, the processes that give rise to cognition and language are not
yet well understood. What is lacking is a general theory that ex-
plains cognitive processes in a formal way, based strictly on what we
currently know about the human brain; a theory that encompasses
all processes from a basic sensorimotor level up to the abstract level
of language. A candidate for this is dynamic field theory (DFT), a
mathematical modeling framework that is deeply rooted in our un-
derstanding of the human brain. DFT has established itself in a
broad range of academic fields and is able to capture cognitive pro-
cesses ranging from the simple detection and selection of objects,
to processes of attention, scene representation, and sequence gener-
ation (Schöner et al., 2015). is thesis builds on these foundations
to capture the representations and cognitive processes underlying
the grounding of language; it thus brings DFT one step closer to-
ward a neural theory of language.

DFT posits that cognition is based on continuous perceptual

2



Hummel, J. E. & Holyoak, K. J. (2005). Re-
lational reasoning in a neurally plausible cog-
nitive architecture. An overview of the LISA
project. Current Directions in Psychological Sci-
ence, 14(3), 153–157; Halford, G. S., Wil-
son, W. H., & Phillips, S. (2010). Relational
knowledge: e foundation of higher cog-
nition. Trends in Cognitive Sciences, 14(11),
497–505

Hummel, J. E. (2011). Getting symbols out
of a neural architecture. Connection Science,
23(2), 109–118

1A third form, intrinsic relations, is a vari-
ant of deictic relations that takes into account
the intrinsic reference frame of objects. is
will not be covered in this thesis but has
been addressed previously (van Hengel, San-
damirskaya, Schneegans, & Schöner, 2012).

Logan, G. D. & Sadler, D. D. (1996). A
computational analysis of the apprehension of
spatial relations. In P. Bloom, M. Peterson,
L. Nadel, & M. Garrett (Eds.), Language and
Space (Chap. 13, pp. 493–529). Cambridge,
MA, USA: MIT Press

Pulvermüller, F. (2005). Brain mechanisms
linking language and action. Nature Reviews
Neuroscience, 6( July), 576–582

representations that are close to the sensorimotor layer, for instance
a representation of the spatial position of objects on a table surface.
Language, on the other hand, rests upon discrete symbolic represen-
tations (e.g., words and concepts such as  or ). us, in its
most basic form, the grounding of language requires that a connec-
tion is established between discrete and continuous representations,
based on the neural principles of DFT. Furthermore, it requires
that a fundamental aspect of human intelligence is addressed that
presents itself most prominently in language: being able to acquire
and express systematic relations amongmultiple elements (Hummel
& Holyoak, 2005; Halford et al., 2010). While relations can be ex-
pressed particularly well in language and symbolic representations
in general (Hummel, 2011), it is a challenge to do the same based
on continuous representations. A starting point may be spatial rela-
tions, where the relational information is embedded within the con-
tinuous space that objects occupy. Two forms of spatial relations
can be distinguished: basic spatial relations simply express that an
individual object is at a certain position within a continuous space,
while deictic spatial relations express the spatial relation betweenmul-
tiple objects in a scene1 (e.g., the relation    ) (Logan
& Sadler, 1996). In scenes with moving objects, deictic movement
relations, such as  , form the basis for expressing the
meaning of actions. is is highly relevant for language as a major-
ity of verbs refer to actions (Pulvermüller, 2005). Understanding
the neural processes that resolve spatial and movement relations is
thus fundamental to understanding the link between language and
cognition.

e first goal of this thesis is thus to capture the neural processes
that govern how both basic and deictic spatial relations, as well as
deictic movement relations, are extracted from and expressed in con-
tinuous perceptual representations. e second goal is to establish
the neural processes that enable a mapping between these continu-
ous representations and discrete representations that may interface
with language. e third goal, and a particular focus of this thesis,
is to capture the principles by which neural processes may perform
a grounding autonomously, that is, without additional algorithmic
approaches or human intervention.

is thesis addresses these challenges by introducing a concrete
neural process model based on DFT that can solve basic language
tasks. e model continuously receives real-world sensory infor-
mation from a camera, showing a white table with a few colored
balls on it—this feeds a continuous representation of the world. e
model also receives input that corresponds to a phrase such as “Find
the red object to the left of the green object” or “Find the red object
moving toward the green object”—this feeds a discrete representa-

3
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Logan, G. D. (1994). Spatial attention and
the apprehension of spatial relations. Journal
of Experimental Psychology: Human Perception
and Performance, 20(5), 1015–1036

Franconeri, S. L., Scimeca, J. M., Roth, J. C.,
Helseth, S. A., & Kahn, L. E. (2012). Flex-
ible visual processing of spatial relationships.
Cognition, 122(2), 210–227

Logan, G. D. & Sadler, D. D. (1996). A
computational analysis of the apprehension of
spatial relations. In P. Bloom, M. Peterson,
L. Nadel, & M. Garrett (Eds.), Language and
Space (Chap. 13, pp. 493–529). Cambridge,
MA, USA: MIT Press

2e description of these fundamental prob-
lems is based on published material (Richter,
Lins, & Schöner, 2016, 2017), which arose
as collaboration between myself (MR), Jonas
Lins ( JL), and Gregor Schöner (GS). JL and
MR developed the model together and col-
laborated in conceptual thinking. MR imple-
mented the model, and generated results. All
authors participated in writing the papers.

tion of concepts. e model is able to ground the objects described
in the phrase, that is, it is able to match the language description to
the corresponding objects in the visual scene. In a second type of
task, it is able to generate a phrase itself, in essence describing parts
of the visual scene.

What is required of the model to solve these tasks? First, it
requires that the discrete concepts the phrase consists of, such as
 and , are mapped onto continuous feature representa-
tions. ese feature representations must guide visual search to
bring matching objects into the attentional foreground (Logan,
1994). If the phrase refers to multiple objects, each object must be
attended to individually and in sequence (Franconeri et al., 2012),
while maintaining the binding of each object to its role (Logan &
Sadler, 1996). is attentional process must lead to stable men-
tal representations of the objects in working memory, holding all
their feature values, including their spatial position. While these
representations must persist over time, they must also allow to be
updated whenever relevant changes occur in the scene. e spatial
positions of the objects represent their relational information only
implicitly (Franconeri et al., 2012). e relative position between
the objects must thus be constructed and explicitly represented by
adjusting the reference frame of the spatial representation (Logan
& Sadler, 1996). An additional adjustment of the reference frame
is required to extract movement relations. To compare how well the
relative position of the objects fits the specified spatial relation (e.g.,
   ), a continuous representation of the spatial relation,
the spatial template, must be imposed on the representation of the
relative position (Logan & Sadler, 1996). If it does not fit well,
other objects have to be selected and the process repeated. Most
importantly, depending on the task and the visual scene, different
subsets of the above processes must be organized to become active
in a sequential order that solves the task. It is crucial that this orga-
nization unfolds solely on the basis of the internal dynamics of the
model, the continuous sensory input, and the initial task input. is
precludes control inputs by an additional algorithm or by a human
user—the organization must come from within the model. Only
then can we consider it autonomous.

Achieving all of this in a neural process model requires that the
following fundamental problems are solved.2 ese problems are
specific to neural models and do not present themselves in algorith-
mic approaches.

First, unlike in a computer program, neural populations cannot
define pointers to arbitrary parts of memory and thereby access the
information stored there. ey can only have an influence on other
neural populations if they are connected—and connectivity is fixed,
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Schneegans, S. & Schöner, G. (2012). A
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cal Cybernetics, 106(2), 89–109
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nitive Psychology, 12, 97–136
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inking: A Primer on Dynamic Field eory
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University Press
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bilities drive sequence generation. Neural Net-
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at least on short time scales. Applying a neural operator to a loca-
tion that is represented by a neural population is thus possible only
if it is connected to that location. However, connecting operators
to every location in a neural population would require unrealistic
neural resources. e alternative is to connect the operator to only
one default location and shift the representations of objects to that
location. is is analogous to the concept of an attentional neural
pointer of Ballard et al. (1997) and is achieved here by steerable
neural mappings (Schneegans & Schöner, 2012).

Second, for similar reasons of limiting the required neural re-
sources, the nervous system represents high-dimensional visual in-
formation in multiple low-dimensional neural feature maps. To re-
fer to any particular object, corresponding representational pieces
must be bound together. e model employs a neural implemen-
tation of the classical idea of binding through space (Treisman &
Gelade, 1980), where every feature map is endowed with a spa-
tial dimension that is shared across maps (Schneegans, Spencer, &
Schöner, 2015). e shared spatial dimension then requires that
multiple objects are processed sequentially in time.

ird, the discrete processing steps this implies and that are crit-
ical to all of cognition are natural in algorithmic accounts but hard
to achieve in neural process models, where neural activation evolves
continuously in time under the influence of input and recurrent con-
nectivity. In this model, discrete events emerge from continuous
neural dynamics through dynamic instabilities, at which the match
between neural representations of intentional states and their condi-
tions of satisfaction are detected (Sandamirskaya & Schöner, 2010).

All of the problems above are solved by the model introduced
in this thesis. It captures a variety of different tasks and visual
scenes autonomously with a single set of parameters. is thesis
thus shows that a basic grounding of language can be accomplished
by a neurally plausible cognitive architecture.

e remainder of the thesis is organized as follows. Section 2
covers the required background knowledge. It summarizes different
notions of grounding and how they are addressed in state-of-the-art
computational models. It goes on to review the concepts and math-
ematical foundation of DFT that the rest of the thesis is built upon.
Section 3 contains a conceptual and mathematical description of
the model that this thesis introduces. Section 4 demonstrates the
capabilities of the model in 104 experiments, out of which 14 are
explained in detail. Section 5 discusses both the conceptual contri-
butions of this thesis as well as the specific novel implementations
found in the model. e thesis is briefly concluded in Section 6.
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1 Introduction

Previously published material
is thesis draws on material previously published with various
coauthors:

• Richter, M., Lins, J., & Schöner, G. (2017). A neural dy-
namic model generates descriptions of object-oriented ac-
tions. Topics in Cognitive Science, 9(1), 35–47

• Richter, M., Lins, J., & Schöner, G. (2016). A neural
dynamic model parses object-oriented actions. In A. Pa-
pafragou, D. Grodner, D. Mirman, & J. Trueswell (Eds.),
Proceedings of the 38th Annual Conference of the Cognitive Sci-
ence Society (pp. 1931–1936). Austin, TX: Cognitive Science
Society

• Richter, M., Lins, J., Schneegans, S., Sandamirskaya, Y., &
Schöner, G. (2014). Autonomous neural dynamics to test
hypotheses in a model of spatial language. In P. Bello, M.
Guarini, M. McShane, & B. Scassellati (Eds.), Proceedings
of the 36th Annual Conference of the Cognitive Science Society
(pp. 2847–2852). Austin, TX: Cognitive Science Society

• Richter, M., Lins, J., Schneegans, S., & Schöner, G. (2014).
A neural dynamic architecture resolves phrases about spatial
relations in visual scenes. In S. Wermter (Ed.), Artificial Neu-
ral Networks andMachine Learning: ICANN 2014, 24th Inter-
national Conference on Artificial Neural Networks, Lecture Notes
in Computer Science 8681 (pp. 201–208)
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Steels, L. (2008). e symbol grounding
problem has been solved. So what’s next?
In M. de Vega, A. Glenberg, & A. Graesser
(Eds.), Symbols and Embodiment: Debates on
Meaning and Cognition (pp. 223–244). New
York: Oxford University Press

Background 2

is chapter contains background information on both the ground-
ing of language and on dynamic field theory (DFT). Section 2.1
summarizes what the grounding of language is, why grounding is
necessary to enable a cognitive system to form an understanding
of the world, and how the problem of grounding is approached in
state-of-the-art computational models. ese models range from
purely algorithmic solutions to approaches based on neural prin-
ciples. ey lead to the conclusion that human cognition can be
understood most directly based on models that capture neural pro-
cesses. e mathematical framework of DFT enables building such
neural process models. Section 2.2 reviews all the concepts and
mathematical foundations of DFT that are the foundation for the
model introduced in Section 3.

2.1 Grounding of language
e grounding of language refers to the connection between lan-
guage and the physical world, the connection to colors and shapes,
to objects and people, to scenes that are motionless or those that are
full of life. Before defining the grounding of language more clearly,
it serves to establish a common terminology.

2.1.1 Terminology
e literature on the grounding of language suffers from the ab-
stractness of the subject matter, which sometimes results in unclear
descriptions. To clear up the most important terminology, I will use
an example to refer to the definitions brought forth by Steels (2008).
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symbol
concept

object



F .: e actual ball in the physical
world is the object, the mental representation
(red sphere) of the ball is the concept, and the
name () for both the concept and the ob-
ject is the symbol.

Harnad, S. (1990). e symbol grounding
problem. Physica D, 42, 335–346; Cangelosi,
A. & Riga, T. (2006). An embodied model
for sensorimotor grounding and grounding
transfer: Experiments with epigenetic robots.
Cognitive Science, 30(4), 673–689; Cangelosi,
A. (2010). Grounding language in action
and perception: From cognitive agents to hu-
manoid robots. Physics of Life Reviews, 7(2),
139–151

Gorniak, P. & Roy, D. (2004). Grounded
semantic composition for visual scenes. Jour-
nal of Artificial Intelligence Research, 21, 429–
470; Roy, D. (2005b). Semiotic schemas: A
framework for grounding language in action
and perception. Artificial Intelligence, 167(1-
2), 170–205

Cangelosi, A. & Harnad, S. (2001). e adap-
tive advantage of symbolic theft over senso-
rimotor toil: Grounding language in percep-
tual categories. Evolution of Communication,
4(1); Harnad, S. (1990). e symbol ground-
ing problem. Physica D, 42, 335–346

Suppose you are looking at a soccer ball that is lying on the ground in
front of you (Figure 2.1). e actual ball in the physical world that
you can see, touch, and kick, is an object. You perceive it through
your sensory system and form a perceptual (modal) representation
of it in your mind, based on continuous feature spaces. is repre-
sentation embodies your concept of a ball (denoted as a red sphere in
Figure 2.1) that you have learned from previous perceptual experi-
ences. It enables you to recognize the soccer ball as a ball but also to
imagine and think about other balls. e perceptual representation
of a single concept may be distributed over multiple modalities and
features, which are linked together in a discrete amodal representa-
tion of the concept. Finally, the word  that refers to both the
concept and the object is a symbol. It is symbolic because the form of
the symbol is independent of the features of the concept or object;
its form is arbitrary. at is, we could choose to refer to the concept
or object by a different symbol, as is done in other languages, and
it would not have an influence on our understanding of the concept.
Bear in mind that symbolic representations do not necessarily have
to be based on words. In fact, if the discrete amodal representation
of a concept were operated on without taking into account the per-
ceptual representation it links together, it could also be viewed as a
symbol.

2.1.2 What is grounding?
Given these definitions, we can make the different meanings of
grounding more explicit. First, there is a notion that grounding is
a static property of a cognitive system. In this view, a symbol is
regarded as grounded when a connection exists between the sym-
bol and a concept (Harnad, 1990; Cangelosi & Riga, 2006; Can-
gelosi, 2010). Similarly, a concept is regarded as grounded when
a method exists to establish a connection between the concept and
an object in the world (Steels, 2008). But grounding is also under-
stood as a process. is includes the process by which a connection
between a concept and a concrete object is established (Gorniak &
Roy, 2004; Roy, 2005b), for instance by identifying a familiar ob-
ject or category. It also includes the process by which a concept
(and its symbol) are learned in the first place (Cangelosi & Harnad,
2001; Harnad, 1990). Finally, there is the notion of a symbol being
“socially grounded”, that is, it is learned and distributed among an
entire population of communicating individuals (Steels & Kaplan,
2002; Steels, 2003).

While all of these notions of grounding are complementary and
valid, in this thesis, grounding is primarily understood as the pro-
cess by which a concept is connected to an actual object in the world.
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2.1 Grounding of language

Steels, L. & Kaplan, F. (2002). AIBO’s first
words. e social learning of language and
meaning. Evolution of Communication, 4(1),
3–32; Steels, L. (2003). Evolving grounded
communication for robots. Trends in Cogni-
tive Sciences, 7(7), 308–312

Fodor, J. A. & Pylyshyn, Z. W. (1988). Con-
nectionism and cognitive architecture: A crit-
ical analysis. Cognition, 28(1-2), 3–71

1eproperties of language and cognition that
are deemed characteristic by classic symbolic
accounts are explained by Fodor and Pylyshyn
(1988). Here is a short summary:

Productivity We are able to produce a seem-
ingly unlimited number of distinct sen-
tences based on a finite vocabulary.

Systematicity If we understand a sentence,
we also always understand other sen-
tences that have the same structure but
different content.

Compositionality For systematicity to work,
the content that is different must fulfill
a similar semantic function.

Coherence of inferences Inferences must be
applicable across all possible state-
ments.

is can happen in two directions. First, a concept can be activated
through its symbol by language input, which then drives attentional
processes that single out the matching object in the world. Second,
a salient object in the world can attract attentional focus and activate
a matching concept, which may turn activate a corresponding sym-
bol. In this thesis, the latter process is also referred to as “describing”
but it is a form of grounding nonetheless. After a grounding pro-
cess is successfully finished, the symbol and concept are regarded as
grounded.

is thesis does not address the processes by which concepts
and symbols are learned. Within the presented DFT model, all
concepts (i.e., concepts of color, motion direction, and spatial rela-
tions) are built in by hand. However, please note that the substrate
in which concepts are represented is open to learning through estab-
lished neural learning mechanisms, for instance Hebbian learning.
e notion of “social grounding” is also not addressed in this thesis.
e model introduced in this thesis only comprises an individual
cognitive system that autonomously perceives its surrounding, de-
scribes it, and grounds language input.

2.1.3 Why is grounding necessary?
For a long time, cognition was thought to be a process taking place
all but removed from the physical world surrounding us. Classi-
cal research in cognition was built on the conviction that language
and cognition can best be explained as the processing of abstract
symbols (Fodor & Pylyshyn, 1988). e characteristic properties of
cognition that the research tried to capture include productivity, sys-
tematicity, compositionality, and the coherence of inference,1 all of
which are aspects of a feature of cognition that enables us to com-
bine and generalize knowledge in systematic ways. ese proper-
ties present themselves most prominently in language but are also
thought to be hallmarks of general cognition. Symbolic approaches
have been successful because they capture these properties.

e symbols upon which these approaches of cognition are built
as well as the rules that define their processing are denoted using
arbitrarily chosen words or variable names. For example, the state-
ment “John, Mary, and Alice went to the city.” can be represented
by the symbolic statement J&M&A, where the symbols J ,M , and
A respectively represent that John, Mary, and Alice each went to
the city. Based on such a symbolic representation, inferences can
be made using explicit rules. For instance, the rule J&M&A → J
enables the inference that if it is true that “John, Mary, and Alice
went to the city” (J&M&A), then it is also true that “John went
to the city” (J). Such rules and the inferences on them do not nec-
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Shastri, L. (1999). Advances in SHRUTI: A
neurally motivated model of relational knowl-
edge representation and rapid inference us-
ing temporal synchrony. Applied Intelligence,
11, 79–108; Bergen, B. K. & Chang, N.
(2005). Embodied construction grammar in
simulation-based language understanding. In
J.-O.Östman&M. Fried (Eds.),Construction
Grammars: Cognitive Grounding and eoreti-
cal Extensions (Chap. 6, pp. 147–190). Am-
sterdam/Philadelphia: John Benjamins Pub-
lishing Company

Shastri, L., Grannes, D., Narayanan, S. S.,
& Feldman, J. (2002). A Connectionist En-
coding of Parameterized Schemas and Reactive
Plans (tech. rep. No. TR-02-008). Interna-
tional Computer Science Institute. Berkeley

Harnad, S. (1990). e symbol grounding
problem. Physica D, 42, 335–346

2e example is based on the “Chinese room
argument” by Searle (1980), which was given
in a more general context to show that for-
mal AI systems do not understand the sub-
ject matter they are processing. e reasoning
and conclusion are the same as in Harnad’s
example: without grounding, formal symbol
systems cannot have intentionality (be about
something) and therefore cannot understand
anything.

essarily have to be implemented algorithmically based on variable
names and strings, but can also be expressed in neural terms, where
concepts and relations are represented by networks of nodes (Shas-
tri, 1999; Bergen & Chang, 2005). is approach may seem to be
more closely connected to human cognition because operations can
be expressed by connectionist networks (Shastri et al., 2002), but
the representation remains symbolic whether the representational
format is neurally plausible or not.

e important question is whether these symbols have any
meaning apart from what we prescribe to them. Does the system
itself understand that if J is true, this represents that John went to
the city? For instance, can the system imagine John walking along
streets, looking at windows, and eating ice cream? Can such an un-
derstanding of the world arise based solely on arbitrary symbols and
their relations?

Harnad (1990) prominently argued that symbolic systems can
never acquire such an understanding. He called this the symbol
grounding problem, which he illustrated with the following exam-
ple.2 Suppose you had to learn Chinese and all you had to go on was
a Chinese-Chinese dictionary. Learning the new language would
be immensely difficult because the dictionary would “explain” one
meaningless and arbitrary symbol using more meaningless and ar-
bitrary symbols. No matter how many of the symbols you tried to
look up, you would not be able to find any meaning in them. You
may be able to extract meaning by analyzing the frequency of cer-
tain symbols and thereby making assumptions about what certain
symbols could be referring to. However, decoding the meaning of
the symbols this way only connects symbols to meaningful concepts
that you already have, concepts that are meaningful in another lan-
guage that you speak. e meaning would be “parasitic” in your
first language, instead of intrinsic in the Chinese symbols. If the
task was to learn Chinese as a first language, from the dictionary
alone, the task would be impossible. Harnad (1990) thus concluded
that at least some elementary symbols need to be grounded, that is,
they need to be connected to representations of objects in the real
world. ese iconic representations must be non-symbolic insofar as
they are transformed projections of the objects we perceive. From
these iconic representations, we can form categorical representations,
which are also non-symbolic but enable us to discriminate quali-
tatively different representations and identify certain ones. Iconic
and categorical representations thus correspond to the respective no-
tions of modal and amodal representations of a concept, as defined
above and used in this thesis. For both representations, Harnad
(1990) suggests connectionist approaches to be a good candidate.
In his view, elementary symbols would then connect to categorical
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Pulvermüller, F. (2005). Brain mechanisms
linking language and action. Nature Reviews
Neuroscience, 6( July), 576–582

Glenberg, A. M. & Kaschak, M. P. (2002).
Grounding language in action. Psychonomic
Bulletin & Review, 9(3), 558–565; Kaschak,
M. P. & Jones, J. L. (2014). Grounding lan-
guage in our bodies and the world. In omas
Holtgraves (Ed.),eOxfordHandbook of Lan-
guage and Social Psychology (Chap. 20, pp. 317–
329). London: Oxford University Press

Gallese, V. & Lakoff, G. (2005). e brain’s
concepts: e role of the sensory-motor sys-
tem in conceptual knowledge. Cognitive Neu-
ropsychology, 22(3), 455–479

Clark, A. (1999). An embodied cognitive sci-
ence? Trends in Cognitive Sciences, 3(9), 345–
351; Wilson, M. (2002). Six views of embod-
ied cognition. Psychonomic Bulletin & Review,
9(4), 625–36

Barsalou, L. W. (1999). Perceptual symbol
systems. Behavioral and Brain Sciences, 22(4),
577–609, 577–609

Dennett, D. C. & Viger, C. D. (1999). Sort-
of symbols? [Peer commentary on “Perceptual
symbol systems” by Lawrence W. Barsalou].
Behavioral and Brain Sciences, 22(4), 613

representations, giving them a name. As we will see in Section 3,
the DFT model introduced in this thesis is largely consistent with
this suggested solution for the symbol grounding problem.

2.1.4 Embodied cognition
e insight that classical symbolic theories of cognition are deficient
because they lack grounding goes along the mounting empirical ev-
idence that various sensory-motor areas in the brain are active dur-
ing cognitive tasks (for review, see Pulvermüller, 2005), as well as
behavioral evidence that shows graded effects of language on mo-
tor tasks (e.g., Glenberg & Kaschak, 2002; for review, see Kaschak
& Jones, 2014). is evidence suggests that there is no clear di-
vide between cognitive processes and the underlying grounding in
perception (Gallese & Lakoff, 2005). e focus of research thus
shifted to include the connection between cognition, language, and
the human body in the physical world—a shift toward an embodied
cognition (Clark, 1999; M. Wilson, 2002).

Barsalou (1999) prominently formulated a model of how the
connection between cognition, language, and the world could be
established. He formulates a perceptual theory of knowledge and
cognition, in which patterns in sensory-motor areas are captured
in perceptual symbols. Importantly, these perceptual symbols are not
holistic images or recordings of the content in sensory-motor areas
but consist only of a small subset of distributed perceptual compo-
nents. Related perceptual symbols are organized into simulators that
are able to produce infinitely many simulations of a certain entity.
In this view, the notion of a simulator corresponds to that of a con-
cept, as defined above. For instance, a simulator (or concept) of a
chair contains all the aspects of different chairs we have encoun-
tered; it is able to produce simulations of simple wooden chairs, ad-
justable office chairs, camping chairs, and so forth, all with their in-
dividual shape, color, texture, and feel. Barsalou (1999) shows that
such a perceptual symbol system supports basic tasks like catego-
rization, identification, and categorical inferences. He furthermore
shows that it also supports productivity, the formation of proposi-
tions, and the representation of abstract concepts (e.g., truth and
negation), properties that are deemed critical to a fully functional
conceptual system and that were believed to be incompatible with
perceptual theories. His theory thus shows that grounded accounts
of cognition can, in fact, capture a similar functionality as classical
symbolic accounts—without their inherent problems.

His idea of a perceptual symbol system was criticized for be-
ing only a verbal theory, just a vision, instead of a concrete model
(Dennett & Viger, 1999). e same critique applies to similar ver-
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Langacker, R. W. (1986). An introduction to
cognitive grammar. Cognitive Science, 10, 1–
40

Talmy, L. (1988). e relation of grammar to
cognition. In B.
Rudzka-Ostyn (Ed.), Topics in Cognitive Lin-
guistics (pp. 165–205). Amsterdam/Philadel-
phia: John Benjamins

Gibbs, R. W. & Colston, H. L. (1995).
e cognitive psychological reality of image
schemas and their transformations. Cognitive
Linguistics, 6(4), 347–378

Roy, D. (2005b). Semiotic schemas: A frame-
work for grounding language in action and
perception. Artificial Intelligence, 167(1-2),
170–205; Roy, D. (2008). A mechanistic
model of three facets of meaning. In M. de
Vega, A. Glenberg, & A. Graesser (Eds.),
Symbols and Embodiment: Debates on Meaning
and Cognition (pp. 1–32). Oxford, UK: Ox-
ford University Press

Gorniak, P. & Roy, D. (2004). Grounded se-
mantic composition for visual scenes. Journal
of Artificial Intelligence Research, 21, 429–470

Mavridis, N. & Roy, D. (2006). Grounded
situation models for robots: Where words and
percepts meet. In Intelligent Robots and Sys-
tems, 2006 IEEE/RSJ International Conference
on (pp. 4690–4697). IEEE

Pastra, K. & Aloimonos, Y. (2012). e mini-
malist grammar of action. Philosophical Trans-
actions of the Royal Society B: Biological Sciences,
367(1585), 103–117

bal theories brought forth in the community of cognitive linguis-
tics that resonate with Barsalou’s perceptual symbol system. For
instance, the ideas of cognitive grammar (Langacker, 1986), gram-
matical construal (Talmy, 1988), and image schemas (Gibbs & Col-
ston, 1995) explain characteristics of cognition and language on a
similar intuitive level but do not address how they could be imple-
mented.

What is clearly missing is a computational theory, a theory that
explains the representations and processes that give rise to cogni-
tion.

2.1.5 Embodied computational models
Computational models often uncover problems that would remain
hidden in purely theoretical accounts. is is because they force
modelers to think about and implement all the processes that are
required to solve a particular problem. is can lead to a deeper
understanding of the problem.

An example of computational models is the work of Deb Roy,
whose goal is closely aligned with this thesis, at least from a func-
tional point of view. He aims at building conversational robots that
are able to solve language grounding tasks (Roy, 2005b, 2008). e
robotic implementation requires that mechanistic models are built
of all the processes involved. Instead of modeling isolated parts of
language, he advocates for building a holistic model of language that
covers all of its layers, from auditory speech input, to structured
symbolic representations, to representations that are grounded in
and connected to concrete sensors and motors. To keep this project
manageable in scope, he only includes a small subset of linguistic
features in his models. He compares this to language at a child’s
level, with only a rudimentary grammar and a small vocabulary.
Additionally, the language focuses on describing objects, relation-
ships, and actions in the here-and-now and is void of abstract con-
cepts, metaphors, and past and future events. His concrete robotic
models cover an impressive number of different tasks. ese in-
clude grounding descriptive language in the environment (Gorniak
& Roy, 2004), as well as generating descriptions of the environ-
ment, answering questions, and mental imagery (Mavridis & Roy,
2006). In fact, the system is able to pass parts of the “Token test”,
an assessment of language abilities in children ages 3 to 12.

e computational models by Yiannis Aloimonos are focused
on generating descriptions of actions in videos. He is inspired by
Chomsky’s Minimalist framework for language and extracts a syn-
tactic structure of actions based on a generative grammar (Pastra
& Aloimonos, 2012). e constituent parts of the grammar (e.g.,
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Guerra-Filho, G. & Aloimonos, Y. (2012).
e syntax of human actions and interactions.
Journal of Neurolinguistics, 25(5), 500–514

Lobato, D., Sandamirskaya, Y., Richter, M.,
& Schöner, G. (2015). Parsing of action se-
quences: A neural dynamics approach. Pala-
dyn, Journal of Behavioral Robotics, 6, 119–135

van der Velde, F. & de Kamps, M. (2006).
Neural blackboard architectures of combina-
torial structures in cognition. Behavioral
and Brain Sciences, 29(1), 37–108; Jackendoff,
R. (2002). Foundations of Language: Brain,
Meaning, Grammar, Evolution. New York:
Oxford University Press

3Grammatical constructions are the units of
language in theories of construction gram-
mar (e.g., Goldberg, 1992). Constructions
are syntactic templates that express the corre-
spondence between form and meaning. ey
can range in complexity from morphemes, to
words, up to entire sentences.

Dominey, P. F. & Boucher, J. D. (2005a). De-
velopmental stages of perception and language
acquisition in a perceptually grounded robot.
Cognitive Systems Research, 6(3), 243–259

4Open-class words are the category of content
words (i.e., nouns, lexical verbs, adjectives,
and adverbs) that are open to new members.
Examples are “grizzly bear”, “run”, and “big”.
Closed-class words are the category of func-
tion words that does not accept new members.
Among others, this category includes conjunc-
tions (e.g., “and”), articles (e.g., “the”), and
prepositions (e.g., “from”).

terminals) are defined in the sensorimotor domain and are recog-
nized in input videos. ey are learned from motion capture data
of real humans that is algorithmically segmented and transformed
into a sequence of symbolically represented segments, which are
then grouped into more macroscopic structures (Guerra-Filho &
Aloimonos, 2012). In addition to recognizing body parts and their
motor primitives, the model can detect contact between body parts
and other objects. is in particular enables it to infer relations be-
tween body parts and objects, for instance when an object is being
used as a tool. e parsing of action is also addressed in a prelimi-
nary model based on DFT (Lobato et al., 2015). It receives input
from a three-dimensional camera (Kinect) and is able to parse hand
actions that are directed at objects, for instance reaching, grasping,
and dropping. While the representation of objects and some of the
model’s process organization is based on neural dynamics, crucial
parts of the problem are solved algorithmically, including how rela-
tions between objects in the scene are computed.

e computational models such as those described above are im-
pressive and go beyond verbal theories in the sense that they may
uncover problems at the computational level that may not have been
apparent before. However, the models are implemented without
constraints on the computational operations. is is unlikely to
lead to deep insights about human cognition, because the neural
operations that the human brain employs to solve a problem may
differ significantly from the computational operations used to solve
the problem in the model. In order to gain insights about human
cognition, it is therefore imperative that computational models rest
upon established principles of neural processing. While this is a de-
manding in its own right, the combinatorial structures prevalent in
language are a particular challenge to represent in neural systems,
leading to theoretical problems like the binding problem, the prob-
lem of 2, or the problem of variables (van der Velde & de Kamps,
2006; Jackendoff, 2002). In computational models, these problems
are, so far, often ignored. e models instead focus on the more
concrete problems of grounding concepts and relations in the real
world.

An example is an approach developed by Peter Dominey and
colleagues that is closer to neural accounts of cognition. It con-
sists of an architecture that is able to learn grammatical construc-
tions3 from observing a scene in which objects interact, while also
listening to a spoken language description of what is happening in
the scene (Dominey & Boucher, 2005a). e architecture parses
the spoken language, separating it into open-class and closed-class
words.4 From a visual scene, it extracts a representation of an ongo-
ing action, as well as the objects that are engaged in that action. is
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2288–2302
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is done algorithmically based on predetermined sequences of con-
tact between objects. e architecture then learns the connections
between each word, its grammatical role in the sentence, and its cor-
responding representation by relying on the structure of closed-class
words in the sentence. is structure is regarded as a grammatical
construction, which can be learned and enables the architecture to
generalize over different content. e architecture is able to ground
sentences in the active and passive form for simple actions, for in-
stance “e block pushed the triangle”, complex actions like “e
block that pushed the triangle touched the moon”, as well as spatial
relations. e architecture was later extended to enable it to produce
language about observed videos, essentially describing the scene,
and to answer questions about it in conversational form (Dominey
& Boucher, 2005b). Dominey (2007) sketched how the idea of con-
structions could be generalized to represent physical events as well
as social aspects of interaction. e representations of objects and
words used within the core of the architecture are based on binary
vectors that lend themselves to neurally inspired learning mecha-
nisms. ese vectors are in fact arbitrary symbols; what is missing
is a direct connection to the sensorimotor system. Madden et al.
(2010) present a hybrid architecture that extended the symbolic core
with an embodied simulator. Compared to the work of Deb Roy,
Dominey’s work is closer to neural approaches for two reasons. First,
the internal representations could, in theory, be implemented with
neurons. Second, Dominey often explicitly states in which areas of
the brain certain mechanisms would be located (e.g., Madden et al.,
2010).

e work of Angelo Cangelosi focuses on modeling how groun-
ded concepts are acquired both through evolutionary and develop-
mental processes (for review, see Cangelosi, 2010). Moreover, he
addresses a common critique of embodied approaches to language:
that some concepts, for instance “goodness”, “truth”, or “beauty”,
are too abstract to have a grounding in sensorimotor modalities. He
shows that once a basic repertoire of grounded concepts has been
learned, new concepts can be acquired by composing them from
previously learned ones. Importantly, the learning is based only on
language input and does not ground the new concepts in perceptual
representations. Instead, only an amodal representation of the new
concept is connected to the amodal representations of the previously
learned concepts. is shows that more abstract concepts can arise
without a need to ground them directly. Moreover, he shows that
this form of concept learning may be more adaptive than learning
concepts by grounding them completely. For this, Cangelosi and
Harnad (2001) simulated a population of organisms that forage for
mushrooms in a two-dimensional grid-world. Each organism is
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controlled by a three-layer feedforward neural network. As input,
the network receives a binary code that corresponds to feature val-
ues describing the mushroom as well as linguistic input describing
actions. e output of the network controls the movement of the
organism, action like eating, marking, or returning to a mushroom,
and it issues linguistic calls to other organisms. Organisms that
learn the action “return” only from calls of other organisms (and
without feature input) return more mushrooms than organisms that
learn the action by grounding it in feature input (but without lan-
guage input). Cangelosi and Riga (2006) build upon this work and
show in a simulated robotic scenario that with additional phases of
learning even more abstract concepts can be learned. Stramandinoli
et al. (2012) further extend this paradigm to a simulated iCub robot
that learns concepts from a human instructor. Based on a recurrent
neural network, this model can learn an action that is composed of
a specific sequence of other actions. Similar to the models by Peter
Dominey, the input to the neural networks in Cangelosi’s models
is based on a binary code, where each input node represents the
presence of a certain feature. Again, what is missing is the direct
connection to the sensorimotor system.

Since language is spoken within a population and is thus a so-
cial act, one may understand the process of grounding perceptual
categories as a social process as well. at is, additionally to the
grounding that happens within the individual, the interaction with
other individuals and the culture of the population should have an
influence on the grounding. Luc Steels and collaborators explore
the hypothesis that from a very early stage, categories are formed
and words are learned under a strong influence of culture (Steels
& Kaplan, 2002). ey focus on how the perceptual grounding of
concepts is influenced by language interaction and how grounded
concepts are coordinated within a population. Steels (2003) inves-
tigates these questions in “language games”, where a population of
embodied agents interacts in a shared physical (or simulated) en-
vironment and communicates via their sensorimotor system. One
such game is the “Talking Heads experiment”, in which two out
of a population of thousands of agents “talk about” an object in a
shared environment. Over time, the population of agents develops
a coherent set of categories for objects as well as a coherent vocabu-
lary connected to the categories. In fact, throughout the population,
the categories are significantly more similar than in similar games
that do not incorporate language interaction. Other simulations
that investigate category formation by comparing the mechanisms
of evolution, learning (based only based on visual input), and social
learning (with language), show similar results (Steels & Belpaeme,
2005). While all mechanisms produce adequate sets of categories

15



2 Background

Steels, L. & Kaplan, F. (2002). AIBO’s first
words. e social learning of language and
meaning. Evolution of Communication, 4(1),
3–32

Henson, R. N. A. & Burgess, N. (1997). Rep-
resentations of serial order. In J. A. Bullinaria,
D. W. Glasspool, & G. Houghton (Eds.),
4th Neural Computation and Psychology Work-
shop, London 9-11 April 1997: Connectionist
Representations (pp. 283–300). London, UK:
Springer

Roy, D. (2005b). Semiotic schemas: A frame-
work for grounding language in action and
perception. Artificial Intelligence, 167(1-2),
170–205

Langley, P., Laird, J. E., & Rogers, S. (2009).
Cognitive architectures: Research issues and
challenges. Cognitive Systems Research, 10(2),
141–160

for the given (color) stimuli, these are only shared between individ-
uals that interact through language. Similarly, language games be-
tween the AIBO robot and a human mediator show that the robot
learns words and categories better the more the mediator interacts
via language (Steels & Kaplan, 2002). ese findings suggest that
social interaction via language has a strong influence on the forma-
tion of categories and thus on the way the words are grounded. Luc
Steel’s work is of interest here less because of the notion of social
grounding, which is not addressed in this thesis, but because, in
contrast to the approaches discussed earlier, his models have a di-
rect connection to the sensorimotor system. For instance, colors
are categorized with adaptive networks (a modification to radial ba-
sis function networks) and the names of colors are modeled with
associative memory networks (Steels & Belpaeme, 2005).

2.1.6 Process organization
Cognitive architectures often ignore or do not explicitly model the
problem of process organization, that is, how individual cognitive op-
erations or processes are organized in time to form a coherent overall
behavior. ese processes may govern anything inside of a cogni-
tive architecture, from bringing the attentional focus to a particular
location in space, making a selection decision between multiple op-
tions, to activating and deactivating entire behaviors. e problem
of process organization includes the question of how such discrete
processes are represented in the first place: how is their beginning
triggered, how is their state represented during execution, and how
and under what conditions are they terminated? How is a multitude
of processes organized in such a way that only those are activated
that are relevant to the current situation? How may some processes
become active simultaneously, while others are constrained to not
be active at the same time? Finally, how are processes organized to
be executed in a sequence or even in a particular serial order (Hen-
son & Burgess, 1997)?

In computational and roboticmodels the problems named above
may not even appear to be a challenge. ey are either solved di-
rectly through algorithmic tools, for instance if-statements, while-
loops, and the sequential execution of program code—tools that
were developed to solve that same problem for computer program
code. Or they are solved based on structural principles, for example
schema theory in the work of Roy (2005b). However, underneath,
such structural principles are implemented by algorithmic tools as
well.

Classical symbolic architectures, for instance ACT-R, SOAR,
or ICARUS (for review, see Langley et al., 2009) organize their

16



2.1 Grounding of language

Cangelosi, A. & Harnad, S. (2001). e adap-
tive advantage of symbolic theft over sensori-
motor toil: Grounding language in perceptual
categories. Evolution of Communication, 4(1);
Steels, L. & Belpaeme, T. (2005). Coordinat-
ing perceptually grounded categories through
language: A case study for colour. Behavioral
and Brain Sciences, 28(4), 469–489, 469–489;
Dominey, P. F. & Boucher, J. D. (2005b).
Learning to talk about events from narrated
video in a construction grammar framework.
Artificial Intelligence, 167(1-2), 31–61

Shastri, L. (1999). Advances in SHRUTI: A
neurally motivated model of relational knowl-
edge representation and rapid inference using
temporal synchrony. Applied Intelligence, 11,
79–108; Shastri, L., Grannes, D., Narayanan,
S. S., & Feldman, J. (2002). A Connection-
ist Encoding of Parameterized Schemas andReac-
tive Plans (tech. rep. No. TR-02-008). Inter-
national Computer Science Institute. Berke-
ley

Redgrave, P., Prescott, T. J., & Gurney, K.
(1999). e basal ganglia: A vertebrate so-
lution to the selection problem? Neuroscience,
89(4), 1009–1023

Gurney, K., Prescott, T. J., & Redgrave, P.
(2001, June). A computational model of
action selection in the basal ganglia. I. A
new functional anatomy. Biological Cybernet-
ics, 84(6), 401–10

Eliasmith, C., Stewart, T. C., Choo, X.,
Bekolay, T., DeWolf, T., Tang, C., & Ras-
mussen, D. (2012). A large-scale model of the
functioning brain. Science, 338(6111), 1202–
1205

operations based on symbolic production rules. ese production
rules are akin to if-statements, as they express conditions under
which appropriate actions should be executed. More importantly,
however, how production rules are organized in memory slots and
processed is also determined by common algorithms that are often
not discussed.

Using algorithmic approaches may be reasonable if one is in-
terested in solving problems that require cognitive operations or
if one believes that human cognition can be explained on an ab-
straction level that is detached from the neural reality of the human
brain. However, even many computational models that are in part
based on neural principles (e.g., Cangelosi & Harnad, 2001; Steels
& Belpaeme, 2005; Dominey & Boucher, 2005b) rely on algorith-
mic approaches to control different behaviors or generate sequences.
But by doing so, they sidestep the problem of process organization,
which quickly becomes complex when based on neural principles
(e.g., Shastri, 1999; Shastri et al., 2002).

In the human brain, processes are believed to be organized by
a combination of two mechanisms. First, organization occurs dis-
tributed throughout cortex by properties emergent from the under-
lying neural dynamics. Second, as a central device for action se-
lection, the basal ganglia are believed to moderate between distant
regions of cortex (Redgrave et al., 1999). e basal ganglia have
connections to and from an extensive number of cortical regions.
By default, their connections to cortex are believed to inhibit any
behavior or process until it becomes relevant. When it does, the in-
hibition is removed and the behavior or process can become active
(Gurney et al., 2001).

A neural model whose processes are organized by a model of the
basal ganglia is the Semantic Pointer Architecture Unified Network
(SPAUN; Eliasmith et al., 2012). e entire model is based on neu-
ral principles, in particular, spiking neurons. It is able to perform
an impressive multitude of different tasks, including image recog-
nition, reinforcement learning, counting, and question answering;
all without intervention by the modeler and without modification of
the model. e model has a direct connection to visual input, which
it also uses to differentiate between different task settings, and to
motor output, where it uses a simulated physical arm to respond
to queries. e model is still simplified and has many limitations.
Most importantly, its perceptual and conceptual representations are
restricted to digits, precluding it from reasoning about objects in
real environments. is is a prerequisite to building up a represen-
tation of a scene and to ground relations and language about real en-
vironments. Nevertheless, Semantic Pointer Architecture Unified
Network (SPAUN) is an impressive neural process model. at all
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its processes and behaviors are organized based on a model of the
basal ganglia make it all the more remarkable.

Neural models do not necessarily have to incorporate a model
of the basal ganglia. It may suffice to model the organization of
processes based on similar principles, for instance the removal of
inhibition. But neural models must explain all of its parts on the
basis of neural principles. Only then can they claim to be committed
to explaining human cognitive processes that are fully autonomous.

2.1.7 Toward a neural theory of embodied cognition

What is thus missing is a comprehensive neural theory of embodied
cognition and embodied language. In order to be comprehensive, it
must be a concrete, formal process model that is able to explain cog-
nitive processes ranging from the sensorimotor level all the way up
to abstract cognition. In order for it to be neural, all processes must
be explained as emergent properties of basic neural principles that
are consistent with current empirical data. e theory must explain
basic cognitive processes such as detection, and selection of objects,
categorization, and identification. Furthermore, in order to explain
characteristic properties of cognition and language such as produc-
tivity, and propositions, it must support structured representations.

A candidate for such a theory is dynamic field theory (DFT), a
modern variant of neural dynamics. e model introduced in this
thesis (Section 3) is based on this work. e next section covers the
conceptual and mathematical foundation of DFT.

2.2 Dynamic field theory

Dynamic field theory (DFT) is a mathematical framework for mod-
eling cognitive processes. It has been applied to capture and explain
many of the issues discussed above (Schöner et al., 2015). Ulti-
mately, it aims at explaining cognition as a whole, in a single, co-
herent framework.

is section summarizes both the conceptual principles on
which DFT is founded as well as its mathematical framework. It fo-
cuses on the aspects ofDFT that are relevant to themodel presented
in this thesis. To get a broader overview of DFT, in particular its
empirical foundations, please refer to the textbook by Schöner et al.
(2015).
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2.2.1 Principles of dynamic field theory
DFT models of cognition are process models. is means that they
are not only aimed at describing what is empirically found in hu-
man cognition but that they additionally explain the underlying
mechanisms of how these findings come about. In other words,
they not only model the outcome of cognitive processes but cap-
ture the processes themselves. Since human cognitive processes un-
fold in the nervous system, most prominently the cortex, process
models need to be informed by established principles of neural or-
ganization. DFT models apply this idea rigorously and require that
all functionality that is part of a model must be explained on the
basis of these neurally plausible principles. is approach wields
explanatory power but at the same time produces additional chal-
lenges. Some problems that are trivial to solve with conventional
computer algorithms require complex solutions when resorting to
neurally plausible mechanisms alone.

Many basic cognitive processes have already been addressed by
DFT, for instance the detection of an object, the selection between
multiple objects, and the build-up of working memory. Starting
from these basic processes, DFT enables to build models of increas-
ingly complex cognitive processes. All of it is based on a mathemati-
cal framework that captures fundamental neural principles on a level
that most directly impacts human behavior. ese principles are as
follows.

