Dynamic movement primitives

Gregor Schöner gregor.schoener@ini.rub.de

Neural motivation

- Notion that neural networks in the brain and spinal cord generated a limited set of temporal templates
- whose weighted superposition is used to generate any given movement

- electrical simulation in premotor spinal cord
- measure forces of resulted muscle activation pattern at different postures of limb
- interpolate force-field

В

parallel force-fields in premotor ares vs. convergent force fields from interneurons...

convergent force-fields occur more often than expected by chance

superposition of forcefields from joint stimulation

superposition stimulating both of A and B A and B locations

Mathematical abstraction

with very loose grounding in neurophysiology!!

[Ijspeert et al., Neural Computation 25:328-373 (2013)]

Base oscillator

damped harmonic oscillator

$$\tau \ddot{y} = \alpha_z (\beta_z (g - y) - \dot{y}) + f,$$

v: position

written as two first order equations $\tau \dot{z} = \alpha_z (\beta_z (g - y) - z) + f,$ $\tau \dot{y} = z, \qquad z: \text{velocity}$

has fixed point attractor

(z, y) = (0, g) g: goal point

Forcing function

Time parameter

- timing variable, x
- forcing function scaled with timing variable

$$f(x) = \frac{\sum_{i=1}^{N} \Psi_i(x) w_i}{\sum_{i=1}^{N} \Psi_i(x)} x(g - y_0)$$

and with amplitude of movement

 y_0 initial position $g - y_0$ amplitude

Example

Example in 2D

Scaling primitives

scale goal from -1 to 1

scale time from 0.15 to 1.7

Learning the weights

- with locally weighted regression
- base oscillator
- forcing function from sample trajectory

minimize error

$$\tau \dot{z} - \alpha_z (\beta_z (g - y) - z) = f.$$

$$f_{target} = \tau^2 \ddot{y}_{demo} - \alpha_z (\beta_z (g - y_{demo}) - \tau \dot{y}_{demo}).$$

$$J_{i} = \sum_{t=1}^{P} \Psi_{i}(t) (f_{target}(t) - w_{i}\xi(t))^{2},$$

$$\xi(t) = x(t)(g - y_{0})$$

Obstacle avoidance

Inspired by Schöner/ Dose (in Fajen Warren form)

$$\tau \dot{z} = \alpha_z (\beta_z (g - y) - z) + f + C_t,$$

$$\tau \dot{y} = z.$$

$$\mathbf{C}_t = \gamma \mathbf{R} \dot{\mathbf{y}} \,\theta \exp(-\beta \theta),$$

where

$$\theta = \arccos\left(\frac{(\mathbf{o} - \mathbf{y})^T \dot{\mathbf{y}}}{|\mathbf{o} - \mathbf{y}||\dot{\mathbf{y}}|}\right),$$

$$\mathbf{r} = (\mathbf{o} - \mathbf{y}) \times \dot{\mathbf{y}}$$

Obstacle avoidance

But: human obstacle avoidance is not like that...

=> Grimme, Lipinski, Schöner, 2012

Experiment

naturalistic movements: hand moving objects to targets while avoiding ^{30 cm} obstacles

spatial arrangement of obstacles is varied...

may that apparent complexity of movements emerge from simple invariant elementary movements?

[Grimme, Lipinski, Schöner, EBR 2012]

Author's personal copy

paths

Fig. 3 Mean (over all participants) 3D obstacle avoidance paths from the starting position (S) to both target positions (T1 and T2)

paths are planar

the plane of movement depends on the obstacle height

Author's personal copy

colors: participants...

the plane of movement depends on the obstacle height

colors: participants...

=> end-effector path

is simple and invariant...

same movement time

different path length

local isochrony

invariance of lift across space

scaling with movement time

scaling with movement time

scaling with movement time

elementary behaviors

based on planarity

decompose movement into transport and lift component

scaling lift to amplitude and time

- invariance of lift under location of obstacle along transport
- approximate invariance of transport under height of obstacle
 - exact if obstacle is symmetrically half-way between start and target position of transport

complexity from simple components

complexity from simple components

complexity from simple components

Author's personal copy

Author's personal copy complexity from simple components

complexity from simple components Author's personal copy

obstacle component

obstacle component

Theoretical account

Jokeit, Grimme, Schöner, 2018

unnormalized time experiment:

Primitive "neural oscillator"

$$\tau \dot{u} = -u - c \cdot \sigma(v) + h + s_u$$
neural oscillator
$$\tau \dot{v} = -v + c \cdot \sigma(u) + h + s_v$$
solutions
$$u(t) = \tau(h+s) C_2 \left[\sin(ct/\tau)e^{-t/\tau} + \frac{C_1}{C_2} \left(\cos(ct/\tau)e^{-t/\tau} - 1 \right) \right]$$

$$v(t) = C_2 + \tau(h+s)C_1 \left[\sin(ct/\tau) + \cos(ct/\tau) \right] e^{-t/\tau}$$

Field of neural oscillators

of varying frequency, a

$$\tau \dot{u}(a,b) = -u(a,b) - c(a) \cdot \sigma(v(a,b)) + h + s(a,b)$$

$$\tau \dot{v}(a,b) = -v(a,b) + c(a) \cdot \sigma(u(a,b)) + h + s(a,b)$$

from which velocity profile is composed by projection

$$V_{\text{bank}}(t) = \frac{1}{N} \int_{a} \int_{b} W(a, b) \Theta(u(a, b)(t)) \ db \ da$$

Two fields as primitives for lift and transport

$$v^{\text{LIFT}}(t) = \dot{V}_{\text{slow}}(t)$$

$$v^{\text{TRANSPORT}}(t) = V_{\text{fast}}(t) + \alpha_2 H(d_o) W_{\text{slow}}(t_{f_{\text{slow}}}, d_o) \dot{V}_{\text{fast}}(t) - \alpha_1 W_{\text{fast}}(t_{f_{\text{fast}}}, d_o) \dot{V}_{\text{slow}}(t)$$

Results

Results

Conclusion

- Simple DMP approach enables learning while retaining equifinality ...
- but does not capture timing as obstacles are avoided.
- New dynamic primitive from multiple oscillators that capture such timing