First, DFT is based on the hypothesis that throughout cortex,
behaviorally relevant parameters are coded for by populations of
neurons, rather than individual neurons. For instance, the move-
ment direction of an arm movement can be accurately predicted
using the response of an ensemble of broadly tuned neurons (Geor-
gopolous et al., 1986). In DFT, this idea of population code is so per-
vasive that the models do not include individual neurons. In fact,
the models do not even explicitly specify populations of neurons.
Instead, they are based on dynamic neural fields, activation variables
that are defined directly over feature spaces, for instance movement
direction, that neural populations represent. is may seem like
an abstraction that is quite removed from neural reality. However,
the activation of a neural population with respect to some feature
dimension, the distribution of population activation (DPA), can be
computed by incorporating the entire tuning curve of each neuron
within the population (Jancke et al., 1999). us, even though the
representations that DFT models are based on are not explicitly ex-
pressed in terms of neurons, they can be mapped onto neural popu-
lations and express what they represent.

Second, DFT models are characterized by their gradedness. All
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processes are graded in their state, that is, they are based on activa-
tion variables that have continuous values and are defined over con-
tinuous feature spaces. is means that both discrete events, such
as the detection of an object, as well as the formation and existence
of discrete categories, requires explanation. Similarly, all processes
evolve in continuous time. is means that processes are not in-
herently discretized into processing steps and that their formation
needs to be explained.

ird, the function of a model is determined by its internal con-
nectivity alone. is means that an activation distribution, defined
over some feature space, evolves in time only due to input that it
receives through connections from other such distributions as well
as input through recurrent connections (from itself ). ese con-
nections are analogous to synaptic connections between individual
neurons and can only be changed through slow learning processes.
Over short time scales, they can thus be thought of as fixed. is is a
constraint for models since different behaviors cannot be explained
by rapidly changing connections. It also means that whenever one
part of a model should have an influence on another part, they al-
ready need to be physically connected. is raises the question how
a neural operation can be applied to many different locations in a
neural map without requiring unrealistic neural resources. However,
even relatively rigid connectivity can still exhibit flexible behavior,
in part due to its connection to sensors like the eye that can be di-
rected at many locations in space. Similarly, attentional processes
enable focusing on certain aspects over others and allow shifting
the representation of an input to a location that a neural operator is
connected to (Ballard et al., 1997). Of course, such processes also
require an explanation based on neural principles.

Fourth, DFT takes the position of embodied cognition seriously
(Clark, 1999; Barsalou, 1999; M. Wilson, 2002). Many DFT mod-
els are situated, that is, they are placed in a real-world environment
(e.g., Knips et al., 2017). is means that they have to deal with per-
ception and action simultaneously. DFT models do so in a closed
loop: sensory input influences the internal dynamics of the model;
this shapes the model’s motor output, which in turn may have an
influence on the sensor input. All of these processes are tightly cou-
pled to the real time in which the actions unfold. However, the as-
pect of embodiment that is most relevant to this thesis is the hypoth-
esis that there is no division between primitive cognitive processes
at the sensorimotor level and higher cognitive processes. ey only
differ in their distance to the sensorimotor surfaces. is means that
higher cognitive processes are based on the same neural principles as
the processes close to the sensorimotor surfaces. In particular, the
embodiment position precludes that cognition is based on purely
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abstract symbolic mechanisms (Fodor & Pylyshyn, 1988) that are
disconnected from the processes at the sensorimotor level.

Fifth, both processes close to the sensorimotor system as well
as representational states about the world require stability (Spencer
& Schöner, 2003). e sensorimotor system, like the rest of the
human nervous system, is inherently noisy. In order to perceive
the world and execute actions, cognitive processes must be stable
against such noisy fluctuations. Similarly, human cognition works
in a broad range of quickly changing, chaotic environments. e
representations that we build about the world need to be invariant
to all the irrelevant events that happen around us. At the same time,
our cognitive processes still need to enable us to continuously update
our representations as we become aware of important changes in our
surroundings. e notion of stability is deeply ingrained in DFT.
Its mathematical framework is built on continuous time differential
equations that are in stable attractor states most of the time. While
in those states, the model resists noise. Significant changes in in-
put that reflect important changes in the environment or elsewhere
in the model may lead to instabilities—points at which the system
changes into a different stable state.

ese are the neural principles on which DFT is founded. ey
are expressed as process models in a mathematical framework that
I will summarize in the remainder of this section.

2.2.2 Dynamic neural fields
e core element of dynamic field theory is a dynamic neural field (or
simply “field”), an activation distribution u(x, t) that is defined over
one or more continuous feature dimensions x, for instance color or
space. Figure 2.2 shows a plot of an exemplary dynamic neural field
that is defined over a single such feature dimension.

e activation u(x, t) of such a field evolves in time t based on
the following differential equation (H. R. Wilson & Cowan, 1973)
that was analyzed by Amari (1977)

τ u̇(x, t) = −u(x, t) + h+ s(x, t) + wξ · ξ(x, t)

+

∫
dx′ k(x− x′) g(u(x′, t)). (2.1)

is equation determines the rate of change u̇(x, t) of the activa-
tion u(x, t) at position x and at time t. e change depends on
the current activation level u(x, t) of the field, a negative resting
level h < 0 that brings the activation below a threshold of zero,
external input s(x, t) from sensors or other fields, Gaussian white
noise ξ(x, t) with strength wξ, and a time constant τ that deter-
mines the time scale on which the change happens. e last term
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F .: Interaction kernel as formalized
in Equation 2.2. It is defined over the dis-
tance∆x between two positions along the fea-
ture dimension x. Values above zero yield ex-
citatory interaction; values below zero create
inhibitory interaction. is type of interaction
kernel facilitates a selective behavior of a field.
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F .: An interaction kernel that facili-
tates the formation of multiple peaks, as for-
malized in Equation 2.4. It is defined over
the distance ∆x between two positions along
the feature dimension x. Values above and be-
low zero yield excitatory and inhibitory inter-
action, respectively.

of the equation, the integral, determines how different positions in
the field interact. Each position in the field has an influence on and
is influenced by all other positions in the field, including itself. e
interaction has a homogeneous structure throughout the field and
depends solely on the distance ∆x = x− x′ between two positions
in the field along the feature dimension: positions that are close
together excite each other whereas positions that are farther apart
inhibit each other. is type of interaction structure draws on neu-
ral wiring structures found throughout the human cortex (Jancke
et al., 1999). In the dynamics in Equation 2.1 it is formalized by
the interaction kernel

k(∆x) = wexc · φ(∆x, µ, σ)− winh, (2.2)

which consists of an excitatory center, a Gaussian function φ scaled
by a positive scalar wexc, and an inhibitory perimeter, determined by
winh (Figure 2.3). e Gaussian function follows the equation

φ(∆x, µ, σ) = a · exp
(
−(∆x− µ)2

2σ2

)
, (2.3)

where µ is the mean value and center of the Gaussian curve, which
is usually zero, σ is the standard-deviation around that mean, and a
determines the amplitude. When the kernel is defined with a strong
inhibition that is effective across the entire feature dimension, a sin-
gle stable peaks will suppress the formation of additional peaks.

Alternatively, an interaction kernel can be used whose inhibition
is only effective over a medium range. is enables the field to form
multiple stable peaks. Such an interaction kernel can have the form
of a sum of two Gaussian functions

k(∆x) = wexc · φ(∆x, µ, σexc)− winh · φ(∆x, µ, σinh), (2.4)

where the inhibitory part is broader, σinh > σexc, but smaller in
amplitude, winh < wexc (Figure 2.4).

Independently of the interaction kernel, a position in the field
can only have an influence on other positions if its activation value
is above a threshold u0, which is also usually zero. In Equation 2.1
this is expressed by the logistic function

g(u) =
1

1 + exp(−β(u− u0))
, (2.5)

where u0 determines the inflection point of the sigmoid along the
input variable and β controls the steepness at this point (Figure 2.5).
e logistic function formalizes the output of the field (to other
fields as well as to itself ). For activation values below the threshold
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F .: Exemplary logistic function g(u)
following Equation 2.5 with u0 = 0.

of zero this output function produces zero output, for values above
the threshold it produces an output of one; in between, there is a
smooth transition.

e first term of Equation 2.1, −u(x, t), creates an attractor at
zero. If we disregard all other terms of the equation, the activation
will relax toward zero over time, regardless of its initial value. e
negative resting level shifts the attractor to h, below the threshold of
the output function. is means that without external input s(x, t),
the field neither has an influence on other fields, nor does it have
any interaction.

Instabilities

Adding external input s(x, t) to a field shifts its attractor, possibly
such that the activation rises above the threshold. Most commonly,
input is localized along the feature dimension, such that only a re-
gion of the field is affected. As soon as a region of the field is pushed
above the threshold, interaction within the field becomes active: the
positions in the local region of the input mutually excite each other
while regions farther away are inhibited. is interaction forms a
stable peak of activation above the threshold that is larger than the
initial input that brought it about (see Figure 2.2). In doing so, the
field goes through the detection instability, a bifurcation in which
the attractor below the threshold disappears and the system relaxes
to an attractor above the threshold. e reverse detection instability
occurs in the opposite case, when a peak disappears, for instance
when there is no longer input to the field.

If multiple localized regions of input appear simultaneously, a
field can make a selection decision: it forms a peak at the position of
the strongest input and suppresses the other inputs. In doing so, the
field goes through the selection instability. For a field to be selective,
it requires an interaction kernel with strong global inhibition (refer
back to Equation 2.2 and Figure 2.3).

If the local excitation of the interaction kernel is strong enough,
the field forms a self-sustained peak. at is, the self-excitation is
strong enough to keep the peak stable even after the initial input is
removed, forming a memory of the input. is works both for inter-
action kernels that facilitate selection as well as for those allowing
for multiple peaks.

In dynamic field theory, the processes of detection, selection,
and memory are regarded as the most basic cognitive processes.
ey all emerge from the dynamics of a single neural field. More
complex cognitive processes can be modeled by coupling multiple
fields into architectures, as will be explained later, in Section 2.2.3.
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0

F .: Activation of a two-dimensional
neural field. e activation is illustrated in a
color code (see color bar). e yellow region
is a stable peak of activation.

Schneegans, S., Lins, J., & Spencer, J. P.
(2015). Integration and selection in multidi-
mensional neural fields. In G. Schöner & J. P.
Spencer (Eds.), Dynamic inking: A Primer
on Dynamic Field eory (Chap. 5, pp. 121–
150). New York: Oxford University Press

u

wse

F .: Neural node (circle) with acti-
vation variable u. e arrow denotes self-
excitation.

Higher dimensionalities

e equations and exemplary plots have so far only shown dynamic
neural fields defined over a single feature dimension. However, the
field equation (Equation 2.1) can be generalized to multiple dimen-
sions:

τ u̇(x⃗, t) = −u(x⃗, t) + h+ s(x⃗, t) + wξ · ξ(x⃗, t)

+

∫
· · ·
∫

dx′
1 . . . dx

′
n k(x⃗− x⃗ ′) g(u(x⃗ ′, t)), (2.6)

where x⃗ is a vector of all feature dimensions x1, . . . , xn. Figure 2.6
shows a plot of an exemplary two-dimensional field, which could for
instance represent the position of an object on a table plane. DFT
architectures are commonly limited to low dimensional spaces due
to the large amount of neurons and synaptic connections that higher
dimensional spaces would require (Schneegans, Lins, & Spencer,
2015).

Dynamic neural nodes

A special case of the dynamic neural field is a dynamic neural node.
It follows the same type of differential equation but is not defined
over a continuous dimension; the activation u(t) of such a node is
only a scalar value. For this case, Equation 2.1 reduces to

τ u̇(t) = −u(t) + h+ wse · g(u(t)) + s(t) + wξ · ξ(t). (2.7)

It uses the same output function g(u(t)) (Equation 2.5) as the field
and can thus represent only two states, the “off ” state, where it pro-
duces output of around zero and the “on” state where it produces an
output of roughly one. e interaction kernel is replaced by a sin-
gle recurrent connection, the self excitation, which projects the out-
put g(u(t)) of the node onto itself, weighted by a factor wse ∈ R+

(Figure 2.7). is recurrent connection makes the node bistable
and creates behavior analogous to what we have seen in the case
of a field. e node goes through the detection instability when
presented with sufficiently strong input and it will go through the
reverse detection instability if that input is removed. If the self-
excitation is sufficiently strong, the node exhibits the same memory
property as the field. Since a single node can only represent the
state of a single entity, it cannot exhibit selection by itself. How-
ever, selective behavior can be implemented by coupling multiple
nodes.
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u1 u2

w1,2

w2,1

F .: Neural oscillator consisting of
two neural nodes with activation variables u1

and u2.

Amari, S.-i. (1977). Dynamics of pattern for-
mation in lateral-inhibition type neural fields.
Biological Cybernetics, 27(2), 77–87

5e description of these coupling schemes is
based on published material (Lomp, Richter,
Zibner, & Schöner, 2016), which arose as
a collaboration between Oliver Lomp (OL),
Mathis Richter (MR), Stephan Zibner (SZ),
and Gregor Schöner (GS). MR and SZ imple-
mented the exemplary model shown in the pa-
per, MR produced results. OL, SZ, and MR
developed the software described in this paper.
All authors participated in writing the paper.

2.2.3 Architectures
We have seen that the primitive cognitive processes of detection, se-
lection, and memory can be modeled with a single dynamic neural
field. More complex cognitive processes may be explained by com-
bining fields and nodes into interconnected architectures. A simple
example of such an architecture are two dynamic neural nodes with
activation variables u1 and u2 that are connected such that node 1
excites node 2 and node 2 inhibits node 1 (Figure 2.8). e equa-
tions for both nodes follow the general form of Equation 2.7 with
the following external inputs s1, s2 for nodes 1 and 2, respectively

s1(t) = w1,2 · g(u2(t)), (2.8)
s2(t) = w2,1 · g(u1(t)). (2.9)

e excitatory connection from node 1 to node 2 is formalized by
w2,1 > 0, while the inhibitory connection from node 2 to node 1
is given by w1,2 < 0. Incidentally, this simple model produces a
rhythmic pattern of activation; it is an oscillator (Amari, 1977).

Coupling dynamic neural fields to model their interaction is
done analogously. However, not all fields are of the same dimen-
sionality. And even if they are, they may not be defined over the
same feature dimensions. In the following, I will formalize three
different coupling schemes,5 in all cases referring to a source field A
with activation uA(x⃗, t) of dimensionality a and a target field B with
activation uB(x⃗, t) of dimensionality b. e activation of both fields
evolves in time based on dynamics analogous to Equation 2.6. I
will further assume that the dimensions of the two fields are aligned,
such that they are defined over the same vector x⃗.

When the two fields have the same dimensionality (a = b), the
coupling is a one-to-one coupling. In this case, the input sB,A from
field A to field B is determined by

sB,A(x⃗, t) = g(uA(x⃗, t)). (2.10)

When field A is defined over less metric dimensions than field B
(a < b), the coupling is an expansion. In this case, the vector x⃗B,
which describes the dimensions that field B is defined over, contains
all of the entries of x⃗A, the dimensions of field A, as well as some
additional entries. For such a coupling the input to the target field
is

sB,A(x⃗B, t) = g(uA(x⃗A, t)). (2.11)

e input is constant within the additional dimensions of field B,
which leads to characteristic shapes in the input. For instance, if
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uA(x, t)

sBA(x, y, t)

uB(x, y, t)

F .: Expansion coupling from a one-
dimensional field to a two-dimensional field.

Riesenhuber, M. & Poggio, T. (1999). Hier-
archical models of object recognition in cortex.
Nature Neuroscience, 2(11), 1019–25

the source field is one-dimensional and the target field is two-di-
mensional, the input forms a ridge (Figure 2.9); if the source is one-
dimensional and the target is three-dimensional, the input forms a
cylinder.

When the source field A is defined over moremetric dimensions
than the target field B (a > b), the coupling is a contraction. I assume
here that the extra dimensions that are represented in A but not in B
are the last (a− b) entries xb+1, . . . , xa of x⃗A. One way to contract
these dimensions is to integrate them

sB,A(x⃗B, t) =

∫
· · ·
∫

dxb+1 . . . dxa g(uA(x⃗A, t)), (2.12)

which has the disadvantage that the input to the receiving field
varies in strength depending on the number of objects that are repre-
sented along the contracted dimension. Parameterizing the receiv-
ing field may thus require some form of normalization of the in-
put strength. To simplify the process of parameterizing the model
introduced in this thesis, I use the maximum function to contract
dimensions

max
xi,...,xj

(f(x⃗)). (2.13)

It takes the maximum over the dimensions xi, . . . , xj and projects
it onto the remaining dimensions. e function thus reduces the
dimensionality of the input by the number of contracted dimensions.
Using the maximum function, the exemplary contraction coupling
from field A to field B would be

sB,A(x⃗B, t) = max
xb+1,...,xa

(g(uA(x⃗A, t))), (2.14)

where the maximum is taken over the dimensions xb+1, . . . , xa. Al-
though uncommon in DFT models, the maximum function is an
essential part of the “standard” neural model of object recognition,
the HMAX model (Riesenhuber & Poggio, 1999). It is employed
there in the early stages of visual processing, where the responses
of simple cells are pooled to give input to complex cells. Compared
to a more traditional pooling by summation of the incoming synap-
tic connections, the maximum function provides a more robust re-
sponse when the visual input is cluttered. Furthermore, the maxi-
mum function is more invariant to changes in size of the stimulus,
since it only projects the best-matching response; this is similar to
the reason it is used in this thesis. e maximum function can be
approximated by the softmax function

wi =
∑
j

exp(p · |sj|)∑
k exp(p · |sk|)

sj, (2.15)
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Berger, M., Faubel, C., Norman, J., Hock, H.,
& Schöner, G. (2012). e counter-change
model of motion perception: An account
based on dynamic field theory. In A. E. P.
Villa (Ed.), ICANN 2012, Part I, LNCS 7552
(pp. 579–586). Berlin Heidelberg: Springer

Hock, H. S., Schöner, G., & Gilroy, L.
(2009). A counterchange mechanism for
the perception of motion. Acta Psychologica,
132(1), 1–21

which pools the responses of simple cells sj to produce a responsewi

of a complex cell. e strength of the non-linearity is determined
by the parameter p. For p = 0 the softmax function yields a linear
sum of the responses of all simple cells, whereas for p → ∞ it ap-
proximates the maximum function (Riesenhuber & Poggio, 1999).

In all three coupling schemes, one-to-one, expansion, and con-
traction, the output of field A is commonly also convolved with a
Gaussian kernel kB,A(x⃗), a point-spread function. For instance, ex-
pressing the one-to-one coupling in this way results in

sB,A(x⃗, t) =

∫
dx⃗ kB,A(x⃗− x⃗ ′) g(uA(x⃗

′, t)). (2.16)

e equations for the other coupling schemes have an analogous
form.

Since equations with many couplings that each contain a con-
volution quickly become long, I introduce the following notational
shorthand for convolutions

[k ∗ g(u)](x⃗, t) =
∫
Rn

dx⃗ ′ k(x⃗− x⃗ ′) g(u(x⃗ ′, t)) (2.17)

and use it where it helps to shorten equations throughout the rest
of the thesis. Please note that the kernel and the output of the field
are only convolved along the dimensions x⃗, not over time t. Only
the activation u(x⃗, t) is dependent on time, the kernel k(x⃗) is not.

By default, the synaptic weights between fields are homoge-
neous and act either excitatorily or inhibitorily upon the target field.
In some cases we employ synaptic weights that have a pattern, for
instance in the connection between certain nodes and fields. is
will be further explored in Section 3.4.

2.2.4 Motion perception
In order to perceive objects in the world, DFT architectures are
connected to sensors, most importantly to cameras. Based on their
input, the features of objects can be represented in dynamic neu-
ral fields. e motion of objects in a scene can be detected and
their movement direction estimated through a neural-dynamic ver-
sion (Berger et al., 2012) of the counterchange model for motion
perception (Hock et al., 2009). e counterchange model of mo-
tion perception asserts that we perceive motion when an intensity
change (e.g., in luminance) at one location coincides with an inverse
intensity change at a nearby location. is model is able to explain
the perception of both real motion as well as apparent motion. It is
built around arrays of transient detectors that react to local intensity
changes.
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f(u(t))
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F .: Transient detector

A transient detector can be modeled by a dynamic variable u,
which interacts with a dynamic variable v according to the following
dynamics

τ u u̇(t) = −u(t) + w · s(t)− v(t), (2.18)
τ v v̇(t) = −v(t) + w · s(t). (2.19)

Both equations have a stabilizing term (−u and −v, respectively),
which, in absence of other input, creates an attractor at zero. e
dynamics continuously receive input s(t) (e.g., luminance intensity)
with strength w > 0, which shifts the attractor to the input and
makes the dynamics follow it. Since the second equation is inhibito-
rily coupled to the first (through the −v(t) term), it cancels that
input in the first equation. If both equations used the same time
constant, the first dynamics would always have an attractor at zero
while the second followed the input. However, if the time con-
stants are set such that τ v > τu, the variable v relaxes slower than u
and allows it to follow the input for some time before canceling it
out. is makes the dynamics act as a transient detector: for every
change in the input s, the activation u will follow the change for a
short period of time and then return to zero until the input changes
again (Figure 2.10).

Equations 2.18 and 2.19 define a transient detector that reacts to
any change in the input, be it negative or positive. ese two types
of change can be distinguished by defining two different detectors
that only react to either the positive or the negative changes in the
input. Positive changes can be detected by using the semi-linear
rectifier function f(u) = max(0, u) as output of the transient de-
tector. Negative changes can be detected if, in addition, we choose
a constant w < 0 as strength for the input of the detector. Both
detectors yield a positive response whenever they detect change.

To implement the counterchange model of motion perception,
transient detectors for positive and negative change at different posi-
tions have to be compared. is requires that two arrays of transient
detectors are defined that span every spatial position x⃗; one array,
up(x⃗, t) reacts to positive changes, the other, un(x⃗, t) to negative
changes. One can then compare a pair of detectors, one positive
and one negative, at different spatial positions x⃗0 and x⃗1

m = f(up(x⃗0, t)) · f(un(x⃗1, t)). (2.20)

If a change is detected by both detectors, m is close to one, other-
wise it is close to zero. e direction of movement ϕ is determined
by the angle of the vector x⃗0 − x⃗1.

ese equations can be generalized to compare the signals of
all combinations of transient detectors, from which the movement
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Schneegans, S. & Schöner, G. (2012). A
neural mechanism for coordinate transforma-
tion predicts pre-saccadic remapping. Biologi-
cal Cybernetics, 106(2), 89–109
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F .: Steerable neural mapping

direction of all objects in the scene can be deduced. is is explored
further as part of the model in Section 3.1.2.

2.2.5 Steerable neural mappings
A perceptual front-end like the one described above enables archi-
tectures to form representations of the spatial position of objects.
When fed by camera input, these representations are in camera co-
ordinates, that is, their reference frame is determined by the posi-
tion and orientation of the camera. Steerable neural mappings enable
us to flexibly change the reference frame of a representation. at
is, they yield a representation in a field in which the peak positions
are shifted, centering them on an arbitrary reference position that
can be specified. is mechanism can for instance explain how a
retinocentric representation that changes with every saccade can be
mapped onto a more stationary allocentric representation (Schnee-
gans & Schöner, 2012). As explored in the next section, it is also
central to explaining how spatial relations between objects can be
extracted.

To demonstrate the mechanism here, I use an example where
the representation is defined over a one-dimensional feature space
(Figure 2.11). Please note that I am choosing a one-dimensional
space for clarity of illustration only; the method can be extended to
higher dimensional spaces.

Let us assume that we are representing the position of objects
in a one-dimensional space x within a neural field A. e activa-
tion uA(x, t) of that field follows the generic field equation (Equa-
tion 2.1)

τ u̇A(x, t) =− uA(x, t) + hA

+ [kA,A ∗ g(uA)](x, t)

+ sA(x, t),

(2.21)

where the external input sA(x, t) consists of sensory input that leads
to the formation of two peaks in the field. e location of peaks re-
flects the position of two objects in space, relative to some reference
frame.

Let us assume further that we have another field B that holds a
peak at some reference position. e field is defined over the same
space x and its activation uB(x, t) follows the dynamics

τ u̇B(x, t) =− uB(x, t) + hB

+ [kB,B ∗ g(uB)](x, t)

+ sB(x, t).

(2.22)

29



2 Background

e external input sB(x, t) leads to the formation of a peak at the
reference position.

We can then define a transformation field T, which produces a
representation of the objects (the ones represented in field A) that is
centered on that reference position. e transformation field T ex-
presses a mapping from the original feature space onto itself. It thus
has twice the number of dimensions as the original feature space. In
our example, its activation uT(x, y, t) evolves in time based on the
differential equation

τ u̇T(x, y, t) =− uT(x, y, t) + hT

+ [kT,T ∗ g(uT)](x, y, t)

+ [kT,A ∗ g(uA)](x, t)

+ [kT,B ∗ g(uB)](y, t).

(2.23)

Along x, it receives input from field A, along y it receives input
from field B. ese inputs are projected onto the two-dimensional
space of T, leading to ridges of activation. At the position of that
crossing, the transformation field will form a peak (Figure 2.11).

e output of the transformation field feeds into a fieldC, which
holds the representation of the shifted object positions. e trans-
formation happens through a special coupling between the transfor-
mation field T and field C, in which the activation of the transfor-
mation field is “read out diagonally”. e activation uC of field C
has the dynamics

τ u̇C(x, t) =− uC(x, t) + hC

+ [kC,C ∗ g(uC)](x, t)

+ sC,T(x, t)

(2.24)

where the input from the transformation field T is given by

sC,T(x, t) = [kC,T ∗GC(uT)](x, t), (2.25)

with the diagonal read-out

GC(uT)(x, t) =

∫
dp g(uT(x− p, p, t)). (2.26)

With this transformation, the positions of the peaks in field C re-
flect their position relative to the reference position held by field B.

As will be explained later (Section 3.3), in my thesis model I
use transformations on two-dimensional representations. is re-
quires four-dimensional transformation fields, which are a serious
performance bottleneck when simulated on a computer. In the im-
plementation of themodel, I thus opted for approximating steerable
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Lipinski, J., Schneegans, S., Sandamirskaya,
Y., Spencer, J. P., & Schöner, G. (2012).
A neurobehavioral model of flexible spatial
language behaviors. Journal of Experimental
Psychology: Learning, Memory, and Cognition,
38(6), 1490–1511
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F .: Overview of the DFT model
for spatial language. Dynamic neural nodes
are depicted as gray circles, dynamic neural
fields are shown as gray rectangles. Diagram
adapted from Lipinski et al. (2012).

neural mappings by convolutions, as their computation can be opti-
mized for performance by using the fast Fourier transform. Using a
convolution to replace the transformation field T, the input sC(x, t)
from the spatial transformation into field C would be

sC(x, t) =

∫
dx′ g(uB(x− x′)) g(uA(x

′)), (2.27)

replacing sC,T in the third line of Equation 2.24. Even though the
model uses convolutions for spatial transformations, it remains neu-
rally plausible since all convolutions can be mapped onto steerable
neural mappings.

2.2.6 Spatial language model
Steerable neural mappings are most prominently employed in the
DFT model of spatial language. is line of research aims at ex-
plaining the cognitive processes that are required to resolve spatial
relations between objects in a scene, for instance following a ques-
tion such as: “What is to the left of the cup?” e most extensive
version of the DFT model of spatial language is reported by (Lip-
inski et al., 2012) and lays the foundation for the work presented in
this thesis. is section covers both the structure of the model as
well as some of the tasks it is able to capture. I will forgo a mathe-
matical description of the model, as this would go beyond the scope
of this thesis. While Lipinski et al. (2012) do not offer a mathe-
matical description either, they do for a previous version (Lipinski,
Sandamirskaya, & Schöner, 2009).

Model

An overview diagram of the model of spatial language is shown in
Figure 2.12. e model receives real visual input from a camera,
which feeds into a set of three color-space fields that are all defined
over the two-dimensional image space of the camera. e three
fields represent the spatial position of objects in the camera image,
where each of the fields represents only objects of a single color:
red, green, and blue, respectively.6 Each field is connected recip-
rocally to a neural color term node. e nodes represent the colors
, , and . e connections between each node and its
field are homogeneous across the entire field. If the node is active, it
brings the field into a dynamic range where it can form peaks from
the localized input it receives from the camera. e field can also
form a peak without the node being active if the user manually raises
the resting level of the field. When a peak forms, this activates the
node.
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6As a set, the three color-space fields approx-
imate a three-dimensional color-space field
that is defined over the two-dimensional im-
age space as well as the color dimension
(where the color dimension has only a coarse
resolution).

7In this example, the red object is the target
object and the green object is the reference ob-
ject.

8See Section 2.2.5: the transformation field
defined here corresponds to the field with ac-
tivation uT defined there. e target field
and reference field correspond to the fields A
and B, respectively.

9e object-centered field defined here corre-
sponds to field C in Section 2.2.5.

All three fields are coupled reciprocally to the target field and
the reference field. Both of these fields are also defined over the two-
dimensional image space of the camera. e target field holds a
representation of the spatial position of the target object, the object
that is being referred to in a phrase such as “the red object to the
left of the green object”.7 Analogously, the reference field holds
a representation of the spatial position of the reference object, the
object used as a reference in order to point out the target object
(the green object in the example above). e target field and the
reference field are reciprocally coupled with inhibitory connections.
is ensures that an object is never represented as both the target
object and the reference object.

e target field and the reference field are both reciprocally cou-
pled to the transformation field with excitatory connections. e
transformation field is a steerable neural mapping8 that is defined
over all combinations of spatial positions of both the target field
and the reference field, both of which are two-dimensional; it is
thus four-dimensional.

It is reciprocally connected to the object-centered field, which is
defined over a two-dimensional space that is centered on the spatial
position of the reference object.9 e output of the transformation
field that feeds into the object-centered field represents the spatial
position of the target object relative to that of the reference object.

e object-centered field is reciprocally connected to four spatial
relation nodes, which represent the spatial relations    ,
   , , and . Each of these relations is en-
coded in patterned synaptic weights between a spatial relation node
and the object-centered field. For instance, the pattern for the re-
lation     has excitatory connections on the left side
of the field and neutral connections on the right side of the field.
e excitatory strength is highest to the left of the center of the
field and diminishes both with increasing distance from the center
as well as increasing angular distance from true left. Multiple spa-
tial relation nodes can be active at the same time. In addition, there
is a spatial term node for each of the spatial relation nodes, form-
ing pairs that are reciprocally coupled with excitatory connections.
Inhibitory connections between all spatial term nodes ensure that
only one such node can be active at any given time. is enables
the model to make a selection decision about the spatial relation it
perceives between the target object and the reference object.

Demonstrations

Lipinski et al. (2012) show that the model can exhibit flexible spa-
tial language behaviors. Different types of questions can be posed
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to the model in the form of inputs to various parts of the model. For
instance, the user can give an input that corresponds to the question
“Where is the green flashlight relative to the red tape dispenser?” in
a visual scene that contains both of these objects as well as a blue
box cutter (the flashlight is to the right of the tape dispenser). Over
the course of the demonstration, the model continuously receives
input from the camera. e user manually gives input to the model,
activating the color term node that represents  while at the
same time raising the resting level of the target field. e model
forms a peak in the color-space field for the color  as well
as in the target field. e user removes the input from the node,
which leads to the decay of the peak in the color-space field. He
also removes input from the target field, which lowers its resting
level. However, this peak remains due to large local excitatory in-
teraction within the target field. e peak is a working memory
representation of the spatial position of the target object, the green
flashlight. To build up a representation of the reference object, the
user analogously activates the color term node that represents 
while at the same time raising the resting level of the reference field.
After a peak has formed in the reference field at the position of the
red tape dispenser, the user removes both inputs. As for the target
field, the peak in the reference field remains due to large local ex-
citatory interaction within the field. With activation both in the
target field and the reference field, the transformation field forms a
peak, projecting its activation into the object-centered field. Since
the green flashlight (target) is to the right of the red tape dispenser
(reference) the peak appears to the right of the center of the field.
is overlaps most with the patterned synaptic connections to the
spatial relation node for the relation     and activates
this node. To force a definitive answer to the question, the user
gives a last input into the model, homogeneously raising the resting
level of all spatial term nodes. Since the spatial term node for the
relation     also receives input from its corresponding
spatial relation node, it becomes active. is activation represents
the answer of the model to the question it was given.

Similarly, one can ask a question such as “Which object is above
the blue deodorant stick?” by giving input to both the color term
node for the color  and raising the resting level of the reference
field as well as giving input to the spatial term node for the relation
 and raising the resting level of the object-centered field. e
model finds the correct target, a red box cutter that is above the blue
deodorant stick, and forms a peak at the spatial position of the box
cutter in the target field once the user raises its resting level. When
the user raises the resting level of all color term nodes, the node for
the color  activates and represents the answer to the question.
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In a similar manner, one can ask a question such as “Where is
the green highlighter?” and the model finds both a reference object
as well as a fitting spatial relation.

Additionally to demonstrating that the model can exhibit flex-
ible spatial language behaviors, Lipinski et al. (2012) show that it
captures empirical data from behavioral experiments. In particular,
they capture data by Regier and Carlson (2001) by showing that
the model’s rating of spatial relations is influenced by two distinct
measures of orientation, the proximal orientation—the orientation
of a vector pointing toward the target object from the closest point
of the reference object—and the center-of-mass orientation—the ori-
entation of a similar vector that originates in the center-of-mass of
the reference object. Moreover, the model captures data reported by
Carlson and Hill (2008), which indicates that while selecting a ref-
erence object, humans are influenced less by its saliency and rather
by its alignment with spatial relations relative to the target object.

2.2.7 Behavioral organization
One of the limitations of the DFT model of spatial language de-
scribed in the last section is that it depends on input from a human
user at different points in time in order to initiate instabilities and
select different behaviors. Modeling architectures that can generate
multiple behaviors, autonomously without help from a user, and acti-
vating some behaviors in a certain sequential order requires the con-
trolled activation and deactivation of the architecture’s functional
parts at critical moments in time. is section explains how such a
behavioral organization can be realized within DFT.

Elementary behavior

Larger DFT architectures can most often be subdivided into el-
ementary behaviors (EBs) that comprise independent functional
parts of the architecture. An EB can be any cognitive process, in-
cluding movements executed by the motor system, perceptual acts
driven by the sensory system, or cognitive processes, such as mem-
orizing the position of an object in space.

In DFT, each EB is modeled by a structure of nodes and fields
(Figure 2.13) that implements two concepts: the intention (int) rep-
resents whether the EB is active and what its effect is going to be;
the condition of satisfaction (CoS) checks whether the EB is success-
fully completed and shuts it off. For each of these two concepts,
we employ both a node and a field (Richter et al., 2012). Whether
the EB is active or inactive is represented by the “on” and “off ” state
of the intention node. e effect the EB has on the architecture
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Sandamirskaya, Y. & Schöner, G. (2010). An
embodied account of serial order: How insta-
bilities drive sequence generation. Neural Net-
works, 23(10), 1164–1179

Both τ and h < 0 can have the same values for
all equations of the EB. is is not required,
but it simplifies finding an appropriate set of
parameters.

is determined by the intention field, which is defined over feature
dimensions relevant for the EB. e intention node is excitatorily
connected to the intention field, such that a peak forms in the field
when the node is activated by some task input. e position of the
peak can be determined by patterned connection weights from the
node to the field or by localized input from another source into the
field. In the latter case, the connection weights from the node to
the field are homogeneous. A peak in the intention field can have
various effects on the rest of the architecture, from simply creating a
peak in another field to having a direct impact on the motor system.

To determine the moment at which the EB is successfully com-
pleted, the CoS field matches the intended end-state of the EB, en-
coded in the connections from the intention field, with current sen-
sory input (Sandamirskaya & Schöner, 2010). Only if the input
from these two sources coincide does the condition of satisfaction
field form a peak. is activates the CoS node, which inhibits the
intention node, turning it off. When the intention node is turned
off, the peak in the intention field decays as well, turning off any
effect the EB may have had on the architecture—the EB is inac-
tive. For some EBs, it may be necessary to preserve the information
that the EB has been successfully completed. is can be achieved
by increasing the self-excitation of the CoS node, making it self-
sustained. Once activated, the CoS node will not turn off unless
actively inhibited.

e following set of coupled differential equations formalizes
the EB shown in Figure 2.13, where the activation variables are as
follows: intention node uIN; CoS node uCN; intention field uIF;
CoS field uCF. Please note that this is just an example and EBs in
larger architectures may vary in structure depending on the kind of
processes they control. For instance, it is assumed here that both
the intention field and the CoS field are defined over the same one-
dimensional feature space x; this does not have to be the case for ev-
ery EB. us, the following equations serve as an exemplary guide-
line rather than a generic formalization.

e intention node with the activation variable uIN evolves in
time based on the differential equation

τ u̇IN(t) =− uIN(t) + h

+ wIN,IN g(uIN(t))

− wIN,CN g(uCN(t))

+ sIN,T(t),

(2.28)

where the first two lines correspond to the general equation (Equa-
tion 2.7) for a dynamic neural node, the second line being the self-
excitation. e third line formalizes the inhibitory input from the
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CoS node to the intention node. e fourth line denotes input from
a task variable, which could be from another neural node or from
user input. e exact formalization is left open here because it de-
pends on how the EB is integrated into the rest of the architecture.

e CoS node with the activation variable uCN is governed by
the equation

τ u̇CN(t) =− uCN(t) + h

+ wCN,CN g(uCN(t))

+ wCN,IN g(uIN(t))

+ max
x

([kCN,CF ∗ g(uCF)](x, t)).

(2.29)

As above, the first two lines correspond to the general form for a
dynamic neural node; the second line is the self-excitation of the
node. e third line is the excitatory connection from the inten-
tion node to the CoS node. e fourth line formalizes the con-
traction coupling from the CoS field to the CoS node, in which
the output g(uCF(x, t)) of the CoS field is convolved with a ker-
nel kCN,CF(x) and the feature dimension x is contracted.

e intention field with the activation variable uIF follows the
differential equation

τ u̇IF(x, t) =− uIF(x, t) + h

+ [kIF,IF ∗ g(uIF)](x, t)

+ wIF,IN(x) · g(uIN(t)),

(2.30)

where the first two lines correspond to the general equation for a
dynamic neural field (Equation 2.1) defined over a one-dimensional
feature space x. e second line is the lateral interaction in the field.
e third line is the input from the intention node to the intention
field. In this coupling, the synaptic weights wIF,IN can either be
homogeneous or have a pattern that depends on the feature space x,
as shown here. In the latter case, the weights have an influence on
the position of the peak in the intention field.

e CoS field with the activation variable uCF is governed by
the equation

τ u̇CF(x, t) =− uCF(x, t) + h

+ [kCF,CF ∗ g(uCF)](x, t)

+ [kCF,IF ∗ g(uIF)](x, t)

+ sCF,P(x, t).

(2.31)

As above, the first two lines correspond to the general form for a
dynamic neural field, defined here over the same feature space x
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as the intention field. e second line is the lateral interaction in
the field. e third line formalizes the connection from the inten-
tion field to the CoS field, in this example a one-to-one coupling.
e fourth line denotes perceptual input from the sensory system.
Only if this input overlaps with the input from the intention field
does the CoS field form a peak. is can be modeled by balanc-
ing the strength of the kernel kCF,IF and the strength of perceptual
input sCF,P.

Sequential constraints

Elementary behaviors create amore abstract layer of control within a
DFT architecture. Activating and deactivating the intention nodes
of different EBs may evoke qualitatively different overall behaviors
from the architecture. In some cases, EBs may be active simultane-
ously but often they may not. In fact, meaningful overall behavior
often consists of sequences of smaller actions. To organize the acti-
vation of multiple EBs in time, we activate all relevant EBs at the
same time but introduce sequential constraints that lead to a sequen-
tial execution of EBs (Sandamirskaya et al., 2011).

For two behaviors, EB1 and EB2, the precondition constraint ex-
presses that EB1 has to be successfully completed before EB2 can
be activated. In DFT, the constraint is represented by a precondi-
tion node, which is activated together with both EBs and inhibits
the intention node of EB2 (Figure 2.14). e precondition node
is in turn inhibited by the CoS node of EB1. As soon as EB1 has
reached its condition of satisfaction and is completed, the precondi-
tion node is turned off, releasing inhibition from EB2. is leads
to the sequential activation of EB1 and EB2.

If what matters is not a particular sequential order of EB1 and
EB2 but only that they are not active at the same time, this can
be expressed by a suppression constraint. It is represented by a sup-
pression node, which inhibits the intention node of EB2 but is only
activated while the intention node of EB1 is active (Figure 2.15).
Set up in this way, EB1 will always suppress EB2 when it becomes
active. Adding an additional suppression node in the other direc-
tion (inhibiting the intention node of EB1) will create competition
between the behaviors; whichever EB becomes active first will sup-
press the other.

2.2.8 Numerical implementation
DFT models explain how cognitive processes unfold in continuous
time based on continuous representations of feature spaces. To show
what these processes look like, how they are influenced by sensory
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Ascher, U. M. & Petzold, L. R. (1998).
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0
time

u(t)

ui

F .: Discrete time Euler approxima-
tion ui (red line, i = 0, 1, 2, . . .) of a continu-
ous time activation u(t) (blue line) that is gov-
erned by the differential equation u̇(t) = −u,
which relaxes to zero.

10cedar is an open-source C++ library that is
freely available under the LGPL license (ver-
sion 3). e source code and documentation
can be accessed at http://cedar.ini.rub.de.

Lomp, O., Richter, M., Zibner, S. K. U.,
& Schöner, G. (2016). Developing dynamic
field theory architectures for embodied cogni-
tive systems with cedar. Frontiers in Neuro-
robotics, 10, 1–18

input and how they can control motor output, the models can be
simulated on computers. With the coupling to sensory input and
the stochastic properties inherent to the models, analytic solutions
of the underlying dynamics cannot be determined. Instead, the dy-
namics are solved numerically. A stochastic differential equation
like the neural field equation (Equation 2.1) of the form

τ u̇ = f(u) + wξ · ξ(t), (2.32)

with a deterministic term f(u) and a stochastic term ξ(t) can be
solved numerically with the stochastic forward Euler method (As-
cher & Petzold, 1998)

ui = ui−1 +
1

τ

(
∆ti f(ui−1) +

√
∆ti wξ ξi−1

)
. (2.33)

Given an initial activation value u0 = c, this yields an approxi-
mation ui of the continuous time activation u(t) at discrete time
points ti (i = 1, 2, 3, . . .) (see Figure 2.16 for an example). e
sampling of the time points is approximately equidistant with∆ti =
ti − ti−1. Choosing ∆ti is a trade-off between precision and per-
formance; smaller values make the approximation more precise but
also lead to a higher computational load.

Building larger DFT models requires that many such simu-
lations of fields and nodes are instantiated, coupled among each
other, and possibly connected to artificial or real sensors and motors.
A major effort in building models is finding a suitable parameter
set for all dynamics that brings all fields into the desired dynamic
regimes. For larger DFT models, this requires close monitoring
of the activation of multiple fields and nodes, while at the same
time systematically changing parameters as well as varying sensory
input. e software framework cedar,10 which I co-developed, en-
ables users to build, parameterize, simulate, analyze, and document
DFT architectures using a graphical user interface. e model in-
troduced in the next section was developed and simulated using this
software framework. Please refer to Lomp et al. (2016) for further
details on cedar and the numerical implementation of DFT models.
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1e only exception to this is the algorithmic
preprocessing of the camera images. is is
used here to avoid adding unnecessary com-
plexity to the model in the form of a neurally
realistic vision system.

Model 3

is chapter introduces a neural dynamic model for the perceptual
grounding of spatial and movement relations. It can solve two re-
lated tasks: first, given real camera input of a scene with colored
objects, it can ground a spatial phrase like “the red object to the left
of the green object” by directing attentional focus to the correspond-
ing object in the scene. Second, given just the camera input, it can
generate a description of the scene in the form of a spatial phrase like
the one above. In doing so, the model extracts the relevant features
of objects as well as their spatial relationship. e model is able to
solve these two tasks for stationary scenes, where the relations be-
tween objects correspond to relative spatial positions like  
  or , as well as for dynamic scenes that feature move-
ment relations like  or  . In solving these tasks,
the model acts autonomously, that is, without user intervention dur-
ing processing.

e entire model is based on concepts of dynamic field theory
(DFT) and does not use algorithmic solutions.1 e model is thus a
single dynamical system that consists of a large number of coupled
differential equations. On a functional level, it can be subdivided
into five parts. Figure 3.1 shows an overview diagram of the model,
in which these five parts are highlighted by white boxes with blue
labels. e parts are as follows:

Perception e perceptual system represents the spatial position
and feature values of all objects in the camera input. e
representation consists of peaks in two three-dimensional dy-
namic neural fields that are both defined over a shared two-
dimensional visual space and the respective additional feature
dimensions color and motion direction. Activation in these
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F .: Diagram overview of the entire model (“process organization” and
“concepts” are not shown in full). e figure shows an activation snapshot during
grounding the phrase “the red object moving toward the green object”. e graph-
ical notation of the diagram is explained in the “notation” box (top right). For
three-dimensional fields (in “perception” and “attention” box), two-dimensional
slices of activation are shown.
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fields is driven by camera input and is continuously updated
as objects move in the scene.

Attention e attentional system enables guiding the attentional
focus along all feature dimensions (here: color, motion direc-
tion, and visual space) as well as bind the representation of
attended objects across all feature dimensions. In absence of
guided feature attention, the attentional system has a simple
saliency mechanism that enables the model to select the most
salient object in the scene. e saliency increases with the
color saturation and size of objects; moving objects are per-
ceived as more salient than stationary objects.

Spatial transformations e spatial transformation system enables
the model to flexibly change the reference position and ref-
erence orientation relative to which objects are represented.
is enables the model to extract spatial relations between
pairs of objects based on fixed relational templates (e.g., 
  ). Spatial transformations are expressed as steer-
able neural mappings.

Concepts Concepts of color (e.g., ), motion direction (e.g.,
), or relational concepts (e.g.,    ) are
represented by neural nodes. eir perceptual meaning is en-
coded in patterned synaptic connections between these dis-
crete nodes and continuous feature spaces. Conceptual repre-
sentations are understood as an interface to language.

Process organization e model controls which of its parts are ac-
tive and inactive at anymoment in time. Due to this organiza-
tion of processes, the model is autonomous and only requires
an initial input to complete its task.

is chapter devotes a separate section to each of these five parts
and describes them in detail, including, in particular, a mathemat-
ical formalization of the entire model. Please refer to Table 3.1
for an overview and short description of all dynamic elements, dy-
namic neural fields and dynamic neural nodes, and to Table 3.2 for
a listing of all recurring variable names used throughout this chap-
ter. Appendix A.1 contains a list of parameter values used in the
equations.

e model was implemented and parameterized using the soft-
ware framework cedar. is chapter focuses instead on a mathemati-
cal level of description and does not address implementation details.
Please refer to Section 2.2.8 for information on the numerical im-
plementation of neural dynamics. A short paragraph with technical
details regarding the model can be found in Appendix A.3.
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name variable description
color/space perception field uPCS(x, y, c, t) object representation over color and space

motion/space perception field uPMS(x, y, ϕ, t) object representation over motion direction and space
color/space attention field uACS(x, y, c, t) attentional focus on color and space

motion/space attention field uAMS(x, y, ϕ, t) attentional focus on motion direction and space
color attention field uAC(c, t) guides attentional focus on color

color CoS field uACcs(c, t) checks attended object for color
motion attention field uAM(ϕ, t) guides attentional focus on motion direction

motion CoS field uAMcs(ϕ, t) checks attended object for motion direction
selective spatial attention field uAS(x, y, t) selective attentional focus for space

multi-peak spatial attention field uASm(x, y, t) relays spatial positions to spatial transformations
reference field uR(x, y, t) spatial position of the reference object

target field uT(x, y, t) spatial position of the target object
target IOR field uIR(x, y, t) inhibition-of-return (IOR) for the target object

target IOR CoS field uIRcs(x, y, t) condition of satisfaction (CoS) for the target IOR
relational candidates field uRC(x, y, t) relative positions between target and reference objects

relational response field uRR(x, y, t) relative position of selected reference object
spatial relation CoS field uScs(x, y, t) relative positions, rotated to align with motion; checks

for overlap with spatial templates
spatial relation CoD field uScd(x, y, t) analogous to spatial relation CoS field; checks for over-

lap with inverse spatial template
rotation field uROT(ϕ, s, t) holds current reference angle used for rotation

rotation default-direction field uROTd(ϕ, s, t) holds default reference angle for rotation
rotation selection field uROTs(ϕ, s, t) selects rotation angle; either object motion direction

or default
target color memory nodes u⃗TCM(t) language interface to color of target object

target color production nodes u⃗TCP(t) encodes perceptual meaning of target colors
target motion memory nodes u⃗TMM(t) language interface to motion direction of target object

target motion production nodes u⃗TMP(t) encodes perceptual meaning of targetmotion direction
reference color memory nodes u⃗RCM(t) language interface to color of reference object

reference color production nodes u⃗RCP(t) encodes perceptual meaning of reference colors
spatial relation memory nodes u⃗SM(t) language interface to spatial relations

spatial relation production nodes u⃗SP(t) encodes perceptual meaning of spatial relations
prior intention node uP(t) when active, its process will be activated

intention node uI(t) when active, its process is currently active
CoS node uC(t) signals that its process is successfully completed

CoS memory node uM(t) signals that its process has been completed in the past

Table 3.1: Overview of fields and nodes of the model, grouped by the part of
the model they appear in. From top to bottom, these are: perception, attention,
spatial transformation, concepts, and process organization. Note that the four
nodes in the process organization section are present for every process.

42



3.1 Perception

variable description
x horizontal space of the camera image
y vertical space of the camera image
t time
c color
ϕ motion direction
r scale

uA activation of a field with identifier ‘A’
wA synaptic weight with identifier ‘A’
kB,A kernel from a source ‘A’ to a target ‘B’

g sigmoid function and output of fields/nodes
τ time scale of dynamics
h (negative) resting level of dynamics
s external input into a field or node
ξ Gaussian white noise Table 3.2: Variables used throughout this

chapter

Lomp, O., Faubel, C., & Schöner, G. (2017).
A neural-dynamic architecture for concurrent
estimation of object pose and identity. Fron-
tiers in Neurorobotics, 11(April), 1–17

3.1 Perception
e perceptual system (top right white box in the overview diagram,
Figure 3.1 on page 40) takes input from a camera and builds a rep-
resentation of all objects visible in the camera image. at repre-
sentation resides in two three-dimensional dynamic neural fields.
e color/space perception field is defined over the two spatial dimen-
sions x and y of the camera image and over the color dimension c.
is field always has a stable peak of activation whenever there is a
colored object visible in the camera image. e motion/space percep-
tion field is defined over the same two spatial dimensions x and y
of the camera image and over the motion direction dimension ϕ. A
peak in this field thus represents the spatial position of an object and
the direction in which it is moving. is field always has a stable
peak of activation whenever an object is moving in the scene; it has
no peak for stationary objects.

To create input to the perception fields, each video frame of the
camera goes through several preprocessing steps. Since this model
is not intended to make predictions about the human visual system,
the preprocessing of the camera input is implemented algorithmi-
cally. It is a placeholder for a neurally plausible model of human
visual processing (Lomp et al., 2017).

3.1.1 Color perception
Each frame of the camera input is preprocessed based on generic
image processing algorithms that crop the image, scale it down,
and convert it to the hue, saturation, value (HSV) color space. In-
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2Please refer to Appendix A.2 for a more de-
tailed description of the numerical implemen-
tation.

camera (video)

algorithmic preprocessing

color/space perception field
(color, space)

F .: Color perception of the model.

3e squared brackets denote a convolution
operator, as formalized in Equation 2.17 on
page 27.

Berger, M., Faubel, C., Norman, J., Hock, H.,
& Schöner, G. (2012). e counter-change
model of motion perception: An account
based on dynamic field theory. In A. E. P.
Villa (Ed.), ICANN 2012, Part I, LNCS 7552
(pp. 579–586). Berlin Heidelberg: Springer

4See Section 2.2.4.

put to the color/space perception field is then produced in a three-
dimensional space (camera space x, y and color c) that scales with
the color saturation of objects in the scene (Figure 3.2).2 High val-
ues thus appear around objects with uniform, saturated colors, while
low values are in areas with low saturated colors (e.g., black and
white).e color/space perception field is parameterized such that
colored objects always create a peak in the field and that the peak is
roughly the size of the object.

Please note that this simplified preprocessing assumes that the
scene only features unicolored objects in front of a white back-
ground. It works best with objects that appear circular on the cam-
era image (e.g., balls), because the Gaussian lateral interaction ker-
nel of the color/space perception field reinforces this shape.

e activation variable uPCS of the color/space perception field
evolves in time t based on the following differential equation

τ u̇PCS(x, y, c, t) =− uPCS(x, y, c, t) + h+ wξ · ξPCS(x, y, c, t)

+ [kPCS,PCS ∗ g(uPCS)](x, y, c, t)

+ [kPCS,C ∗ sC](x, y, c, t),

(3.1)

which is based on the equation for a multi-dimensional dynamic
neural field (Equation 2.6). e second line formalizes the lateral
interaction within the field and the third line denotes the prepro-
cessed input sC convolved with a kernel kPCS,C.3

3.1.2 Motion perception
For the motion/space perception field, the preprocessing consists of
a neural dynamic implementation of the counter-change model of
motion perception (Berger et al., 2012). An illustration of this part
of the model is shown in Figure 3.3. e input sC that is given to
the color/space perception field is used as an input to this model as
well, but the color dimension is contracted

s(x, y, t) = max
c
(sC(x, y, c, t)). (3.2)

For each position in the camera image, transient detectors4 are
defined. e type reacting to positive change follows the differential
equations

τ u̇p(x, y, t) = −up(x, y, t) + s(x, y, t)− vp(x, y, t), (3.3)
τ v v̇p(x, y, t) = −vp(x, y, t) + s(x, y, t). (3.4)

e type reacting to negative change is defined analogously

τ u̇n(x, y, t) = −un(x, y, t)− s(x, y, t)− vn(x, y, t), (3.5)
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camera (video)

algorithmic preprocessing

up

un

sT

motion/space perception field
(motion direction, space)

F .: Motion perception of the model.
e activation of the transient detectors, up
and un, is shown in a different color code than
the activation in the field to make their char-
acteristic shape more visible.

τ v v̇n(x, y, t) = −vn(x, y, t)− s(x, y, t). (3.6)

Please note that the input s(x, y, t) acts inhibitorily on this sec-
ond type of transient detector. e output of both types of tran-
sient detectors is given by the semi-linear rectifier function f(u) =
max(0, u).

Motion is perceived when negative change at one position co-
incides with positive change at another position. Comparing the
response of pairs of positive and negative detectors for a fixed dis-
tance r0 between positions yields a response

sT(x, y, ϕ, t) =f(up(x, y, t))

·f(un(x− r0 · cos(ϕ), y − r0 · sin(ϕ), t))
(3.7)

that depends on time t and spans the three-dimensional space de-
fined by the two-dimensional space of the image, x and y, as well as
the angle ϕ between the compared positions.To represent the per-
ceived motion, this response becomes input to the motion/space
perception field whose activation uPMS follows the dynamics

τ u̇PMS(x, y, ϕ, t) =− uPMS(x, y, ϕ, t) + h+ wξ · ξPMS(x, y, ϕ, t)

+ [kPMS,PMS ∗ g(uPMS)](x, y, ϕ, t)

+ [kPMS,T ∗ sT](x, y, ϕ, t).

(3.8)

e activation represents where along x and y a moving object is
detected and in which direction ϕ that object is moving. e mo-
tion/space perception field is parameterized such that moving ob-
jects always create a peak in the field.

3.2 Attention
is section introduces the attentional system of the model (cen-
tral white box in Figure 3.1 on page 40). At the core of the atten-
tional system are two three-dimensional dynamic neural fields that
are defined over the same dimensions as the two perceptual fields:
the color/space attention field is defined over the color dimension c
and retinal space x and y; the motion/space attention field is defined
over the motion direction ϕ and retinal space x and y. If a peak
comes up in these attention fields, the object it represents is inter-
preted to be in attentional focus. Each field receives input from its
corresponding perceptual field, reflecting the feature values and spa-
tial position of all objects in the scene. However, this input is not
strong enough to form peaks in the fields, it yields only subthreshold
bumps of activation. Attentional processes are modeled by giving
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F .: Attentional system of the model.

additional input to the fields along single feature dimensions, high-
lighting a certain color, motion direction, or spatial position, and
thereby pushing subthreshold bumps that overlap with the input
through the detection instability.

Input to the attention fields comes from fields that are defined
over single feature dimensions: the color attention field is defined
over the color dimension c and gives input to the color/space atten-
tion field; themotion attention field is defined over the motion direc-
tion dimensionϕ and gives input to themotion/space attention field.
ese two fields implement part of a feature attentionmechanism as
they control which feature values are attended to. For instance, if
there is a peak in the color attention field that represents green col-
ors, the expansion coupling to the color/space attention field leads
to a subthreshold input in that field in the form of a sheet (Fig-
ure 3.4). Along the color dimension, this sheet of activation is cen-
tered on the position that is encoding for the color red; throughout
the other two (spatial) dimensions the sheet is homogeneous. e
increased activation in the sheet pushes overlapping bumps of acti-
vation through the detection instability. is brings their respective
objects, all of which are of red color, into attentional focus. Anal-
ogously, a peak in the motion attention field brings all objects into
attentional focus that move into a certain direction.

Further input into the two three-dimensional attention fields is
given by the selective spatial attention field that is defined over the
spatial dimensions x and y. is field only allows for a single peak
to form at any given time. If a peak forms, the expansion coupling
to both the color/space attention field and the motion/space atten-
tion field leads to subthreshold input in those fields in the form
of a cylinder. e cylinder is centered on the position of the peak
along the two spatial dimensions and is homogeneous throughout
the color and motion direction dimensions in the respective fields.
e increased activation in the cylinder highlights objects that are
located at the given spatial position; the selective spatial attention
field thus implements a mechanism for spatial attention.

e color/space attention field follows the differential equation

τ u̇ACS(x, y, c, t) =− uACS(x, y, c, t) + h+ wξ · ξACS(x, y, c, t)

+ [kACS,ACS ∗ g(uACS)](x, y, c, t)

+ [kACS,PCS ∗ g(uPCS)](x, y, c, t)

+ [kACS,AC ∗ g(uAC)](c, t)

+ [kACS,AS ∗ g(uAS)](x, y, t)

− wACS,SR · g(uSR(t)),

(3.9)

where uACS is its own activation, uPCS is the activation of the col-
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or/space perception field, uAC is the activation of the color attention
field, and uAS is the activation of the selective spatial attention field.
e inhibitory coupling formalized in the last line comes from a
suppression node of a ‘reset process’, which will be explained in Sec-
tion 3.5.

Analogously, the activation uAMS of the motion/space attention
field follows the differential equation

τ u̇AMS(x, y, ϕ, t) =− uAMS(x, y, ϕ, t) + h+ wξ · ξAMS(x, y, ϕ, t)

+ [kAMS,AMS ∗ g(uAMS)](x, y, ϕ, t)

+ [kAMS,PMS ∗ g(uPMS)](x, y, ϕ, t)

+ [kAMS,AM ∗ g(uAM)](ϕ, t)

+ [kAMS,AS ∗ g(uAS)](x, y, t)

− wAMS,SR · g(uSR(t)),

(3.10)

where uPMS is the activation of the motion/space perception field,
uAM is the activation of the motion attention field, and uAS is the ac-
tivation of the selective spatial attention field. Again, the inhibitory
coupling formalized in the last line will be explained in Section 3.5.

3.2.1 Feature attention
e feature attention mechanism of the model is in part formed by
the color attention field and themotion attention field. ey give in-
put to the three-dimensional attention fields and control which fea-
tures are attended to. e color attention field with activation uAC
evolves in time based on the differential equation

τ u̇AC(c, t) =− uAC(c, t) + h+ wξ · ξAC(c, t)

+ [kAC,AC ∗ g(uAC)](c, t)

+
∑

i=1,...,NC

WCi(c) · g(uTCPi
(t))

+
∑

j=1,...,NC

WCj(c) · g(uRCPj
(t)),

(3.11)

where the last two lines are the input from two arrays of neural
nodes, u⃗TCP and u⃗RCP, that represent discrete color concepts like
 or  for two roles that objects may have in a scene. e
perceptual meaning of the concepts is encoded in the connection
weights W⃗C(c) between the nodes and the field. e activation of
the nodes and their connection weights are expressed in vector form
where NC = dim(u⃗TCP) = dim(u⃗RCP) = dim(W⃗C). is coupling
will be explained in detail in Section 3.4.
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5See Section 2.2.7.

6See Section 2.2.7.

Analogously, the motion attention field with activation uAM fol-
lows the differential equation

τ u̇AM(ϕ, t) =− uAM(ϕ, t) + h+ wξ · ξAM(ϕ, t)

+ [kAM,AM ∗ g(uAM)](ϕ, t)

+
∑

i=1,...,NM

WMi(ϕ) · g(uTMPi
(t)),

(3.12)

where the last line formalizes input from a similar array of neural
nodes, u⃗TMP,= NM, that represent discrete concepts of motion di-
rection, for instance  or . e meaning of the
concepts is encoded in the connection weights W⃗M(ϕ). Please note
that dim(W⃗M) = dim(u⃗TMP) = NM. is coupling will also be
explained in Section 3.4.

For each of these attention fields, there is an additional condi-
tion of satisfaction (CoS)5 field defined over the same dimension
(color c and motion direction ϕ, respectively). e color CoS field
receives subthreshold input both from the color attention field and
the color/space attention field and forms a peak if the inputs match.
Analogously, the motion CoS field matches input from the motion
attention field and the motion/space attention field. In this view,
the one-dimensional attention fields can be thought of as the inten-
tion fields of elementary behaviors that govern the attention of their
respective feature dimension.6

e color CoS field with activation uACcs follows the differential
equation

τ u̇ACcs(c, t) =− uACcs(c, t) + h+ wξ · ξACcs(c, t)

+ [kACcs,ACcs ∗ g(uACcs)](c, t)

+ [kACcs,AC ∗ g(uAC)](c, t)

+ max
x,y

([kACcs,ACS ∗ g(uACS)](x, y, c, t))

− max
c′

(g(uAC(c
′, t))),

(3.13)

where the third line is localized input from the color attention field,
uAC, reflecting the feature values that are in attentional focus. In
order to form peaks, it has to overlap with localized input from
the color/space attention field, uACS (line 4). e global inhibitory
input (line 3) from the color attention field, uAC, is required because
the color CoS field should also form a peak based only on input from
the color/space attention field in case no peak is present in the color
attention field.

Analogously, the activation uAMcs of the motion CoS field is
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7is will be explained in detail in Section 3.3.

Treisman, A. M. & Gelade, G. (1980). A
feature-integration theory of attention. Cog-
nitive Psychology, 12, 97–136

governed by the differential equation

τ u̇AMcs(ϕ, t) =− uAMcs(ϕ, t) + h+ wξ · ξAMcs(ϕ, t)

+ [kAMcs,AMcs ∗ g(uAMcs)](ϕ, t)

+ [kAMcs,AM ∗ g(uAM)](ϕ, t)

+ max
x,y

([kAMcs,AMS ∗ g(uAMS)](x, y, ϕ, t))

− max
ϕ′

(g(uAM(ϕ′, t))).

(3.14)

3.2.2 Spatial attention
e selective spatial attention field fulfills more than one function
within the model. Its primary function is to bring attentional focus
to a unique spatial position. It does so by providing input to the
color/space attention field as well as to the motion/space attention
field. Since the selective spatial attention field only allows a single
peak at any point in time, the attentional focus can only be at a
single spatial position. In case the selective spatial attention field
receives input on multiple spatial positions, for instance from the
perceptual fields, it makes a selection decision and forms a peak at
the position with the strongest activation. Input also comes from
spatial transformations reflecting the spatial position of an object
that has been selected based on how well it fits with a spatial rela-
tion.7 e selective spatial attention field thus relays the response
from the spatial transformations back to the attentional system so
that the features of the object can be extracted.

e second function of the selective spatial attention field is to
integrate the feature representations that are distributed over multi-
ple fields. e coupling between the selective spatial attention field
and the two three-dimensional attention field is bidirectional along
the shared spatial dimensions x and y. is essentially binds all fea-
ture values of each object together through the fields’ shared spatial
dimensions x and y. Whenever an object is brought into atten-
tional focus by highlighting a certain feature, for instance its color,
the peak will be projected into the selective spatial attention field,
forming a peak there at the object’s spatial position. is creates
a subthreshold cylinder of activation in both three-dimensional at-
tention fields, bringing up peaks that represent the other features
of the object, for instance its motion direction. is integration of
distributed feature representations is a vital aspect of feature inte-
gration theory (Treisman & Gelade, 1980).

As a third function, the selective spatial attention field imple-
ments a saliency mechanism that enables the model to bring atten-
tional focus to a spatial position in absence of other attentional cues.
is is required, for instance, to generate a description of a scene,
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where the only input comes from the camera and no further instruc-
tions are given. e saliency mechanism is modeled by couplings
from the perception fields to the selective spatial attention field.
Since these inputs are summed, moving objects are more salient
than stationary objects. Furthermore, the larger the object and the
more saturated its colors, the more salient it is. Since the strength
of the input from the three-dimensional attention fields varies de-
pending on how many features are in attentional focus, there are
inhibitory connections from the color attention field and the mo-
tion attention field to the selective spatial attention field. at way,
if a feature is brought into attentional focus by a peak in one of those
fields, the input to the selective spatial attention field does not vary
as strongly.

A last function of the spatial attention mechanism is to relay the
spatial position of objects that are in attentional focus to other fields
(downward in Figure 3.1). In some cases, multiple object positions
have to be relayed; since the selective spatial attention field cannot
have more than one peak, this requires a multi-peak spatial attention
field. It is defined over the same spatial dimensions x and y and
receives the same input as the selective spatial attention field but
allows multiple peaks to form.

Contrary to the selective spatial attention field, the multi-peak
spatial attention field does not give input to the three-dimensional
attention fields. is is because input from the multi-peak spatial
attention field would enable multiple spatial positions to be high-
lighted and, as a consequence, multiple objects with (possibly) dif-
ferent features being brought into attentional focus. is is a prob-
lem when the model extracts features from these objects as feature
binding may be lost.

e selective spatial attention field is coupled to the multi-peak
spatial attention field such that a peak in the selective spatial at-
tention field will inhibit all other peaks in the multi-peak spatial
attention field, leaving a single peak in both fields. e selective
spatial attention field can be “activated” and “deactivated” by homo-
geneous input. In the deactivated state, all activation in the field
remains below threshold. is enables the multi-peak spatial at-
tention field to have multiple peaks and relay them to other fields.
When the selective spatial attention field is activated, both spatial
attention fields become selective and relay the position of a single
object to the three-dimensional attention fields. One can think of
the two fields as a functional unit, a spatial attention field where the
selectivity can be activated and deactivated by homogeneous input.

e selective spatial attention field evolves based on the follow-
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8See Section 3.3.2 and Equation 3.19.

9See Section 3.3.5 and Equation 3.35.

10e input comes from the intention nodes
of the perceptual boost process (penultimate
line) and the spatial attention process (last
line).

ing differential equation

τASu̇AS(x, y, t) =− uAS(x, y, t) + hAS + wξ · ξAS(x, y, t)

+ [kAS,AS ∗ g(uAS)](x, y, t)

+ max
c
([kAS,ACS ∗ g(uACS)](x, y, c, t))

+ max
ϕ

([kAS,AMS ∗ g(uAMS)](x, y, ϕ, t))

+ max
c
([kAS,PCS ∗ g(uPCS)](x, y, c, t))

+ max
ϕ

([kAS,PMS ∗ g(uPMS)](x, y, ϕ, t))

− max
c
(g(uAC(c, t)))

− max
ϕ

(g(uAM(ϕ, t)))

− [kAS,IR ∗ g(uIR)](x, y, t)

+ CSU(x, y, t)

+ wAS,GPI g(uGPI(t))

+ wAS,GAI g(uGAI(t)),

(3.15)

where uAS is its own activation variable, the third to sixth line are
the inputs from the color/space attention field (uACS), the motion/s-
pace attention field (uAMS), the color/space perception field (uPCS),
and the motion/space perception field (uPMS), respectively. e sev-
enth and eighth line are global inhibitory inputs from the color at-
tention field (uAC) and motion attention field (uAM), respectively.
e inputs normalize the input from the three-dimensional atten-
tion fields, depending on the number of features specified in the
relational phrase. e ninth and tenth line are inputs from the ‘tar-
get IOR field’,8 which inhibits the model from selecting the same
object twice and the ‘relational response field’,9 whose activation
represents a match between the spatial position of objects and rela-
tional templates. Both fields will be explained in more detail later.
e last two lines formalize input from the process organization sys-
tem,10 which will also be explained later in more detail. Here, both
inputs determine whether or not the spatial attention mechanism is
selective.

e activation uASm of the multi-peak spatial attention field is
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governed by the differential equation

τASmu̇ASm(x, y, t) =− uASm(x, y, t) + hASm + wξ · ξASm(x, y, t)

+ [kASm,ASm ∗ g(uASm)](x, y, t)

+ max
c
([kASm,ACS ∗ g(uACS)](x, y, c, t))

+ max
ϕ

([kASm,AMS ∗ g(uAMS)](x, y, ϕ, t))

+ max
c
([kASm,PCS ∗ g(uPCS)](x, y, c, t))

+ max
ϕ

([kASm,PMS ∗ g(uPMS)](x, y, ϕ, t))

− max
c
(g(uAC(c, t)))

− max
ϕ

(g(uAM(ϕ, t)))

− [kASm,IR ∗ g(uIR)](x, y, t)

+ [kASm,AS ∗ g(uAS)](x, y, t)

+ wASm,GPI g(uGPI(t))

− wASm,SR g(uSR(t)),

(3.16)

which is mostly analogous to Equation 3.15. Line ten formalizes
input from the selective spatial attention field (uAS), exciting the
spatial position of the selected object and inhibiting all other posi-
tions. e last two lines are input from the process organization
system described in Section 3.5, where the penultimate line is input
from the intention node of the ‘perceptual boost process’, which
brings the field into a dynamic regime where it can form peaks and
the last line is strong inhibitory input from the suppression node of
the ‘reset process’.

3.3 Spatial transformations
is section introduces the spatial transformation system of the
model, which extracts spatial relations between a pair of objects
(bottom white box in Figure 3.1 on page 40). Extracting the spatial
relation between two objects requires that they are brought into the
attentional foreground and that a representation of their spatial po-
sitions is built up. From these positions, one can extract the relative
spatial position of one of the objects with respect to the other by
shifting the representation to center it on the second object. Such a
shift can be implemented by a steerable neural mapping. e model
uses this idea twice in succession to generate an object representa-
tion that is both shifted, centered on a reference position, and ro-
tated according to the motion direction of one of the objects.
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F .: e target field and reference
field and their connection to the spatial atten-
tion fields. In this example, the reference ob-
ject is currently in the attentional foreground.

target

reference

F .: Target object and reference object
given the phrase “the red object to the left of
the green object”.

11See Section 2.2.5.

3.3.1 Target and reference

Consider the following example: given the visual input shown in
Figure 3.5 and the phrase “the red object to the left of the green
object”, the model has to find both a red and a green object and de-
termine whether the red object is to the left of the green object. In
this example, the red object is the target object, the object the phrase
is referring to. e green object is the reference object; it needs to
be found in the scene only to facilitate finding the correct target
object. e description “to the left of ” refers to a spatial relation
that specifies the relative position of the target object with respect
to the reference object. In the model, this relative position is de-
termined by a steerable neural mapping.11 is requires that the
position of the target object and the position of the reference object
are represented in separate dynamic neural fields that give input to
the steerable neural mapping. e spatial position of the target ob-
ject is represented by a peak of activation in the target field, which
is defined over the spatial dimensions x and y. e spatial posi-
tion of the reference object (or multiple candidates for the reference
object) are held by the reference field, defined over the same spatial
dimensions. Both fields receive input from the multi-peak spatial
attention field, reflecting the spatial positions of the objects that are
currently in attentional focus (Figure 3.6). Attentional focus is se-
quentially directed toward the target object and the reference object
while at the same time raising the resting level of the correspond-
ing field (target field and reference field). When the resting level of
the target field is raised, the selective spatial attention field is acti-
vated, enforcing a selection decision for a single target object. When
the resting level of the reference field is raised, the selective spatial
attention field is deactivated, allowing for multiple candidate posi-
tions to be represented in the reference field. Both the sequentiality
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12See Section 3.5 for details on the last two
inputs.

and the activation and deactivation of the spatial attention field are
controlled by the process organization system, which is explained
in Section 3.5.

Both the target field and the reference field receive additional
input from the color/space perception field and the motion/space
perception field, enabling the fields to track the position of moving
objects even after they have initially formed peaks. Finally, the tar-
get field and the reference field inhibit each other such that a given
spatial position is only ever represented in one of the fields.

e activation uT of the target field evolves in time based on the
following differential equation

τ u̇T(x, y, t) =− uT(x, y, t) + hT + wξ · ξT(x, y, t)

+ [kT,T ∗ g(uT)](x, y, t)

+ max
c
([kT,PCS ∗ g(uPCS)](x, y, c, t))

+ max
ϕ

([kT,PMS ∗ g(uPMS)](x, y, ϕ, t))

+ [kT,ASm ∗ g(uASm)](x, y, t)

− [kT,R ∗ g(uR)](x, y, t)

+ wT,TTI g(uTTI(t))

− wT,SR g(uSR(t)),

(3.17)

where the third and fourth line are contraction couplings from the
color/space perception field (uPCS) and themotion/space perception
field (uPMS), respectively, the fifth line is input from the multi-peak
spatial attention field (uASm), and the sixth line is inhibitory input
from the reference field (uR). e penultimate line is input from the
process organization system, more specifically, the intention node
of the ‘target field process’; it brings the target field into a dynamic
regime where it can form peaks. e last line of Equation 3.17
is strong inhibitory input from the suppression node of the ‘reset
process’.12

e activation uR of the reference field is governed by the follow-
ing differential equation, which is structured analogously to Equa-
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13See Section 3.5.

Itti, L. & Koch, C. (2001). Computational
modelling of visual attention. Nature Reviews
Neuroscience, 2(3), 194–203

14See Equations 3.15 and 3.16.

tion 3.17

τ u̇R(x, y, t) =− uR(x, y, t) + h+ wξ · ξR(x, y, t)

+ [kR,R ∗ g(uR)](x, y, t)

+ max
c
([kR,PCS ∗ g(uPCS)](x, y, c, t))

+ max
ϕ

([kR,PMS ∗ g(uPMS)](x, y, ϕ, t))

+ [kR,ASm ∗ g(uASm)](x, y, t)

− [kR,T ∗ g(uT)](x, y, t)

+ wR,RFI g(uRFI(t))

− wT,SR g(uSR(t)),

(3.18)

Here, the penultimate line is input from the intention node of the
‘reference field process’, which will bring the reference field into a
dynamic regime where it can form peaks.13

3.3.2 Target inhibition-of-return

In some cases it may be necessary to find the correct target object
by trial-and-error. e scene shown in Figure 3.5 is such a case,
for instance. Here, to find the correct target object, the model has
to choose one of the red objects in the scene and check whether
it conforms with the description (i.e., whether it is to the left of a
green object). It would not help to start by selecting the reference
object first, as the same problem would arise. In case a chosen candi-
date does not match the description, the process has to be repeated
with another candidate. To solve this problem, the model uses an
inhibition-of-return (IOR)mechanism, common in models of visual
attention (Itti & Koch, 2001). To keep track of which objects have
already been checked, the target IOR field holds a representation of
the spatial positions of all objects that have been represented in the
target field since the beginning of the task. e target IOR field is
defined over the same spatial dimensions x and y as the target field
and receives input from it. It also receives input from the color/s-
pace perception field and the motion/space perception field so that
it can trackmoving objects. e lateral interaction of the target IOR
field features local excitation that is strong enough to support peaks
even after input from the target field ceases. To prevent the same
object from being attended to more than once, it gives inhibitory
input to both the selective spatial attention field and the multi-peak
spatial attention field.14
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15See Section 3.5.

τ u̇IR(x, y, t) =− uIR(x, y, t) + hIR + wξ · ξIR(x, y, t)

+ [kIR,IR ∗ g(uIR)](x, y, t)

+ [kIR,T ∗ g(uT)](x, y, t)

+ max
c
([kIR,PCS ∗ g(uPCS)](x, y, c, t))

+ max
ϕ

([kIR,PMS ∗ g(uPMS)](x, y, ϕ, t))

+ wIR,TII g(uTII(t)),

(3.19)

where the third line is input from the target field (uT) and the fourth
and fifth line are input from the color/space perception field (uPCS)
and motion/space perception field (uPMS), respectively. e last line
is input from the intention node of the ‘target IOR process’, which
is part of the process organization system explained in Section 3.5.
It brings the target IOR field into a dynamic regime where it can
form peaks.

To determine whether the peak that is currently in the target
field has already formed in the target IOR field, the target IOR CoS
field takes subthreshold input from both of these fields (it is defined
over the same spatial dimensions x and y). Only if the inputs over-
lap does the target IOR CoS field form a peak. Its activation, uIRcs,
is governed by the differential equation

τ u̇IRcs(x, y, t) =− uIRcs(x, y, t) + h+ wξ · ξIRcs(x, y, t)

+ [kIRcs,IRcs ∗ g(uIRcs)](x, y, t)

+ [kIRcs,T ∗ g(uT)](x, y, t)

+ [kIRcs,IR ∗ g(uIR)](x, y, t)

− wIRcs,SR g(uSR(t)),

(3.20)

where the third line formalizes input from the target field (uT) and
the fourth line is input from the target IOR field (uIR). e last line
is strong inhibitory input from the suppression node of the ‘reset
process’.15

3.3.3 Relative position

Based on the spatial position of the target object and the (possibly
multiple) candidates for the reference object, a steerable neural map-
ping produces activation that represents the position of the target
object relative to the position of all reference objects (Figure 3.7).
e resulting activation is projected into the relational candidates
field, which is defined over the spatial dimensions x and y. Its acti-
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camera input

reference fieldtarget field

relational
candidates field

F .: Example of a spatial transfor-
mation that yields the relative position of the
(red) target object with respect to all (green)
reference objects.

vation uRC evolves based on the differential equation

τRCu̇RC(x, y, t) =− uRC(x, y, t) + h+ wξ · ξRC(x, y, t)

+ [kRC,RC ∗ g(uRC)](x, y, t)

+

∫∫
dx′dy′ ASD(x

′, y′, t)

BSD(x− x′, y − y′, t).

(3.21)

e last term formalizes how the steerable neural mapping is imple-
mented here as a convolution. As first input

ASD(x, y, t) = [kT ∗ g(uT)](x, y, t), (3.22)

it takes the output of the target field (uT), convolved with a kernel
(kT). As second input

BSD(x, y, t) = [kR ∗ g(uR)](x, y, t), (3.23)

it takes the output of the reference field (uR), convolved with a ker-
nel (kR).

Figure 3.7 shows an example of this transformation, where the
activation of the target field holds a single peak that represents a pos-
sible target object and the reference field holds two peaks that are
candidates for the reference object. e activation in the relational
candidates field holds two peaks, each representing the relative posi-
tion of the (possible) target object to one of the (possible) reference
objects.

3.3.4 Rotation
Representing the relative position of the target object is sufficient to
resolve spatial relations in static scenes. For instance, to determine
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camera input

relational
candidates field (x, y)

rotation field (ϕ, r)

spatial relation
CoS field (x, y)

F .: Example of a spatial transforma-
tion that aligns the relative positions of the
target object with its motion direction. e
relational candidates field contains a represen-
tation of relative positions of the target object
(red) with respect to the other objects. e ac-
tivation in the spatial relation CoS field repre-
sents the same positions in a rotated reference
frame, where the motion direction of the tar-
get object is aligned with the y-axis of the plot.
A small “T” next to an arrow denotes a conver-
sion between Cartesian and polar coordinates.

16CoD stands for “condition of dissatisfac-
tion”, the opposite of a condition of satisfac-
tion (CoS).

whether the target object is to the left of any of the reference objects,
one can overlay the activation in the relational candidates field with
a pattern that expresses the spatial relation    . How-
ever, it is not sufficient to resolve relations in dynamic scenes. To
determine whether the target object is moving toward any of the
reference objects, for instance, the pattern that expresses the spa-
tial relation  depends on the motion direction of the target
object. For this reason, the representation of the relative position
of the target object in the relational candidates field is transformed
further, essentially rotating it around the center, depending on the
motion direction of the target object (Figure 3.8). is way, the spa-
tial relations in dynamic scenes can be expressed by a fixed pattern.
Rotation in Cartesian coordinates is implemented by a shift of the
representation in polar coordinates. As before, the shift is achieved
by a steerable neural mapping, which is implemented with a convo-
lution here. Conversion between Cartesian coordinates (x, y) and
polar coordinates (angular coordinate ϕ, radial coordinate r) is de-
termined by

ϕ = tan−1
(y
x

)
, (3.24)

r =
√

x2 + y2, (3.25)
x = r cos(ϕ), (3.26)
y = r sin(ϕ). (3.27)

Since the above equations establish a one-to-one mapping between
Cartesian coordinates and polar coordinates, the conversion can be
expressed neurally by fixed synaptic connections.

e steerable neural mapping implementing the rotation
projects activation into the spatial relation CoS field and the spatial
relation CoD field,16 both of which are defined over Cartesian spatial
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(a) camera input

(b) spatial relation CoS field

(c) spatial relation CoD field

F .: Activation of the (b) spatial rela-
tion CoS field and the (c) spatial relation CoD
field. Both fields receive input representing
the relative spatial position of two objects, visi-
ble as bumps of activation to the left and right
of the center of the plots. Only the object on
the left overlaps with the spatial template 
   in the spatial relation CoS field.
If this objects was not in the scene, the bump
on the right would form a peak in the spatial
relation CoD field.

dimensions x and y.
Both fields match the input against spatial templates that repre-

sent relational concepts such as  or     (Fig-
ure 3.9). If the spatial relation CoS field forms a peak during such
a match, the model converged on a combination of target and ref-
erence object that fits a given or existing relation. e field is se-
lective and thus only allows for a single object to match any of the
relational templates. If the spatial relation CoD field forms a peak,
on the other hand, the current combination of target object and ref-
erence object candidates does not fit the relation. is triggers that
the process of matching objects against spatial relations is repeated
with a new target object. is mechanism is part of the process
organization system and will be explained in Section 3.5.

e spatial relation CoS field with activation uScs follows the
differential equation

τ Scsu̇Scs(x, y, t) =− uScs(x, y, t) + hScs + wξ · ξScs(x, y, t)

+ [kScs,Scs ∗ g(uScs)](x, y, t)

+

∫∫
dϕ′dr′ ARD(ϕ

′, r′, t)

BRD(ϕ− ϕ′, r − r′, t)

+
∑

i=1,...,NR

WRi(x, y) · g(uSPi
(t))

+ wScs,SRI g(uSRI(t))

− wScs,SR g(uSR(t)),

(3.28)

where the third and fourth line formalize the steerable neural map-
ping, which is implemented as a convolution between

ARD(ϕ, r, t) = [kRC ∗ g(uRC)](x, y, t), (3.29)

the output of the relational candidates field (uRC), convolved with
a Gaussian kernel (kRC) and converted to polar coordinates and

BRD(ϕ, r, t) = [kROT ∗ g(uROT)](ϕ, r, t), (3.30)

the output of the rotation field (uROT), convolved with a Gaussian
kernel (kROT); this field will be explained later in this section. e
fifth line of Equation 3.28 formalizes input from an array of neu-
ral nodes, u⃗SP, that represent discrete relational concepts like 
   or . e meaning of the concepts is encoded
in the connection weights W⃗R(x, y). Please note that dim(W⃗R) =
dim(u⃗SP) = NR. is will be explored in more detail in Section 3.4.
e sixth line is input from the intention node of the ‘spatial rela-
tional field process’, which is part of the process organization system
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17See Section 3.5.

18See Equations 3.28 and 3.29.

19See Equation 3.30.

(Section 3.5) and brings the spatial relationCoS field into a dynamic
regime where it can form peaks. e last line is strong inhibitory
input from the suppression node of the ‘reset process’.17

e activation uScd of the spatial relation CoD field follows an
analogous differential equation

τ Scdu̇Scd(x, y, t) =− uScd(x, y, t) + hScd + wξ · ξScd(x, y, t)

+ [kScd,Scd ∗ g(uScd)](x, y, t)

+

∫∫
dϕ′dr′ ARD(ϕ

′, r′, t)

BRD(ϕ− ϕ′, r − r′, t)

+
∑

i=1,...,NR

WRi(x, y) · g(uSPi
(t))

+ wScd,SRI g(uSRI(t))

− wScd,SR g(uSR(t))

− wScd,Scs max
x′,y′

([kScd,Scs ∗ g(uScs)](x
′, y′, t)).

(3.31)

e only differences are that the array of neural nodes projects their
activation inhibitorily into the spatial relation CoD field and that
the resting level and time constant are different. Furthermore, the
field receives strong homogeneous inhibitory input from the spatial
relation CoS field (uScs; last line). is prevents the spatial relation
CoD field from forming a peak if the spatial relation CoS field sig-
nals a match between an object position and a spatial template.

e steerable neural mapping that implements the rotational
transformation and produces the input for the spatial relation CoS
field and the spatial relation CoD field takes as first input the out-
put of the relational candidates field transformed into polar coor-
dinates.18 e second input comes from the rotation field, defined
over polar coordinates ϕ and r.19 Along the angular dimension ϕ,
its activation represents either the current motion direction of the
target object or a default direction in case the target object is station-
ary. e decision between these two alternatives is implemented in
two fields that give input to the rotation field, both defined over
polar coordinates. e rotation default-direction field receives fixed
localized input along both the angular dimension ϕ and the radial
dimension r and thus represents a default direction and scale for
the transformation. e default direction is required to enable a
transformation even if the target object is not moving; in this case
the transformation rotates it by zero degrees. e rotation selection
field receives the same fixed input along the radial dimension r, but
along ϕ it receives activation from the motion CoS field holding the
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20See Section 3.5.

current motion direction of the target object. e rotation selection
field only forms a peak if there is also a peak in the motion CoS field,
that is, if the target object is moving and its motion direction has
been extracted. When the rotation selection field forms a peak, it
homogeneously inhibits the rotation default-direction field. us,
if the target object is moving, its motion direction is represented
by the rotation field; otherwise, the default direction is represented.
Along the radial dimension r, the fixed scale is used in any case.

e activation uROTs of the rotation selection field is governed
by the differential equation

τROTsu̇ROTs(ϕ, r, t) =− uROTs(ϕ, r, t) + h+ wξ · ξROTs(ϕ, r, t)

+ [kROTs,ROTs ∗ g(uROTs)](ϕ, r, t)

+ [kROTs,AMcs ∗ g(uAMcs)](ϕ, t)

+ sROTs,scale(r)

+ wROTs,TMI g(uTMI(t)),

(3.32)

where the third line formalizes input from the motion CoS field
(uAMcs). e fourth line denotes the fixed input, sROTs,scale, for the
scale, which is a Gaussian along the radial dimension r. e last line
is excitatory input from the intention node of the ‘target motion
field process’, which is part of the process organization system.20
e input brings the rotation selection field into a dynamic regime
where it can form peaks.

e activation uROTd of the rotation default-direction field fol-
lows the differential equation

τROTdu̇ROTd(ϕ, r, t) =− uROTd(ϕ, r, t) + h+ wξ · ξROTd(ϕ, r, t)

+ [kROTd,ROTd ∗ g(uROTd)](ϕ, r, t)

− max
ϕ′,r′

([kROTd,ROTs ∗ g(uROTs)](ϕ
′, r′, t))

+ sROTd,scale(r)

+ sROTd,direction(ϕ),

(3.33)

where the third line is homogeneous inhibitory input from the rota-
tion selection field (uROTs). e fourth and fifth line are fixed inputs
for the scale and default direction that are Gaussians along their re-
spective dimension.

e activation uROT of the rotation field thus follows the differ-
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ential equation

τROTu̇ROT(ϕ, r, t) =− uROT(ϕ, r, t) + h+ wξ · ξROT(ϕ, r, t)

+ [kROT,ROT ∗ g(uROT)](ϕ, r, t)

+ [kROT,ROTs ∗ g(uROTs)](ϕ, r, t)

+ [kROT,ROTd ∗ g(uROTd)](ϕ, r, t),

(3.34)
where the third line formalizes the input from the rotation selec-
tion field (uROTs) and the fourth line is the input from the rotation
default-direction field (uROTd).

3.3.5 Inverse transformations
A peak in the spatial relation CoS field signals that for the selected
target object, a reference object exists that has a fitting spatial re-
lation to it. In order to extract features from that reference object,
the position of the peak in the spatial relation CoS field is projected
back into the selective spatial attention field. is requires transfor-
mations that invert those described above. e relational response
field receives input from the inverse rotation transformations. Its
activation uRR is governed by the differential equation

τ u̇RR(x, y, t) =− uRR(x, y, t) + h+ wξ · ξRR(x, y, t)

+ [kRR,RR ∗ g(uRR)](x, y, t)

+

∫∫
dϕ′dr′ ARU(ϕ

′, r′, t)

BRU(ϕ
′ − ϕ, r′ − r, t)

+ wRR,GRI g(uGRI(t))

+ wRR,DI g(uDI(t)),

(3.35)

where the convolution in the third and fourth line formalizes how
the relative, rotated spatial position of the target object is trans-
formed into its original orientation, where its first input,

ARU(ϕ, r, t) = [kScs ∗ g(uScs)](x, y, t), (3.36)

consists of the output of the spatial relation CoS field (uScs), con-
volved with a kernel kScs and converted to polar coordinates. e
other input

BRU(ϕ, r, t) = [kROT ∗ g(uROT)](ϕ, r, t), (3.37)

to the convolution comes from the rotation field (uROT), convolved
with a kernel (kROT). e last two lines of Equation 3.35 formal-
ize input from the process organization system, from the inten-
tion nodes of the ‘ground relation process’ and the ‘describe pro-
cess’.21 Both inputs bring the relational response field into a dy-
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22See Equation 3.15.

Logan, G. D. & Sadler, D. D. (1996). A
computational analysis of the apprehension of
spatial relations. In P. Bloom, M. Peterson,
L. Nadel, & M. Garrett (Eds.), Language and
Space (Chap. 13, pp. 493–529). Cambridge,
MA, USA: MIT Press

23See Equation 2.7 on page 24.

namic regime that enables it to form a peak.
e output of the relational response field holds the relative po-

sition of the target object with respect to the reference object. is
is transformed further into the absolute position of the reference
object and feeds into the selective spatial attention field, bringing
attentional focus to the spatial position of the reference object. e
transformation is implemented as another convolution, where the
input into the selective spatial attention field22 is determined by

CSU(x, y, t) =

∫∫
dx′dy′ ASU(x− x′, y − y′, t)

BSU(x
′, y′, t),

(3.38)

which takes as first input

ASU(x, y, t) = [kRR ∗ g(uRR)](x, y, t), (3.39)

the output of the relational response field (uRR) convolved with a
kernel (kRR) and as second input

BSU(x, y, t) = [kT ∗ g(uT)](x, y, t), (3.40)

the output of the target field (uT), also convolved with a kernel (kT).
Transforming the spatial position of the reference object into

its original reference frame and feeding it into the selective spatial
attention field enables the model to extract the features of the refer-
ence object and facilitates that the object can be described based on
discrete concepts (e.g., a discrete color or motion direction). e
part of the model that implements these discrete concepts is the
focus of the next section.

3.4 Concepts
Conceptual representations express discrete concepts such as the
color , the motion direction , or the spatial rela-
tion     (bottom left box in the overview Figure 3.1
on page 40). ey are understood here as an interface to language,
as concepts may be mapped onto words and vice versa (Logan &
Sadler, 1996). In the model, the perceptual meaning of a concept
is represented by a discrete dynamic neural node23 and its synaptic
connections to a dynamic neural field that is defined over contin-
uous feature dimensions (i.e., color, motion direction, and space).
For instance, the color  is represented by a neural node that is
synaptically connected to every position in the color attention field.
e connection weights have large values for regions in the field that
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F .: Diagram of the memory node
and production node of the exemplary color
concepts  and . e arrows with
stars denote synaptic connections that have a
weight pattern. is pattern encodes the per-
ceptual meaning of the concept. e patterns
are implemented here as Gaussian functions
with a mean at the color the concept repre-
sents.

code for red colors and low values elsewhere. When the node is acti-
vated, a peak comes up in the color attention field, ultimately bring-
ing objects of red color into attentional focus. Conversely, when
a red object is in attentional focus, the node representing  is
activated through connections from the color CoS field.

e model implements the color concepts , , ,
and , the concepts of motion direction , -
, , and , and the concepts of spatial rela-
tions    ,    , , , ,
and  . Each of these concepts is represented by a pair of
interconnected neural nodes (Figure 3.10). e memory node acts as
an interface to language. Since language is not part of the model,
the node acts as an interface for the user, who can activate the node
to specify which object the model is supposed to ground in the scene
(e.g.,  and ). Conversely, when the model is describ-
ing a scene, the user can read out the response from the activation of
the memory nodes. Suprathreshold activation in the memory node
does not have a direct impact on the rest of the model. It projects ac-
tivation onto the production node, the second node in the pair, which
acts as a gate to the rest of the model and can be activated and de-
activated by the process organization system. e production node
has patterned connections to the feature attention field and feature
CoS attention field, encoding the meaning of the concept in terms
of continuous feature dimensions close to the sensory-motor system.
e production node also projects activation onto the memory node
and is able to activate it as a feature description of an object that is
in attentional focus.

In a relational phrase like “the red object to the left of the green
object”, color concepts can appear in two different roles. In the ex-
ample, the concept  describes the target object while the concept
 describes the reference object. e concepts are specific to
these roles and must remain bound to them throughout their use in
the model. e model thus has a dedicated pair of memory node
and production node for every color concept in both the target role
and the reference role. e concepts for motion direction are only
represented for the target role because the model does not handle
situations in which this feature is specified for the reference object.
e concepts for spatial relations are not tied to any role since they
describe relations rather than individual objects.

To summarize, the model has a memory node and a production
node for the ‘target color’, the ‘reference color’, the ‘target motion
direction’, and the ‘spatial relation’. All nodes within each of these
categories are governed by the same differential equation, which is
explained next.
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24See Section 3.5.

3.4.1 Color concepts

e activation of all target color memory nodes is written as a vector
u⃗TCM that consists of the activation values of the individual nodes,
each of which represents one of the following discrete color con-
cepts: , , , and . e activation of all nodes
is governed by the differential equation

τ ˙⃗uTCM(t) =− u⃗TCM(t) + h+ wξ · ξ⃗(t)
+ wTCM,TCM g(u⃗TCM(t))

− wTCMgi
∑

i=1,...,NC

g(uTCMi(t))

+ wTCM,TCP g(u⃗TCP(t))

+ s⃗TCM,U(t)

+ wTCM,DI g(uDI(t))

− wTCM,SR g(uSR(t)),

(3.41)

which is based on the equation for a dynamic neural node (Equa-
tion 2.7). e second line formalizes the self-excitation, where
wTCM,TCM > 0 is a scalar weight. e third line is global inhibi-
tion between the individual nodes; every node receives inhibitory
input from all other nodes, where dim(u⃗TCM) = NC. e fourth
line is excitatory input from the target color production nodes with
activation u⃗TCP. e fifth line denotes input given by the user, usu-
ally at the beginning of a task. If the task description includes the
color of the target object, as in the phrase “the red object to the
left of the red object”, then the corresponding input is activated by
the user. In this example, at a time t0, the user would activate in-
put for the node that represents the color  for the target object:
s⃗TCM,U(t0) = (1, 0, 0, 0)T . e last two lines in Equation 3.41 are
inputs from the process organization system24; the penultimate line
is from the intention node of the ‘describe process’, which brings the
target color memory nodes into a dynamic regime in which they can
be activated from the target color production nodes. e last line
is strong inhibitory input from a suppression node activated by the
‘reset process’.

e activation u⃗TCP of all target color production nodes is expressed
here analogously in vector form for the same color concepts as above.
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25See Equation 3.11 in Section 3.2.1.

26See Section 3.5.

It evolves in time based on the differential equation

τTCP ˙⃗uTCP(t) =− u⃗TCP(t) + h+ wξ · ξ⃗(t)
+ wTCP,TCP g(u⃗TCP(t))

− wTCPgi
∑

i=1,...,NC

g(uTCPi(t))

+ wTCP,TCM g(u⃗TCM(t))

+ wTCP,ACcs max
c
(W⃗C(c) · g(uACcs(c, t)))

+ wTCP,TI g(uTI(t)),

(3.42)

where the second line is the self-excitation and the third line is the
inhibition between all nodes with dim(u⃗TCP) = NC. e fourth line
is the excitatory input from the target color memory nodes (uTCM).
e fifth line formalizes the input from the color CoS field with
activation uACcs. Each of the target color production nodes receives
input from the field, where the synaptic strength at each position
along the color dimension c is weighted with a function

WCi(c) = exp
(
−(c− µci)

2

2σ2
c

)
, i = 1, . . . , NC (3.43)

that is specific to each concept and encodes its perceptual meaning.
All functions W⃗C, dim(W⃗C) = NC, are Gaussians defined over the
color dimension c and differ only in their mean value µci. Please
note that these are the same weighting functions that determine the
input strengths from the target color production nodes to the color
attention field.25 In the fifth line of Equation 3.42, the weighted
output of the color CoS field is contracted and given as input to each
of the nodes. e last line of the equation formalizes input from the
intention node of the ‘target process’, which is part of the process
organization system.26 e input brings the target color production
nodes into a dynamic regime in which they can be activated by input
from the target color memory nodes or the color CoS field.

e differential equations that govern the activation of the refer-
ence color memory nodes and reference color production nodes are
analogous to those for the target color memory nodes and target
color production nodes, respectively. e activation of the refer-
ence color memory nodes is denoted in the same vector notation as
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27See Equation 3.11 on page 47.

above for the same color concepts and follows the equation

τ ˙⃗uRCM(t) =− u⃗RCM(t) + h+ wξ · ξ⃗(t)
+ wRCM,RCM g(u⃗RCM(t))

− wRCMgi
∑

i=1,...,NC

g(uRCMi(t))

+ wRCM,RCP g(u⃗RCP(t))

+ s⃗RCM,U(t)

+ wRCM,DI g(uDI(t))

− wRCM,SR g(uSR(t)),

(3.44)

and the activation of the reference color production nodes evolves
in time according to the equation

τRCP ˙⃗uRCP(t) =− u⃗RCP(t) + h+ wξ · ξ⃗(t)
+ wRCP,RCP g(u⃗RCP(t))

− wRCPgi
∑

i=1,...,NC

g(uRCPi(t))

+ wRCP,RCM g(u⃗RCM(t))

+ wRCP,ACcs max
c
(W⃗C(c) · g(uACcs(c, t)))

+ wRCP,RI g(uRI(t)).

(3.45)

Please note that dim(u⃗RCM) = dim(u⃗RCP) = NC. Furthermore,
note that the reference color production nodes also give input to
the color attention field that is weighted by W⃗C(c).27

3.4.2 Motion direction concepts

e nodes that represent the concepts of motion direction are struc-
tured analogously and follow similar equations. e activation of all
target motion memory nodes is written as a vector u⃗TMM that consists
of the activation values of the individual nodes, each of which rep-
resents one of the following discrete concepts of motion direction:
, , , and . e activation
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28See Equation 3.12 on page 48.

of all nodes is governed by the differential equation

τ ˙⃗uTMM(t) =− u⃗TMM(t) + h+ wξ · ξ⃗(t)
+ wTMM,TMM g(u⃗TMM(t))

− wTMMgi
∑

i=1,...,NM

g(uTMMi(t))

+ wTMM,TMP g(u⃗TMP(t))

+ s⃗TMM,U(t)

+ wTMM,DI g(uDI(t))

− wTMM,SR g(uSR(t))

(3.46)

and the target motion production nodes with the activation vec-
tor u⃗TMP follow the differential equation

τTMP ˙⃗uTMP(t) =− u⃗TMP(t) + h+ wξ · ξ⃗(t)
+ wTMP,TMP g(u⃗TMP(t))

− wTMPgi
∑

i=1,...,NM

g(uTMPi(t))

+ wTMP,TMM g(u⃗TMM(t))

+ wTMP,AMcs max
ϕ

(W⃗M(ϕ) · g(uAMcs(ϕ, t)))

+ wTMP,TI g(uTI(t)),

(3.47)

where the fifth line formalizes input from the motion CoS field
with activation uAMcs. Here, the concepts of motion direction are
encoded in the connection weights

WMi(ϕ) = exp
(
−
(ϕ− µϕi)

2

2σ2
ϕ

)
, i = 1, . . . , NM (3.48)

defined over the motion direction ϕ. Please note that dim(W⃗M) =
dim(u⃗TMM) = dim(u⃗TMP) = NM. Analogously to the concepts of
colors, all weighting functions are Gaussians that are defined over ϕ
and differ only in their mean values µϕi. Please note that these are
the same weighting functions that determine the input strengths
from the target motion production nodes to the motion attention
field.28

3.4.3 Spatial relation concepts
e nodes that represent concepts of spatial relations are structured
analogously and follow similar equations to the nodes described
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29See Section 3.5.

above. e activation of all spatial relation memory nodes is writ-
ten as a vector u⃗SM which consists of the activation values of the
individual nodes, each of which represents one of the following dis-
crete concepts of spatial relations:    ,   
, , , , and  . e activation of all
nodes is governed by the differential equation

τ ˙⃗uSM(t) =− u⃗SM(t) + hSM + wξ · ξ⃗(t)
+ wSM,SM g(u⃗SM(t))

− wSMgi
∑

i=1,...,NR

g(uSMi(t))

+ wSM,SP g(u⃗SP(t))

+ s⃗SM,U(t)

+ wSM,DI g(uDI(t))

− wSM,SR g(uSR(t))

+ wSM,SNI g(uSNI(t)),

(3.49)

where the third line expresses global inhibition between the individ-
ual nodes; every node receives inhibitory input from all other nodes,
where dim(u⃗SM) = NR. e last line is excitatory input from the
intention node of the ‘spatial memory node process’, which is part
of the process organization system,29 and brings the spatial relation
memory nodes into a dynamic regime in which they can be activated
by input from the spatial relation production nodes.

e spatial relation production nodes with activation u⃗SP follow a
differential equation analogous to Equation 3.42

τ SP ˙⃗uSP(t) =− u⃗SP(t) + h+ wξ · ξ⃗(t)
+ wSP,SP g(u⃗SP(t))

+ wSP,SM g(u⃗SM(t))

+ wSP,Scs max
x,y

(W⃗R(x, y) · g(uScs(x, y, t)))

+ c⃗SP,DI g(uDI(t))

+ c⃗SP,MD g(uMD(t))

+ wSP,SI g(uSI(t)),

(3.50)

where the fourth line formalizes the input from the spatial relation
CoS field with activation uScs, the output of which is multiplied
with the weighting functions

WRi(x, y) = a · exp
(
−(ϕ− µ′

ϕi
)2

2σ2
ϕ

+
−(r − µr)

2

2σ2
r

)
,

i = 1, . . . , NR (3.51)
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(a)     (b)     (c) 

(d)  (e)  (f )  

F .: Relational concepts W⃗R(x, y) as
encoded in the synaptic connection strengths
between spatial relation production nodes and
the spatial relation CoS field.

Logan, G. D. & Sadler, D. D. (1996). A
computational analysis of the apprehension of
spatial relations. In P. Bloom, M. Peterson,
L. Nadel, & M. Garrett (Eds.), Language and
Space (Chap. 13, pp. 493–529). Cambridge,
MA, USA: MIT Press

Lipinski, J., Schneegans, S., Sandamirskaya,
Y., Spencer, J. P., & Schöner, G. (2012).
A neurobehavioral model of flexible spatial
language behaviors. Journal of Experimental
Psychology: Learning, Memory, and Cognition,
38(6), 1490–1511

30See Equation 3.28 on page 59.

31See Section 3.5.

that encode the meaning of each of the spatial relation concepts,
where dim(W⃗R) = NR. All functions consist of a Gaussian function
in polar coordinates ϕ and r that is converted into Cartesian coor-
dinates based on Equation 3.26–3.27. See Figure 3.11 for a plot
of the weighting functions. e individual concepts differ mostly
in the parameter µ′

ϕi
, which determines the direction in which the

template is oriented. For the weighting functions of the concepts
of spatial motion relations  and  , the Gaussian
function over the radial dimension r is very broad such that it has
no relevant effect; the weighting functions are thus shaped like a
beam (Figures 3.11(e), 3.11(f )). e weighting functions for the
other concepts    ,    , , and -
 are inspired by behavioral data (Logan & Sadler, 1996) and
are based on functions used in earlier models (Lipinski et al., 2012).
Please note that these are the same weighting functions that deter-
mine the input strengths from the spatial relation production nodes
to the spatial relation CoS field.30

e fifth line in Equation 3.50 formalizes input from the inten-
tion node of the ‘describe process’, which is part of the process orga-
nization system.31 e input is weighted with the vector w⃗SP,DI =
(b, b, b, b,−a+ b,−a+ b)T , where a, b > 0, such that the spatial re-
lation production nodes that represent concepts of spatial relations
(the first four of the vector) receive higher input than the nodes
that represent concepts of movement relations (the last two). e
sixth line in Equation 3.50 formalizes input from a motion detec-
tion node that is activated whenever an object in the scene is mov-
ing. e output of that node is weighted with the vector w⃗SP,MD =
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32See Section 3.5.

33See Section 2.2.7.

uP uI uC uM

sP sM

fields or other processes

F .: Diagram of a process in dy-
namic field theory. Nodes are represented
by circles, where the names are the activation
variables (see text). Excitatory connections are
represented by regular arrows; inhibitory con-
nections are denoted by lines ending in filled
circles. All nodes have self-excitation, which
is not shown here.

(−a,−a,−a,−a, a, a)T such that the spatial relation production
nodes that represent spatial relational concepts (the first four of
the vector:    ,    , , )
are inhibited and the nodes that represent motion spatial relational
concepts (the last two: ,  ) are excited whenever
there is motion in the scene. e activation uMD of the motion de-
tection node evolves in time based on the differential equation

τ u̇MD(t) =− uMD(t) + h+ wξ · ξMD(t)

+ wMD,MD g(uMD(t))

+ wMD,PMS max
ϕ,x,y

([kMD,PMS ∗ g(uPMS)](ϕ, x, y, t))

+ wMD,DI g(uDI(t)),

(3.52)

where the third line formalizes input from the motion/space percep-
tion field with activation uPMS that has a peak whenever something
is moving in the scene. e last line formalizes input from the in-
tention node of the ‘describe process’, which is part of the process
organization system.32 is input brings the motion detection node
into a dynamic regime in which it can be activated.

3.5 Process organization
One of the central problems in building a large-scale neural dynamic
model as the one presented here, is the organization of its processes.
For themodel to function properly, the correct fields and nodes have
to be brought into the right dynamic regimes at critical moments
in time. While some processes may evolve in parallel, others may
only be active in a sequence, or even only a certain sequential order.
Importantly, organizing processes in this way should be done based
on the same principles of neural dynamics that the rest of the model
adheres to.

e following section explains the principles on which the pro-
cess organization system is built. e entire system is then explained
on the basis of these principles.

3.5.1 Processes
Each process that is controlled within the model is represented by a
structure of four dynamic neural nodes (Figure 3.12). is structure
is based on the elementary behaviors (EBs) of behavioral organiza-
tion33 but lacks the intention field and CoS field. ey are thereby
on a more abstract level with regards to the sensorimotor system.
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e prior intention node represents whether the process will have
to be activated at some point as part of another process. Its activa-
tion uP evolves in time based on the differential equation

τ u̇P(t) =− uP(t) + h+ wξ · ξP(t)

+ wP,P g(uP(t))

+ sP(t),

(3.53)

where the second line is self-excitation and the third line is external
input that comes from other processes to activate the node.

e intention node represents whether the process is currently
having an impact on the model and is waiting to be finished. Its
activation uI follows the differential equation

τ u̇I(t) =− uI(t) + hI + wξ · ξI(t)

+ wI,I g(uI(t))

+ wI,P g(uP(t))

− wI,M g(uM(t)),

(3.54)

where the third line is excitatory input from the prior intention node
(uP), and the fourth line is inhibitory input from the CoS memory
node (uM), which deactivates the intention node. Some processes
have to remain active even though their CoS is reached. In that case
the connection weight wI,M is set to zero.

e condition of satisfaction (CoS) node is activated as soon as the
process is successfully finished. Its activation uC is governed by

τ u̇C(t) =− uC(t) + hC + wξ · ξC(t)

+ wC,C g(uC(t))

+ wC,I g(uI(t))

+ sC(t),

(3.55)

where the third line is excitatory input from the intention node (uI).
e fourth line is input from a field or from other processes; this
will be explained in more detail in the next section.

e CoSmemory node represents whether the process has already
successfully finished as part of another process. Its activation uM
follows the differential equation

τ u̇M(t) =− uM(t) + hM + wξ · ξM(t)

+ wM,M g(uM(t))

+ wM,C g(uC(t))

+ sM(t),

(3.56)

where the second line is strong self-excitation that keeps the node
active even if the CoS node, which gives it input (line three), is
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34See Section 2.2.7.

deactivated. e fourth line is input from other processes; it is the
same input that activates the prior intention node such that sM(t) =
sP(t).

3.5.2 Sequences of processes
Like all dynamics that are part of this model, processes are contin-
uously updated and directly react to external input. However, in
some cases it may be required that processes only impact the model
in a certain context, that two processes may not be active at the same
time, or that processes may only become active in a certain sequen-
tial order. Such constraints on the sequential activation can be im-
plemented in DFT using the precondition nodes and suppression
nodes from behavioral organization.34 As a reminder: a precondi-
tion node ensures that a process B is only activated once a process A
is finished; a suppression node ensures that a process C is not active
at the same time as a process D.

e suppression node can be used between two processes with-
out a change from its definition in Section 2.2.7. e precondition
node is also defined the same way except that it receives its inhibi-
tion from the CoS memory node of the process that is activated first
(process A in the example above) rather than from its CoS node.

3.5.3 Heterarchy of processes
Processes can be structured both as a hierarchy and as a heterarchy.
Processes on the lowest hierarchical level directly interact with the
fields of the model. eir intention nodes give input to activate cer-
tain fields while their CoS nodes receive input in return that signals
whether the processes have finished. ese low-level processes can
be reused in different contexts by more abstract processes that are
defined on higher hierarchical levels. e structure I am proposing
in this model allows for processes on higher hierarchical levels to
activate an arbitrary number of lower-level processes. Furthermore,
it allows for processes on lower levels to be activated by multiple
higher-level processes, thereby creating a heterarchy. Additionally,
constraints can be placed on the sequential order in which an arbi-
trary pair of processes is activated; more on this later.

e couplings that structure processes into a hierarchy are the
same for all processes in the model. For a process A on a higher
hierarchical level and several processes Bj on a lower hierarchical
level (Figure 3.13), the coupling structure is as follows. Process A
recruits the lower level processes Bj by projecting activation from
its intention node (uAI) to each of their prior intention node and
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process B0

P I C M

fields or other processes

process BJ

P I C M

fields or other processes

process A
sAP sAM

P I C M

F .: Hierarchy of processes with
process A on the higher level recruiting pro-
cesses Bj on the lower level. e letters in the
nodes correspond to the indices of activation
variables: “P” for prior intention nodes, “I”
for intention nodes, “C” for CoS nodes, and
“M” for CoS memory nodes. Blue connec-
tions are formalized in Equation 3.57 while
red and green connections are explained in
Equation 3.58.

CoS memory node such that

sBjP(t) = sBjM(t) = wAI g(uAI(t)), (3.57)

where sBjP(t) is the input to the prior intention nodes of the pro-
cesses Bj , sBjM(t) is the input to their CoS memory nodes (blue
lines in Figure 3.13). e input is strong enough to activate the
prior intention nodes but not the CoSmemory nodes. e activated
prior intention nodes, in turn, inhibit the CoS node of process A
(orange lines in Figure 3.13), requiring additional input from the
CoS memory nodes of all processes Bj (green lines). is means
that the CoS of process A depends on the CoS of all processes Bj ;
it is only finished once all behaviors on the lower level are finished.
e input into the CoS node of process A is thus determined by

sAC(t) =
∑
j

g(uBjM(t))− g(uBjP(t)), (3.58)

where uBjM is the activation of the CoS memory nodes and uBjP
the activation of the prior intention nodes of processes Bj . at
way, the subthreshold activation of the CoS node of process A is
lowered for every process that is recruited and the corresponding
CoS input from that process is required to raise the activation.

For processes on the lowest level of the hierarchy the input into
the CoS node comes directly from fields within the model. is
requires that the resting level of the CoS node is lowered such that
the activation of the node is only raised above threshold with input
from the relevant field in the model.
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ground object (GO) ground relation (GR) describe (D)

clean (C) reset (E) target (T) reference (R) spatial (S)

GP GA GF TI TN TM TT RN RF SN SR

TNC TNM
F .: Heterarchy of all processes

A heterarchy could for instance be created if another process A0

recruited a subset or all of the processes Bj. is is used in the
model and will be mentioned in the following section that describes
all processes that the model organizes.

3.5.4 Description of all processes
is section describes the process organization system of the model.
It is hinted at in the top left box of the overview Figure 3.1 on
page 40 but is too complex to illustrate in full. e model incor-
porates 21 processes, each of which is represented by the four dy-
namical nodes explained above (i.e., prior intention node, intention
node, CoS node, and CoS memory node). With a few exceptions,
all processes have the same parameters. e processes are structured
in a heterarchy roughly subdivided into four hierarchical levels (Fig-
ure 3.14). e coupling that brings about this structure adheres
to the principles described above. e following describes each pro-
cess on a functional level. Please refer to Appendix B for a complete
mathematical description of each process.

First hierarchical level

e highest hierarchical level has three processes that control differ-
ent tasks of the model. ese processes are activated by user input
and for a given task, only one of the processes is ever activated at
the same time.
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Ground object process (GO) is process lets the model search
the scene for a single object that has features specified by the user,
for instance an object that is red and moving upward. e process
thus implements a grounding task for a single object. It activates the
target process (T) on the next lower hierarchical level and enables it
to activate the feature process (GF) one further level below (green
lines in Figure 3.14).

Ground relation process (GR) When this process is activated, the
model will search for a target object that is described both by given
features as well as a spatial relation to a reference object, whose fea-
tures are also given. e process thus implements a grounding task
for a pair of objects. e ‘ground relation process’ activates processes
on lower hierarchical levels that control the search for the target
object, the reference object, and the spatial relation (violet lines in
Figure 3.14). Furthermore, processes on even lower levels receive
activation, because they should only be active when the ‘ground re-
lation process’ is active in combination with a process on the mid-
level. Finally, the ‘ground relation process’ also activates nodes that
determine the sequentiality in which processes on the next lower
hierarchical level are activated; this will be explained later.

Describe process (D) is process generates a description of the
scene it is currently presented with; it thus implements a descrip-
tion task. If there is only a single object in the scene, the model
extracts the features of that object (e.g., “red”). If there are multiple
objects in the scene, the model extracts the features and spatial re-
lation of two of those objects (e.g., “red to the left of green”). Like
the ‘ground relation process’, it activates all processes on the next
lower hierarchical level as well as processes on lower hierarchical
levels that should only be active as part of the ‘describe process’ (yel-
low lines in Figure 3.14). It also activates nodes that determine
the sequential order in which processes on lower levels are activated.
Some of the processes it activates give input to nodes (e.g., all mem-
ory nodes) that would be activated by user input in other tasks. is
enables the model to activate the nodes as responses based only on
peaks of activation in the attentional system.

Second hierarchical level

e second hierarchical level holds three processes that ground the
three elements of a spatial phrase: the target object, the reference ob-
ject, and the spatial relation. Two additional processes are required
to support the organization of these grounding processes.
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Target process (T) When this process is activated, the model
grounds the target object. In case of a grounding task, where the
relevant feature values of the object are given by the user, the model
directs attentional focus to these features in order to find matching
objects. In case of a description task, where no feature values of
the object are given, the model directs attentional focus to the most
salient object. e ‘target process’ activates several processes on the
next lower hierarchical level (dark blue lines in Figure 3.14) that
control aspects of the grounding of the target object.

Reference process (R) When this process is activated, the model
grounds the reference object. is happens analogously to the
grounding of the target object: in grounding tasks, the model di-
rects attentional focus to specified features in order to find match-
ing objects; in description tasks, the model directs attentional focus
to the most salient object. e ‘reference process’ activates several
processes on the next lower hierarchical level (orange lines in Fig-
ure 3.14) that control aspects of the grounding of the reference ob-
ject. Since some of these processes are also activated by the ‘target
process’ (T) (see Figure 3.14), the structure of processes is a heter-
archy, not a hierarchy.

Spatial relation process (S) is process makes the model ground
a spatial relation between two objects in the scene. In grounding
tasks, the model activates a single concept of a spatial relation that
is specified by the user (e.g.,    ) and matches it against
the relative positions between the selected candidates for the target
and reference object. In description tasks, the model activates all
available concepts of spatial relations and selects the one that fits
best for the chosen target and reference object.

Clean process (C) When activated, the process ensures that any
peaks have dissipated that may have formed in the color attention
field and motion attention field while grounding the target object.
is is required before the model can transition to grounding the
reference object to avoid that remaining peaks affect the subsequent
grounding process.

Reset process (E) is process inhibits large parts of the model
in order to restart the process of grounding the target object and
reference object. is is required if the selected objects do notmatch
the specified spatial relation even though their other features may
be as specified. e inhibition from the reset process initiates that a
new combination of target object and reference object are grounded.
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e peaks in the target IOR field, which are not affected by the
inhibition, prevent the model from selecting a target object that
has already been attended to.

ird hierarchical level

e third hierarchical level holds processes that control aspects of
grounding the target object, the reference object, and the spatial re-
lation. ey are thus activated by the ‘target process’, the ‘reference
process’, or the ‘spatial relation process’. e first letter of their ab-
breviation reflects the process by which they are activated: target
process: “T”, reference process: “R”, spatial relation process: “S”.
Some processes are activated both by the target process and the ref-
erence process. eir abbreviation begins with the letter “G” (for
“generic”).

Perceptual boost process (GP) is process enables the model to
select an object based on salience when no features are specified. It
does so by projecting homogeneous input into the selective spatial
attention field and the multi-peak spatial attention field. e pro-
cess can be activated both by the ‘target process’ and the ‘reference
process’ as part of the high-level ‘describe process’.

Spatial attention process (GA) is process makes the spatial at-
tention system selective by projecting homogeneous input into the
selective spatial attention field. e process can be activated both
by the ‘target process’ and the ‘reference process’ as part of the high-
level ‘ground relation process’.

Feature process (GF) Checks whether features (e.g., color or mo-
tion direction) that were specified by the user have been found in
the scene. More specifically, if only a single feature is specified, the
process checks whether this has been found; if features in multi-
ple feature dimensions are specified, it checks whether all of them
have been found. e intention node of this process does not have
connections to the rest of the model, only its CoS signal is used.
e process is activated both by the ‘target process’ and the ‘refer-
ence process’ as part of the high-level ‘ground object process’ and
‘ground relation process’.

Target IORprocess (TI) is process enables the target IORfield
to form peaks by projecting homogeneous activation into it. It also
checks whether the object that is currently represented in the tar-
get field is also represented in the target IOR field. is process is
activated by the ‘target process’ only.
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Target memory node process (TN) Checks whether any of the
target color memory nodes and target motion memory nodes are
active. is is required when the model describes a scene to ensure
a response has been given in the nodes. It does so by activating
two processes on the lowest hierarchical level (light blue lines in
Figure 3.14) that check this for the target color memory nodes and
the target motion memory nodes, respectively.

Target motion field process (TM) Checks whether the motion
perception system has extracted a motion direction from the per-
ceptual input. is process is activated by the ‘target process’ but
can only be activated as part of the higher-level ‘ground relation
process’ and ‘describe process’.

Target field process (TT) is process enables the target field to
form peaks by projecting homogeneous activation into it. is pro-
cess is activated by the ‘target process’ alone.

Reference memory node process (RN) is process is analogous
to the ‘target memory node process’ as it checks whether any of the
reference color memory nodes are active. It is activated only by the
‘reference process’.

Reference field process (RF) is process is analogous to the ‘tar-
get field process’ as it enables the reference field to form peaks by
projecting homogeneous activation into it. is process is activated
by the ‘reference process’ alone.

Spatial memory node process (SN) is process checks whether
any of the spatial relation memory nodes are active; it is thus anal-
ogous to the ‘target memory node process’ and ‘reference memory
node process’. When the ‘describe process’ is active, it additionally
brings the spatial relation memory nodes into a dynamic regime
where they can be activated from the spatial relation production
nodes. e ‘spatial memory node process’ is activated only by the
‘spatial relation process’.

Spatial relational field process (SR) is process enables the spa-
tial relation CoS field and the spatial relation CoD field to form
peaks by projecting homogeneous activation into them. It is thus
analogous to the ‘target field process’ and the ‘reference field process’.
is process is activated by the ‘spatial relation process’ in conjunc-
tion with the ‘ground relation process’ and the ‘describe process’.
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ible visual processing of spatial relationships.
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Fourth hierarchical level

e fourth and lowest hierarchical level consists of only two pro-
cesses, both of which are activated by the target memory node pro-
cess.

Target memory node color process (TNC) is process checks
whether any of the target color memory nodes are active.

Targetmemory nodemotionprocess (TNM) is process checks
whether any of the target motion memory nodes are active.

3.5.5 Sequentiality
e model requires that some processes are activated in a certain se-
quential order. is section explains which processes have such con-
straints and how those are enforced. Please refer to Appendix B.22
for a complete mathematical description.

Grounding the target object and reference object

e target object and the reference object have to be grounded se-
quentially, they cannot be grounded in parallel. is is because the
attentional system of the model does not encode the role (i.e., tar-
get or reference) of the object that is currently grounded. In the
memory nodes and production nodes, the role is explicitly bound
to the feature associated with that role. For instance, an active tar-
get color memory node may encode that the target object has the
color red. e attentional system brings objects with red colors into
the attentional foreground but does not encode whether the object
is a target object or reference object. is binding is only kept up
by ensuring that the spatial position of the found object is repre-
sented by a peak in the target field. is reflects behavioral data
that shows that humans attend to target and reference sequentially
when resolving spatial relations (Franconeri et al., 2012).

e model provides that the target object is successfully groun-
ded before the grounding of the reference object begins. is se-
quential order is arbitrary but was chosen here because the target
object is commonly named first in relational phrases such as “e
red object to the left of the green object”. Moreover, in relational
phrases that describe movement verbs like “e red object that is
moving toward the green object”, the moving object is defined here
as the target object. Since moving objects are more salient than sta-
tionary objects, it is easier to ground a moving target object before
grounding a stationary reference object than the other way around.

80



3.5 Process organization

After the target object has been grounded, the target process is
deactivated. However, it may take some time before activation de-
cays below threshold in some fields of the model, most notably the
color CoS field and the motion CoS field. If the reference process is
activated before this happens, these remaining peaks interfere with
the grounding of the reference object. is means the reference
process can only be activated once the peaks in these fields have
decayed—this is what the clean process checks for.

e model thus enforces that the target process is activated first,
the clean process is activated after it, and the reference process is
activated last. is is implemented using two precondition nodes:
the first ensures that the clean process is activated after the target
process, the second ensures that the reference process is activated
after the clean process.

Producing a response after the relation has been evaluated

In description tasks, the spatial relation production nodes are all ac-
tivated from the beginning to bias the selection of reference objects
in the spatial relation CoS field. However, this means that the spa-
tial relation memory nodes may only be brought into a dynamical
regime where they can be activated when the actual spatial relation
between the target object and the reference object has been evalu-
ated. If they were brought into that regime before that, a random
spatial relation memory node would activate based only on the noise
within the system.

us, the model features a precondition node that only allows
the spatial relation memory nodes to become active when there is
a peak in the spatial relation CoS field. (e precondition node
activates the ‘spatial memory node process’ only once the ‘spatial
relational field process’ is finished.)

Similarly, the selection of a reference object from multiple can-
didates should only happen once an object has been selected in the
spatial relation CoS field. Otherwise the wrong reference object
could be selected. Since the selection happens in the selective spa-
tial attention field, an additional precondition node ensures that the
field can only form a peak once there is a peak in the spatial rela-
tion CoS field. (e precondition node activates the ‘spatial atten-
tion process’ once the ‘spatial relational field process’ is finished.)
However, this precondition node can only be activated when the
‘reference process’ is active in conjunction with the ‘ground relation
process’ or the ‘describe process’.
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35See Section 2.2.7.

Reset process

e ‘reset process’ inhibits large parts of the model when selected
target and reference objects do not match the specified spatial rela-
tion. e inhibition is implemented with a suppression node that
is activated by the intention node of the ‘reset process’.

An additional precondition node ensures that the ‘reset process’
is only activated if there is a peak in the spatial relation CoD field,
signaling that the target and reference object do not match the rela-
tion.

3.5.6 Organizational structures in the fields
e process organization is not solely based on the node structure
but is fused with many fields within the core of the model that sup-
port it. ere are two structures in the model that are particularly
relevant to the process organization.

First, the fields that govern the feature attention of the model
have a structure that is similar to the fields of EBs in behavioral
organization.35 In this view, the color attention field and motion
attention field correspond to intention fields, because they deter-
mine what is in attentional focus and thus express the intention of
the attentional behavior. e color CoS field and the motion CoS
field, on the other hand, correspond to the CoS field. ey check
whether the peaks in their respective feature attention field overlaps
with activation from the three-dimensional attention fields.

Second, the fields that evaluate the match between the selected
target and reference object and the spatial relation have a similar
structure. e spatial relation CoS field corresponds to a CoS field
of an EB because it checks the overlap of an intended spatial relation
with the actual relative position between the target and reference ob-
ject. e spatial relation CoD field is a new concept of a condition
of dissatisfaction (CoD) that is not present in the original EB of
behavioral organization. Nevertheless, it is required whenever the
mismatch between the intention and the current state of the behav-
ior must be explicitly detected. ere is no field to represent the in-
tention in this case because the spatial relation is projected directly
into the other fields.
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is section shows the performance of the model in different tasks
and different visual scenes. Overall, the performance of the model
is evaluated by simulating it in the software framework cedar in 104
different tests. 89 of these tests cover grounding tasks, where the
model is presented with a phrase, such as “the red object to the left
of the green object” and the model has to find the corresponding
objects in the scene. e remaining 15 tests are description tasks,
where the model has to produce such a phrase for a given visual
scene. For all tests, the model remains the same; no parameters or
connections are changed. e tests differ only in the visual input
and the initial task input that the model receives. e task input
corresponds to the user saying a phrase such as the one above. It is
given at the beginning of the test by the user who activates corre-
sponding dynamic neural nodes.

e visual input is unique in most tests, although some scenes
are used for multiple tests. All visual scenes come from a video data
set of 82 videos, all of which show colored balls on a white back-
ground. e data set was created specifically to test this model; it
is designed to systematically probe how the model behaves under
different conditions. e visual scenes vary, for instance, in the
number of overall objects in the scene, the number of objects that
match a description, or the number of moving objects or distractors.
Please refer to Appendix C for a detailed description of the video
data set and snapshots of all videos.

In all tests, the performance of the model is evaluated qualita-
tively, that is, it is determined whether the model behaves as ex-
pected. is is determined manually by observing the processes that
unfold in the model while it is behaving. e expected behavior
depends on the experiment but in most cases it includes that the
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correct object is brought into attentional focus, that stable represen-
tations arise in the correct fields, and that conditions of satisfaction
(CoS) of all involved processes are met.

e overall result of the tests is themodel works as expected. For
all grounding tasks, it grounds the given phrase in the scene where
that is possible. Analogously, for all description tasks, it generates
a phrase for the given scene, where possible.

Of the 104 tests that were conducted, this chapter describes and
explains 14 in detail. For each of these tests, the visual input and
the activation of the most relevant parts of the model are shown as
they evolve over time.

4.1 Grounding tasks
In grounding tasks, a given phrase such as “the red object to the left
of the green object” is matched to a scene. e task involves that
all elements in the phrase, such as objects with specific features or
relations between objects, are searched for and found in the scene.
e phrase is regarded as grounded when the counterparts of all
elements in the phrase have been found in the scene and perceptual
representations of them have been formed.

In relation to a given visual scene, a phrase can lead to one of
three cases. In the ideal case, the phrase refers to a target object that
is uniquely identifiable in the visual scene. In case multiple objects
match the description, one of them has to be selected as the target
object. In the worst case, the description does not match any object
in the scene. e process of grounding differs depending on which
of these cases occurs.

Moreover, it depends on how specific the phrase is in describing
the target object. To refer to a single object, it may specify only a sin-
gle feature (e.g., “the red object”), or a conjunction of features (“the
red object that is moving upward”). However, it may also involve
multiple objects and their spatial relation, such as in the phrases “the
red object that is to the left of the green object” or “the red object
that is moving toward the green object”.

e following section shows the results of systematically test-
ing the model with all combinations of the variants stated above.
In all cases, the phrase is supplied by a user who activates memory
nodes that correspond to the concepts the phrase consists of. For
instance, for the phrase “the red object that is moving toward the
green object” the user would activate the target color memory node
for the color , the reference color memory node for the color
, and the spatial relation memory node for the movement re-
lation . e user then initiates the process of grounding the
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1See Section 3.5.

2See Section 3.2.2.

phrase by activating one of the processes on the highest hierarchical
level.1 If the phrase refers only to a single object, the user activates
the ‘ground object process’. If the phrase specifies multiple objects
and their relation, as in the example above, the user activates the
‘ground relation process’. Once activated, the model autonomously
grounds the given phrase, without further intervention by the user.

e following sections show tests of grounding tasks that differ
both in the given phrase and the visual scene. Each test is referred
to with an identifier (G1,…,G89). To aid understanding, the tar-
get object is always of red color, even in tests where the color is
irrelevant.

4.1.1 Single features
e tests shown in this section establish that the attentional system
and saliency system of the model work in a variety of settings. In all
these tests, the task input given to the model only specifies a single
feature of a single object.

Color

For a first set of tests, the task input corresponds to the phrase “the
red object” and thus only specifies its color. In these tests, the user
activates the target color memory node for the color  and sub-
sequently activates the ‘ground object process’. Table 4.1 lists all
of these tests (G1,…,G18). It summarizes information about the
visual scene that was presented to the model in each test. In the
columns from left to right, it shows the identifier of the test, the
total number of objects in the scene, the number of red objects (tar-
gets) in the scene, how many of these red objects are moving, how
many objects that are not red (distractors) are moving, whether or
not a target can be found (marked with ‘+’ or ‘−’, respectively), as
well as a language description of the visual scene. e test marked
in blue is described in detail in the next section.

e result of the tests show that the model only brings objects
into the attentional foreground that are specified by the phrase (in
this case, red objects). In all visual scenes that contain a red object
(thosemarked with ‘+’), themodel is able to bring it into attentional
foreground and thereby ground the phrase. is works irrespective
of the number of distractor objects in the scene and whether they
move or are stationary (e.g., G9). In case there are multiple poten-
tial targets in the visual scene (G10,…,G18), the model selects one
of the objects while ignoring any distractor objects. In making this
selection, the model prefers moving red objects over stationary red
objects because they are more salient2. If multiple red objects are all
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G1 0 0 0 0 − no object in the scene
G2 4 0 0 0 − no targets in the scene
G3 4 0 0 1 − one moving distractor
G4 4 0 0 2 − multiple moving distractors
G5 4 1 0 0 + one target in the scene
G6 4 1 1 0 + moving target
G7 4 1 0 1 + target; moving distractor
G8 4 1 1 1 + moving target/distractor
G9 4 1 0 2 + multiple moving distractors

G10 4 2 0 0 + two stationary targets
G11 4 2 0 1 + stationary targets; moving dis-

tractor
G12 4 2 1 0 + moving target
G13 4 2 0 2 + only distractors are moving
G14 4 2 1 1 + moving and stationary target-

s/distractors
G15 4 2 1 2 + moving/stationary targets; mov-

ing distractors
G16 4 2 2 1 + moving targets; moving/station-

ary distractors
G17 4 2 2 2 + all objects moving
G18 4 2 2 0 + only distractors are moving

Table 4.1: Tests of grounding tasks in which
the phrase is “the red object”. e test marked
in blue is described in the next section. e
sixth column from the left denotes whether
the the phrase can be grounded in the scene
(marked with “+”) or not (marked with ‘−’).
See text for details on how to interpret this ta-
ble.

3See Appendix C.

either moving or stationary, the model often selects the ones that
are closer to the bottom of the visual scene. is is due to perspec-
tive distortion3 in the video, which leads to objects on the bottom
appearing larger, and thus more salient, than those at the top.

For all visual scenes that do not contain red objects (G1,…,G4),
the model does not bring any object into the attentional foreground.
Please note that in these cases, it keeps on searching; it does not
detect that there is no red object to be found in the scene. is is
the expected behavior since the model does not have a mechanism
to detect this case.
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G19 0 0 0 − no object in the scene
G20 4 0 0 − no moving object in the scene
G21 4 0 1 − motion, but not in target direction
G22 4 1 0 + motion in target direction
G23 4 2 0 + multiple moving in target direction
G24 4 1 1 + motion in multiple directions

Table 4.2: Tests of grounding tasks in which
the phrase is “the object moving to the right”.
e tests marked in blue are described in detail
in the text.

4e video used in this test is video 4.03.
Please refer to Appendix C, in particular Fig-
ure C.41 for more information.

Motion direction

For a second set of tests, the task input corresponds to the phrase
“the object moving to the right” and thus only specifies its motion
direction. In these tests, the user activates the target motion mem-
ory node for the motion direction  and subsequently
activates the ‘ground object process’. Table 4.2 lists all of these tests
(G19,…,G24). It is structured analogously to Table 4.1, but here,
target objects are those moving rightward and distractor objects
are stationary or moving into a different direction. e two tests
marked in blue are described in detail in the following sections.

ese tests show the same results as those conducted by speci-
fying the color of the target object: the model only brings objects
into the attentional foreground that are specified by the phrase (in
this case, objects moving rightward). It does not bring distractor
objects into attentional foreground (G20, G21, G24) and if multi-
ple potential target objects are present in the scene, it selects one of
them (G23).

Example with a unique target

e following describes the processes that unfold in themodel when
it grounds a target that is uniquely identifiable by a color that is spec-
ified (test G5, marked blue in Table 4.1). In this example, themodel
grounds the phrase “the red object” in a visual scene that contains
exactly one red object and three objects of other colors; all objects in
the scene are stationary.4 Figure 4.1 shows how the activation in the
model evolves over the course of the test. e panel in the top row
shows the activation level of the intention node and the CoS node
of the ‘target process’ over continuous time, where the activation
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F .: Grounding the phrase “the red
object” in a scene with a unique target. e
first row shows the time course of two nodes
of the target process over continuous time.
Rows 2–7 show snapshots at four points
t1, . . . , t4 in time (four columns). In the third
row, the colors of the bars match the colors
that the nodes represent. Solid bars show ac-
tivation of the target color production nodes,
transparent bars show activation of the target
color memory nodes. e activation shown
in the bottom three rows is color-coded using
the colormap on the bottom right. See text
for more detail.

5e activation of the target color memory
node for the color  at t2, . . . , t4 is too large
to fit into the panel at the chosen scale. is
is denoted by two diagonal lines breaking up
the bar that shows the activation level.

threshold is marked with a (horizontal) gray line at zero. All pan-
els below illustrate the state of the model at four points t1, . . . , t4
in time (four columns). e second row from the top shows the
video input. Since none of the objects in the scene is moving, the
input does not change noticeably over time. e third row from
the top shows the activation of the target color production nodes
(illustrated in solid colors) and the target color memory nodes (il-
lustrated in transparent colors).5 e fourth row from the top shows
the activation of the color attention field over its color dimension c.
e fifth and sixth row from the top show the activation of the
three-dimensional color/space attention field. Activation levels are
denoted in a color-code defined by the colormap shown in the bot-
tom right of Figure 4.1. e activation is shown twice, projected
onto the horizontal space x and the color dimension c (fifth row)
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6See Figure 3.14.

and onto the two spatial dimensions x, y (sixth row). e projec-
tions are computed by taking the maximum along the dimension
not shown. e last row shows the color-coded activation of the
target field over the spatial dimensions x, y.

At the beginning of the test, the model is already being simu-
lated and is receiving visual input from the video. However, the
activation in all fields and nodes of the model is below threshold.
e only exception is the color/space perception field, which has
four stable peaks of activation, each representing the spatial posi-
tion and color of one of the objects in the scene. Figure 4.1 shows
that at time t1 all fields and nodes are below threshold. e plot of
the color/space attention field shows four bumps of activation that
are all below threshold. ese are due to subthreshold input from
the color/space perception field.

e user then introduces task input by manually giving exci-
tatory input to the target color memory node for the color ,
thereby activating it. is input corresponds to the user saying the
phrase “the red object”. He then gives excitatory input to the prior
intention node of the ‘ground object process’, which initiates the
grounding of the phrase. is activates the target process on the
next lower hierarchical level, which in turn activates multiple pro-
cesses on lower hierarchical levels that each control an aspect of the
grounding process of the target object.6 Figure 4.1 shows that at
time t2 the ‘target process’ is active as the activation of its intention
node (blue line in the top panel) is above threshold. is node di-
rectly gives homogeneous input to all target color production nodes.
e input activates the target color production node for the color
, because that node also gets subthreshold input from the active
target color memory node. At time t2, both nodes are active (third
row from the top, second column from the left). e active target
color production node projects activation into the color attention
field and creates a peak there (fourth row, second column). e peak
forms at the position coding for red colors because of the patterned
synaptic connections between the target color production node for
the color  and the color attention field. e color attention field
projects subthreshold input into the three-dimensional color/space
attention field. Along the color dimension c, this input is localized
and centered around the position coding for red colors. is shows
up as a horizontal line of activation in the activation plot of the
color/space attention field (fifth row, second column). Along the
two spatial dimensions x, y, the input is homogeneous (sixth row,
second column). e input overlaps with the subthreshold bump
that codes for the spatial position and color of the red object in the
scene. Due to that overlap, the activation in the color/space atten-
tion field at the spatial position of the red object rises above thresh-
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old. e color/space attention field projects its activation onto the
multi-peak spatial attention field and the selective spatial attention
field (both not shown in Figure 4.1), which are defined over the
spatial dimensions x, y. Both fields are in a dynamic regime that
enables them to form peaks. is is because the ‘target process’ has
activated the ‘spatial attention process’, which gives homogeneous
excitatory input to the selective spatial attention field.

At time t3, a peak has formed in both the multi-peak spatial
attention field and the selective spatial attention field. e latter
projects activation back into the color/space attention field. Along
the spatial dimensions x, y, this input is localized and centered onto
the spatial position of the red object. Along the color dimension c,
the input is homogeneous. is shows up as a thick vertical line
of activation in the activation plot of the color/space attention field
(fifth row, third column in Figure 4.1). e selective spatial atten-
tion field projects into the target field and forms a peak there (last
row, third column). At this point in time, the phrase “the red ob-
ject” is grounded: the red object in the scene has been identified and
a stable representation of its features (spatial position and color) has
been formed. e CoS of all active processes activated by the target
process are met: there are peaks in the color attention field (CoS
of the feature process), in the selective spatial attention field (CoS
of the spatial attention process), in the target IOR field (CoS of
the target IOR process), and in the target field (CoS of the target
field process); furthermore, one of the target color memory nodes
is active (CoS of the target memory node process). Since the CoS
memory node of all these processes is active, the CoS node of the
target process reaches the threshold (red line in the top panel in Fig-
ure 4.1 at t3), activates the CoS memory node of the process, which
in turn inhibits its intention node. is deactivates all processes
on the lower levels and returns them to their initial state. e active
CoSmemory node of the target process activates the CoS node (and
subsequently the CoS memory node) of the ‘ground object process’.
is deactivates the target process.

At time t4, the activation level of most nodes and fields of the
model has returned below threshold. However, the elements that
constitute the grounding of the phrase “the red object” remain above
threshold: the target color memory node for the color  is active
and the target field has a peak at the spatial position of the red ob-
ject.

Example with multiple potential targets

e following example covers a case in which there are multiple
objects in the scene that fit the description (test G23 in Table 4.2).
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F .: Grounding the phrase “the object
moving rightward” in a scene with two match-
ing objects. e figure can be interpreted anal-
ogously to Figure 4.1. In the third row, the
concepts of motion direction that the nodes
represent are indicated by the arrows under-
neath the activation bars. Analogous to be-
fore, solid bars show the activation of the tar-
get motion production nodes and transparent
bars show the activation of the target motion
memory nodes. See text for more detail.

7e video used in this test is video 4.15c.
Please refer to Appendix C, in particular Fig-
ure C.71 for more information.

Additionally, the example shows that the model can also deal with
the feature dimension of motion direction. us, in this test, the
task input corresponds to the phrase “the object moving rightward”.
e visual scene consists of two objects that are moving to the right
as well as two stationary objects.7

Figure 4.2 shows how the activation in the model evolves over
the course of the test. It is structured analogously to Figure 4.1
with a few notable differences. In the third row, the activation of
the target motion memory nodes (solid colors) and target motion
production nodes (transparent colors) is shown. e concepts of
motion direction that the nodes represent are indicated by the ar-
rows underneath the activation markers (from left to right: -
, , , and  movement). In the
fourth row, the activation of the motion attention field is shown.
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In the fifth row, the activation of the motion/space attention field
is shown, color-coded according to the color map in the bottom
right of Figure 4.2. Here, the three-dimensional activation of the
field is projected onto the spatial dimensions x, y by taking the max-
imum along the motion direction dimension ϕ. In the sixth line,
the activation of the selective spatial attention field is shown, also
color-coded.

At the beginning of the test, the model is already being sim-
ulated and fed with video input. e user supplies the task input
by giving excitatory input to the target motion memory node that
represents the movement direction ; the node is acti-
vated by that input. At time t1 the node is already active (third
row, first column in Figure 4.2), while the target motion produc-
tion node has not yet been activated. Apart from this active node,
the model is thus in its initial state with the activation of most fields
below threshold. e exception are the three-dimensional color/s-
pace perception field and the motion/space perception field (both
not shown in Figure 4.2). e former features four peaks, repre-
senting the spatial position and color of the four objects in the scene.
e latter features two peaks, representing the spatial position and
motion direction of the two moving objects. is activation is pro-
jected onto the motion/space attention field, which remains below
threshold but has two subtreshold bumps of activation at the spatial
positions of the two moving objects (fifth row, first column). Sim-
ilar input is also projected onto the selective spatial attention field
(sixth row, first column) and target field (last row, first column),
where it creates subthreshold bumps as well. e selective spatial
attention field also receives subthreshold input from the color/space
perception field, localized and centered on all objects, including the
stationary ones. e input is barely visible in Figure 4.2 (sixth row,
first column).

e user then gives excitatory input to the prior intention node
of the ‘ground object process’, activating that node. is initiates
the process of grounding the phrase “the object moving rightward”.
is process is analogous to the one explained in the previous ex-
ample but uses those fields and nodes in the model that code for
motion direction, instead of those coding for color. e ‘ground ob-
ject process’ activates the target process on the lower level, which in
turn activates processes on lower levels. e target process gives ho-
mogeneous input to the target motion production nodes, activating
the node that represents the concept  (third row, second
column in Figure 4.2) because it also receives input from the corre-
sponding target motion memory node. is node projects its activa-
tion onto themotion attention field through patterned synaptic con-
nections, creating a peak at the position coding for the motion direc-
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8is means that the parameter τASm in the
differential equation of the multi-peak spatial
attention field is larger than τAS of the selec-
tive spatial attention field.

tion  (fourth row, second column). e (suprathresh-
old) activation in this field is projected onto the three-dimensional
motion/space attention field. Along the motion direction dimen-
sion ϕ, this input is localized and centered on the position coding
for rightward motion. Along the spatial dimensions x, y, the input
is homogeneous. It overlaps with the two subthreshold bumps that
are localized at the positions of the two moving objects and brings
these bumps above threshold (fifth row, second column). e ac-
tivation in the motion/space attention field is projected onto the
multi-peak spatial attention field and the selective spatial attention
field. As in the previous example, the selective spatial attention field
is in a dynamic regime where it can form a peak. At time t2 it is
in the process of making a selection decision: two bumps of acti-
vation are visible, with the lower one being slightly stronger (sixth
row, second column). e multi-peak spatial attention field reacts
slower to change than the selective spatial attention field because it
is parameterized with a slower time scale.8 At time t2, the multi-
peak spatial attention field has not yet formed a peak (not shown in
Figure 4.2) and is thus not giving strong localized input to the target
field, which remains below threshold (last row, second column).

At time t3, the selective spatial attention field has made a se-
lection decision by forming a single peak at the spatial position of
the lower moving object and inhibiting the activation in the rest of
the field (sixth row, third column). e field projects back into the
motion/space attention field, highlighting the selected object there
(fifth row, third column). Since the selective spatial attention field
has a peak, it makes the multi-peak spatial attention field selective
as well by giving it local excitatory input as well as global inhibitory
input. e single remaining peak is projected into the target field,
representing the selected target object (last row, third column). At
this point in time, the model has grounded the phrase “the object
moving rightward” by finding matching objects in the scene, mak-
ing a selection decision between two candidates, and forming a rep-
resentation of the spatial position of the selected object in the target
field. As in the previous example, the CoS of all active processes are
met. Figure 4.2 shows the activation of the CoS node of the target
process in the top row (red line), which crosses the threshold be-
tween t3 and t4.

At time t4, most of the nodes and fields return below threshold
because the processes that initially activated them have deactivated.
What remains are an active target motion memory node for the
motion direction  (third row, fourth column), and peaks
in the target field (last row, fourth column) as well as the target IOR
field (not shown). Please note that the peak in the target field tracks
the moving spatial position of the selected target object. is is due
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9e video used in this test is video 4.1a.
Please refer to Appendix C, in particular Fig-
ure C.37 for more information.

to excitatory input it always receives from the color/space perception
field and the motion/space perception field. e same is true for the
target IOR field.

Example with no target

e following example covers a case in which no object in the scene
fits the given description (test G21 in Table 4.2). As in the last
example, the task input corresponds to the phrase “the object mov-
ing rightward”. However, the visual scene consists of three static
objects as well as an object that is moving leftward, that is, into a
different direction than searched for.9

Figure 4.3 shows how the activation in the model evolves over
the course of the test. It is analogous to Figure 4.2 with the dif-
ference that plots for only three points t1, . . . , t3 in time are shown
(three columns) and that the activation of the three-dimensional
motion/space attention field is shown here projected onto the hor-
izontal spatial dimension x and the motion direction dimension ϕ
(by taking the maximum along the vertical spatial dimension y).

e processes that happen in the model are also largely analo-
gous to the last example. At time t1, activation in themodel is below
threshold except for the perceptual fields (not shown) as well as the
target motion memory node for the motion direction 
(third row, first column in Figure 4.3) that the user activated. At
time t2, the corresponding target motion production node is active
as well (third row, second column) because the user has initiated the
grounding process by activating the ‘ground object process’. emo-
tion attention field has a peak at the position coding for the motion
direction  (fourth row, second column). e activation
in this field projects onto the three-dimensional motion/space atten-
tion field. Along the spatial dimensions x, y, the input is homoge-
neous; along themotion direction dimensions ϕ, it is localized at the
position coding for the motion direction . In Figure 4.3
this is shown as a horizontal bar of activation (fifth row, second
column). However, this bar does not overlap with the subtreshold
bump of activation that is in the field as well. is is because the sub-
treshold bump codes for the spatial position and motion direction
of the green object moving leftward in the scene. Since it is mov-
ing leftward, the bump is localized in the field at positions coding
for the motion direction . As no bump overlaps with the
input from the motion attention field, the motion/space attention
field does not form a peak. erefore, the model does not bring any
object into attentional focus. For the rest of the example, the acti-
vation in the model does not undergo any significant change. e
peaks in the color/space perception field and the motion/space per-
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F .: Grounding the phrase “the object
moving rightward” in a scene where no such
object exists. e figure can be interpreted
analogously to Figure 4.2. See text for more
detail.

ception field as well as the subtreshold bumps in other fields coding
for spatial position track the spatial position of the moving object
(visible in the plots between t3 and t4), but it does not create a peak
anywhere.

Since no object can be found in the scene that matches the de-
scription, the CoS of most active processes cannot be met. is is
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shown, for instance, by the activation of the CoS node of the tar-
get process (red line in the top panel), which stays below threshold.
Nevertheless, the result of the example is positive because the behav-
ior of the model is as expected. To be able to detect and react to the
non-existence of an object would require an additional mechanism,
which is not part of the model.

4.1.2 Feature conjunctions
e following tests establish that the attentional system and saliency
system of the model work when the object that is to be searched for
is specified by a conjunction of multiple features. In all tests, the
task input given to the model specifies two features, color and mo-
tion direction, of a single object. e task input corresponds to the
phrase “the red object moving rightward”. In all tests, the user ac-
tivates the target color memory node for the color , the target
motion memory node for the motion direction , and
subsequently the prior intention node of the ‘ground object process’.
Table 4.3 lists all of these tests (G25,…,G57). It is similar to Ta-
bles 4.1 and 4.2 and summarizes information about the visual scene
that was presented to the model in each test. In the columns from
left to right, it shows the identifier of the test, the total number of
objects in the scene, the number of red objects in the scene, the num-
ber of moving objects, the number of objects moving rightward, the
number of red objects moving rightward (potential target objects),
whether or not a target can be found (marked with ‘+’ or ‘−’, respec-
tively), as well as a language description of the visual scene. e tests
marked in blue are described in detail in the following sections.

As before, the result of all tests show that the model only brings
objects into the attentional foreground that are specified by the
phrase (in this case, red objects that move rightward). In all visual
scenes that contain a red object moving rightward (those marked
with ‘+’), the model is able to bring it into attentional foreground
and thereby ground the phrase. is works irrespective of the num-
ber of distractor objects in the scene and whether they move or are
stationary (e.g., G53). In case there are multiple potential targets
in the visual scene (G53,G54,G57), the model selects one of the
objects while ignoring any distractor objects. As before, in mak-
ing the selection the model often prefers objects that are closer to
the bottom of the visual scene (due to perspective distortion in the
video).

e tests also systematically check whether objects that do not
match the description or thatmatch it only partially are brought into
attentional foreground. is could, for instance, be a stationary red
object (G31), a red object moving leftward (G35), or a green ob-
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G25 0 0 0 0 0 − no object in the scene
G26 4 0 0 0 0 − incorrect colors, no motion
G27 4 0 1 1 0 − incorrect color, correct direction
G28 4 0 1 0 0 − incorrect color, incorrect direction
G29 4 0 2 0 0 − incorrect colors, incorrect directions
G30 4 0 2 1 0 − incorrect colors, correct/incorrect directions
G31 4 1 0 0 0 − correct color, no motion
G32 4 1 1 1 0 − incorrect color, correct direction
G33 4 1 1 0 0 − incorrect color, incorrect direction
G34 4 1 1 1 1 + correct color, correct direction
G35 4 1 1 0 0 − correct color, incorrect direction
G36 4 1 2 0 0 − incorrect colors, incorrect directions
G37 4 1 2 1 0 − incorrect colors, correct/incorrect directions
G38 4 1 2 1 1 + correct color, correct direction; correct color, incorrect direction
G39 4 1 2 2 1 + correct/incorrect color, correct direction
G40 4 1 2 0 0 − correct/incorrect color, incorrect direction
G41 4 1 2 1 0 − correct color, incorrect direction; incorrect color, correct direction
G42 4 2 0 0 0 − multiple correct colors, no motion
G43 4 2 1 1 0 − incorrect color, correct direction
G44 4 2 1 0 0 − incorrect color, incorrect direction
G45 4 2 1 1 1 + correct color, correct direction
G46 4 2 1 0 0 − correct color, incorrect direction
G47 4 2 2 2 0 − incorrect colors, correct directions
G48 4 2 2 0 0 − incorrect colors, incorrect directions
G49 4 2 2 0 0 − correct/incorrect colors, incorrect directions
G50 4 2 2 1 0 − correct color, incorrect direction; incorrect color, correct direction
G51 4 2 2 1 1 + correct color, correct direction; incorrect color, incorrect direction
G52 4 2 2 2 1 + correct/incorrect color, correct direction
G53 4 2 3 2 2 + correct colors, correct direction; incorrect color, incorrect direction
G54 4 2 3 3 2 + correct/incorrect colors, correct direction
G55 4 2 2 0 0 − only correct colors moving, incorrect directions
G56 4 2 2 1 1 + only correct colors moving, correct/incorrect directions
G57 4 2 2 2 2 + only correct colors moving, correct direction

Table 4.3: Tests of grounding tasks in which the phrase is “the red object moving
rightward”. e tests marked in blue are later described in detail. See text for
details on how to interpret this table.
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10e video used in this test is video 4.15b.
Please refer to Appendix C, in particular Fig-
ure C.70 for more information.

ject moving rightward (G27). Particularly interesting is the case in
which multiple objects match the description partially, for instance
a scene in which a red object is moving leftward and a green object
is moving rightward (G41). is case shows that all matching fea-
tures must also belong to the same object—in the model they are
bound over the spatial position of the object. e result of the tests
show that for all visual scenes that do not contain red objects mov-
ing rightward (those marked with ‘−’), the model does not bring
any object into the attentional foreground. As explained for previ-
ous tests, in these cases the model keeps on searching; it does not
detect that there is no target object to be found in the scene. is is
the expected behavior since the model does not have a mechanism
to detect this case.

Example with a unique target

e following describes the processes that unfold in themodel when
it grounds an object that is uniquely identifiable by a conjunction of
features (test G56 in Table 4.3). In this example, themodel grounds
the phrase “the red object moving rightward” in a visual scene that
contains exactly one such object, another red object that is moving
leftward, and two stationary objects (blue and yellow).10 Figure 4.4
shows how the activation in the model evolves over the course of the
test. It is structured analogously to previous figures (Figures 4.1, 4.2,
and 4.3) but shows the activation of the nodes and fields that code
for color as well as those that code for motion direction. Both the
activation of the color/space attention field (fifth row in Figure 4.4)
and the motion/space attention field (sixth row) is shown projected
onto the horizontal spatial dimension x and respective feature di-
mension of the field (color c and motion direction ϕ, respectively)
by taking the maximum along the vertical spatial dimension y.

e processes that unfold in this test are very similar to those in
the first example (test G5), where a uniquely identifiable object is
present in the scene. e difference is that a combination of features
is used here in the phrase that describes the target object. us, at
the beginning of the test, the user activates both the target color
memory node for the color  as well as the target motion memory
node for the motion direction . At time t1, the nodes
are active (transparent bars in the third and fourth row, first column,
of Figure 4.4). When the user initiates the process of grounding by
activating the prior intention node of the ‘ground object process’,
the corresponding target color production nodes and target motion
production node also get activated (solid bars, third and fourth row,
second column).

e active target color production node projects its activation
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F .: Grounding the phrase “the red
object moving rightward” in a scene with a
unique target. See text for more detail.

via patterned synaptic connections into the color attention field (not
shown in Figure 4.4), creating a peak at the position coding for red
colors. e color attention field projects into the color/space atten-
tion field. is input is localized along the color dimension c and
centered at the position coding for red colors. Along the spatial di-
mensions x and y, it is homogeneous. e input is shown as a fine
horizontal line in the plot in the fifth row and second column of
Figure 4.4. It overlaps with the subthreshold bumps that code for
the spatial position and color of both of the red objects in the scene.

Analogously, the target motion production node projects activa-
tion into the motion attention field (not shown in Figure 4.4), cre-
ating a peak at the position coding for the motion direction -
. e motion attention field projects into the motion/space
attention field, where the input is localized along the dimension of
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11e video used in this test is video 4.14e.
Please refer to Appendix C, in particular Fig-
ure C.67 for more information.

motion direction ϕ; along the spatial dimensions x, y it is homoge-
neous. e input is shown as a thick horizontal line in the plot in
the sixth row and second column of Figure 4.4. It overlaps with the
subthreshold bump that codes for the spatial position and motion
direction of the object moving rightward, not with the bump that
codes for the other red object, because that one is moving leftward.

e selective spatial attention field and multi-peak spatial at-
tention field (both not shown in Figure 4.4) are parameterized such
that they only form a peak if they receive input from those attention
fields whose features are specified in the task input, in this case from
the color/space attention field and the motion/space attention field.
Along the spatial dimensions, the fields receive localized input at
the positions of the two red objects. However, only the spatial po-
sition of the red object that is moving rightward receives localized
input from both the color/space attention field and the motion/s-
pace attention field and can form a peak in the spatial attention
fields. At time t3, they have each formed a peak. e multi-peak
spatial attention field is projecting its activation into the target field
(last row, third column). e selective spatial attention field is pro-
jecting its activation back into the color/space attention field and
motion/space attention field. is input is shown in Figure 4.4 by
the vertical bar of activation (fifth and sixth row, third column).

At this point in time, the phrase “the red object moving right-
ward” has been grounded by the model. All processes that were
active during the grounding processes are deactivated because their
CoS is met. At time t4, most of the activation in the model has re-
turned below threshold. e target color memory node for the color
 and the target motion memory node for the motion direction
 remain active (third and fourth row, fourth column);
so do the peak in the target field (last row, fourth column) and a
peak in the target IOR field (not shown).

Example with multiple potential targets

e following example covers a case in which the description of
the target object consists of a conjunction of features and there are
multiple objects in the scene fitting the description (test G53 in
Table 4.3). In this example, the model grounds the phrase “the red
object moving rightward” in a visual scene that contains two such
objects, as well as a yellow object that is moving leftward, and a
stationary blue object.11 Figure 4.5 shows how the activation in the
model evolves over the course of the test. It is structured analogously
to Figure 4.4.

e processes that unfold in this test are very similar to those in
the last example (test G56), where a uniquely identifiable object is
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4.1 Grounding tasks

F .: Grounding the phrase “the red
object moving rightward” in a scene with two
possible target objects. See text for more de-
tail.

present in the scene. is is because the selective spatial attention
field is always in a dynamic regime where it can form peaks when
the target object is grounded. is means that the spatial attention
mechanism will only ever form a single peak. Because of this, the
processes in the model do not differ substantially if the scene con-
tains one or multiple objects that fit the description.

At the beginning of the test, the user activates both the target
color memory node for the color  as well as the target motion
memory node for the motion direction . e user initi-
ates the grounding process by activating the prior intention node of
the ‘ground object process’, the corresponding target color produc-
tion nodes and target motion production node also get activated
(third and fourth row, second column). All processes evolve analo-
gously to the previous example.
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12e video used in this test is video 4.1b.
Please refer to Appendix C, in particular Fig-
ure C.38 for more information.

At time t3, the selective spatial attention field has made a selec-
tion decision and formed a peak that is centered on the lower of the
two red objects. is peak is projected onto the target field (last row,
third column of Figure 4.5) and into the color/space attention field
and motion/space attention field (vertical lines of activation in the
fifth and sixth row, third column).

At time t4, most activation in the model has returned below
threshold, except for activation in the target color memory node for
the color  (third row, fourth column), in the target motion mem-
ory node for the motion direction  (fourth row, fourth
column), the peak in the target field that is centered on and tracking
the position of the lower red object in the scene (last row, fourth col-
umn), and the target IOR field (not shown). e object described
in the phrase “the red object moving rightward” has been grounded
in the scene.

Example with no target (only motion direction matches)

is example covers a case in which no object in the scene fits the
given description but one of the objects matches the description
partially (test G27 in Table 4.3). As in the last example, the task
input corresponds to the phrase “the red object moving rightward”.
e visual scene consists of three static objects as well as an object
that is moving rightward; however, that object is green rather than
red.12

Figure 4.6 shows how the activation in the model evolves over
the course of the test. It is analogous to Figure 4.4.

At the beginning of the test, the user activates both the target
color memory node for the color  as well as the target motion
memory node for the motion direction . e user initi-
ates the grounding process by activating the prior intention node of
the ‘ground object process’, the corresponding target color produc-
tion nodes and target motion production node also get activated
(third and fourth row, second column). All processes evolve analo-
gously to the previous example. However, at time t2, the input into
the color/space attention field (horizontal line of activation in the
fifth row, second column) does not overlap with any subtreshold
bump representing an object. is is because the input is localized
and centered on the position coding for red colors but there are no
red objects in the scene. While the corresponding input into themo-
tion/space attention field (horizontal line of activation in the sixth
row, second column) does overlap with a subtreshold bump (the one
representing the green object moving rightward) and forms a peak
in that field, this is not sufficient to form a peak in the selective
spatial attention field or multi-peak spatial attention field (both not
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4.1 Grounding tasks

F .: Grounding the phrase “the red
object moving rightward” in a scene where no
such object exists but one object matches the
description partially. See text for more detail.

13is is implemented by inhibitory connec-
tions from the color attention field and mo-
tion attention field to the selective spatial at-
tention field and multi-peak spatial attention
field. See Section 3.2.2.

shown). Whenever a feature is specified in a phrase, that feature is
required to be found in order for the spatial attention fields to form
a peak.13

Since the object moving rightward is green instead of red, the
model does not bring it into attentional foreground and does not
ground it as the target object. us, until the end of the test, the
subtreshold bumps in the fields track the moving position of the
green object, but do not form a peak. As before, the model does
not detect that there is no object in the scene that fits the descrip-
tion and instead keeps searching indefinitely. Since such a detection
would require an additional mechanism, the behavior of the model
is expected.
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F .: Grounding the phrase “the red
object moving rightward” in a scene where no
such object exists but two objects match the
description partially. See text for more detail.

14e video used in this test is video 4.6d.
Please refer to Appendix C, in particular Fig-
ure C.49 for more information.

Example with no target (matching features not bound)

e following example covers a case in which no object in the scene
fits the given description but two of the objects match the descrip-
tion partially (test G41 in Table 4.3). As in the last example, the
task input corresponds to the phrase “the red object moving right-
ward”. However, the visual scene contains only a red object moving
leftward and a green object moving rightward; two stationary ob-
jects (blue and yellow) are also present.14

Figure 4.7 shows how the activation in the model evolves over
the course of the test. It is analogous to Figure 4.4.

e processes that unfold in the model are very similar to the
last example. e difference is that at time t2 both the color/space
attention field (fifth row, second column in Figure 4.7) and the mo-
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tion/space attention field (sixth row, second column) form a peak
because input that is shown here as horizontal lines of activation
overlaps with subthreshold bumps that represent objects. However,
these peaks are at different spatial positions because they are associ-
ated with different objects. e input for the color/space attention
field overlaps with the subthreshold bump that is associated with the
red object moving leftward, while the input for the motion/space at-
tention field overlaps with the subthreshold bump associated with
the green object moving rightward. Since the peaks are at differ-
ent spatial positions, their input into the selective spatial attention
field andmulti-peak spatial attention field does not overlap and thus
does not produce peaks there. e model does not bring any of the
objects in the scene into attentional foreground for the rest of the
test.

is example shows that it is not sufficient that all features spec-
ified in the phrase are found in the scene. It is also required that
these features belong to the same object and are bound by the same
spatial position. If not, the objects in question are not grounded.

4.1.3 Relations between objects
e tests described next establish that the model can ground ob-
jects based on the spatial relations andmovement relations they have
with respect to other objects in the scene. In all tests, the task in-
put given to the model specifies two objects using a single feature
(here, color) for each of them, as well as a relation between the two
objects. Unlike in the previous examples, there are always objects
in the scene that match the color descriptions. e tests thus vary,
for instance, whether the objects adhere to the specified relation,
whether they move, and whether there is more than one pair of ob-
jects that may match the relation.

For a first set of tests, the task input corresponds to the phrase
“the red object to the left of the green object” and both the target ob-
ject (red) and the reference object (green) are uniquely identifiable
in the scene. e relation that is specified between the objects is
thus a spatial relation that is defined by their relative position. In all
tests, the user activates the target color memory node for the color
, the reference color memory node for the color , and
the spatial relation memory node for the spatial relation  
 . e user subsequently activates the prior intention node
of the ‘ground relation process’. Table 4.4 lists all of these tests
(G58,…,G65). It is similar to Table 4.3 and summarizes informa-
tion about the visual scene that was presented to the model in each
test. In the columns from left to right, it shows the identifier of
the test, the total number of objects in the scene, the number of red
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G58 2 1 1 0 0 1 + no motion; fit
G59 2 1 1 0 0 0 − no motion; no fit
G60 2 1 1 0 1 1 + ref. moving; fit
G61 2 1 1 0 1 0 − ref. moving; no fit
G62 2 1 1 1 0 1 + tar. moving; fit
G63 2 1 1 1 0 0 − tar. moving; no fit
G64 2 1 1 1 1 1 + both moving; fit
G65 2 1 1 1 1 0 − both moving, no fit

Table 4.4: Tests of grounding tasks in which
the phrase is “the red object to the left of the
green object”. In all tests, the target object
and reference object are uniquely identifiable
in the scene. See text for detail.

15Even though the objects move in the scene,
their relative position never changes qualita-
tively. For instance, if the red object is to the
left of the green object at the beginning of the
video, it will never cross over to its right.

objects in the scene (potential targets), the number of green objects
(potential references), the number of moving red objects, the num-
ber of moving green objects, the number of object pairs for which
the description fits, whether or not the relation between the target
object and reference object matches the specified relation (marked
with ‘+’ or ‘−’, respectively), as well as a language description of the
visual scene.

e results of all tests show that the model only brings pairs
of objects into the attentional foreground that are specified by the
phrase (in this case, red objects to the left of green objects). In
all visual scenes that contain a red object to the left of a green ob-
ject (those marked with ‘+’), the model is able to sequentially bring
both objects into the attentional foreground and form a representa-
tion in the target field and reference field, respectively. In all tests
in which their relative spatial position matches the specified spatial
relation, the model grounds the phrase. is works irrespective of
whether or not the target object or reference object are moving (e.g.,
G60,G62,G64).15

e tests also systematically check whether pairs of objects that
do not match the specified relation are brought into the attentional
foreground. e result of the tests show that for all those cases
(marked with ‘−’), the model does not ground the phrase. While
the objects are brought into the attentional foreground, the model
detects that their spatial relation does not match. It rejects a mis-
matching target object, but holds it in memory and searches for
other red object in the scene. Since, in these tests, there is only ever
a single red object in the scene, the model keeps searching indefi-
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G66 3 1 2 0 0 − multiple references, no fit
G67 3 1 2 1 1 + multiple references, one fit
G68 3 1 2 1 2 + multiple references, two fits
G69 3 2 1 0 0 − multiple targets, no fit
G70 3 2 1 1 1 + multiple targets, one fit
G71 3 2 1 2 1 + multiple targets, two fits
G72 4 2 2 0 0 − multiple tar/ref, no fit
G73 4 2 2 1 1 + multiple tar/ref, one fit
G74 4 2 2 2 2 + multiple tar/ref, two fits

Table 4.5: Tests of grounding tasks in which
the phrase is “the red object to the left of
the green object”. In these tests, the visual
scenes feature multiple objects that fit the
color-description of the target and reference
object. e tests differ in how many combina-
tions of objects fit the specified spatial relation.
See text for detail.

16e task input corresponds to the phrase
“the red object to the left of the green object”.

nitely. As explained for previous tests, the model does not detect
that there is no other red object to be found. is is the expected
behavior since the model does not have a mechanism to detect this
case.

In a second set of tests, the task input remains the same16 but
the target object and reference object are no longer uniquely identi-
fiable by their color. e scenes feature multiple objects that fit the
color-description of the target and reference object, and vary in the
number of combinations of these objects that fit the specified rela-
tion. Table 4.5 lists all of these tests (G66,…,G74). It is similar to
Table 4.4 and summarizes information about the visual scene that
was presented to the model in each test. In the columns from left to
right, it shows the identifier of the test, the total number of objects
in the scene, the number of red objects in the scene, the number
of green objects, the number of red objects that are to the left of
a green object, the number of green objects that are to the right
of a red object, whether or not a target object can be found in the
scene (marked with ‘+’ or ‘−’, respectively), as well as a language
description of the visual scene.

As before, the result of all tests shows that the model only brings
pairs of objects into the attentional foreground that are specified
by the phrase (see, e.g., G67, G70, G73). If there are multiple
objects that match the color-description of either the target object,
the reference object, or both, the model makes selection decisions to
ground exactly one pair of objects that fits the specified relation (e.g.,
G68, G71, G74). e target object is grounded first; its selection
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G75 2 1 1 0 0 0 − no motion
G76 2 1 1 0 1 0 − reference moving
G77 2 1 1 1 0 1 + tar. moving; fit
G78 2 1 1 1 0 0 − tar. moving; no fit
G79 2 1 1 1 1 1 + both moving; fit
G80 2 1 1 1 1 0 − both moving; no fit

Table 4.6: Tests of grounding tasks in which
the phrase is “the red object moving toward
the green object”. In these tests, the visual
scenes feature objects that can be uniquely
identified by their colors. See text for detail.

is based only on the saliency of the object. e reference object is
grounded second; its selection is based both on its saliency and on
its match with the specified relation.

e tests also systematically check whether pairs of objects that
do not match the specified relation are brought into the attentional
foreground. e result of the tests show that for all those cases
(marked with ‘−’), the model does not ground the phrase (G66,
G69, G72). Objects are brought into the attentional foreground,
but the model detects that their spatial relation does not match. It
rejects mismatching target object, but holds them in memory and
searches for other red objects in the scene until one of them matches
the description. If none matches, the model keeps searching for
other red objects indefinitely. As explained for previous tests, this
is the expected behavior.

Two additional sets of tests replicate the results shown above
for task input that corresponds to the phrase “the red object mov-
ing toward the green object”. As before, the first set of tests fea-
tures visual scenes in which the target object and reference object
can be uniquely identified by their color. Table 4.6 lists all of these
tests (G75,…,G80). In the columns from left to right, it shows the
identifier of the test, the total number of objects in the scene, the
number of red objects in the scene (potential targets), the number
of green objects (potential references), the number of moving red
objects, the number of moving green objects, the number of pairs
of objects for which the description fits, whether or not a target ob-
ject can be found in the scene (marked with ‘+’ or ‘−’, respectively),
as well as a language description of the visual scene.

A second set of tests features multiple objects that fit the color-
description of the target and reference object, and varies the number
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G81 3 1 2 0 0 − multiple references, no fit
G82 3 1 2 1 1 + multiple references, one fit
G83 3 1 2 1 2 + multiple references, two fits
G84 3 2 1 0 0 − multiple targets, no fit
G85 3 2 1 1 1 + multiple targets, one fit
G86 3 2 1 2 1 + multiple targets, two fits
G87 4 2 2 0 0 − multiple tar/ref, no fit
G88 4 2 2 1 1 + multiple tar/ref, one fit
G89 4 2 2 2 2 + multiple tar/ref, two fits

Table 4.7: Tests of grounding tasks in which
the phrase is “the red object moving toward
the green object”. In these tests, the visual
scenes feature multiple objects that fit the de-
scription of the target and reference object.
e tests differ in how many combinations of
objects fit the specified spatial relation. See
text for detail.

of combinations of objects that fit the specified relation. Table 4.7
lists all of these tests (G81,…,G89). In the columns from left to
right, it shows the identifier of the test, the total number of objects,
the number of red objects (potential targets), the number of green
objects (potential references), the number of red objects that are to
the left of green objects, the number of green objects to the right
of red objects, whether or not a target object can be found in the
scene (marked with ‘+’ or ‘−’, respectively), as well as a language
description of the visual scene.

e results of both sets of tests show that the model only brings
pairs of objects into the attentional foreground that are specified
by the phrase (in this case, red objects moving toward green ob-
jects). In all visual scenes that show a red object moving toward a
green object (those marked with ‘+’), the model sequentially brings
both objects into the attentional foreground, forms representations
of the objects in the target field and reference field, identifies that
their relation matches the specified one, and thereby grounds the
phrase. is works irrespective of whether or not the reference ob-
ject is moving (G79). If there are multiple objects that match the
color-description of either the target object, the reference object, or
both, the model makes selection decisions to ground exactly one
pair of objects that fits the specified relation (e.g., G83, G86, G89).
e target object is grounded first; its selection is based only on its
saliency. e reference object is grounded second; its selection is
based both on its saliency and on its match with the specified rela-
tion.
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17e video used in this test is video 3.05b.
Please refer to Appendix C, in particular Fig-
ure C.28 for more information.

18is is meant as a symbol to denote which
relational concept each bar represents.

Both sets of tests also systematically check whether pairs of ob-
jects that do not match the specified relation are brought into the at-
tentional foreground. e tests show that for all those cases (marked
with ‘−’), the model does not ground the phrase. If there are multi-
ple red objects and the model initially selects one that is not moving
toward a green object, it detects this, rejects the red object, but holds
it in memory and searches for other red objects in the scene until
one of them matches the description. If none matches, the model
keeps searching for other red objects indefinitely. As explained for
previous tests, this is the expected behavior.

Example with a unique target

e following describes the processes that unfold in themodel when
it grounds an object that is uniquely identifiable by the phrase “the
red object to the left of the green object” (test G70 in Table 4.5).
In this example, the model grounds the phrase in a visual scene
that contains two red objects, one of them to the left and the other
to the right of a green object. All objects in the scene are station-
ary.17 Figure 4.8 shows how the activation in the model evolves
over the course of the test. It is structured analogously to previous
figures but shows more plots since in this example both the target
object and the reference object as well as their spatial relation are
grounded. e top panel shows the activation of the intention node
and CoS node of the target process, the reference process, and the
spatial relation process over the continuous time course of the test.
e third row shows the activation level of the target color mem-
ory nodes (transparent colors; left side of the panel for each point
in time), the target color production nodes (solid colors; left side
of each panel), the reference color memory nodes (transparent col-
ors; right side of each panel), and the reference color production
nodes (solid colors; right side of each panel). As before, the colors
of the bars match the colors that the nodes represent. e fourth
row shows the activation level of the spatial relation memory nodes
(transparent colors) and the spatial relation production nodes (solid
colors) for the relations (from left to right)    , 
  , , , , and  . For each
node, the synaptic connection pattern to the relational candidates
field is shown below in a color-code.18 e last three rows show the
activation of the target field, the reference field, and the spatial re-
lation CoS field (from top to bottom), color-coded using the color
map in the bottom right of Figure 4.8.

At the beginning of the test, the model is already being sim-
ulated and is receiving visual input from the video. However, the
activation in all fields and nodes of the model is below the threshold.
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4.1 Grounding tasks

F .: Grounding the phrase “the red
object to the left of the green object” in a scene
with a unique target. See text for more detail.

e only exception is the color/space perception field (not shown),
which has three stable peaks of activation, each representing the
spatial position and color of one of the objects in the scene. As task
input, the user activates the target color memory node for the color
, the reference color memory node for the color , and the
spatial relation memory node for the spatial relation   
. is corresponds to the phrase “the red object to the left of the
green object”. Figure 4.8 shows that at time t1 (first column) all
fields and nodes are below threshold but the three memory nodes
are active. Some localized subthreshold bumps are (barely) visible
in the plots of the target field (fifth row) and reference field (sixth
row). ese are due to input from the color/space perception field.
Shortly after t1, the user initiates the grounding process by activat-
ing the prior intention node of the ‘ground relation process’. Once
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the intention node of this process is active, it gives input to the
following processes on the next lower hierarchical level: the target
process, the reference process, the spatial relation process, the clean
process, and the reset process. In addition, it activates multiple pre-
condition nodes that enforce these processes to become active in a
sequential order: the target process and the spatial relation process
become active first (see top panel of Figure 4.8), the clean process
becomes active once the target process is finished (not shown in Fig-
ure 4.8), and the reference process becomes active once the clean
process is finished (yellow line in the top panel, between t2 and t3).
e reset process (not shown) is not activated in this example.

At time t2 (second column), the target process and spatial rela-
tion process are active. ese give homogeneous input to the target
color production nodes and spatial relation production nodes, re-
spectively, and activate the nodes that also receive input from the
previously activated memory nodes (third and fourth row in Fig-
ure 4.8). e active target color production node for the color 
brings the two red objects in the scene into the attentional fore-
ground. e model makes a selection decision based on the saliency
of the objects and forms a representation of the spatial position of
the left red object in the target field (fifth row). e active spatial
relation production node for the spatial relation    
projects into the spatial relation CoS field via its patterned synaptic
connections, leading to a localized, subthreshold pattern of activa-
tion on the left side of the field (last row). Once the target object has
been grounded and the target process is finished, the clean process
is activated (not shown), which ensures that the color attention field
no longer has a peak. Once this process is finished, the reference
process becomes active.

At time t3 (third column), the reference process is active and
gives homogeneous input to all reference color production nodes,
activating the one representing the color  (third row). is
brings the green object in the scene into the attentional foreground
and forms a representation of its spatial location in the reference
field (sixth row). With peaks both in the target field and the refer-
ence field, the spatial relation CoS field receives input that reflects
the relative position of the target object with respect to the refer-
ence object. In Figure 4.8 (last row), this is visible as a small yellow
circle to the left of the center of the field. is input overlaps with
the one representing the spatial relation    , and thus
forms a peak in the spatial relation CoS field. is peak shows that
the selected red object is in fact to the left of the selected green ob-
ject. At this moment, the phrase “the red object to the left of the
green object” has been successfully grounded.

At time t4 (fourth column), the CoS of all active processes have
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19e video used in this test is video 4.18b.
Please refer to Appendix C, in particular Fig-
ure C.76 for more information.

been met and the activation in large parts of the model has returned
to below threshold. e peaks in the target field, target IOR field
(not shown), reference field, and spatial relation CoS field, as well
as the activation in the memory nodes remain because of their high
self-excitation. ey represent the end-result of the grounding pro-
cess.

Example with hypothesis testing

e following example describes the processes that unfold in the
model when it grounds the phrase “the red object to the left of the
green object” in a scene that contains multiple red and green objects,
all of which are stationary. However, only one of the red objects is
to the left of a green object (test G73 in Table 4.5).19 Since there
are multiple possible combinations of red and green objects in the
scene, themodel is required to select objects and check whether they
match the specified relation. Please note that this form of hypothesis
testing is not necessarily required in the visual scene of the previous
example since one could begin by grounding the unique (green) ref-
erence object and infer the correct target object with the help of the
spatial relation. However, in the visual scene of the current example,
there are multiple candidates for both the target object and the ref-
erence object and testing hypotheses cannot be avoided. Figure 4.9
shows how the activation in the model evolves over the course of the
test. It is structured analogously to Figure 4.8, with three additions.
First, the top panel includes the activation of the intention node of
the reset process. Second, there is an additional panel in the sixth
row that shows activation snapshots of the target IOR field at four
points t1, . . . , t4 in time. ird, an analogous additional panel in
the last row shows activation snapshots of the spatial relation CoD
field. In both additional panels, the activation is shown using the
same color-code as for the other fields (color map in the bottom
right of Figure 4.9).

At the beginning of the test, the model is already being simu-
lated and is receiving visual input from the video. As task input, the
user activates the target color memory node for the color , the
reference color memory node for the color , and the spatial
relation memory node for the spatial relation    . is
corresponds to the phrase “the red object to the left of the green
object”. e user then initiates the grounding process by activating
the prior intention node of the ‘ground relation process’. As in the
previous example, the target process (blue line in the top panel of
Figure 4.9) and spatial relation process (green line) activate first. At
time t1 (first column), the target process has brought one of the red
objects in the scene into the attentional foreground and forms a rep-
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4 Results

F .: Grounding the phrase “the red
object to the left of the green object” in a scene
that requires hypothesis testing. e target ob-
ject is uniquely identifiable by the description,
but there are multiple objects that match the
color description of the target object as well as
the reference object. See text for more detail.

resentation of its spatial location in the target field (fifth row). Since
the selection between the two red objects is based on their saliency
only, the model selects the object on the right. e activation in the
target field is projected onto the target IOR field (sixth row), which
has strong self-excitation and forms a self-sustained peak. e spa-
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20See Section 3.5.

tial relation process activates the spatial relation production node for
the relation    , which projects into both the spatial
relation CoS field (eight row) and spatial relation CoD field (last
row) via patterned synaptic connections. Please note that the input
to the spatial relation CoS field is excitatory while the input to the
spatial relation CoD field is inhibitory. e spatial relation CoS
field thus matches all inputs that the spatial relation CoD field does
not and vice versa.

At time t2 (second column), the reference process is active (top
panel, yellow line) and has brought the two green objects into the
attentional foreground. ey form two peaks in the reference field
(seventh row). e spatial relation CoS field (eighth row) and spa-
tial relation CoD field (last row) receive input from the spatial trans-
formations that reflects the spatial position of the selected red ob-
ject (represented in the target field) with respect to all green objects
(represented in the reference field). Since the selected red object
is to the right of both green objects, the subthreshold bumps that
are input to the spatial relation CoS field (eight row) do not over-
lap with the input from the spatial relation production node and
cannot form a peak. However, the input does form a peak in the
spatial relation CoD field (last row). As soon as there is a peak in
the spatial relation CoD field (shortly after t2), the reset process is
activated. is activates a suppression node that inhibits all other
processes and large parts of the model.20 In Figure 4.9 this is visi-
ble in the top panel, where the activation of all intention nodes and
CoS nodes drops when the intention node of the reset process (dark
red line) becomes active. Afterward, the grounding process begins
anew, starting with the target process and the spatial relation pro-
cess becoming active.

At time t3 (third column), the target process has brought red
objects in the scene in the foreground once more. However, since
there is still a peak in the target IOR field at the position of the
previously selected red object (the one on the right) and the target
IOR field inhibits this spatial location in the spatial attention fields,
the model selects a different red object. e target field (fifth row)
thus forms a peak at the spatial location of the red object on the
left. As before, the position of this object is represented by a self-
sustained peak in the target IOR field (sixth row). At time t3, the
activation of the other three fields shown in Figure 4.9 (rows 7–9)
have returned to a state below threshold, similar to that at time t1
(first column). Once the reference process is active, it brings both
green objects into the attentional foreground again.

As before, the spatial transformations project two subthreshold
bumps of activation into the spatial relation CoS field and spatial
relation CoD field, but this time the input matches the spatial rela-
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21e video used in this test is video 4.19c.
Please refer to Appendix C, in particular Fig-
ure C.80 for more information.

tion     in the spatial relation CoS field. At time t4
(fourth column), the spatial relation CoS field has made a selection
decision between the two potential reference objects: one of the two
subthreshold bumps in the spatial relation CoS field fits the spatial
relation better and forms a peak (eight row). It is the bump that re-
flects the relative position of the selected red object (represented in
the target field) with respect to the upper green object in the scene.
e other bump input is inhibited by strong global inhibitory inter-
action within the spatial relation CoS field. e peak that remains
in the field is transformed back and projected into the spatial atten-
tion system, bringing the selected green object into the attentional
foreground while suppressing the other green object. is is visible
in the activation of the reference field (seventh row), which only has
a single peak.

At this moment, the model has grounded the phrase “the red
object to the left of the green object”. e peaks in the target field,
the reference field, and the spatial relation CoS field represent the
red object, the green object, and their relation that the phrase refers
to.

Example with multiple potential targets

e following example describes the processes that unfold in the
model when it grounds the phrase “the red object moving toward
the green object”. e scene contains two red objects, each of which
is moving toward a different, stationary green object.21 ere are
thus multiple objects in the scene that fit the description of the
phrase (test G89 in Table 4.7). Figure 4.10 shows how the activa-
tion in the model evolves over the course of the test. It is structured
analogously to Figure 4.8 with the addition of a panel (seventh row)
that shows the activation of the relational candidates field at four
points t1, . . . , t4 in time. e activation of the relational candidates
field is visualized using the same color map (bottom right of Fig-
ure 4.10) as all other color-coded plots.

At the beginning of the test, the model is already being simu-
lated and is receiving visual input from the video. As task input,
the user activates the target color memory node for the color ,
the reference color memory node for the color , and the spa-
tial relation memory node for the spatial relation . is
corresponds to the phrase “the red object moving toward the green
object”. e user then initiates the grounding process by activating
the prior intention node of the ‘ground relation process’. As in the
previous example, the target process (blue line in top panel of Fig-
ure 4.10) and spatial relation process (green line) activate first. At
time t2 (second column), the target process has brought one of the

116



4.1 Grounding tasks

F .: Grounding the phrase “the red
object moving toward the green object” in a
scene that features multiple objects fitting that
description. See text for more detail.

red objects in the scene into the attentional foreground and forms
a representation of its spatial location in the target field (fifth row).
Since the selection between the two red objects is based on their
saliency only, the model selects the lower object. While forming a
representation of its spatial position, the model also extracts the mo-
tion direction of the selected red object (not shown in Figure 4.10).
e spatial relation process activates the spatial relation production
node for the spatial relation  (fourth row; abbreviated “twd”
in the first column), which projects into the spatial relation CoS
field (last row) via patterned synaptic connections.
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22e relational candidates field was left out
in the explanation of previous examples be-
cause for stationary scenes the activation there
is largely similar to that of the spatial relation
CoS field.

At time t3 (third column), the reference process is active (yellow
line in top panel) and has brought all green objects in the scene
into the attentional foreground. eir positions are represented
in the reference field (sixth row). As explained in previous exam-
ples, the relative position of the target object (represented in the tar-
get field) with respect to all possible reference objects (represented
in the reference field) is established by the spatial transformation,
which projects into the relational candidates field (seventh row).22
Projecting into the spatial relation CoS field (last row), the acti-
vation in the relational candidates field is transformed once more,
essentially rotating the representation around the center of the field.
e angle by which it is rotated is determined by the motion direc-
tion previously extracted from the object that is represented in the
target field. us, the position of the bump input in the spatial re-
lation CoS field always moves in a fixed direction. e activation in
the spatial relation CoS field is plotted in Figure 4.10 such that ob-
jects moving in the scene move upward in the plot. Since the spatial
relation CoS field is defined such that the position of the reference
object is at the center, the positions of objects that move toward the
reference object lie below it. us, the synaptic connection pattern
that encodes the perceptual meaning of the spatial relation 
is shaped to match a region below the center. Both bump inputs
from the relational candidates field fall into that region in the spa-
tial relation CoS field, but one of the bumps fits the relation better
and forms a peak, suppressing the other. e peak that remains in
the field is transformed back and projected into the spatial atten-
tion system, bringing the selected green object into the attentional
foreground while suppressing the other green object.

Note that at time t3 and t4, the spatial relation production nodes
for the spatial relation  is active alongside the one for the spa-
tial relation . is is because the patterned synaptic connec-
tions between the spatial relation CoS field and the spatial relation
production nodes are very similar for these two spatial relations and
the peak in the field activates both nodes. However, only the spa-
tial relation memory node for the spatial relation  is active.
While multiple production nodes may be active at the same time,
the selective memory nodes represent the grounding of the model.

At time t4 (fourth column), the grounding of the phrase “the red
object moving toward the green object” has been established. ere
is a peak in the target field, representing the spatial position of the
selected target object, the lower of the two red objects in the scene.
Analogously, the peak in the reference field represents the spatial
position of the selected reference object, also the lower of the two
green objects in the scene. e model has selected one of the two
pairs of objects fitting the description. e fact that it selected the
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23e video used in this test is video 2.02d.
Please refer to Appendix C, in particular Fig-
ure C.15 for more information.

lower pair is likely due to the perspective distortion of the camera
input, which makes objects in the lower part of the scene appear
larger and thus more salient. However, in selecting the reference
object, the influence of the specified spatial relation is a larger bias.
us, the reference object is selected not only because it is more
salient but rather because it fit the specified relation better than the
other green object in the scene (which the red object is also moving
toward, only less directly).

Example with no target

e following example describes the processes that unfold in the
model when it grounds the phrase “the red object moving toward
the green object” in a scene where no such object exists (test G78 in
Table 4.6). e scene contains a red and a green object, but the red
object is moving away from the (stationary) green object, instead
of toward it.23 Figure 4.11 shows how the activation in the model
evolves over the course of the test. It is structured analogously to
Figure 4.9.

At the beginning of the test, the model is already being simu-
lated and is receiving visual input from the video. As task input,
the user activates the target color memory node for the color ,
the reference color memory node for the color , and the spa-
tial relation memory node for the spatial relation . is
corresponds to the phrase “the red object moving toward the green
object”. e user then initiates the grounding process by activating
the prior intention node of the ‘ground relation process’. As in the
previous example, the target process (blue line in the top panel of
Figure 4.11) and spatial relation process (green line) activate first.
At time t2 (second column), the target process has brought the red
object in the scene into the attentional foreground and has formed
a representation of its spatial location in the target field (fifth row).
e activation in the target field is projected onto the target IOR
field (sixth row), which has strong self-excitation and forms a self-
sustained peak. e spatial relation process activates the spatial rela-
tion production node for the relation  (fourth row), which
projects into the spatial relation CoS field (eighth row) and spatial
relation CoD field (last row) via patterned synaptic connections.

At time t3 (third column), the reference process is active (top
panel, yellow line) and has brought the green object into the at-
tentional foreground. It forms a peak in the reference field (seventh
row). e spatial relation CoS field (eighth row) and spatial relation
CoD field (last row) receive input from the spatial transformations
(both shift and rotation). As explained in the previous example, the
input reflects the spatial position of the red object with respect to
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F .: Grounding the phrase “the red
object moving toward the green object” in a
scene where no such object exists. See text for
more detail.

the green object, rotated such that its motion direction points up-
wards in the plot. e red object is moving away from the green
object. In the figure, this is visible by the bump input in the spa-
tial relation CoS field and spatial relation CoD field (last two rows)
being above the center. us, the subthreshold bump in the spatial
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relation CoS field does not overlap with the input from the spatial
relation production node and cannot form a peak. However, the
input does form a peak in the spatial relation CoD field. As soon
as there is a peak (shortly after t3), the reset process is activated. As
explained before, this activates a suppression node that inhibits all
other processes (see top panel) and large parts of the model. After-
ward, the grounding process begins anew, starting with the target
process and the spatial relation process becoming active.

At time t4 (fourth column), both processes are active and the
target process is trying to bring red objects into the attentional fore-
ground. However, the position of the only red object in the scene is
inhibited by the peak in the target IOR field (sixth row). e field
tracks the position of the moving red object and the model does
not ground the phrase until the end of the test. Nevertheless, the
model behaves as expected since it does not have a mechanism to
detect that it has checked all potential objects in the scene.

4.2 Description tasks
In description tasks a symbolic description of a scene is generated.
Depending on the scene and what is being attended to, this descrip-
tion may take on different forms and even focus on different aspects
of the scene. e model is constrained in how it generates descrip-
tions because in one description, it can only describe a single ob-
ject. For scenes that only contain one object, the model extracts all
available features (color and motion direction, if the object is mov-
ing) and generates task output that corresponds to a phrase such as
“a red object moving upward”. e model produces the task out-
put by activating memory nodes that correspond to concepts in the
phrase. In the example above, the model would activate the target
color memory node for the color  and the target motion mem-
ory node for the motion direction . For scenes that contain
multiple objects, the model describes the object that is most salient
and uses a spatial relation (or movement relation) that the object
has to one other object in the scene. e model produces relational
phrases whenever there are multiple objects in the scene, even if the
object that it is describing can unambiguously be referred to by its
color or motion direction alone. An exemplary task output would
correspond to a phrase such as “a red object that is to the left of
a green object”. e task output for this example would be given
by activating the target color memory node for the color , the
reference color memory node for the color , and the spatial
relation memory node for the spatial relation    .

e following section shows the results of systematically testing
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D1 0 0 − no object
D2 1 0 + red object, not moving
D3 1 0 + green object, not moving
D4 1 1 + red object, moving upward
D5 1 1 + green object, moving leftward

Table 4.8: Tests of description tasks with
scenes that contain atmost a single object. See
text for detail.

the model on description tasks with 15 qualitatively different scenes.
Each of the 15 tests is referred to with an identifier (D1,…,D15). In
all cases, the user only activates the describe process. Once activated,
the model autonomously generates a symbolic description of the
scene without further intervention by the user.

4.2.1 Single objects
e first set of tests establishes that the model is able to attend to
single objects and describe their features. In all tests, there is at
most a single object in the scene. e tests vary in the color of
the object, its spatial position, its motion direction, and whether it
moves at all. Table 4.8 lists all of these tests (D1,…,D5). In the
columns from left to right, it shows the identifier of the test, the
total number of objects, the number of moving objects, whether or
not a target object can be described in the scene (marked with ‘+’
or ‘−’, respectively), as well as a language description of the visual
scene.

e results of the tests show that if there is an object in the
scene, the model correctly extracts all features of that object that are
available in the scene (D2,…,D5). at is, if the object is station-
ary, the model extracts its color; if the object is moving, the model
additionally extracts its motion direction. e model also forms rep-
resentations of the object’s spatial position, but does not extract it as
part of the symbolic description. However, this is expected since the
model does not have a way to express discrete concepts of absolute
spatial positions.

If there is no object in the scene (D1), the model does not gen-
erate a symbolic description, nor does it do anything else. As pre-
viously mentioned, there is no mechanism to detect that the scene
does not contain any objects. It is thus the expected behavior of

122



4.2 Description tasks

24e video used in this test is video 1.01.
Please refer to Appendix C, in particular Fig-
ure C.4 for more information.

25See Figure 3.14.

26e selective spatial attention field also re-
ceives excitatory input from the spatial atten-
tion process, which the target process acti-
vates. Without that additional input, it would
not be able to form peaks.

the model to remain in its state indefinitely until an object with a
saturated color appears.

Example of describing a scene with a single object

e following example describes the processes that unfold in the
model when it describes a scene that contains a single red object
that is moving upward (test D4 in Table 4.8).24 e task of the
model is thus to bring the object into the attentional foreground
and extract the available features (color and motion direction). Fig-
ure 4.12 shows how the activation in the model evolves over the
course of the test. It is structured analogously to previous figures, in
particular Figure 4.4. In addition, the top panel shows the activa-
tion of the intention node (yellow line) and CoS node (violet line)
of the reference process. Moreover, an additional panel (seventh
row) shows the activation of the selective spatial attention field at
four points t1, . . . , t4 in time. e activation of the field is visual-
ized using the same color map (bottom right of Figure 4.12) as for
all other plots.

At the beginning of the test, the model is already being simu-
lated and is receiving visual input from the video. As task input, the
user activates the prior intention node of the describe process. e
intention node of the describe process, which activates shortly after,
gives input to all processes on the next lower hierarchical level, as
well as a few on even lower levels, each of which controls an aspect
of describing the scene.25 e intention node also gives excitatory
input to the target color memory nodes and the target motion mem-
ory nodes (transparent bars in the third and fourth row, first column
of Figure 4.12), bringing them into a dynamic regime where they
can be activated by their corresponding production node.

At time t1 (first column), the target process is active (blue line
in the top panel). It gives a homogeneous excitatory input to the se-
lective spatial attention field26 and the multi-peak spatial attention
field, bringing them into a dynamic regime where they can create
peaks from the localized input they receive from the color/space
perception field and the motion/space perception field. e spatial
position at which peaks form thus depends entirely on the strength
of the input, which reflects the salience of the objects in the scene.
e selective spatial attention field forms a peak at the spatial loca-
tion of the red object (seventh row). is activation projects into the
three-dimensional color/space attention field (fifth row) and mo-
tion/space attention field (sixth row). In these fields, the input is
localized along the spatial dimensions x, y, centered on the spatial
position of the red object, and it is homogeneous along the other
feature dimensions of the fields (color c and motion direction ϕ, re-
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F .: Generating a description of a
single object in a scene; the object is red and
moving upward. See text for more detail.

spectively). In the plots in Figure 4.12, the input shows up as thick,
vertical lines. e input overlaps with the subthreshold bumps that
stem from the red object in the scene.

At time t2 (second column), both the color/space attention field
and motion/space attention field have formed a peak at the spatial
position and respective feature value of the red object. ese peaks
are projected onto the color CoS field (not shown), which is de-
fined over color c and the motion CoS field (not shown), which is
defined over motion direction ϕ and form peaks there. ese fields
project their activation onto the target color production nodes and
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target motion production nodes, respectively, and activate them. At
time t2, the target motion production node for the motion direction
 is just about to become active. e target color production
nodes are still below threshold but the node for the color  will
be activated shortly after (see third row at time t3). e spatial posi-
tion of the red object is also represented by a peak in the target field
(last row), which receives activation from the multi-peak spatial at-
tention field (not shown).

At time t3 (third column), both the target color production node
for the color  and the target motion production node for the
motion direction  are active (third and fourth row). What
happens next is very similar to the grounding tasks discussed earlier.
e active production nodes brings up peaks in the color attention
field and motion attention field (both not shown), which give input
to the color/space attention field and motion/space attention field
(visible as horizontal lines in the fifth and sixth row). Moreover, the
active production nodes activate their respective memory nodes to
form task output that corresponds to the phrase “a red object mov-
ing upward”. At this moment, the model has generated a symbolic
description of the scene. It has extracted the correct color and mo-
tion direction of the object and classified them by activating nodes
that correspond to discrete concepts.

At time t4 (fourth column), the target process has successfully
finished and deactivated (top panel). As a result, all production
nodes that are associated with the target have deactivated as well
(third and fourth row). Most of the fields in the model have re-
turned to below threshold. Only the target field (last row) still holds
a stable peak that represents the spatial position of the red object.
e same is true for the target IOR field, the color/space percep-
tion field, and the motion/space perception field (all not shown).

After the target process is deactivated (and the clean process
is also successfully finished), the reference process is activated. Fig-
ure 4.12 shows that it remains active until the end of the test (yellow
line in the top panel). is is the expected behavior of the model.
ere is no mechanism that detects that there is only a single object
in the scene. us the model always activates the reference process
in order to describe a relation. If the scene only contains a single
object, like in the current example, the model activates the reference
process and remains in this state indefinitely.

4.2.2 Relations between objects
e second set of tests establishes that the model is able to describe
an object by a spatial relation or a movement relation it has with
respect to another object that is present in the scene. In all tests,
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D6 2 0 + relations between objects fit well into spa-
tial terms

D7 2 0 + relations between objects do not fit well
into spatial terms

D8 3 1 − moving toward a region without objects
D9 3 1 + moving toward another object

D10 3 1 + moving away from another object
D11 3 1 + moving away from one and toward another

object
D12 4 2 + two objects moving toward two different

objects
D13 4 2 + two objects moving away from different ob-

jects
D14 4 2 + two objects moving toward each other
D15 4 2 + two objects moving away from each other

Table 4.9: Tests of description tasks with
scenes that contain multiple objects. See text
for detail.

there are multiple objects in the scene. e tests vary in the num-
ber of objects and their spatial configuration as well as their motion
direction with respect to each other. Table 4.9 lists all of these tests
(D6,…,D15). In the columns from left to right, it shows the iden-
tifier of the test, the total number of objects, the number of moving
objects, whether or not a target object can be described by a rela-
tion in the scene (marked with ‘+’ or ‘−’, respectively), as well as a
language description of the visual scene.

e results of the tests show that in all cases where the most
salient object can be described by a spatial relation ormovement rela-
tion, the model correctly selects both a target object and a reference
object and extracts their available features as well as their relation.
In case the target object is stationary, the model describes it in terms
of a spatial relation (e.g.,    ,    ) to the
reference object (D6,D7). In case the target object is moving, the
model describes it using a movement relation (e.g., , )
with respect to the reference object (D9,…,D15). e model makes
selection decisions as to what it describes in the scene: as target ob-
ject, the model selects the most salient object in the scene; as refer-
ence object it selects the object that fits best to any spatial relation
or movement relation with respect to the target object.
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27e video used in this test is video 2.00a.
Please refer to Appendix C, in particular Fig-
ure C.7 for more information.

28See Figure 3.14.

If there aremultiple ways to describe the scene, themodel selects
one coherent form. For instance, in test D11, the scene could either
be described as a red object moving toward a green object, or as a
red object moving away from a blue object.

If the model has selected a target object and candidates for refer-
ence objects, but their relation does not match any of its relational
concepts, the model does not generate a description and tries an-
other object as the target object (D8).

Example of describing a static scene with multiple objects

e following example describes the processes that unfold in the
model when it describes a scene that contains two stationary ob-
jects, a red object that is to the left of a green object (test D6 in
Table 4.9).27 e task of the model is to describe one of the objects
in terms of its spatial relation to the other object. Figure 4.13 shows
how the activation in the model evolves over the course of the test.
It is structured analogously to Figure 4.8.

At the beginning of the test, the model is already being simu-
lated and is receiving visual input from the video. As task input, the
user activates the prior intention node of the describe process. e
intention node of the describe process, which activates shortly after,
gives input to all processes on the next lower hierarchical level, as
well as to a few on even lower levels, each of which controls an as-
pect of describing the scene.28 e intention node also gives excita-
tory input to the target color memory nodes and the reference color
memory nodes (transparent bars in the third row, first column),
bringing them into a dynamic regime where they can be activated
by their corresponding production node. Moreover, it gives input
to all spatial relation production nodes (solid bars in the fourth row,
first column). e spatial relation production nodes that represent
spatial relations (i.e.,    ,    , ,
) receive excitatory input and are activated while the spatial
relation production nodes that represent movement relations (i.e.,
, ) receive inhibitory input and remain below thresh-
old. Please note that the spatial relationmemory nodes (transparent
bars, fourth row) are not yet in a dynamic regime where they can be
activated by their respective production nodes.

At time t1 (first column), the target process and the spatial re-
lation process are active (top panel in Figure 4.13). As in the previ-
ous example, the intention node of the target process gives excita-
tory input to all target color production nodes (third row, left side).
Moreover, the intention node activates the perceptual boost process,
which gives homogeneous excitatory input to both the selective spa-
tial attention field and the multi-peak spatial attention field (neither
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F .: Generating a description of an
object using a spatial relation with respect to
to a second object. See text for more detail.

is shown). Because the spatial attention process is active, the selec-
tive spatial attention field is in a dynamic regime where it can form
a peak. It makes a selection decision for the most salient object and
forms a peak that is centered on the red object. e multi-peak
spatial attention field forms a peak at the same spatial position and
projects its activation into the target field (fifth row). At the same
time, all active spatial relation production nodes project into the
spatial relation CoS field via patterned synaptic weights, forming a
subtreshold pattern of activation that has larger values in areas that
match the known spatial relations (last row).

At time t2 (second column), the target color production node
for the color  has been activated (third row, left side). is hap-
pened, as in the previous example, because the peak in the selective
spatial attention field projects into the color/space attention field,
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forming a peak there at the position and feature value of the red
object. In turn, this peak projects into the color CoS field, forming
a peak there at the position coding for red colors. e peak in this
field activates the target color production node for the color .
is in turn activates the target color memory node for the same
color. Since the red object is not moving, its motion direction is
not extracted and none of the target motion production nodes is
activated (not shown).

At time t3 (third column), the target process has been deacti-
vated and the reference process is active (top panel). Its intention
node gives excitatory input to all reference color production nodes,
bringing them into a dynamic regime where they can be activated
(third row, right side). Again, the perceptual boost process is acti-
vated and gives homogeneous, excitatory input to the selective spa-
tial attention field and the multi-peak spatial attention field. How-
ever, since the reference process does not also activate the spatial
attention process, the selective spatial attention field remains below
threshold and only the multi-peak spatial attention field is able to
form a peak. Since it also receives inhibitory input from the target
IOR field (not shown), which has formed a peak at the position of
the red object, it forms a peak at the position of the remaining green
object. Its activation is projected into the reference field, which also
forms a peak (sixth row). Since only the selective spatial attention
field projects back into the color/space attention field (andmotion/s-
pace attention field), the color feature of the green object can not
yet be extracted. rough the spatial transformations, the spatial re-
lation CoS field receives a subtreshold bump input that reflects the
relative position of the red object with respect to the green object.
At time t3, a peak is forming at that position because the subthresh-
old bump overlaps with subtreshold input that encodes the mean-
ing of the spatial relation     (last row). Due to this
overlap, the spatial relation production node for the same spatial
relational concept receives excitatory input and gets a competitive
advantage over the other spatial relation production nodes (fourth
row). e peak in the spatial relation CoS field activates the CoS
node of the spatial relational field process. is inhibits two precon-
dition nodes. e first enables the ‘spatial memory node process’
to become active, giving homogeneous input to all spatial relation
memory nodes. Since they are mutually coupled with inhibitory
connections, this leads to a selection decision, where only the node
with the strongest input is activated. At time t3, the nodes have
not yet received this input, but it is visible that the spatial relation
production node for the relation     is activated most
strongly and will activate its corresponding spatial relation memory
node. e second precondition node that is deactivated when the
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29e video used in this test is video 3.01b.
Please refer to Appendix C, in particular Fig-
ure C.21 for more information.

spatial relation CoS field forms a peak enables the spatial attention
process to become active, which brings the selective spatial atten-
tion field into a regime where it can form a peak. It receives input
both from the color/space perception field and, indirectly, from the
spatial relation CoS field (via the inverse transformations). Both
inputs are localized and centered on the position of the green ref-
erence object, forming a peak in the selective spatial attention field.
Its activation is projected into the color/space attention field, which
in turn projects into the color CoS field. is activates the refer-
ence color production node for the color , which has not yet
happened at time t3.

At time t4 (fourth column), the reference process is deactivated
(top panel). Before the process deactivated, the reference color pro-
duction node for the color  activated its corresponding mem-
ory node, which now remains active. Similarly, the spatial relation
memory node for the relation     has activated because
it received the strongest input from its corresponding spatial relation
production node. At this moment, the model has generated a sym-
bolic description of the scene by activating the target color memory
node for the color , the reference color memory node for the
color , and the spatial relation memory node for the relation
   . is task output corresponds to the phrase “a red
object to the left of a green object”.

Example of describing a dynamic scene with multiple objects

e following example describes the processes that unfold in the
model when it describes a scene that contains a stationary blue ob-
ject, a stationary green object, and a red object that is moving toward
the green object (test D9 in Table 4.9).29 Figure 4.14 shows how
the activation in the model evolves over the course of the test. It
is structured analogously to Figure 4.13 with an additional panel
(seventh row) that shows the activation of the relational candidates
field at four points t1, . . . , t4 in time. e activation of the field is
visualized using the same color map (bottom right of Figure 4.14)
as for all other plots.

At the beginning of the test, the model is already being simu-
lated and is receiving visual input from the video. As task input, the
user activates the prior intention node of the describe process. e
processes that subsequently happen in the model are very similar to
the previous example.

At time t1 (first column), since the model detects motion in the
scene, the spatial relation production nodes receive additional in-
put to the one they are receiving from the intention node of the
describe process. Inversely to that input, the spatial relation pro-
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F .: Generating a description of an
object using a movement relation with respect
to a second object. See text for more detail.

30See Section 3.4.

duction nodes that represent spatial relations (i.e.,    ,
   , , ) receive inhibitory input while the
spatial relation production nodes that represent movement relations
(i.e., , ) receive excitatory input.30. is activates the
latter nodes while the former remain below threshold. e nodes
project into the spatial relation CoS field via patterned synaptic con-
nections, forming a subtreshold pattern of activation that has larger
values in areas that match the known spatial relations (last row). e
selective spatial attention field forms a peak at the position of the
red object; it is the most salient object in the scene because it is mov-
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31See previous example.

ing. Its spatial position is then represented as a peak in the target
field (fifth row).

At time t2 (second column), the color feature of the red object
has been extracted. is is visible by the active target color produc-
tion node and target color memory node of the color  (third row,
left side). e model has also extracted the movement direction of
the object and has activated the target motion production node and
target motion memory node of the motion direction  (not
shown). Even though the red object is not moving straight upward,
that concept of motion direction fit best.

At time t3 (third column), the target process is deactivated and
the reference process is active. It is bringing all remaining objects
in the scene into the attentional foreground, which form peaks first
in the multi-peak spatial attention field (not shown) and later in the
reference field (sixth row). rough the spatial transformations, the
relational candidates field (seventh row) receives input that reflects
the position of the target object (represented in the target field) with
respect to all reference objects (represented in the reference field).
In projecting into the spatial relation CoS field (last row), the repre-
sentation in the relational candidates field are transformed further,
essentially rotating them around the center of the field. e angle of
rotation is determined by the motion direction of the target object,
which has been extracted earlier. In the spatial relation CoS field,
one of the subthreshold bumps of activation overlaps with the sub-
threshold pattern of activation that encodes the relational concept
 (the lower, triangle-shaped area) and forms a peak. e
field makes a selection decision for this spatial position and inhibits
the other subthreshold bump. rough inverse transformations, the
activation of the spatial relation CoS field is transformed back into
the selective spatial attention field, where it overlaps with the spa-
tial position of the green object in the scene. Since the peak in the
spatial relation CoS field has also enabled the spatial attention pro-
cess to become active,31 the selective spatial attention field is able
to form a peak and focus the attention of the model onto the green
object alone. is leads to the peak that used to be at the spatial
position of the blue object to disappear in the reference field.

At time t4, this also enables that the feature of the selected refer-
ence object is extracted through the color CoS field (which receives
activation from the color/space attention field). e reference color
production node for the color  is activated (already inactive
at time t4), which in turn activates its corresponding reference color
memory node (third row, right side). Similarly, the peak in the
spatial relation CoS field has activated the spatial relation memory
node for the relation .

At thismoment, themodel has generated a symbolic description
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of the scene by activating the target color memory node for the color
, the target motion memory node for the motion direction -
, the reference color memory node for the color , and
the spatial relation memory node for the relation . is
task output corresponds to the phrase “a red object that is moving
upward and toward a green object”.
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Discussion 5

e research objective of this thesis is to capture the neural pro-
cesses of the following three aspects of perceptual grounding: (1) ex-
pressing spatial and movement relations (both basic and deictic) in
continuous perceptual representations, (2) establishing a mapping
between these continuous perceptual representations and discrete
representations that may interface with language, and (3) organiz-
ing all grounding processes autonomously and based only on neural
principles—a particular focus of this work.

e main contribution of this thesis is a neural process model
(Section 3) that captures these three aspects of perceptual grounding.
A first aspect of this contribution is conceptual work that refines the
core component processes that are required for the grounding and
describing of spatial and movement relations. is is discussed in
detail in the first section of this chapter. A second section discusses
more specific contributions of the model and this thesis. ese con-
sist of novel neural dynamic implementations that extend previous
model of dynamic field theory (DFT) as well as further conceptual
and methodological contributions. e chapter is concluded by a
discussion of the limitations of this work, as well as suggestions for
future research.

5.1 Core component processes
Grounding a phrase in a scene as well as generating a description
of a scene require that a number of core component processes are
performed. Each of these processes represents a fundamental prob-
lem that needs to be solved. e model presented in this thesis
explicitly addresses all of these processes, except for the processing
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of natural language. Related computational models of grounding
also address some of these processes but tend to solve the underly-
ing problems in a different way, most often algorithmically. is
section discusses how the core component processes of grounding
spatial and movement relations are addressed in the current model
and in related work.

Grounding and description tasks consist of the same component
processes but require a different sequential order and thus a differ-
ent process organization. is is because grounding maps a given
conceptual representation to a continuous representation while de-
scribing establishes the connection in the opposite direction. e
following discussion of the core component processes assumes the
sequential order of a grounding task, starting from language input.

5.1.1 Language processing
e process of grounding begins with language input, for instance
a phrase such as “the red object to the left of the green object”.
If the language input were natural spoken language, it would re-
quire parsing the audio stream into recognized words and build-
ing up a grammatical structure for the sentence. is process is
often strongly simplified or not addressed at all in models of ground-
ing because it adds too much complexity; the model proposed here
is no exception. To be able to work with natural language input,
some models connect to (algorithmic) commercial speech recogni-
tion software (Gorniak & Roy, 2004; Lallee & Dominey, 2013)
and use, for instance, context free grammar to describe the gram-
matical structure of the given sentence (Roy, 2005b). e words
that result from such a speech recognition system can be connected
to discrete concepts by learning connections in associative memory
networks (Dominey & Boucher, 2005b; Steels & Belpaeme, 2005).
Alternatively, the process can be simplified further by connecting
written instead of spoken words with discrete concepts (Cangelosi
& Riga, 2006). is is also the level at which recent approaches
based on convolutional neural networks (CNNs) operate to gener-
ate image captions—learning the connection between images and
written words (e.g., J. Johnson et al., 2016).

e proposed model simplifies the process of language process-
ing to a similar degree. Here, it is assumed that natural language
phrases have already been parsed and their discrete concepts and
corresponding roles have been extracted. Concepts are represented
bound to their roles (i.e., target or reference) in a structure of dy-
namic neural nodes. e process of grounding is thus modeled be-
ginning from an amodal representation of concepts, not from lan-
guage. Concepts that refer to features, such as color or motion direc-
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tion, correspond to open-class words, content words that are open
to new members. Representing concepts by patterned connections
between nodes and fields ensures that new concepts can easily be
learned based on neural learning rules. e nodes would either have
direct, patterned connections to fields, or they could be grounded
indirectly based on other nodes (Cangelosi &Harnad, 2001). Some
concepts that correspond to closed-class words can also be expressed
by concept nodes, as shown here for the spatial and movement re-
lations. However, it is assumed that most other closed-class words,
such as conjunctions or determiners, would not be expressed as con-
cept nodes. Instead, they would influence the process organization
system or the attentional system. is is similar to how Dominey
and Boucher (2005a) employ closed-class words to form a represen-
tation of a grammatical construction or how Roy (2005b) uses them
to determine speech act classes: they shape how open-class words
in a phrase are grounded.

5.1.2 Concept grounding
Grounding language entails that a mapping is established between
amodal representations of concepts, such as , and their percep-
tual meaning in continuous representations. In the current model,
the mapping is encoded in bidirectional patterned synaptic connec-
tions between dynamic neural nodes, which by themselves corre-
spond to amodal representations, and dynamic neural fields, which
hold continuous perceptual representations. e dynamic neural
nodes thus enable a categorization of the continuous representation
into discrete concepts. e implementation corresponds to a genera-
tive model of categories (Roy, 2005a), as the patterned connections
between node and field can be thought of as establishing a proto-
type of a concept that can be instantiated. Here, it is assumed that
the patterned connections are fixed and already known to the sys-
tem, but the substrate they are based on is open to learning. e
model implements concepts of color, motion direction, spatial rela-
tions, and movement relations. In the results, this mapping is for
instance shown in Figure 4.1 (page 88) for the color concept :
the production node representing  is active and projects onto
the color attention field.

In DFT models, concepts are typically encoded in this way, in
particular in previous models of spatial language (e.g., Lipinski et
al., 2012). Other models employ similar ideas. Steels and Belpaeme
(2005) use feedforward adaptive networks, a modification of radial
basis function networks, for the grounding of colors. Each color cat-
egory is determined by a dedicated adaptive network, which maps
the input in a three-dimensional color space to a discrete category
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via patterned connections. Similarly, Cangelosi and Riga (2006)
employ feedforward neural networks to ground actions, where they
learn the connections in the network to map discrete action words
to joint angle values of a simulated robot.

Recent fast-paced development in object recognition and im-
age captioning is largely driven by convolutional and recurrent neu-
ral networks that learn the mapping between perceptual representa-
tions and discrete labels (J. Johnson et al., 2016; Karpathy & Fei-
Fei, 2017). e training data consists of large collections of images
that have been labeled or captioned by humans. While inspired
by neural ideas, the focus of these models is on solving problems
rather than on keeping with neural realism. e models are often
combined with probabilistic formulations and algorithmic solutions.
eir impressive performance is a result of the availability of large
training data sets and cheap computational power.

e Semantic Pointer Architecture Unified Network (SPAUN)
model developed by Eliasmith et al. (2012) learns discrete concepts
of handwritten digits from images using auto-encoders based on
Restricted Boltzman Machines. e entire model is based on spik-
ing neurons. Concepts (e.g., the number ‘5’) are represented by se-
mantic pointers, high-dimensional vectors that are compressed rep-
resentations of much higher-dimensional input (e.g., images). e
vectors retain compressed information of what they represent and
can thus be compared to other semantic pointers to get a similarity
measure. In this view, their representation of concepts still retains
some perceptual information and is not entirely symbolic. Like the
majority of models, they currently only use a single modality, vision.
Lallee and Dominey (2013) link multiple representations of differ-
ent modalities in an amodal convergence map, a winner-take-all
pool of neurons, whose connection to the modality-specific repre-
sentations is learned. is is similar to what is proposed here, where
the amodal convergence map corresponds to the dynamic neural
concept nodes. e difference is that their model contains multiple
modalities, something not yet addressed here.

Some work employs similar ideas, even though the underlying
implementations may be algorithmic and not neurally motivated.
A purely algorithmic solution is used by Gorniak and Roy (2004),
whose model expresses the perceptual meaning of colors by a prob-
ability density function in the three-dimensional RGB space (Gor-
niak & Roy, 2004). In other cases, the solution seems to be al-
gorithmic but is not further specified (Dominey & Boucher, 2005a;
Madden et al., 2010). Roy (2005b) uses an algorithmic implementa-
tion as well but describes his model based on the structural principle
of schemas, which are composed of analog and categorical beliefs.
Analog beliefs hold values defined over entire continuous feature di-
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mensions and are a similar form of representation as dynamic neural
fields. Categorical beliefs represent discrete categories or states, anal-
ogous to dynamic neural nodes. Different types of connections be-
tween analog beliefs, categorical beliefs, and the sensorimotor layer
are established by projections. ese correspond to different types
of synaptic connection patterns in DFT. e parallels between the
work by Roy (2005b) and DFT raise hope that similarly impressive
architectures may be constructed based on neural dynamics.

5.1.3 Role-filler binding
roughout the process of grounding, the binding between roles
and their fillers must be maintained. In the model proposed here,
roles are “target” and “reference”, whereas fillers are certain features
of objects or the objects themselves. Different parts of the model
implement the binding between roles and fillers in different ways.
In the memory nodes and production nodes that represent concepts
of color and motion direction, the binding is achieved by conjunc-
tive coding, explicitly representing a conjunction of role and filler.
e target field and reference field use the same principle and bind
the spatial position of the target and reference object to the role that
is implicit to the fields. is is, for example, shown in Figure 4.8
(page 111), where the red target object is represented in the target
field and the green object is represented in the reference field. e
model establishes a connection between the representation in the
nodes and the perceptual representation in the fields through the
three-dimensional color/space attention field and motion/space at-
tention field. However, since these fields do not encode the roles
of objects, the binding between role and filler cannot be expressed
in these fields alone. Because of this, the binding is maintained
through simultaneous activation: the model sequentially brings first
the target object into the attentional foreground, while at the same
time bringing the target field into a dynamic regime where it can
form a peak. It then repeats that process analogously for the refer-
ence object. e sequentiality is solved through the process organi-
zation system; it ensures that only the field for the currently active
role (i.e., target or reference) is in a dynamic regime where it can
form a peak.

In computational models of grounding, the role-filler binding
problem is typically not discussed. ismay be because amajority of
the models build on algorithmic methods, where role-filler binding
does not present itself as a problem because new variables can easily
be created.

In symbolic accounts of cognition, the binding between roles
and fillers is not a problem either. For instance, in the relation
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(, ),  and  are fillers and the slots in the
function  determine the roles. Here, roles and fillers are in-
dependent and any kind of filler can fill any slot, unless constrained
otherwise. is role-filler independence is required formodels to ex-
press both relations as well as symbolic representations (Hummel,
2011).

For neural networks, Hummel (2011) discusses different forms
of role-filler binding. He argues that neural network approaches
must rely primarily on dynamic binding (e.g., by synchronous fir-
ing) instead of conjunctive coding because it preserves role-filler in-
dependence. However, in these discussions, it is usually assumed
that roles have a semantic content (Hummel & Holyoak, 2003,
2005; Doumas & Hummel, 2005). at is, in order to express
(, ), the relationmust be represented by the binding
of + and +, where , , but also
, and  are expressed by some neural population. is
way, the role , has to be bound to the filler . is type
of binding is also used in the work by Eliasmith et al. (2012). Inter-
estingly, he uses conjunctive coding to bind two semantic pointers
together. e high-dimensional vector space, in which the seman-
tic pointers are defined, enables that the bound representations are
unbound at a later point in time. is shows that role-filler inde-
pendence can be achieved even with conjunctive coding.

Although the model introduced in this thesis does face the prob-
lem of maintaining the binding between a role and an object, the
problem is different from the role-filler binding problem as stated
above. In the model proposed here, roles do not have a semantic
content. ey are thus much closer in spirit to the slots in symbolic
architectures as they are to the connectionist ideas of how roles must
be expressed (Doumas & Hummel, 2012). is is because roles
are represented here by dedicated neural populations that can ex-
press the semantic content of a filler, for instance, the target field
expressing the spatial position of the target object. e fact that
they also represent a role is defined only implicitly, by the connec-
tions to other fields. In the model, roles do not have an additional
semantic meaning; their meaning is determined by the relational
template. For example, if the model expresses the spatial relation
“the red object to the left of the green object”, then the meaning of
the target role is that it describes the object that is to the left of the
reference object.

5.1.4 Attention
Apprehending spatial relations between objects requires that those
objects are brought into the attentional foreground (Logan, 1994).
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Given a phrase that describes an object, for instance “the red object
to the left of the green object”, the current model employs the given
features and spatial relations for visual search. e given features
of the objects are brought into the attentional foreground in a top-
down manner, guiding attention to objects that have these features.
is is shown in Figure 4.1 (page 88), where attention is focused on
red colors and, as a consequence, the red object is attended to.

e attentional system is similar to those in previous models
of spatial language (Lipinski et al., 2012; van Hengel et al., 2012)
and represents a simplified version of part of a more complex model
of scene representation (Schneegans, Spencer, & Schöner, 2015).
It also corresponds to the “guidance” input in the Guided Search
model for visual search (Wolfe, 2007), which guides the deployment
of attention. e selective bottleneck he posits in visual attention is
implemented by the selective spatial attention field.

Additionally to the top-down stream of input, which enables vi-
sual search, a bottom-up input reflects the saliency of objects. Fig-
ure 4.13 (page 128) shows that the model can bring an object into
the attentional foreground based on bottom-up input alone. In the
figure, the red object is perceived as more salient than the green ob-
ject. Saliency is based on the color saturation of the object and also
whether it is moving or not. Dominey and Boucher (2005b) also
use recent motion as a primary measure of bottom-up attention in
their model. e bottom-up input of this model’s attention system
is discussed in some more detail in Section 5.2.1.

When searching for multiple objects that adhere to a certain
spatial relation, each object must be attended to individually and
sequentially (Franconeri et al., 2012). e results show that the
current model abides by this constraint: in Figure 4.8 (page 111)
attention is first focused on the red object and then on the green
object. e sequentiality is functionally required in the model be-
cause there is only a single three-dimensional attention field for each
feature, which limits feature search to a single feature per feature di-
mension. Searching for multiple features (e.g., red and green) at the
same time potentially creates binding errors, where the binding be-
tween the color and the associated role (e.g., target or reference) is
lost. is is because the three-dimensional attention fields bind dif-
ferent features into a coherent object representation through shared
spatial dimensions, a solution to the fundamental neural binding
problem (Treisman & Gelade, 1980). In a previous version of the
spatial language model, parallel search for multiple features was pos-
sible because there were independent feature search mechanisms for
target and reference (Lipinski et al., 2009). Lipinski et al. (2012)
introduced a single feature search mechanism and maintained the
binding by searching for the target and reference object sequentially.
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is was done manually by the user giving inputs into the model
during its performance. In the current model, the sequentiality that
solves the binding problem is implemented through the principles
of process organization, which is discussed later.

5.1.5 Working memory representations
In order to sequentially ground and attend to objects, stable repre-
sentations of these objects have to be kept in working memory. In
the model, a stable mental representation is built up for every object
that is attended to. is is shown in Figure 4.8 (page 111), where
the peak in the target field is sustained even when the attentional fo-
cus shifts to the reference object. Such sustained peaks are achieved
through lateral interactions (local excitation and mid-range inhibi-
tion) within a field. Similarly, Eliasmith et al. (2012) use recurrent
attractor neural networks to model working memory, where the re-
current connections lead to sustained activation in the absence of
input.

Additionally, it is required that working memory representa-
tions are updated when changes occur in the scene. is is shown
in Figure 4.10 (page 117), where the peak in the target field tracks
the moving object it represents. It is achieved through continuous
input from the color/space perception field and motion/space per-
ception field, which drags the self-sustained peak along the current
position of the object.

5.1.6 Reference frame transformation
One of the key challenges to apprehending spatial relations between
objects is to form a representation of their relative positions (Lo-
gan & Sadler, 1996). It is a challenge because it requires that the
reference frame of the object representations is adjusted. is is
solved in the proposed model and shown, for instance, in Figure 4.8
(page 111), where the representation of the spatial position of the
target object is brought into a space that is centered on the posi-
tion of the reference object (last row, third column of the figure);
this amounts to a transformation shifting the reference frame. In
order to apprehend movement relations between objects, the ref-
erence frame is transformed further, essentially rotating it to align
the spatial representation of the objects with the motion direction
of the target object. is is shown in Figure 4.10 (page 117) (last
row, third column). In the current model, the reference frame is
adjusted using convolution operations that approximate steerable
neural mappings (Schneegans & Schöner, 2012). Convolutions are
used here only because they are computationally less expensive than
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explicit implementations of steerable neural mappings. e way the
convolutions are used ensures they can be replaced by steerable neu-
ral mappings without impairing the functionality of themodel. is
is not true for previous DFT models, which is discussed in more de-
tail in Section 5.2.5.

e current model does not address intrinsic relations between
objects, where the spatial relation is established relative to the in-
trinsic reference frame of one of the objects. is requires that the
intrinsic reference frame has to be extracted as well, which is cap-
tured by a previous DFT model (van Hengel et al., 2012). In their
model, the rotation of the reference frame is based on the same
mechanism used here, a shift in polar coordinates using a convo-
lution. e angle by which the reference frame is rotated is deter-
mined by matching rotated versions of the reference object against
a canonical view of it.

ere is strikingly little work on the mechanisms by which spa-
tial relations between separate objects are extracted (Franconeri et
al., 2012). Most computational models of grounding that also ad-
dress spatial relations implement the adjustment of the reference
frame algorithmically and do not discuss that a neural implemen-
tation may represent a challenge (Regier, 1992, 1995; Gorniak &
Roy, 2004; Roy, 2005b; Dominey & Boucher, 2005b). is is also
true for recent architectures that employ CNNs. Take, for instance,
the task of generating a caption or description for an image, which
requires that relations between people or objects in the scene are de-
scribed. Current architectures based on CNN that solve this task
most typically do not explicitly address how relational information is
extracted from the image (J. Johnson et al., 2016; Karpathy & Fei-
Fei, 2017). e training data for the networks consists of images
and human-generated image captions, either for the entire image
or for a certain region. e given captions already contain descrip-
tions that are based on relations, for instance “man playing tennis
outside” (J. Johnson et al., 2016). It seems that the networks learn
not the explicit relations but are able to express the similarity of an
image with the description as a whole. An algorithmic solution is
used by J. Johnson et al. (2015), who directly train their model with
relational information, computed algorithmically from the position
and size of the objects’ bounding boxes. eir model finds images
that fit complex descriptions that are given not in the form of lan-
guage but as a scene graph.

Lu et al. (2016) extract relations with a CNN based on the spa-
tial arrangement of objects’ bounding boxes. is is not explained
further but seems to imply that the relative position between the
bounding boxes (and possibly their relative size) is learned. e
similarity of relations between different pairs of objects, for instance
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“man-riding-horse” and “man-riding-elephant”, is computed based
on the similarity of the labels. is is done by comparing a vector
representation of the labels.

Previous DFT models that deal with spatial relations build on
the same or similar approaches as used here. e differences and
the contribution of the current work in that regard are discussed in
Section 5.2.5.

5.1.7 Matching relations
Grounding a relational phrase entails evaluating how well the rela-
tive position of objects fits with one or multiple relations (Logan &
Sadler, 1996). is first requires a representation of the perceptual
meaning of the relations themselves (Logan & Sadler, 1996). In the
model proposed here, relations are represented by spatial templates
that are encoded as patterned connections between discrete concept
nodes and a neural field that is defined over continuous spatial di-
mensions. is is shown, for instance, in Figure 4.8 (page 111),
where the spatial template for the relation     is pro-
jected into the spatial relation CoS field. e shape of the patterned
synaptic connections is inspired by behavioral data by Logan and
Sadler (1996) and has been used in previous DFT models that ad-
dress spatial relations (e.g., Lipinski et al., 2012).

In the majority of computational models that address spatial
relations, the spatial templates are not explicitly represented. In-
stead they are tightly interwoven with algorithmic mechanisms that
match object positions to relations. In some cases, the exact al-
gorithmic method is not specified (Gorniak & Roy, 2004; Roy,
2005b). Other approaches state that they compute the match based
on how much the target object deviates from a reference orienta-
tion, for instance 90 degrees for the relation  (Regier, 1992,
1995), or that the match is based on both orientation and distance
(Dominey & Boucher, 2005b). e attentional vector sum (AVS)
model introduced by Regier and Carlson (2001) uses a measure that
is based on orientation and distance as well, but the orientation de-
pends on two components, the orientation between the respective
centers-of-mass of the target and reference object and their proxi-
mal orientation, determined by the angle of the vector between their
closest points.

In the current model and previous DFT models of spatial lan-
guage (Lipinski et al., 2009, 2012; van Hengel et al., 2012), match-
ing object positions with relations requires a more elaborate process
because it is based on explicit representations of both the relative
object positions and the spatial relation. Here, a field (spatial rela-
tion CoS field) receives subthreshold input reflecting both of these
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representations. e field forms a peak when the two inputs overlap
and signals that the objects match the spatial relation.

If the inputs do not overlap, the objects do not fit to the spa-
tial template. In this case, other objects have to be selected and the
process must be repeated. is is a form of hypothesis testing: a
hypothesis is established that the selected objects match the speci-
fied relation; this hypothesis is tested and can either be accepted or
rejected. Hypothesis testing is novel to the model proposed here
and is discussed in more detail in Section 5.2.4.

5.1.8 Process organization
e biggest challenge in creating a model that can solve all the prob-
lems named above is to organize its processes based on neural princi-
ples. is is also a core component process, albeit one that organizes
all other component processes.

Process organization includes the fundamental neural problem
of generating discrete processing steps from dynamics that evolve
in continuous real time. In DFT, instabilities in the time contin-
uous dynamics give rise to discrete events that can be used to ac-
tivate and deactivate processes (Sandamirskaya & Schöner, 2010).
In algorithmic information-processing approaches, generating dis-
crete processing steps is not a problem because the processing of
finite amounts of data inherently has a defined beginning and end
that can be used to trigger new processes. In neural approaches,
the problem of generating discrete processing steps is also often not
addressed, typically because this part is controlled algorithmically
(e.g., Cangelosi & Harnad, 2001).1

In computational models of grounding, the problem of process
organization is often ignored or not explicitly modeled. Processes
are either organized directly through common algorithmic tools or
based on structural principles. For example, in the work of Deb Roy,
which is based on schema theory, aspects of process organization are
in many cases explicitly addressed. Roy (2005b) builds its organi-
zation on top of categorical beliefs, which are discrete, conceptual
representations similar to dynamic neural nodes. ese categorical
beliefs can represent the different outcomes of actions, similar to
the condition of satisfaction (CoS) and condition of dissatisfaction
(CoD) in the model presented here. is enables both sequential
and parallel execution of processes. Roy (2008) states that he em-
ploys precondition rules for sequences of schemas, which is similar
to the precondition nodes used in the model presented here. How-
ever, all of the principles of schema theory are implemented algo-
rithmically and there is no connection to neural principles. is
is sometimes augmented with purely algorithmic solutions, for in-
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stance the use of decision trees for hypothesis testing (Mavridis &
Roy, 2006).

But even models that are in part based on neural principles rely
on algorithmic solutions for the organization of processes (e.g., Can-
gelosi & Harnad, 2001; Steels & Belpaeme, 2005; Dominey &
Boucher, 2005b). While parts of these models are based on neural
networks, it often remains unclear how the networks are controlled
to exhibit different behaviors in time or how they would generate se-
quential behavior. In order to reduce the complexity of the models,
these processes are organized by algorithmic tools that lie outside
of the models themselves.

Shastri (1999), Shastri et al. (2002) give us a sense of how com-
plex even simple systems for process organization can become when
based on neural principles. With their SHRUTI system, they de-
veloped a connectionist implementation of x-schemas, which deter-
mine detailed procedures for actions such as grasping as well as more
general relations. Each action or relation is represented by a neural
structure that includes a representation of whether the relation ap-
plies or not, similar to the idea of CoS and CoD. In their system,
this representation is structurally repeated for every relation, en-
abling the system to represent many relations simultaneously. e
model presented here, in contrast, only has a single such structure
and verifies relations between different objects in a sequential man-
ner. While SHRUTI implements schemas based on neural princi-
ples, it is unclear how grounded its representations are; it seems that
apart from a sampled spatial representation, other representations
are symbolic.

In the fully neural SPAUN model by Eliasmith et al. (2012),
processes are organized based on a model of the basal ganglia. Like
the process organization system proposed here, it has connections
into and from every part of the model. Its activation manipulates
the flow of activation between different parts of the model.

For themodel presented here, the process organization system is
an integral part. Its specific contribution is further discussed in the
next section, comparing it in more detail to previous DFT models
of spatial language.

5.2 Specific contributions
is section discusses the specific contributions this thesis makes
to the understanding of perceptual grounding in general and to
DFT in particular. A first specific contribution regards the core
component processes discussed in the previous section. ey were
in part previously established and implemented in DFT, although
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sometimes in an ad-hoc way. is thesis thus contributes the con-
ceptual work of refining the required core component processes of
grounding and putting them in the context of the literature. Further
specific contributions that include both conceptual work as well as
novel implementations within the model are discussed next.

5.2.1 Grounding and describing
As a conceptual contribution, this thesis clarifies the three types of
tasks relevant to grounding: Grounding tasks consist of matching a
given phrase to a visual scene, where the phrase describes all neces-
sary features of objects, for example “the red object to the left of the
green object”. Description tasks consist of generating such a phrase
from a given visual scene, where no other information is given about
what is to be described. In mixed tasks, partial information of a re-
lation is given and the model must respond with the missing infor-
mation. e model could, for instance, be given input such as “left
of green” and would have to respond by activating concepts that
best described the object to the left of the green object in the scene.
ere are different variants of mixed tasks, depending on whether
or not the phrase specifies the target object, the reference object,
and the spatial term. All mixed tasks contain elements of ground-
ing tasks (i.e., searching for described objects) and description tasks
(i.e., describing parts of the scene).

e model introduced here captures both grounding tasks and
description tasks. Neither type of task was captured in previous
DFT models; they instead addressed mixed tasks. For instance,
Lipinski et al. (2012) show that given the question “Where is the
red object relative to the blue object?”, their model can respond by
activating a node that corresponds to the relation .

Compared to the mixed tasks performed by previous models,
grounding tasks are easier because they do not require a response.
In fact, it is likely that most previous models of spatial language
could perform some simple grounding tasks as well, although this
was not demonstrated. What makes grounding tasks particularly
interesting is that they invite many cases in which the phrase does
not match the scene well, or not at all. With relation to a visual
scene, a phrase can either unambiguously specify a single object in
the scene, it can ambiguously specify an object in the scene, such that
multiple objects fit the description, or it can specify an object that
cannot be found in the scene, thus leading to a mismatch. Handling
these cases requires that the model is able to detect them and react
accordingly. is is mostly a requirement of the model’s process
organization, which is a particular focus and specific contribution
of this thesis, discussed later in this section. Cases where the given
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phrase is ambiguous with respect to the scene or where it does not
match are not addressed by previous models. In their demonstrated
examples, the phrase always uniquely describes one of the objects in
the scene. e model proposed here is able to handle cases where
the phrase either unambiguously or ambiguously specifies an object
in the scene. It is also tested on scenes where the phrase does not
match any object. In these scenes, the model searches until it has
tried all potential candidate objects, but it is currently missing a
mechanism to detect that there are no more objects to test.

Additional to grounding tasks, the current model also captures
description tasks, where a full conceptual representation (or phrase)
is generated from visual input. is is also not demonstrated by pre-
vious models. Lipinski et al. (2012) show that they can generate a
description for a given object, by selecting a fitting spatial term as
well as a reference object. Generating an entire description addition-
ally requires that objects are brought into the attentional foreground
based on bottom-up input alone. To support this in the current
model, a bottom-up saliency mechanism is added to its attentional
system.

e bottom-up path of the model’s attentional system covers
some of the following aspects that are commonly addressed by com-
putational models of visual attention (Itti & Koch, 2001). First, the
attentional system is based on a pre-attentive computation of visual
features (i.e., color and motion direction). Second, all feature repre-
sentations feed into a unique saliency map, which is represented by
the input into the spatial attention mechanism (multi-peak spatial
attention field and selective spatial attention field). e spatial selec-
tivity that is often associated with saliency maps is implemented by
the lateral interaction in the selective spatial attention field as well as
the field’s coupling to the multi-peak spatial attention field. With-
out top-down input, the saliency of objects depends on the size of
the objects, their color saturation, and whether they are moving or
not. is part of themodel is understood as a placeholder for a more
realistic visual saliency mechanism, one that is guided most by fea-
ture contrast rather than absolute feature strength. ird, in order
to sequentially shift the attentional focus to multiple salient objects,
an inhibition-of-return (IOR) mechanism is employed to inhibit
the location that is currently attended. In visual attention models
such a mechanism explains the formation of attentional scanpaths.
Here, it is implemented by the target IOR field. However, its func-
tion is more specialized because it is specific to the spatial position of
the target object. Wolfe (2007) postulate that the IOR mechanism
has a capacity limit. In the tests of the current model, the target
IOR field never reached its capacity limit, but it has one due to the
lateral interaction within the field. e model does not address the

148



5.2 Specific contributions

Itti, L. & Koch, C. (2001). Computational
modelling of visual attention. Nature Reviews
Neuroscience, 2(3), 194–203

Pulvermüller, F. (2005). Brain mechanisms
linking language and action. Nature Reviews
Neuroscience, 6( July), 576–582

Lipinski, J., Schneegans, S., Sandamirskaya,
Y., Spencer, J. P., & Schöner, G. (2012).
A neurobehavioral model of flexible spatial
language behaviors. Journal of Experimental
Psychology: Learning, Memory, and Cognition,
38(6), 1490–1511

Lobato, D., Sandamirskaya, Y., Richter, M.,
& Schöner, G. (2015). Parsing of action se-
quences: A neural dynamics approach. Pala-
dyn, Journal of Behavioral Robotics, 6, 119–135

Berger, M., Faubel, C., Norman, J., Hock, H.,
& Schöner, G. (2012). e counter-change
model of motion perception: An account
based on dynamic field theory. In A. E. P.
Villa (Ed.), ICANN 2012, Part I, LNCS 7552
(pp. 579–586). Berlin Heidelberg: Springer

Hock, H. S., Schöner, G., & Gilroy, L.
(2009). A counterchange mechanism for
the perception of motion. Acta Psychologica,
132(1), 1–21

two remaining aspects of visual attention that Itti and Koch (2001)
mention: how attention is connected to eye movements and how
attention is constrained by scene understanding and object recogni-
tion.

5.2.2 Movement relations
e model proposed in this thesis is the first DFT model to cap-
ture how movement relations may be extracted from a scene and
expressed in perceptual and amodal representations. is is the ba-
sis for expressing movement verbs and actions, which are a large
part of language (Pulvermüller, 2005). e model captures move-
ment relations in addition to spatial relations, which were addressed
in previous models (e.g., Lipinski et al., 2012). Movement relations
were used in a previous prototypical DFT architecture that is able to
describe simple object-oriented actions like reaching, grasping, and
dropping (Lobato et al., 2015). While parts of the model are based
on DFT, the part that extracts the movement relations between ob-
jects is implemented algorithmically. In the model proposed here,
movement relations are expressed in a neurally plausible way, based
on the same principle as for spatial relations: each movement rela-
tion is expressed as a (static) template that is imposed on the rela-
tive position of objects. is requires that the representation of the
objects’ positions is not only transformed to center them on a refer-
ence position, but also to align them with the motion direction of
the moving object, essentially rotating the frame of reference. is
is shown in Figure 4.10 (page 117), where the selected target ob-
ject is moving from right to left, toward a green object. e spatial
template for the relational concept  is fixed, but the refer-
ence frame is translated and rotated depending on the position and
movement direction of the target object. For stationary scenes, the
reference frame is adjusted in the same way but with a fixed rotation
of zero degrees. Both reference frame transformations can neurally
be implemented by steerable neural mappings; in the implementa-
tion of the model they are solved by convolutions as a computational
shortcut.

In order to align the reference frame with the motion direction
of an object, that motion direction must be extracted from the visual
input. In the current model, this is done based on a neurally plau-
sible implementation (Berger et al., 2012) of the counter change
model of motion perception (Hock et al., 2009). e model inte-
grates motion direction into the attentional system as an additional
feature dimension. Where previous models of spatial language only
use color as a feature to guide the attention of the model, here, mo-
tion direction may be used as well. is also requires that conjunc-

149



5 Discussion

Lipinski, J., Sandamirskaya, Y., & Schöner,
G. (2009). Swing it to the left, swing it to the
right: Enacting flexible spatial language using
a neurodynamic framework. Cognitive Neuro-
dynamics, 3(4), 373–400

Lipinski, J., Schneegans, S., Sandamirskaya,
Y., Spencer, J. P., & Schöner, G. (2012).
A neurobehavioral model of flexible spatial
language behaviors. Journal of Experimental
Psychology: Learning, Memory, and Cognition,
38(6), 1490–1511

tion searches are handled correctly, for instance searching for a red
object that is moving rightward. Figure 4.4 (page 99) and other
examples in Section 4.1.2 show that this is possible in the model.

Finally, dealing with scenes in which objects move requires that
representations of the objects’ spatial positions are continuously up-
dated, even when they are not currently attended to. is is, for
instance, shown in Figure 4.10 (page 117), where the peak in the tar-
get field tracks the moving object it represents. Tracking is achieved
through continuous input from the color/space perception field and
motion/space perception field, which drags the self-sustained peak
along the current position of the object.

5.2.3 Process organization
A particular focus of the model proposed in this thesis is that it
organizes all of its processes based on neural principles. e flex-
ibility of the process organization system is demonstrated by the
number of different tests that the model is able to capture, which
differ along the following characteristics: grounding tasks and de-
scription tasks; basic relations and deictic relations; spatial relations
and movement relations; different number of matching target and
reference object (some require hypothesis testing, others do not).
e model performs all of the tests autonomously, that is, without
user interference and only based on visual input and an initial task
input.

Previous models of spatial language have different approaches to
solving the problem of process organization. One model is actually
completely autonomous in that it does not require user input after
the initial task input (Lipinski et al., 2009). However, this is only
possible because the grounding of the target object is independent
from the grounding of the reference object; the objects could even
be grounded at the same time. is is because there are dedicated
attention fields for the target object and the reference object. Ad-
ditionally, the spatial transformations are based on convolutions of
the spatial terms, which simplifies the process organization: since
the match between spatial templates and object positions can be per-
formed in camera coordinates, it only requires a single transforma-
tion. In contrast, the current model requires that objects are trans-
formed into a space centered on a reference position (and aligned
with motion direction) to match with spatial templates, and that
they are then transformed back into camera coordinates to give a re-
sponse. Overall, the model by Lipinski et al. (2009) is less complex
and does not support as many different tasks as the model intro-
duced here. Lipinski et al. (2012) improved upon these shortcom-
ings, but their model in turn does not have any process organization.
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Most of the processes involved in grounding different objects and
their relations are manually activated and deactivated by the user.
Another version by van Hengel et al. (2012) builds upon this work
and uses the DFT model of serial order (Sandamirskaya & Schöner,
2010) to organize processes in a sequence. While this automates the
processes and no longer requires manual input by the user, the dif-
ferent processes are not made explicit and cannot form complex se-
quences. To express more complex sequences, Durán et al. (2012)
propose a hierarchical system that organizes processes and behav-
iors. eir hierarchical model enables chunks of elementary behav-
iors (EBs) to be organized in a sequence and activated by an EB on
a higher hierarchical level. Since the sequence generation within
each chunk is based on the serial order mechanism (Sandamirskaya
& Schöner, 2010), it has the same drawbacks. First, it has little
flexibility with regards to what sequences can be expressed. Within
a chunk, only one EB can be active at the same time. Moreover,
if EBs are organized into separate chunks, for instance to activate
them in parallel, there is no mechanism to enforce a sequential con-
straint between any EBs in different chunks. Second, it requires
changing synaptic weights in order to change established chunks.
is is because the input to the CoS node on a higher hierarchical
level is normalized depending on the number of EBs in a chunk
(every connection going into the CoS node is divided by the num-
ber of EBs in a chunk). us, when a new EB is added to a chunk,
the weights of all connections to the higher-level CoS node must
be changed. Furthermore, since two EBs in a chunk have a direct
synaptic connection, they can only ever be used in that specified se-
quential order. Expressing the opposite sequential order requires to
change the synaptic connections or to have different copies of the
EBs for different contexts.

e current model introduces a process organization system that
enables the reuse of processes in different contexts. is is also
achieved by creating a hierarchy (or heterarchy) of processes. e
system proposed here is more flexible because it is based on the prin-
ciples of behavioral organization (Section 2.2.7), which enables the
expression of sequential constraints that can be activated and deacti-
vated without changing synaptic weights. In addition, the structure
of how processes are represented enables that the CoS of a process
on a higher hierarchical level does not depend on the number of
processes it activates on lower levels; the normalization of the input
is achieved through the way processes are coupled.
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5.2.4 Hypothesis testing
An additional novelty of the process organization system is the use
of a CoD to assess the match of a relation. is supports a form of
hypothesis testing: a hypothesis is established that the selected ob-
jects match a given relation; this hypothesis is tested and can either
be accepted or rejected. Hypothesis testing is shown in Figure 4.9
(page 114), where the model first selects a target object that does
not match the specified relation. Its relative position with respect
to the reference object does not overlap with the spatial template (in
the spatial relation CoS field); instead it has overlap in the spatial
relation CoD field and forms a peak there. Selecting a different tar-
get object is solved by an IOR mechanism. Repeating the process
of testing hypotheses for other objects is controlled based on the
principles of process organization. Hypothesis testing has not been
shown in this form in other computational models of grounding
relations.

5.2.5 Matching of relational templates
Compared to all previous models of spatial language, the current
model is further constrained with regards to how it deals with rela-
tional templates. Previous models employed reference frame trans-
formations to transform the spatial templates directly into camera
coordinates (Lipinski et al., 2009). is is only possible when using
convolution operations to approximate steerable neural mappings
because otherwise the spatial template would become distorted by
the sigmoidal output function of multiple fields; it is thus neurally
implausible. is could possibly be fixed by using linear sigmoidal
output functions in multiple fields of the model but it is unclear
whether this could capture the same functionality. A possible al-
ternative is to induce a peak from the spatial template and trans-
form that into camera coordinates (Lipinski et al., 2012). However,
while this is neurally plausible, it has the disadvantage that the de-
tailed shape of the spatial template is lost and cannot have an effect
on the selection of the object.

e alternative solution implemented in the model proposed
here is to transform the spatial representation of all relevant objects
into the spatial relation CoS field, match them against the spatial
template there, and transform the matching object back into the
original camera coordinates to give a response. is enables the
shape of the spatial template to guide the selection of the object in
the spatial relation CoS field. is fits with data indicating that in
selecting a reference object, people are influenced less by its saliency
and rather by its alignment with spatial relations relative to the tar-
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get object (Carlson & Hill, 2008). e solution has the drawback
that it makes the process of grounding more complex; it requires
additional fields (e.g., the multi-peak spatial attention field) and ad-
ditional process organization to ensure that a response is only given
once a peak has formed in the spatial relation CoS field.

5.2.6 Roles and role-filler binding
e model proposed in this thesis introduces an architecture of dy-
namic neural nodes that holds an amodal representation of a rela-
tional phrase. e particular structure of this architecture provides
a memory node and a production node for every concept in every
role it could appear in. e memory node is required to represent
that a concept is part of the current phrase, while the production
node is required to gate the influence of the concept on the rest of
the model. e copies for each role are required because the model
organizes its own processes and must have access to the concrete
binding between roles and fillers. is binding must be maintained
throughout the whole grounding process.

In previous models, the binding between features (or objects)
and roles was done implicitly, either by dedicated feature attention
fields for each role (Lipinski et al., 2009), by manually activating
feature concepts and the corresponding field for the role at the same
time (Lipinski et al., 2012), or through a sequence generationmodel
(van Hengel et al., 2012).

5.2.7 Extensive qualitative testing
Demonstrating the performance of DFT models is often hard, in
particular if the models are complex and abstract. is is also true
for the model proposed here. Statistical evaluations of its perfor-
mance could be done but are not meaningful because in building
the model, there are many degrees of freedom, many parameters,
but only few constraints. Given enough time, the model could be
parameterized to perform perfectly in all tested scenarios. Fitting
empirical data and showing a close match is problematic for the
same reason. What seems most meaningful is to give qualitative
results that systematically demonstrate what the model is able to
do and what it is not. Compared to previous models, the results
showed here (Section 4) are extensive and clearly show how flexible
the model is in performing various tasks in different visual scenes.

e capabilities of the model were demonstrated in 104 tests
that systematically probed it in qualitatively different tasks and vi-
sual environments. For each test, it was presented with a video of
colored balls on a white table surface. e task of the model was
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to either match a given phrase to the corresponding objects in the
scene or generate a phrase about the scene. First, the grounding of
basic relations was examined, where single objects with simple fea-
tures such as color and motion direction were grounded (tests G1–
G57 in Section 4.1.1). Second, the grounding of deictic relations
between pairs of objects was examined, both spatial relations (i.e.,
  ,   , , ; tests G58–G74 in
Section 4.1.3) and movement relations (i.e., , ; tests
G75–G89 in Section 4.1.3). ird, the description of basic rela-
tions was examined, where the model described the features of sin-
gle objects (tests D1–D5 in Section 4.2.1). Fourth, the description
of deictic relations was examined, where the model described the
features and deictic relations between objects, both spatial relations
and movement relations (tests D6–D15 in Section 4.2.2).

As an overall result, the tests show that the model is able to
ground the given phrase or describe the scene in all cases where this
is possible. After an initial task input is given, the model performs
without user intervention. All tests listed in this thesis were per-
formed on the same model, with the same set of parameters. e
results thus show that the model captures the neural processes re-
quired to perceptually ground spatial relations as well as movement
relations.

5.3 Limitations
is section covers potential limitations and weaknesses of the
model as well as possible ways to remedy these limitations.

In order to reduce the complexity of the model, some of its parts
represent simplified forms of already established DFT models. e
following four simplifications could be addressed in future work and
would mostly amount to integrative work.

First, early visual processing is reduced to a minimum; it is im-
plemented algorithmically, and object recognition is not addressed.
emodel assumes that the objects are colored balls on a white back-
ground. e segmentation of the scene is based on the hue and sat-
uration channel of the camera. In recognizing objects, neither the
shape or scale of objects is taken into account. e representation
of objects is limited to two non-spatial feature dimensions, color
and motion direction, and the two-dimensional image space. is
visual front-end of the model is a placeholder for a model of object
recognition that captures how object instances may be learned in a
neural dynamic model (Lomp et al., 2017).

Second, throughout the proposed model, the representation of
the spatial position of objects is in retinal (camera) coordinates. is
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is only possible here because the model assumes that the camera is
fixed. e human eye, on the other hand, makes several saccades
per second, thereby changing the spatial position of objects on the
retina. e representation of the spatial position of objects must
thus be in allocentric (world) coordinates. is is implemented in
the scene representation model of DFT, where the retinal spatial
representations are transformed into an allocentric spatial represen-
tation that holds objects in working memory (Schneegans, Spencer,
& Schöner, 2015).

ird, the current model simplifies visual search. When search-
ing for an individual object, the attentional system always finds the
correct object if it is in the scene; it never makes mistakes. is is
ensured by inhibition from each feature attention field to the three-
dimensional color/space attention field and motion/space attention
field. e attentional system is created so reliably here to make the
model more deterministic and thus easier to work with. However,
it contradicts reaction time experiments for conjunction searches
(simultaneous searches for multiple features), which show that reac-
tion time increases with the number of objects in the scene (Treis-
man & Gelade, 1980). is data suggests that participants sequen-
tially bring objects into the attentional foreground and only after-
ward check whether they satisfy all specified features. If an object
does notmatch, another object is selected. To be consistent with the
data, the model would have to be changed to select objects in a sim-
ilar manner. is would additionally require a mechanism to detect
whether the object satisfies all specified features. is is also cap-
tured in the model of scene representation (Schneegans, Spencer,
& Schöner, 2015).

Fourth, the current model simplifies spatial relations since it
does not address intrinsic relations (Logan & Sadler, 1996), where
the intrinsic reference frame of the reference object has an effect on
how the relation is perceived. In the visual scenes used here, this is
not necessary since none of the objects have an intrinsic reference
frame. However, many natural objects do, in particular elongated
ones. Modeling intrinsic relations requires that the spatial represen-
tation of objects is aligned with the intrinsic reference frame of the
reference object. van Hengel et al. (2012) propose a DFT model
that uses a convolution to rotate the object representations to align
with the intrinsic reference frame. is idea could be integrated into
the current model, possibly even using the same rotational transfor-
mation used here to align object representations with the motion
direction of an object.

e following minor simplifications in the model require work
that may be addressed more quickly.

e model currently does not have a mechanism to detect that
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2e original video resolution of 640x480 pix-
els is cropped and resized to 55x50 pixels to
reduce computational load.

a specified object does not exist in the scene. Neither can it detect
that the scene currently does not have any object in it. A possible
solution could be akin to a timer, where activation builds up and
reaches the threshold after some time of inactivity. If such a mecha-
nism were introduced, for instance for the selective spatial attention
field, the model may be able to detect that it had already tried all
objects or that the scene did not contain any object at all.

e synaptic connections that encode the meaning of concepts,
such as , are defined between the production nodes and the fea-
ture attention fields, but also between the production nodes and
the feature CoS attention fields. In the model, these weights pat-
terns are implemented as independent connection weights that are
manually set to the same weight patterns. Such independent con-
nection weights are implausible given that the meaning of concepts
must be learned from perceptual experience. is could be solved
by encoding the meaning of concepts in patterned synaptic connec-
tions between the production nodes and an additional field, which
is defined over the same dimension as the feature attention field and
feature CoS attention field and is connected to both fields by static
one-to-one connections. is way, the meaning of concepts could
be learned by adjusting only these patterned connections.

e estimation of the motion direction of objects is currently
imprecise and could be improved. is may be due to the low res-
olution of the camera image,2 where pixel-changes have a large in-
fluence on the estimation of motion direction. Additionally, the
motion direction is extracted only at a single point in time and is
then represented in a field by a self-sustained peak. If the target
object does not follow a straight trajectory, the represented motion
direction is not correct over time.

A practical issue is the computational load of the model. Dur-
ing simulation, the model currently needs to be slowed down be-
cause the CPU load is too high for an average computer. In the
short term, this could be alleviated by running it on better hard-
ware or distributing the model onto multiple networked computers.
In the long term, it could be addressed by implementing operations
that are computationally costly on GPUs or dedicated neuromor-
phic hardware.

5.4 Further research
e model introduced in this thesis represents a first step toward a
comprehensive and neurally plausiblemodel of relational processing.
A next step could be to scale the model to include more feature di-
mensions, more concepts, and more complex processing steps. is
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should be possible without additional conceptual work, as care was
taken that scaling is possible. For instance, even though a copy of a
concept must be provided for each role in which it may appear, the
representation of relations only requires very few roles, perhaps only
one or two additional ones to express tertiary relations such as -
. Expressing more complex relations may be accomplished
by some form of compositionality that would reuse the few available
roles.

e model is also open to more pervasive extensions in various
directions. A first direction could be to incorporate learning pro-
cesses. Currently, the entire model is designed by hand, but some as-
pects lend themselves to learning, in particular the patterned synap-
tic connections that encode concepts as well as the sequential con-
straints and CoS of the process organization system (Luciw et al.,
2015). Incorporating learning processes is a challenge because these
processes would have to be governed by the same principles as the
rest of the model. at means that they have to be continuously
updated and that the learning controlled by the model itself—an
autonomous learning.

A second direction to extend the model is to systematically ex-
plore how other relations may be realized in neural dynamics. e
spatial relations implemented in the current model may be viewed
as instantiations of the image schemas - and -,
while the movement relations may correspond to the  schema
(M. Johnson, 1987). Exploring other schemas will likely uncover
that the model must be extended to incorporate additional transfor-
mations or other mechanisms. For example, the schema -
 cannot simply be implemented by introducing a new spatial
template and comparing it to the relative position of two objects.
Instead, even a minimal version requires that the absolute position
of the target object is compared to the absolute position of the refer-
ence object to detect overlap. A more comprehensive model would
also capture that the meaning of  depends on the
shape and common use of the container. Compare, for instance,
the difference in the perceptual meaning of “e apple is inside the
bowl.” and “e person is inside the house.”

A third extension of the model is to capture how mental models
may be established from descriptions. is task may thus be viewed
as the inverse process to describing a scene. For instance, given a de-
scription such as “ere is a red object to the left of a green object.”,
the task is to build up a perceptual representation of that scene in
working memory. After populating the representation with multi-
ple objects, it can be utilized to make inferences on them. A central
issue is where objects are to be placed in space, in particular when
there are multiple possible positions because the given description
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is ambiguous. Ragni and Knauff (2013) show that people establish
a preferred mental model that arises by adding objects to an imag-
ined scene such that only minimal change is required. eir model
covers problems of where to place objects but is based on abstract
symbolic representations and an algorithmic implementation. Nev-
ertheless, their ideas could be transferred to the model introduced
here to build a grounded neural process model of mental imagery.
Building further on this idea, the model could be extended to ex-
press more abstract relations, such as “Gerhard Schröder was more
popular than Angela Merkel is.” by mapping abstract dimensions
such as popularity onto space (Ragni & Knauff, 2013).

A fourth, ambitious extension would be to address productiv-
ity and compositionality (Fodor & Pylyshyn, 1988). Currently, the
model is only able to ground or describe single (simple) phrases.
However, language is filled with complex sentences that include
multiple internal references, relative clauses, and conjunctions. Cap-
turing these types of sentences requires, at the very least, a (much)
more complex organization of processes, and most likely also de-
manding conceptual work. But only by facing these challenges can
we hope to establish a comprehensive account of the grounding of
cognition and language.

Independently from extending the model, a line of research
could be established with the goal of testing assumptions and pos-
sible predictions of the model with behavioral experiments. is
is a challenge because the model is both complex and abstract and
many of its assumptions do not have obvious behavioral signatures.
Nevertheless, in a first step toward such a line of research, Lins and
Schöner (2017) employed mouse tracking to investigate the atten-
tional processes during the grounding of spatial relations. ey find
that the mouse trajectory is attracted toward distractor objects, to-
ward the reference object, as well as that it is biased by the spatial
term itself. A comprehensive analysis of the findings and additional
experimental setups may lead to conclusions about the underlying
attentional processes.

Finally, mapping the conceptual ideas that are at the basis of the
proposed model to literature from other related fields, for example
to verbal theories of language and cognition (e.g., Langacker, 1986;
Barsalou, 1999) may lead to a much needed dialog and synthesis
between these distant fields.
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is thesis examined the perceptual grounding of spatial relations
and movement relations. It proposes a model based on dynamic
field theory (DFT) that captures the neural processes of how such
relations may be extracted from visual scenes and how they may con-
nect to conceptual representations close to language. e capabili-
ties of the model were demonstrated in an extensive set of computer
simulations that probed it in qualitatively different tasks. e visual
scenes used for these tests were recorded with a real camera and
real objects, simplifying object segmentation by using a white back-
ground; they were created specifically to test the proposed model.
In all 104 tests, the model successfully either grounded the given
phrase or described the relation of two objects in the given scene.

is thesis is making several contributions, both on a conceptual
level and in terms of novel neural dynamic implementations. Most
notably, it establishes neural dynamic principles by which DFT
models may flexibly organize their own processes and behaviors. A
notable conceptual contribution consists of refining the core com-
ponent processes required for grounding spatial relations. Overall,
the thesis shows how the perceptual grounding of spatial and move-
ment relations may be captured based on neural principles.

e most direct impact of this work may stem from the princi-
ples of process organization. ey are formulated in a generic form
and can be applied to organize the processes of any DFT model.
e concepts and principles of behavioral organization on which
the process organization system is built are already pervasively used
in recent DFT models and have become a useful tool to think about
neural dynamic models. e more flexible and generic process orga-
nization system proposed here will become increasingly important
as models become more integrated, grow larger and more complex.
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is development will hopefully demonstrate that process organi-
zation is a problem that can and should be addressed by neural ap-
proaches, something currently often overlooked.

e proposed model itself may have an impact on a longer time
scale, as the foundation of an ambitious research project toward un-
derstanding higher cognition. It has many entry points to integrate
with related DFT models, for instance those of object recognition,
scene representation, and motor control. It is open to extension
into related research areas like mental imagery, image schemas, ab-
stract relations, or metaphors. With the novel structure of discrete
conceptual representations, it has created an interface to language
that may invite work in cognitive linguistics, possibly tackling the
challenging characteristic of compositionality. In short, the model
could become one of the central pieces in an integrated, neural pro-
cess model of higher cognition. While this thesis is only laying
some of the ground work, the prospects and future potential of this
ambitious project are truly exciting.
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A Implementation details

A.1 Model parameters
e model introduced in Section 3 is specified using a using a num-
ber of parameters. is section gives a rough overview of the param-
eter values used. However, please keep in mind that this parameter
set may be specific to the camera input used and to the specific im-
plementations of the dynamics in cedar.

Some parameters are the same for all dynamics in the model.
is includes the strength wξ = 0.1 of the noise term as well as
the steepness parameter β = 100 of the sigmoidal output function.
Other parameters also have values that are used for many dynamics,
but in some cases other parameter values had to be used.

Time scale

e default time scale is τ = 50, which is used in most of the dy-
namics of the model. e following list contains all time scale pa-
rameters that deviate from this default.

τ v = 200

τAS = 25

τASm = 100

τRC = 100

τ Scs = 100

τ Scd = 500

τROTs = 20
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τROTd = 100

τROT = 20

τTCP = 20

τTMP = 20

τRCP = 20

τ SP = 20

Resting levels

e default resting level used in most nodes and fields is h = −5.
A few fields use different resting level parameters.

hAS = −10

hASm = −10

hT = −7

hIR = −8

hScs = 7.5

hScd = 3.75

hSM = −10

Kernels and connection weights

In the equations in Section 3 and Section B, I simplified the con-
nections between different dynamic elements. When two fields (or
nodes) are coupled such that field A gives input to field B, then the
output of field A is usually convolved with a kernel. In the imple-
mentation, the result is multiplied with a scalar weight. In writing
down the equations, I dropped the scalar weights and only wrote
down the kernels. For more detailed information on the connec-
tion weights and kernels, please consult the cedar configuration file
of the model, which is humanly readable and available online at
https://www.ini.rub.de/pages/publications/richterphdthesis.

Processes

All processes in the process organization system have the same pa-
rameters. is is a list of parameters that deviate from the default
parameters listed above for the four nodes that make up a process.
e self-excitation of the prior intention node is wP,P = 1. e
parameters of the intention node are

hI = −1,

wI,I = 4,

wI,P = 1,
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wI,M = 6.

e CoS node has the following parameters

hC = −20,

wC,C = 1,

wC,I = 20.

e parameters of the CoS memory node are

hM = −10,

wM,M = 6,

wM,C = 6.

e weight from the intention node of a process on a higher hierar-
chical level to the prior intention node and CoS memory node on a
lower hierarchical level is wAI = 6.

A.2 Visual preprocessing
e visual preprocessing is performed on videos from a camera that
delivers BGR images (blue, green, red) of 640x480 pixels with 8
bits per pixel, which allows for 256 different color values. Each
incoming image is cropped to remove surroundings that are not to
be fed to the model. After removing 124 pixels on the left, 114
pixels on the right, 45 pixels on the bottom, and 73 pixels on top,
the remaining image is of size 402x362 pixels. Each cropped image
is then scaled down to size 55x50 pixels, the size at which the spatial
dimensions x and y of the image are sampled in the fields. e
scaled image is converted to the hue, saturation, value (HSV) color
space.

is is done by an algorithm that sets the color saturation value
of each pixel into a three-dimensional matrix, where the first two
indices are given by the pixel coordinates and the third index is the
hue value at the pixel, scaled to a range between 0 and 49.

A.3 Software
e model introduced in this thesis (Section 3) was implemented,
parameterized, and all of the tests were conducted using the soft-
ware framework cedar. cedar is an open-source C++ library that is
freely available under the license LGPL version 3. Its source code
and documentation can be accessed at http://cedar.ini.rub.de.

e model was built using cedar version 5.0.1 (debug build) with
the third-party libraries boost (1.54), Qt (4.86), OpenCV (2.4.11),
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1In more recent versions of cedar, the process-
ing step “SpatialPattern” is available within
cedar under the name “SpatialTemplate”.

and FFTW (3.3.3). Most of the processing steps are available in the
core of cedar, except for two processing steps (SpatialPattern and
ShiftedAddition) that are part of a plugin.1 e plugin is available
online at http://bitbucket.org/cedar/plugins.

Loading the cedar architecture that implements themodel more-
over requires configuration files that are available online at https://
www.ini.rub.de/pages/publications/richterphdthesis. One of these
configuration files holds all parameter values for the model.

In order to visualize both the state of activation as well as how it
evolved in time during the tests, the activation of neural fields and
nodes was written to files during experiments. ese files were pro-
cessed and visualized using Matlab scripts, which are available on-
line at https://www.ini.rub.de/pages/publications/richterphdthesis.

B Process organization system: equations
All individual processes are governed by the generic equations listed
in Section 3.5. However, since their interconnection is only shown
graphically in the main text (Figure 3.14 on page 75), the equations
of all processes are listed here in detail.

B.1 Ground object process
e differential equations governing the nodes of the process are as
follows. e activation uGOP of the prior intention node evolves in
time based on

τ u̇GOP(t) =− uGOP(t) + h+ wξ · ξGOP(t)

+ wP,P g(uGOP(t))

+ sGOP,U(t),

(1)

where sGOP,U(t) is user input that activates the prior intention node.
e activation uGOI of the intention node is governed by

τ u̇GOI(t) =− uGOI(t) + hI + wξ · ξGOI(t)

+ wI,I g(uGOI(t))

+ wI,P g(uGOP(t))

− wI,M g(uGOM(t)),

(2)

where the third line formalizes the excitatory input from the prior
intention node and the fourth line is the inhibitory input from the
CoS node with the activation variable uGOC.
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B Process organization system: equations

e activation uGOC of the CoS node follows the differential
equation

τ u̇GOC(t) =− uGOC(t) + hC + wξ · ξGOC(t)

+ wC,C g(uGOC(t))

+ wC,I g(uGOI(t))

− g(uTP(t)) + g(uTM(t)),

(3)

where the third line is input from the intention node. e last line is
inhibitory input from the prior intention node of the target process
as well as excitatory input from the CoS memory node of the tar-
get process. is makes the condition of satisfaction (CoS) of the
ground object process dependent on a previously established CoS
of the target process on the lower level.

e activation uGOM of the CoS memory node follows the dif-
ferential equation

τ u̇GOM(t) =− uGOM(t) + hM + wξ · ξGOM(t)

+ wM,M g(uGOM(t))

+ wM,C g(uGOC(t))

+ sGOM,U(t),

(4)

where the third line is input from the CoS node and the fourth line
sGOM,U(t) = sGOP,U(t) is the same user input that activates the prior
intention node.

B.2 Ground relation process
e activation uGRP of the prior intention node evolves in time
based on the differential equation

τ u̇GRP(t) =− uGRP(t) + h+ wξ · ξGRP(t)

+ wP,P g(uGRP(t))

+ sGRP,U(t),

(5)

where sGRP,U(t) is user input that activates the prior intention node.
e activation uGRI of the intention node is governed by

τ u̇GRI(t) =− uGRI(t) + hI + wξ · ξGRI(t)

+ wI,I g(uGRI(t))

+ wI,P g(uGRP(t))

− wI,M g(uGRM(t)),

(6)

which is structured analogous to Equation 3.54.
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e activation uGRC of the CoS node follows the differential
equation

τ u̇GRC(t) =− uGRC(t) + hC + wξ · ξGRC(t)

+ wC,C g(uGRC(t))

+ wC,I g(uGRI(t))

− g(uTP(t)) + g(uTM(t))

− g(uRP(t)) + g(uRM(t))

− g(uSP(t)) + g(uSM(t)),

(7)

where the last three lines are input from the target process, the refer-
ence process, and the spatial relation process, which give inhibitory
input from their prior intention node and excitatory input from
their CoS memory node. is makes the CoS of the ground re-
lation process dependent on the CoS of these three processes. e
CoS node does not receive input from the clean process or the re-
set process because they do not necessarily have to be activated to
successfully complete the task.

e activation uGRM of the CoS memory node follows the dif-
ferential equation

τ u̇GRM(t) =− uGRM(t) + hM + wξ · ξGRM(t)

+ wM,M g(uGRM(t))

+ wM,C g(uGRC(t))

+ sGRM,U(t),

(8)

where the third line is input from the CoS node and the fourth line
sGRM,U(t) = sGRP,U(t) is the same user input that activates the prior
intention node.

B.3 Describe process
e neural nodes implementing this process evolve in time based
on differential equations analogous to the processes explained above.
e activation uDP of the prior intention node follows the equation

τ u̇DP(t) =− uDP(t) + h+ wξ · ξDP(t)

+ wP,P g(uDP(t))

+ sDP,U(t),

(9)

where sDP,U(t) is user input that activates the prior intention node.

168



B Process organization system: equations

e activation uDI of the intention node evolves in time based
on the following differential equation

τ u̇DI(t) =− uDI(t) + hI + wξ · ξDI(t)

+ wI,I g(uDI(t))

+ wI,P g(uDP(t))

− wI,M g(uDM(t)).

(10)

e activation uDC of theCoS node follows the differential equa-
tion

τ u̇DC(t) =− uDC(t) + hC + wξ · ξDC(t)

+ wC,C g(uDC(t))

+ wC,I g(uDI(t))

− g(uTP(t)) + g(uTM(t))

− g(uRP(t)) + g(uRM(t))

− g(uSP(t)) + g(uSM(t)),

(11)

which is structured analogous to Equation 3.55.
e activation uDM of the CoS memory node follows the differ-

ential equation

τ u̇DM(t) =− uDM(t) + hM + wξ · ξDM(t)

+ wM,M g(uDM(t))

+ wM,C g(uDC(t))

+ sDM,U(t),

(12)

where the third line is input from the CoS node and the fourth line
sDM,U(t) = sDP,U(t) is the same user input that activates the prior
intention node.

B.4 Target process
e neural nodes of the target process are structured analogously
to those processes explained above. e activation uTP of the prior
intention node is governed by the differential equation

τ u̇TP(t) =− uTP(t) + h+ wξ · ξTP(t)

+ wP,P g(uTP(t))

+ wTP,GOI g(uGOI(t))

+ wTP,GRI g(uGRI(t))

+ wTP,DI g(uDI(t)),

(13)

where the last three lines formalize the excitatory input from the in-
tention nodes of all processes on the next higher hierarchical level,
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the ground object process, the ground relation process, and the de-
scribe process.

e activation uTI of the intention node is governed by

τ u̇TI(t) =− uTI(t) + hI + wξ · ξTI(t)

+ wI,I g(uTI(t))

+ wI,P g(uTP(t))

− wI,M g(uTM(t))

− wTI,SR g(uSR(t)),

(14)

where the first four lines are analogous to Equation 3.54. e last
line formalizes inhibitory input from a suppression node. e node
is activated by the reset process in order to restart the grounding
process of the target object and reference object. Please refer to Sec-
tion B.22 for more information on the reset process and to Equa-
tion 90 for the differential equation that governs the suppression
node.

e activation uTC of the CoS node follows the differential equa-
tion

τ u̇TC(t) =− uTC(t) + hC + wξ · ξTC(t)

+ wC,C g(uTC(t))

+ wC,I g(uTI(t))

− g(uGPP(t)) + g(uGPM(t))

− g(uGAP(t)) + g(uGAM(t))

− g(uGFP(t)) + g(uGFM(t))

− g(uTIP(t)) + g(uTIM(t))

− g(uTNP(t)) + g(uTNM(t))

− g(uTMP(t)) + g(uTMM(t))

− g(uTTP(t)) + g(uTTM(t)),

(15)

which is structured analogously to Equation 7. Lines 4–10 formal-
ize inhibitory input from the prior intention nodes and excitatory
input from the CoS nodes of all processes on the next lower hierar-
chical level that the target process is associated with (dark blue lines
in Figure 3.14): from top to bottom, the inputs come from the per-
ceptual boost process (GP), the spatial attention process (GA), the
feature process (GF), the target IOR process (TI), the target mem-
ory node process (TN), the target motion field process (TM), and
the target field process (TT).

e activation uTM of the CoS memory node follows the differ-
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2Please refer to Section B.22, in particular
Equation 87.

ential equation

τ u̇TM(t) =− uTM(t) + hM + wξ · ξTM(t)

+ wM,M g(uTM(t))

+ wM,C g(uTC(t))

+ wTM,GOI g(uGOI(t))

+ wTM,GRI g(uGRI(t))

+ wTM,DI g(uDI(t))

− wTM,SR g(uSR(t)),

(16)

where the third line is input from the CoS node, lines 4–6 are
the same inputs from the intention nodes of processes on the next
higher hierarchical level that activate the prior intention node. e
last line formalizes inhibitory input from the suppression node ac-
tivated by the reset process.

B.5 Reference process
e dynamic neural nodes that represent the reference process are
governed by the following equations. e activation uRP of the prior
intention node follows the differential equation

τ u̇RP(t) =− uRP(t) + h+ wξ · ξRP(t)

+ wP,P g(uRP(t))

+ wRP,GRI g(uGRI(t))

+ wRP,DI g(uDI(t)),

(17)

where the last two lines formalize the excitatory input from the in-
tention nodes of the ground relation process and the describe pro-
cess, both of which are on the next higher hierarchical level.

e activation uRI of the intention node is governed by

τ u̇RI(t) =− uRI(t) + hI + wξ · ξRI(t)

+ wI,I g(uRI(t))

+ wI,P g(uRP(t))

− wI,M g(uRM(t))

− wRI,PRC g(uPRC(t))

− wRI,SR g(uSR(t))

(18)

where the first four lines are analogous to Equation 3.54. e fifth
line is inhibitory input from a precondition node that ensures the
reference process is only activated once the clean process is finished.2
e last line formalizes inhibitory input from the suppression node
activated by the reset process.
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e activation uRC of the CoS node follows the differential equa-
tion

τ u̇RC(t) =− uRC(t) + hC + wξ · ξRC(t)

+ wC,C g(uRC(t))

+ wC,I g(uRI(t))

− g(uGPP(t)) + g(uGPM(t))

− g(uGAP(t)) + g(uGAM(t))

− g(uGFP(t)) + g(uGFM(t))

− g(uRNP(t)) + g(uRNM(t))

− g(uRFP(t)) + g(uRFM(t)),

(19)

which is structured analogously to Equation 7. Lines 4–8 formalize
inhibitory input from the prior intention nodes and excitatory input
from the CoS nodes of all processes on the next lower hierarchical
level that the reference process is associated with: from top to bot-
tom, the inputs come from the perceptual boost process (GP), the
spatial attention process (GA), feature process (GF), the reference
memory node process (RN), and the reference field process (RF).

e activation uRM of the CoS memory node follows the differ-
ential equation

τ u̇RM(t) =− uRM(t) + hM + wξ · ξRM(t)

+ wM,M g(uRM(t))

+ wM,C g(uRC(t))

+ wRM,GRI g(uGRI(t))

+ wRM,DI g(uDI(t))

− wRM,SR g(uSR(t)),

(20)

where the third line is input from the CoS node, lines four and five
are the same inputs from the intention nodes of processes on the
next higher hierarchical level that activate the prior intention node.
e last line formalizes inhibitory input from the suppression node
activated by the reset process.

B.6 Spatial relation process
e spatial relation process activates multiple processes on the next
lower hierarchical level (dark red lines in Figure 3.14): the spatial
memory node process (abbreviated SN in Figure 3.14) and the spa-
tial relational field process (SR). All of these processes control an
aspect of the grounding of the spatial relation and will be explained
later.
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e dynamic neural nodes that represent the spatial relation pro-
cess are governed by the following equations. e activation uSP of
the prior intention node follows the differential equation

τ u̇SP(t) =− uSP(t) + h+ wξ · ξSP(t)

+ wP,P g(uSP(t))

+ wSP,GRI g(uGRI(t))

+ wSP,DI g(uDI(t)),

(21)

where the last two lines formalize the excitatory input from the in-
tention nodes of the ground relation process and the describe pro-
cess, both of which are on the next higher hierarchical level.

e activation uSI of the intention node is governed by

τ u̇SI(t) =− uSI(t) + hI + wξ · ξSI(t)

+ wI,I g(uSI(t))

+ wI,P g(uSP(t))

− wI,M g(uSM(t))

− wSI,SR g(uSR(t))

(22)

where the first four lines are analogous to Equation 3.54. e last
line formalizes inhibitory input from the suppression node activated
by the reset process.

e activation uSC of the CoS node follows the differential equa-
tion

τ u̇SC(t) =− uSC(t) + hC + wξ · ξSC(t)

+ wC,C g(uSC(t))

+ wC,I g(uSI(t))

− g(uSNP(t)) + g(uSNM(t))

− g(uSRP(t)) + g(uSRM(t)),

(23)

where lines four and five formalize inhibitory input from the prior
intention nodes and excitatory input from the CoS nodes of all pro-
cesses on the next lower hierarchical level that the spatial relation
process is associated with: the inputs come from the spatial memory
node process (SN) and the spatial relational field process (SR).

e activation uSM of the CoS memory node evolves in time
based on the following differential equation, where the third line is
input from the CoS node, lines four and five are the same inputs
from the intention nodes of processes on the next higher hierarchi-
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3Please refer to Section B.22, in particular
Equation 86.

cal level that activate the prior intention node

τ u̇SM(t) =− uSM(t) + hM + wξ · ξSM(t)

+ wM,M g(uSM(t))

+ wM,C g(uSC(t))

+ wSM,GRI g(uGRI(t))

+ wSM,DI g(uDI(t))

− wSM,SR g(uSR(t)).

(24)

e last line formalizes inhibitory input from the suppression node
activated by the reset process.

B.7 Clean process
e dynamic neural nodes that represent the clean process are gov-
erned by the following equations. e activation uCP of the prior
intention node follows the differential equation

τ u̇CP(t) =− uCP(t) + h+ wξ · ξCP(t)

+ wP,P g(uCP(t))

+ wCP,GRI g(uGRI(t))

+ wCP,DI g(uDI(t)),

(25)

where the last two lines formalize the excitatory input from the in-
tention nodes of the ground relation process and the describe pro-
cess, both of which are on the next higher hierarchical level.

e activation uCI of the intention node is governed by

τ u̇CI(t) =− uCI(t) + hI + wξ · ξCI(t)

+ wI,I g(uCI(t))

+ wI,P g(uCP(t))

− wI,M g(uCM(t))

− wCI,PCT g(uPCT(t))

− wCM,SR g(uSR(t)),

(26)

where the first four lines are analogous to Equation 3.54. e fifth
line is inhibitory input from a precondition node that ensures the
clean process is only activated once the target process is finished.3
e last line formalizes inhibitory input from the suppression node
activated by the reset process.
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eactivation uCC of the CoS node follows the differential equa-
tion

τ u̇CC(t) =− uCC(t) + hC + wξ · ξCC(t)

+ wC,C g(uCC(t))

+ wC,I g(uCI(t))

− wCC,ACcs max
c
(g(uACcs(c, t)))

− wCC,AMcs max
c
(g(uAMcs(c, t))),

(27)

where lines four and five formalize inhibitory input from the color
CoS field and the motion CoS field, respectively. eir output is
contracted to a scalar value and multiplied with a weight. is in-
hibitory input ensures that the CoS node of the clean process is only
activated once there is no peak in either of these fields.

e activation uCM of the CoS memory node follows the differ-
ential equation

τ u̇CM(t) =− uCM(t) + hM + wξ · ξCM(t)

+ wM,M g(uCM(t))

+ wM,C g(uCC(t))

+ wCM,GRI g(uGRI(t))

+ wCM,DI g(uDI(t))

− wCM,SR g(uSR(t)),

(28)

where the third line is input from the CoS node, lines four and five
are the same inputs from the intention nodes of processes on the
next higher hierarchical level that activate the prior intention node.
e last line formalizes inhibitory input from the suppression node
activated by the reset process.

B.8 Reset process
e dynamic neural nodes that represent the reset process are gov-
erned by the following equations. e activation uEP of the prior
intention node follows the differential equation

τ u̇EP(t) =− uEP(t) + h+ wξ · ξEP(t)

+ wP,P g(uEP(t))

+ wEP,GRI g(uGRI(t))

+ wEP,DI g(uDI(t)),

(29)

where the last two lines formalize the excitatory input from the in-
tention nodes of the ground relation process and the describe pro-
cess, both of which are on the next higher hierarchical level.
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4Please refer to Section B.22, in particular
Equation 91.

e activation uEI of the intention node is governed by

τ u̇EI(t) =− uEI(t) + hI + wξ · ξEI(t)

+ wI,I g(uEI(t))

+ wI,P g(uEP(t))

− wI,M g(uEM(t))

− wEI,PRD g(uPRD(t)),

(30)

where the first four lines are analogous to Equation 3.54. e last
line formalizes inhibitory input from a precondition node that en-
sures the reset process is only activated if there is a peak in the spatial
relation CoD field.4

e activation uEC of the CoS node follows the differential equa-
tion

τ u̇EC(t) =− uEC(t) + hC + wξ · ξEC(t)

+ wC,C g(uEC(t))

+ wC,I g(uEI(t)),

(31)

which means it does not get any input except from the intention
node. e reset process does not necessarily need a CoS, because it
only activates the suppression node. e suppression node inhibits
large parts of the model, including the spatial relation CoS field,
which leads to the activation of the reset process in the first place.
us, if the spatial relation CoS field is inhibited, the reset process
is deactivated.

e activation uEM of the CoS memory node follows the differ-
ential equation

τ u̇EM(t) =− uEM(t) + hM + wξ · ξEM(t)

+ wM,M g(uEM(t))

+ wM,C g(uEC(t))

+ wEM,GRI g(uGRI(t))

+ wEM,DI g(uDI(t)),

(32)

where the third line is input from the CoS node, lines four and five
are the same inputs from the intention nodes of processes on the
next higher hierarchical level that activate the prior intention node.
Since the CoS node is never going to be activated, the CoS memory
node is not necessarily required either.

B.9 Perceptual boost process
e dynamic neural nodes that represent the perceptual boost pro-
cess are governed by the following equations. e activation uGPP
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of the prior intention node follows the differential equation

τ u̇GPP(t) =− uGPP(t) + h+ wξ · ξGPP(t)

+ wP,P g(uGPP(t))

+ wGPP,TI g(uTI(t))

+ wGPP,RI g(uRI(t))

+ wGPP,DI g(uDI(t)),

(33)

where the last three lines formalize the excitatory input from the
intention nodes of the target process, the reference process, and the
describe process. e weights of these connections are set such that
the prior intention node can only be activated when the target pro-
cess or the reference process are active at the same time as the de-
scribe process.

e activation uGPI of the intention node is governed by

τ u̇GPI(t) =− uGPI(t) + hI + wξ · ξGPI(t)

+ wI,I g(uGPI(t))

+ wI,P g(uGPP(t)),

(34)

which is analogous to Equation 3.54. However, please note that
the intention node of this process is not inhibited by the CoS mem-
ory node. is is because the boost of the spatial attention fields
must remain active until the higher level process (target process or
reference process) is completed.

e activation uGPC of the CoS node follows the differential
equation

τ u̇GPC(t) =− uGPC(t) + hGPC + wξ · ξGPC(t)

+ wC,C g(uGPC(t))

+ wC,I g(uGPI(t))

+ wGPC,ASm max
x,y

(g(uASm(x, y, t))),

(35)

where the last line is excitatory input from the multi-peak spatial
attention field. Please note that since this CoS node receives in-
put from a field of the model, rather than from other processes, its
resting level is lowered from the default value used in the processes
described previously.

e activation uGPM of the CoS memory node follows the dif-
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ferential equation

τ u̇GPM(t) =− uGPM(t) + hM + wξ · ξGPM(t)

+ wM,M g(uGPM(t))

+ wM,C g(uGPC(t))

+ wGPM,TI g(uTI(t))

+ wGPM,RI g(uRI(t))

− wGPM,SR g(uSR(t)),

(36)

where the third line is input from the CoS node, lines four and five
are the same inputs from the intention nodes of processes on the
next higher hierarchical level that activate the prior intention node.
e last line formalizes inhibitory input from the suppression node
activated by the reset process.

B.10 Spatial attention process
e dynamic neural nodes that represent the spatial attention pro-
cess are governed by the following equations. e activation uGAP
of the prior intention node follows the differential equation

τ u̇GAP(t) =− uGAP(t) + h+ wξ · ξGAP(t)

+ wP,P g(uGAP(t))

+ wGAP,TI g(uTI(t))

+ wGAP,RI g(uRI(t))

+ wGAP,GRI g(uGRI(t)),

(37)

where the last three lines formalize the excitatory input from the
intention nodes of the target process, the reference process, and the
ground relation process. e weights of these connections are set
such that the prior intention node can only be activated when the
target process or the reference process are active at the same time as
the ground relation process.

e activation uGAI of the intention node is governed by

τ u̇GAI(t) =− uGAI(t) + hI + wξ · ξGAI(t)

+ wI,I g(uGAI(t))

+ wI,P g(uGAP(t))

− wGAI,PAR g(uPAR(t)),

(38)

which is analogous to Equation 3.54. However, please note that
the intention node of this process is not inhibited by the CoS mem-
ory node. is is because the boost of the selective spatial attention
field must remain active until the higher level process is completed.
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5Please refer to Section B.22, in particular
Equation 89.

e last line is inhibitory input from a precondition node that en-
sures the spatial attention process is only activated once the spatial
relational field process is finished.5 is precondition node is only
activated by the reference process, not by the target process.

e activation uGAC of the CoS node follows the differential
equation

τ u̇GAC(t) =− uGAC(t) + hGAC + wξ · ξGAC(t)

+ wC,C g(uGAC(t))

+ wC,I g(uGAI(t))

+ wGAC,AS max
x,y

(g(uAS(x, y, t))),

(39)

where the last line is excitatory input from the selective spatial at-
tention field. Please note that since this CoS node receives input
from a field of the model, rather than from other processes, its rest-
ing level is lowered from the default value used in the processes
described previously.

e activation uGAM of the CoS memory node follows the dif-
ferential equation

τ u̇GAM(t) =− uGAM(t) + hM + wξ · ξGAM(t)

+ wM,M g(uGAM(t))

+ wM,C g(uGAC(t))

+ wGAM,TI g(uTI(t))

+ wGAM,RI g(uRI(t))

− wGAM,SR g(uSR(t)),

(40)

where lines four and five are inputs from the intention nodes of the
target process and the reference process. e last line formalizes
inhibitory input from the suppression node activated by the reset
process.

B.11 Feature process

e dynamic neural nodes that represent the feature process are gov-
erned by the following equations. e activation uGFP of the prior
intention node is governed by the following equation, where the last
four lines formalize the excitatory input from the intention nodes of
the target process, the reference process, the ground object process,
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and the ground relation process

τ u̇GFP(t) =− uGFP(t) + h+ wξ · ξGFP(t)

+ wP,P g(uGFP(t))

+ wGFP,TI g(uTI(t))

+ wGFP,RI g(uRI(t))

+ wGFP,GOI g(uGOI(t))

+ wGFP,GRI g(uGRI(t)).

(41)

e weights of these connections are set such that the prior inten-
tion node can only be activated when the target process or the refer-
ence process are active in conjunctionwith the ground object process
or the ground relation process.

e activation uGFI of the intention node is governed by

τ u̇GFI(t) =− uGFI(t) + hI + wξ · ξGFI(t)

+ wI,I g(uGFI(t))

+ wI,P g(uGFP(t))

− wI,M g(uGFM(t)),

(42)

which is analogous to Equation 3.54.
e activation uGFC of the CoS node follows the differential

equation

τ u̇GFC(t) =− uGFC(t) + hC + wξ · ξGFC(t)

+ wC,C g(uGFC(t))

+ wC,I g(uGFI(t))

− max
c
(g(uAC(c, t))) + max

c
(g(uACcs(c, t)))

− max
ϕ

(g(uAM(ϕ, t))) + max
ϕ

(g(uAMcs(ϕ, t))),

(43)

where the fourth line formalizes inhibitory input from the color at-
tention field and excitatory input from the color CoS field. If a color
is specified by the user, the color attention field holds a peak repre-
sentation of that color and thereby inhibits the CoS node. Once an
object of that color is found in the scene, the color CoS field holds
a peak as well and thereby may activate the CoS node. e fifth
line formalizes the same connection structure for the motion atten-
tion field and the motion CoS field. If a color as well as a motion
direction is specified, peaks in both the color CoS field and the mo-
tion CoS field are required to activate the CoS node of the feature
process.
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e activation uGFM of the CoS memory node follows the dif-
ferential equation

τ u̇GFM(t) =− uGFM(t) + hM + wξ · ξGFM(t)

+ wM,M g(uGFM(t))

+ wM,C g(uGFC(t))

+ wGFM,TI g(uTI(t))

+ wGFM,RI g(uRI(t))

− wGFM,SR g(uSR(t)),

(44)

where lines four and five are inputs from the intention nodes of the
target process and the reference process. e last line formalizes
inhibitory input from the suppression node activated by the reset
process.

B.12 Target IOR process
e dynamic neural nodes that represent the target IOR process
are governed by the following equations. e activation uTIP of the
prior intention node follows the differential equation

τ u̇TIP(t) =− uTIP(t) + h+ wξ · ξTIP(t)

+ wP,P g(uTIP(t))

+ wTIP,TI g(uTI(t)),

(45)

where the last line formalizes the excitatory input from the intention
node of the target process.

e activation uTII of the intention node is governed by

τ u̇TII(t) =− uTII(t) + hI + wξ · ξTII(t)

+ wI,I g(uTII(t))

+ wI,P g(uTIP(t))

− wI,M g(uTIM(t)),

(46)

which is analogous to Equation 3.54.
e activation uTIC of the CoS node follows the differential

equation

τ u̇TIC(t) =− uTIC(t) + hTIC + wξ · ξTIC(t)

+ wC,C g(uTIC(t))

+ wC,I g(uTII(t))

+ wTIC,IRcs max
x,y

(g(uIRcs(x, y, t))),

(47)

where the fourth line formalizes excitatory input from the target
IOR CoS field, which checks whether the target IOR field repre-
sents the object currently represented in the target field. Please note
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that since this CoS node receives input from a field of the model,
rather than from other processes, its resting level is lowered from
the default value.

e activation uTIM of the CoS memory node follows the dif-
ferential equation

τ u̇TIM(t) =− uTIM(t) + hM + wξ · ξTIM(t)

+ wM,M g(uTIM(t))

+ wM,C g(uTIC(t))

+ wTIM,TI g(uTI(t))

− wTIM,SR g(uSR(t)),

(48)

where line four formalizes input from the intention node of the tar-
get process. e last line formalizes inhibitory input from the sup-
pression node activated by the reset process.

B.13 Target memory node process
e dynamic neural nodes that represent the target memory node
process are evolve in time based on the following differential equa-
tions. e activation uTNP of the prior intention node follows the
equation

τ u̇TNP(t) =− uTNP(t) + h+ wξ · ξTNP(t)

+ wP,P g(uTNP(t))

+ wTNP,TI g(uTI(t)),

(49)

where the last line formalizes the excitatory input from the intention
node of the target process.

e activation uTNI of the intention node is governed by

τ u̇TNI(t) =− uTNI(t) + hI + wξ · ξTNI(t)

+ wI,I g(uTNI(t))

+ wI,P g(uTNP(t)),

(50)

which is analogous to Equation 3.54. However, please note that the
intention node of this process is not inhibited by the CoS memory
node.

e activation uTNC of the CoS node evolves in time based on
the following equation, where lines four and five formalize inhi-
bitory input from the prior intention nodes and excitatory input
from the CoS nodes of the two processes on lowest hierarchical
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level (light blue lines in Figure 3.14)

τ u̇TNC(t) =− uTNC(t) + hC + wξ · ξTNC(t)

+ wC,C g(uTNC(t))

+ wC,I g(uTNI(t))

− g(uTNCP(t)) + g(uTNCM(t))

− g(uTNMP(t)) + g(uTNMM(t)).

(51)

e activation uTNM of the CoS memory node follows the dif-
ferential equation

τ u̇TNM(t) =− uTNM(t) + hM + wξ · ξTNM(t)

+ wM,M g(uTNM(t))

+ wM,C g(uTNC(t))

+ wTNM,TI g(uTI(t))

− wTNM,SR g(uSR(t)),

(52)

where line four formalizes input from the intention node of the tar-
get process. e last line formalizes inhibitory input from the sup-
pression node activated by the reset process.

B.14 Target motion field process
edynamic neural nodes that represent the target motion field pro-
cess are governed by the following equations. e activation uTMP
of the prior intention node follows the differential equation

τ u̇TMP(t) =− uTMP(t) + h+ wξ · ξTMP(t)

+ wP,P g(uTMP(t))

+ wTMP,TI g(uTI(t))

+ wTMP,GRI g(uGRI(t))

+ wTMP,DI g(uDI(t))

+ wTMP,MT g(uMT(t)),

(53)

where lines 3–5 formalize the excitatory input from the intention
nodes of the target process, the ground relation process, and the de-
scribe process (from top to bottom). e weights of these connec-
tions are set such that the prior intention node can only be activated
when the target process is active in conjunction with the ground re-
lation process or the describe process. e last line is input from the
motion term node, which is active whenever one of the spatial rela-
tion memory nodes is active that code for dynamic spatial relations
(i.e.,  or ). e motion term node with activation uMT
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is governed by the differential equation

τ u̇MT(t) =− uMT(t) + h+ wξ · ξMT(t)

+ wMT,MT g(uMT(t))

+ max
i=1,...,NR

(wMT,SMi g(uSMi(t))),
(54)

where the third line is input from the spatial relation memory nodes
with the maximum activation u⃗SM weighted by the vector w⃗MT,SM =
(0, 0, 0, 0, a, a)T . e constant a > 0 is set such that the motion
term node is activated whenever one of the last two spatial relation
memory nodes is active.

e activation uTMI of the intention node is governed by

τ u̇TMI(t) =− uTMI(t) + hI + wξ · ξTMI(t)

+ wI,I g(uTMI(t))

+ wI,P g(uTMP(t))

− wI,M g(uTMM(t)),

(55)

which is analogous to Equation 3.54.
e activation uTMC of the CoS node follows the differential

equation

τ u̇TMC(t) =− uTMC(t) + hTMC + wξ · ξTMC(t)

+ wC,C g(uTMC(t))

+ wC,I g(uTMI(t))

+ wTMC,ROTs max
x,y

(g(uROTs(x, y, t))),

(56)

where the last line formalizes excitatory input from the rotation se-
lection field, which holds a peak if a motion direction has been ex-
tracted by the motion detection system. Please note that since the
CoS node receives input from a field of the model, rather than from
other processes, its resting level is lowered from the default value.

e activation uTMM of the CoS memory node follows the dif-
ferential equation

τ u̇TMM(t) =− uTMM(t) + hM + wξ · ξTMM(t)

+ wM,M g(uTMM(t))

+ wM,C g(uTMC(t))

+ wTMM,TI g(uTI(t))

− wTMM,SR g(uSR(t)),

(57)

where line four formalizes input from the intention node of the tar-
get process. e last line formalizes inhibitory input from the sup-
pression node activated by the reset process.
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B.15 Target field process
e dynamic neural nodes that represent the target field process are
governed by the following equations. e activation uTTP of the
prior intention node follows the differential equation

τ u̇TTP(t) =− uTTP(t) + h+ wξ · ξTTP(t)

+ wP,P g(uTTP(t))

+ wTTP,TI g(uTI(t)),

(58)

where the last line formalizes the excitatory input from the intention
nodes of the target process.

e activation uTTI of the intention node is governed by

τ u̇TTI(t) =− uTTI(t) + hI + wξ · ξTTI(t)

+ wI,I g(uTTI(t))

+ wI,P g(uTTP(t))

− wI,M g(uTTM(t)),

(59)

which is analogous to Equation 3.54.
e activation uTTC of the CoS node follows the differential

equation

τ u̇TTC(t) =− uTTC(t) + hTTC + wξ · ξTTC(t)

+ wC,C g(uTTC(t))

+ wC,I g(uTTI(t))

+ wTTC,T max
x,y

(g(uT(x, y, t))),

(60)

where the last line formalizes excitatory input from the target field.
Please note that since theCoS node receives input from a field of the
model, rather than from other processes, its resting level is lowered
from the default value.

e activation uTTM of the CoS memory node follows the dif-
ferential equation

τ u̇TTM(t) =− uTTM(t) + hM + wξ · ξTTM(t)

+ wM,M g(uTTM(t))

+ wM,C g(uTTC(t))

+ wTTM,TI g(uTI(t))

− wTTM,SR g(uSR(t)),

(61)

where line four formalizes input from the intention node of the tar-
get process. e last line formalizes inhibitory input from the sup-
pression node activated by the reset process.
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B.16 Reference memory node process
e dynamic neural nodes representing the reference memory node
process evolve in time based on the following differential equations.
e activation uRNP of the prior intention node follows the equation

τ u̇RNP(t) =− uRNP(t) + h+ wξ · ξRNP(t)

+ wP,P g(uRNP(t))

+ wRNP,RI g(uRI(t)),

(62)

where the last line formalizes the excitatory input from the intention
node of the reference process.

e activation uRNI of the intention node is governed by

τ u̇RNI(t) =− uRNI(t) + hI + wξ · ξRNI(t)

+ wI,I g(uRNI(t))

+ wI,P g(uRNP(t)),

(63)

which is analogous to Equation 3.54. However, please note that the
intention node of this process is not inhibited by the CoS memory
node.

e activation uRNC of the CoS node follows the differential
equation

τ u̇RNC(t) =− uRNC(t) + hC + wξ · ξRNC(t)

+ wC,C g(uRNC(t))

+ wC,I g(uRNI(t))

+ wRNC,RCM max
i=1,...,NC

(g(uRCMi(t))),

(64)

where the fourth line formalizes excitatory input from all reference
color memory nodes with activation u⃗RCM.

e activation uRNM of the CoS memory node follows the dif-
ferential equation

τ u̇RNM(t) =− uRNM(t) + hM + wξ · ξRNM(t)

+ wM,M g(uRNM(t))

+ wM,C g(uRNC(t))

+ wRNM,RI g(uRI(t))

− wRNM,SR g(uSR(t)),

(65)

where line four formalizes input from the intention node of the ref-
erence process. e last line formalizes inhibitory input from the
suppression node activated by the reset process.
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B.17 Reference field process
e dynamic neural nodes that represent the reference field process
are governed by the following equations. e activation uRFP of the
prior intention node follows the differential equation

τ u̇RFP(t) =− uRFP(t) + h+ wξ · ξRFP(t)

+ wP,P g(uRFP(t))

+ wRFP,RI g(uRI(t)),

(66)

where the last line formalizes the excitatory input from the intention
nodes of the reference process.

e activation uRFI of the intention node is governed by

τ u̇RFI(t) =− uRFI(t) + hI + wξ · ξRFI(t)

+ wI,I g(uRFI(t))

+ wI,P g(uRFP(t))

− wI,M g(uRFM(t)),

(67)

which is analogous to Equation 3.54.
e activation uRFC of the CoS node follows the differential

equation

τ u̇RFC(t) =− uRFC(t) + hRFC + wξ · ξRFC(t)

+ wC,C g(uRFC(t))

+ wC,I g(uRFI(t))

+ wRFC,R max
x,y

(g(uR(x, y, t))),

(68)

where the last line formalizes excitatory input from the reference
field. Please note that since the CoS node receives input from a
field of the model, rather than from other processes, its resting level
is lowered from the default value.

e activation uRFM of the CoS memory node follows the dif-
ferential equation

τ u̇RFM(t) =− uRFM(t) + hM + wξ · ξRFM(t)

+ wM,M g(uRFM(t))

+ wM,C g(uRFC(t))

+ wRFM,RI g(uRI(t))

− wRFM,SR g(uSR(t)),

(69)

where line four formalizes input from the intention node of the ref-
erence process. e last line formalizes inhibitory input from the
suppression node activated by the reset process.
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6Please refer to Section B.22, in particular
Equation 88.

B.18 Spatial memory node process
e dynamic neural nodes that represent the spatial memory node
process are governed by the following differential equations. e
activation uSNP of the prior intention node follows the equation

τ u̇SNP(t) =− uSNP(t) + h+ wξ · ξSNP(t)

+ wP,P g(uSNP(t))

+ wSNP,SI g(uSI(t)),

(70)

where the last line formalizes the excitatory input from the intention
node of the spatial relation process.

e activation uSNI of the intention node is governed by

τ u̇SNI(t) =− uSNI(t) + hI + wξ · ξSNI(t)

+ wI,I g(uSNI(t))

+ wI,P g(uSNP(t))

− wSNI,PNR g(uPNR(t)),

(71)

which is analogous to Equation 3.54. However, please note that the
intention node of this process is not inhibited by the CoS memory
node. e last line is inhibitory input from a precondition node that
ensures the spatial memory node process is only activated once the
spatial relational field process is finished.6

e activation uSNC of the CoS node follows the differential
equation

τ u̇SNC(t) =− uSNC(t) + hSNC + wξ · ξSNC(t)

+ wC,C g(uSNC(t))

+ wC,I g(uSNI(t))

+ wSNC,SM max
i=1,...,NR

(g(uSMi(t))),

(72)

where the fourth line formalizes the excitatory input from all spatial
relation memory nodes with activation u⃗SM. Please note that since
the CoS node receives input from a field of the model, rather than
from other processes, its resting level is lowered from the default
value.

e activation uSNM of the CoS memory node is governed by
the following differential equation, where line four formalizes input
from the intention node of the spatial relation process and the last
line formalizes inhibitory input from the suppression node activated
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by the reset process

τ u̇SNM(t) =− uSNM(t) + hM + wξ · ξSNM(t)

+ wM,M g(uSNM(t))

+ wM,C g(uSNC(t))

+ wSNM,SI g(uSI(t))

− wSNM,SR g(uSR(t)).

(73)

B.19 Spatial relational field process
e dynamic neural nodes that represent the spatial relational field
process are governed by the following differential equations. e
activation uSRP of the prior intention node follows the equation

τ u̇SRP(t) =− uSRP(t) + h+ wξ · ξSRP(t)

+ wP,P g(uSRP(t))

+ wSRP,SI g(uSI(t))

+ wSRP,GRI g(uGRI(t))

+ wSRP,DI g(uDI(t)),

(74)

where the last line formalizes the excitatory input from the inten-
tion nodes of the spatial relation process, the ground relation pro-
cess, and the describe process. e weights of these connections are
set such that the prior intention node can only be activated when
the spatial relation process is active in conjunction with the ground
relation process or the describe process.

e activation uSRI of the intention node is governed by

τ u̇SRI(t) =− uSRI(t) + hI + wξ · ξSRI(t)

+ wI,I g(uSRI(t))

+ wI,P g(uSRP(t))

− wI,M g(uSRM(t)),

(75)

which is analogous to Equation 3.54.
e activation uSRC of the CoS node follows the differential

equation

τ u̇SRC(t) =− uSRC(t) + hSRC + wξ · ξSRC(t)

+ wC,C g(uSRC(t))

+ wC,I g(uSRI(t))

+ wSRC,Scs max
x,y

(g(uScs(x, y, t))),

(76)

where the last line formalizes excitatory input from the spatial rela-
tion CoS field. Please note that since the CoS node receives input
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from a field of the model, rather than from other processes, its rest-
ing level is lowered from the default value.

e activation uSRM of the CoS memory node follows the dif-
ferential equation

τ u̇SRM(t) =− uSRM(t) + hM + wξ · ξSRM(t)

+ wM,M g(uSRM(t))

+ wM,C g(uSRC(t))

+ wSRM,SI g(uSI(t))

− wSRM,SR g(uSR(t)),

(77)

where line four formalizes input from the intention node of the spa-
tial relation process. e last line formalizes inhibitory input from
the suppression node activated by the reset process.

B.20 Target memory node color process
e dynamic neural nodes that represent the target memory node
color process are governed by the following equations. e activa-
tion uTNCP of the prior intention node follows the differential equa-
tion

τ u̇TNCP(t) =− uTNCP(t) + h+ wξ · ξTNCP(t)

+ wP,P g(uTNCP(t))

+ wTNCP,TNI g(uTNI(t)),

(78)

where the last line formalizes the excitatory input from the intention
node of the target memory node process.

e activation uTNCI of the intention node is governed by

τ u̇TNCI(t) =− uTNCI(t) + hI + wξ · ξTNCI(t)

+ wI,I g(uTNCI(t))

+ wI,P g(uTNCP(t)),

(79)

which is analogous to Equation 3.54. However, please note that the
intention node of this process is not inhibited by the CoS memory
node.

e activation uTNCC of the CoS node evolves in time based
on the following differential equation, where the fourth line for-
malizes excitatory input from all target color memory nodes with
activation u⃗TCM. Please note that since the CoS node receives in-
put from a field of the model, rather than from other processes, its
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resting level is lowered from the default value

τ u̇TNCC(t) =− uTNCC(t) + hTNCC + wξ · ξTNCC(t)

+ wC,C g(uTNCC(t))

+ wC,I g(uTNCI(t))

+ wTNCC,TCM max
i=1,...,NC

(g(uTCMi(t))).

(80)

e activation uTNCM of the CoS memory node follows the dif-
ferential equation

τ u̇TNCM(t) =− uTNCM(t) + hM + wξ · ξTNCM(t)

+ wM,M g(uTNCM(t))

+ wM,C g(uTNCC(t))

+ wTNCM,TNI g(uTNI(t)),

(81)

where line four formalizes input from the intention node of the tar-
get memory node process.

B.21 Target memory node motion process
e dynamic neural nodes that represent the target memory node
motion process are governed by the following equations. e ac-
tivation uTNMP of the prior intention node follows the differential
equation

τ u̇TNMP(t) =− uTNMP(t) + h+ wξ · ξTNMP(t)

+ wP,P g(uTNMP(t))

+ wTNMP,TNI g(uTNI(t)),

(82)

where the last line formalizes the excitatory input from the intention
node of the target memory node process.

e activation uTNMI of the intention node is governed by

τ u̇TNMI(t) =− uTNMI(t) + hI + wξ · ξTNMI(t)

+ wI,I g(uTNMI(t))

+ wI,P g(uTNMP(t)),

(83)

which is analogous to Equation 3.54. However, please note that the
intention node of this process is not inhibited by the CoS memory
node.

e activation uTNMC of the CoS node is governed by the follow-
ing differential equation, where the fourth line formalizes excitatory

191



Appendices

input from all target motion memory nodes with activation u⃗TMM

τ u̇TNMC(t) =− uTNMC(t) + hTNMC + wξ · ξTNMC(t)

+ wC,C g(uTNMC(t))

+ wC,I g(uTNMI(t))

+ wTNMC,TMM max
i=1,...,NM

(g(uTMMi(t))).

(84)

Please note that since theCoS node receives input from a field of the
model, rather than from other processes, its resting level is lowered
from the default value.

e activation uTNMM of the CoS memory node follows the dif-
ferential equation

τ u̇TNMM(t) =− uTNMM(t) + hM + wξ · ξTNMM(t)

+ wM,M g(uTNMM(t))

+ wM,C g(uTNMC(t))

+ wTNMM,TNI g(uTNI(t)),

(85)

where line four formalizes input from the intention node of the tar-
get memory node process.

B.22 Sequentiality
Target process, reference process, and clean process

e sequential order in which the target process, the clean process,
and the reference process are activated is implemented using two
precondition nodes.

e first ensures that the clean process is activated after the tar-
get process. Its activation uPCT is governed by the differential equa-
tion

τPCTu̇PCT(t) =− uPCT(t) + hPCT + wξ · ξPCT(t)

+ wPCT,PCT g(uPCT(t))

+ wPCT,GRI g(uGRI(t))

+ wPCT,DI g(uDI(t))

− wPCT,TM g(uTM(t)),

(86)

where the third and fourth line are excitatory inputs from the in-
tention nodes of the ground relation process and the describe pro-
cess, respectively. Both of these inputs can activate the precondition
node by itself. e last line is inhibitory input from the CoS mem-
ory node of the target process, which deactivates the node. e pre-
condition node itself has an inhibitory connection to the intention
node of the clean process.7
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8See Equation 18 in Section B.

9See Equation 71 in Section B.

e second precondition node ensures that the reference process
is activated after the clean process. Its activation uPRC evolves in
time based on the differential equation

τPRCu̇PRC(t) =− uPRC(t) + hPRC + wξ · ξPRC(t)

+ wPRC,PRC g(uPRC(t))

+ wPRC,GRI g(uGRI(t))

+ wPRC,DI g(uDI(t))

− wPRC,TM g(uTM(t)),

(87)

where the third and fourth line are analogous to Equation 86. e
last line is inhibitory input from the CoS memory node of the clean
process, which deactivates the node. e precondition node itself
has an inhibitory connection to the intention node of the reference
process.8

Producing a response after the relation has been evaluated

e precondition node that ensures that the spatial memory node
process is only activated once the spatial relational field process is
completed has the activation uPNR, which follows the differential
equation

τPNRu̇PNR(t) =− uPNR(t) + h+ wξ · ξPNR(t)

+ wPNR,PNR g(uPNR(t))

+ wPNR,SI g(uSI(t))

− wPNR,SRM g(uSRM(t)),

(88)

where the third line is excitatory input from the intention node of
the spatial relation process, which activates the precondition node.
e last line is inhibitory input from the CoS memory node of the
spatial relational field process, which deactivates the node. e pre-
condition node itself has an inhibitory connection to the intention
node of the spatial memory node process.9

A second precondition node follows the equation

τPARu̇PAR(t) =− uPAR(t) + h+ wξ · ξPAR(t)

+ wPAR,PAR g(uPAR(t))

+ wPAR,GRI g(uGRI(t))

+ wPAR,DI g(uDI(t))

+ wPAR,RI g(uRI(t))

− wPAR,SRM g(uSRM(t)),

(89)

where uPAR is its own activation. It ensures that the spatial atten-
tion process is only activated once the spatial relational field process
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10See Equation 38 in Section B.

11See Equation 30 in Section B.

is completed is governed by the equation Lines 3–5 are excitatory
input from the intention nodes of the ground relation process, the
describe process, and the reference process. e connection weights
are set such that the precondition node is only activated when the
reference process is active in conjunction with the ground relation
process or the describe process. e last line is inhibitory input from
the CoS memory node of the spatial relational field process, which
deactivates the node. e precondition node itself has an inhibitory
connection to the intention node of the spatial attention process.10

Reset process

e activation uSR of the suppression node that implements the in-
hibition of the reset process is governed by the differential equation

τ SRu̇SR(t) =− uSR(t) + h+ wξ · ξSR(t)

+ wSR,SR g(uSR(t))

+ wSR,EI g(uEI(t)),

(90)

where the third line is excitatory input from the intention node of
the reset process, which directly activates the suppression node. e
suppression node itself has an inhibitory connection to a large num-
ber of nodes and fields of the model, too many to list here.

e activation uPRD of the precondition node that inhibits the
reset process evolves in time based on the differential equation

τPRDu̇PRD(t) =− uPRD(t) + hPRD + wξ · ξPRD(t)

+ wPRD,PRD g(uPRD(t))

+ wPRD,GRI g(uGRI(t))

+ wPRD,DI g(uDI(t))

− wPRD,Scd max
x,y

(g(uScd(x, y, t))),

(91)

where lines three and four are excitatory input from the intention
nodes of the ground relation process and the describe process. Both
processes directly activate the precondition node. e last line is in-
hibitory input from the spatial relationCoDfield, which deactivates
the node. e precondition node itself has an inhibitory connection
to the intention node of the reset process.11
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C Video data set

12Sony XCD-V60CR firewire camera

C Video data set
e video data set consists of 82 video clips, all of which feature col-
ored balls on a white background. e videos differ in the number
of balls in the scene, the number of balls that have the same color,
the number of moving balls, as well as the spatial arrangement of
the balls in the scene.

All balls are 6.5 cm in diameter and are made of a matte, uni-
formly colored rubber that is either red, orange, yellow, green, or
blue. e balls in the video are placed in a wooden area with a
matte white finish that is 1m2 in size. e camera12 that was used
to record the videos was placed at a height of 130 cm, at a horizon-
tal distance of 70 cm from the center of the arena (Figure C.1). e
camera was set up with a negative inclination of 50° from horizontal.
is setup leads to some perspective distortion. As a result, objects
that are located in the lower part of the video appear larger than
objects in the upper part.

All videos were recorded with a resolution of 640x480 pixels at
60 frames per second. Videos were then compressed with the video
codec H.264/MPEG-4 AVC. Most videos were only a couple of
seconds long, all were shorter than 30 s (average 5.72 s, standard
deviation 6.49 s).

e full video data set is freely available online at https://www.
ini.rub.de/pages/publications/richterphdthesis.

Table C.1 lists the video file that was used for each test described
in Section 4.

e following figures show snapshots of all videos in the data
set. For videos of moving objects, snapshots were taken at every
second, unless noted otherwise. For videos of static objects, only a
single frame is shown. A description of what is visible in the videos
can be found in the figure captions.
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te
st

ID

vi
de

o
ID

G1 0.00
G2 4.00
G3 4.01a
G4 4.02a
G5 4.03
G6 4.04a
G7 4.05a
G8 4.06a
G9 4.07

G10 4.08
G11 4.09a
G12 4.10a
G13 4.11a
G14 4.12a
G15 4.21
G16 4.14e
G17 4.23
G18 4.15a
G19 0.00
G20 4.00
G21 4.01a
G22 4.10a
G23 4.15c
G24 4.06b
G25 0.00
G26 4.00
G27 4.01b
G28 4.01a
G29 4.02a
G30 4.02b
G31 4.03
G32 4.05a
G33 4.05b
G34 4.04a
G35 4.04b

te
st

ID

vi
de

o
ID

G36 4.16a
G37 4.16b
G38 4.06b
G39 4.06a
G40 4.06c
G41 4.06d
G42 4.08
G43 4.09a
G44 4.09b
G45 4.10a
G46 4.10b
G47 4.11a
G48 4.11b
G49 4.12d
G50 4.12c
G51 4.12b
G52 4.12a
G53 4.14e
G54 4.14f
G55 4.15a
G56 4.15b
G57 4.15c
G58 2.00a
G59 2.00c
G60 2.01a
G61 2.01b
G62 2.02a
G63 2.02b
G64 2.03a
G65 2.03b
G66 3.04a
G67 3.04b
G68 3.04c
G69 3.05a
G70 3.05b

te
st

ID

vi
de

o
ID

G71 3.05c
G72 4.18a
G73 4.18b
G74 4.18c
G75 2.00a
G76 2.01
G77 2.02c
G78 2.02d
G79 2.03c
G80 2.03d
G81 3.06a
G82 3.06b
G83 3.06c
G84 3.07a
G85 3.07b
G86 3.07c
G87 4.19a
G88 4.19b
G89 4.19c

P1 0.00
P2 1.00
P3 1.02
P4 1.01
P5 1.03
P6 2.00a
P7 2.00b
P8 3.01a
P9 3.01b

P10 3.01c
P11 3.01d
P12 4.06e
P13 4.06f
P14 4.06g
P15 4.06hTable C.1: Identifier of the video file used for

each test.
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F C.: Photo of the setup in which the videos were recorded.

F C.: Snapshot of the video 0.00: no objects in the scene, just the white
background.

F C.: Snapshot of the video 1.00: a single static red object in the scene.
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F C.: Snapshots of the video 1.01: a single red object moving upward.

F C.: Snapshot of the video 1.02: a single static green object.

F C.: Snapshots of the video 1.03: a single green object moving leftward.

F C.: Snapshot of the video 2.00a: a static red object to the left of a static
green object.

F C.: Snapshot of the video 2.00b: a static red object to the left and
slightly above a static green object.

F C.: Snapshot of the video 2.00c: a static red object to the right of a
static green object.
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F C.: Snapshots (3 s apart) of the video 2.01a: a static red object to the
left of a moving green object.

F C.: Snapshots (4 s apart) of the video 2.01b: a static red object to the
right of a moving green object.

F C.: Snapshots (4 s apart) of the video 2.02a: a moving red object to
the left of a static green object.

F C.: Snapshots of the video 2.02b: a moving red object to the right of
a static green object.

F C.: Snapshots of the video 2.02c: a red object moving toward a static
green object.

F C.: Snapshots of the video 2.02d: a red object moving away from a
static green object.
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F C.: Snapshots (4 s apart) of the video 2.03a: a moving red object to
the left of a moving green object.

F C.: Snapshots (4 s apart) of the video 2.03b: a moving red object to
the right of a moving green object.

FC.: Snapshots of the video 2.03c: a red object moving toward amoving
green object.

F C.: Snapshots of the video 2.03d: a red object moving away from a
moving green object.

F C.: Snapshots of the video 3.01a: a red object moving in between a
static green object and a static blue object.

F C.: Snapshots of the video 3.01b: a red object moving toward a static
green object; an additional blue object is in the scene as well.
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F C.: Snapshots of the video 3.01c: a red object moving away from a
static green object; an additional blue object is in the scene as well.

F C.: Snapshots of the video 3.01d: a red object moving away from a
static blue object and toward a static green object.

F C.: Snapshot of the video 3.04a: a static red object to the right of two
static green objects.

F C.: Snapshot of the video 3.04b: a static red object to the right of a
static green object and to the left of another static green object.

F C.: Snapshot of the video 3.04c: a static red object to the left of two
static green objects.

F C.: Snapshot of the video 3.05a: two static red objects to the right of
a static green object.
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F C.: Snapshot of the video 3.05b: a static red object to the left of a
static green object; a second static red object to the right of the green object.

F C.: Snapshot of the video 3.05c: two static red objects to the left of a
static green object.

F C.: Snapshots of the video 3.06a: a red object moving away from two
static green objects.

F C.: Snapshots of the video 3.06b: a red object moving toward a static
green object; another static green object is in the scene.

F C.: Snapshots of the video 3.06c: a red object moving toward two
static green objects.

F C.: Snapshots of the video 3.07a: two red objects moving away from
a static green object.
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F C.: Snapshots of the video 3.07b: a red object moving toward a static
green object; another red object moving, but not toward the green object.

F C.: Snapshots of the video 3.07c: two red objects moving toward a
static green object.

F C.: Snapshot of the video 4.00: four static objects (yellow, orange,
blue, green) in the scene.

F C.: Snapshots of the video 4.01a: a green object moving leftward;
three other static objects (yellow, orange, blue) are in the scene.

F C.: Snapshots of the video 4.01b: a green object moving rightward;
three other static objects (yellow, orange, blue) are in the scene.

F C.: Snapshots of the video 4.02a: a blue and a green object moving
leftward; two other static objects (yellow, orange) are in the scene.
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F C.: Snapshots of the video 4.02b: a blue object moving rightward; a
green object moving leftward; two other static objects (yellow, orange) are in the
scene.

F C.: Snapshot of the video 4.03: four static objects (red, yellow, blue,
green) in the scene.

F C.: Snapshots of the video 4.04a: a red object moving rightward; three
other static objects (yellow, blue, green) are in the scene.

F C.: Snapshots of the video 4.04b: a red object moving leftward; three
other static objects (yellow, blue, green) are in the scene.

F C.: Snapshots of the video 4.05a: a green object moving rightward;
three other static objects (red, yellow, blue) are in the scene.

F C.: Snapshots of the video 4.05b: a green object moving leftward;
three other static objects (red, yellow, blue) are in the scene.

204



C Video data set

F C.: Snapshots of the video 4.06a: a red and a green object moving
rightward; two other static objects (yellow, blue) are in the scene.

F C.: Snapshots of the video 4.06b: a red object moving rightward; a
green object moving leftward; two other static objects (yellow, blue) are in the
scene.

F C.: Snapshots of the video 4.06c: a red and a green object moving
leftward; two other static objects (yellow, blue) are in the scene.

F C.: Snapshots of the video 4.06d: a red object moving leftward; a
green object moving rightward; two other static objects (yellow, blue) are in the
scene.

F C.: Snapshots of the video 4.06e: a red object moving toward a static
blue object; a green object moving toward a static yellow object.

F C.: Snapshots of the video 4.06f: a red object moving away from a
static blue object; a green object moving away from a static yellow object.
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F C.: Snapshots of the video 4.06g: a red and a green object moving
toward each other; two other static objects (yellow, blue) are in the scene.

F C.: Snapshots of the video 4.06h: a red and a green object moving
away from each other; two other static objects (yellow, blue) are in the scene.

F C.: Snapshots of the video 4.07: a green object moving toward a static
blue object; a yellow object moving toward a static red object.

F C.: Snapshot of the video 4.08: two static red objects, a static green
object, and a static blue object.

F C.: Snapshots of the video 4.09a: a green object moving rightward;
two static red objects and a static blue object are also in the scene.

F C.: Snapshots of the video 4.09b: a green object moving leftward; two
static red objects and a static blue object are also in the scene.
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F C.: Snapshots of the video 4.10a: a red object moving rightward; three
other static objects (red, blue, green) are in the scene.

F C.: Snapshots of the video 4.10b: a red object moving leftward; three
other static objects (red, blue, green) are in the scene.

F C.: Snapshots of the video 4.11a: a blue and a green object moving
rightward; two red static objects are in the scene.

F C.: Snapshots of the video 4.11b: a blue and a green object moving
leftward; two red static objects are in the scene.

F C.: Snapshots of the video 4.11c: a blue object moving leftward; a
green object moving rightward; two red static objects are in the scene.

F C.: Snapshots of the video 4.12a: a red and a green object moving
rightward; two other static objects (red, blue) are in the scene.
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F C.: Snapshots of the video 4.12b: a red object moving rightward; a
green object moving leftward; two other static objects (red, blue) are in the scene.

F C.: Snapshots of the video 4.12c: a red object moving leftward; a green
object moving rightward; two other static objects (red, blue) are in the scene.

F C.: Snapshots of the video 4.12d: a red and a green object moving
leftward; two other static objects (red, blue) are in the scene.

F C.: Snapshots of the video 4.14e: two red objects moving rightward;
a yellow object moving leftward; a blue static object is in the scene.

F C.: Snapshots of the video 4.14f: two red objects and a yellow object
moving rightward; a blue static object is in the scene.

F C.: Snapshots of the video 4.15a: two red objects moving leftward;
two other static objects (blue, yellow) are in the scene.
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F C.: Snapshots of the video 4.15b: a red object moving leftward, an-
other red object moving rightward; two other static objects (blue, yellow) are in
the scene.

F C.: Snapshots of the video 4.15c: two red objects moving rightward;
two other static objects (blue, yellow) are in the scene.

F C.: Snapshots of the video 4.16a: a green and a blue object moving
leftward; two other static objects (red, yellow) are in the scene.

F C.: Snapshots of the video 4.16b: a green object moving rightward;
a blue object moving leftward; two other static objects (red, yellow) are in the
scene.

F C.: Snapshots of the video 4.16c: a green and a blue object moving
rightward; two other static objects (red, yellow) are in the scene.

F C.: Snapshot of the video 4.18a: four static objects (two red, two
green); all red objects are to the right of all green objects.
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F C.: Snapshot of the video 4.18b: four static objects (two red, two
green); a red object is to the left of a green object; the other red object is to the
right of both green objects.

F C.: Snapshot of the video 4.18c: four static objects (two red, two
green); all red objects are to the left of all green objects.

F C.: Snapshot of the video 4.19a: two red objects moving away from
two static green objects, respectively.

F C.: Snapshot of the video 4.19b: a red object moving toward a static
green object; another red object moving away from another static green object.

F C.: Snapshot of the video 4.19c: two red objects moving toward two
static green objects, respectively.

F C.: Snapshots (2 s apart) of the video 4.21: three moving objects (red,
green, blue); one static red object.
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F C.: Snapshots (2 s apart) of the video 4.23: four moving objects (two
red, one green, one blue).

F C.: Snapshots of the video 5.00: three moving objects (two red, one
yellow); two static objects (red, blue).
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Acronyms

AVS attentional vector sum. 144

CNN convolutional neural network. 136, 143

CoD condition of dissatisfaction. xv, 42, 58–60, 79, 82, 113, 115,
119–121, 145, 146, 152, 176, 194

CoS condition of satisfaction. xv, 34, 42, 48, 56, 58–62, 64, 66,
68–75, 78, 79, 81, 82, 84, 87, 90, 93, 95, 96, 100, 110, 112,
113, 115–121, 123, 124, 128–132, 144–146, 151–153, 156,
157, 165–173, 175–194

DFT dynamic field theory. vii, 2, 3, 5, 7, 9, 11, 13, 18–21, 24, 26,
27, 31, 34, 37–39, 135, 137, 139, 143–147, 149, 151, 153–
155, 159, 160

DPA distribution of population activation. 19

EB elementary behavior. 34–37, 71, 82, 151

GPU graphics processing unit. 156

HSV hue, saturation, value. 43, 165, 223

IOR inhibition-of-return. 42, 51, 55, 56, 78, 90, 93, 94, 100, 102,
113–115, 119, 121, 125, 129, 148, 152, 170, 181

RGB red-green-blue. 138

SPAUN Semantic Pointer Architecture Unified Network. 17, 138,
146
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Glossary

u activation of a field or node. 21–31, 35, 36, 38, 42–49, 51, 52,
54–57, 59–63, 65–69, 71–74, 166–194, 223

c hue feature dimension of the hue, saturation, value (HSV) color
space. 42–48, 51, 52, 54–56, 66, 67, 69, 88–90, 98, 99, 123,
124, 175, 180, 223

W static weights between a neural node and a neural field that en-
code the perceptual meaning of a concept (e.g., the color con-
cept ). 47, 48, 59, 60, 66–70, 223

s external input into a dynamic neural field or node. 21, 23–31,
35–37, 43–45, 61, 65, 67–69, 71–74, 166–169, 223

k kernel; patterned weight function that determines the interaction
between different points within a field (lateral interaction) or
between different fields. 21, 22, 24, 27, 29, 30, 36, 37, 43–49,
51, 52, 54–57, 59–63, 71, 223

ϕ feature dimension of the direction of motion. 28, 42, 43, 45–49,
51, 52, 54–56, 58–62, 68–71, 92–94, 98, 100, 123, 124, 180,
223

ξ noise. 21, 24, 38, 43–49, 51, 52, 54–57, 59–62, 65–69, 71, 72,
163, 166–194, 223

h (negative) resting level of a field or node. 21, 23, 24, 29, 30, 35,
36, 43–49, 51, 52, 54–57, 59–62, 65–69, 71, 72, 164–194,
223

r feature dimension of scale. 43, 45, 58–62, 70, 223

g sigmoid function; non-linear function that determines the out-
put of all dynamic neural fields and dynamic neural nodes; a
common choice is the logistic function (Equation 2.5); see
Figure 2.5 for an exemplary plot. 21–27, 29–31, 35, 36, 43–
49, 51, 52, 54–57, 59–63, 65–69, 71, 72, 74, 166–194, 223

223



Glossary

x feature space; in the description of the model (Section 3), x refers
to the horizontal spatial dimension of the camera image. 21–
31, 35, 36, 42–60, 62, 63, 69–71, 88–90, 92–94, 98–100, 123,
165, 177, 179, 181, 184, 185, 187, 189, 194, 224

y feature space; in the description of the model (Section 3), y refers
to the vertical spatial dimension of the camera image. 26, 29,
30, 42–60, 62, 63, 69–71, 89, 90, 92–94, 98–100, 123, 165,
177, 179, 181, 184, 185, 187, 189, 194, 224

t (continuous) time. 21, 23–31, 35, 36, 38, 42–49, 51, 52, 54–57,
59–63, 65–69, 71–74, 166–194, 224

τ time scale of dynamics. 21, 24, 28–30, 35, 36, 38, 43–49, 51, 52,
54–57, 59–62, 65–69, 71, 72, 93, 163, 164, 166–194, 224

w weight; usually a constant scalar. 21, 22, 24–28, 35, 36, 38, 43–
49, 51, 52, 54–57, 59–62, 65–72, 74, 163–194, 224
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