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Neural motivation

Notion that neural networks in the brain 
and spinal cord generated a limited set of 
temporal templates

whose weighted superposition is used to 
generate any given movement



Evidence for “primitives” in frog 
spinal cord
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[Bizzi, Mussa-Ivaldi, Gizter, 1991]

electrical simulation in 
premotor spinal cord

measure forces of 
resulted muscle 
activation pattern at 
different postures of 
limb

interpolate force-field



Evidence for “primitives” in frog 
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parallel force-fields in 
premotor ares vs. 
convergent force fields 
from interneurons… 

[Bizzi, Mussa-Ivaldi, Gizter, 1991]



Evidence for “primitives” in frog 
spinal cord

convergent force-fields 
occur more often than 
expected by chance 
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Evidence for “primitives” in frog 
spinal cord

superposition of force-
fields from joint 
stimulation
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superposition
of A and B

stimulating both
A and B locations[Bizzi, Mussa-Ivaldi, Gizter, 1991]



Mathematical abstraction

with very loose grounding in neurophysiology!!

[Ijspeert et al., Neural Computation 25:328-373 (2013)]



Base oscillator

damped harmonic 
oscillator

written as two 
first order 
equations

has fixed point 
attractor
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2. The model should be an autonomous system, without explicit time
dependence.

3. The model needs to be able to coordinate multidimensional dynam-
ical systems in a stable way.

4. Learning the open parameters of the system should be as simple as
possible, which essentially opts for a representation that is linear in
the open parameters.

5. The system needs to be able to incorporate coupling terms, for exam-
ple, as typically used in synchronization studies or phase resetting
studies and as needed to implement closed-loop perception-action
systems.

6. The system should allow real-time computation as well as arbitrary
modulation of control parameters for online trajectory modulation.

7. Scale and temporal invariance would be desirable; for example,
changing the amplitude or frequency of a periodic system should
not affect a change in geometry of the attractor landscape.

2.1 Model Development. The basic idea of our approach is to use an
analytically well-understood dynamical system with convenient stability
properties and modulate it with nonlinear terms such that it achieves a
desired attractor behavior (Ijspeert et al., 2003). As one of the simplest
possible systems, we chose a damped spring model,4

τ ÿ = αz(βz(g − y) − ẏ) + f,

which, throughout this letter, we write in first-order notation,

τ ż = αz(βz(g − y) − z) + f, (2.1)

τ ẏ = z,

where τ is a time constant and αz and βz are positive constants. If the forcing
term f = 0, these equations represent a globally stable second-order linear
system with (z, y) = (0, g ) as a unique point attractor. With appropriate val-
ues of αz and βz, the system can be made critically damped (with βz = αz/4)
in order for y to monotonically converge toward g . Such a system imple-
ments a stable but trivial pattern generator with g as single point attractor.5
The choice of a second-order system in equation 2.1 was motivated

or episodic) trajectories—trajectories that are not repeating themselves, as rhythmic tra-
jectories do. This notation should not be confused with discrete dynamical systems, which
denotes difference equations—those that are time discretized.

4As will be discussed below, many other choices are possible.
5In early work (Ijspeert et al., 2002b, 2003), the forcing term f was applied to the second

ẏ equation (instead of the ż equation), which is analytically less favorable. See section 2.1.8.
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τ ÿ = αz(βz(g − y) − ẏ) + f,
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point of these equations. We call this equation the canonical system because
it models the generic behavior of our model equations, a point attractor
in the given case and a limit cycle in the next section. Given that equation
2.2 is a linear differential equation, there exists a simple exponential func-
tion that relates time and the state xof this equation. However, avoiding
the explicit time dependency has the advantage that we have obtained an
autonomous dynamical system now, which can be modified online with
additional coupling terms, as discussed in section 3.2.

With equation 2.2, we can reformulate our forcing term to become

f (x) =
∑N

i=1 !i(x)wi∑N
i=1 !i(x)

x(g − y0 ) (2.3)

with N exponential basis functions !i(x),

!i(x) = exp
(

− 1
2σ 2

i
(x− ci)

2
)

, (2.4)

where σi and ci are constants that determine, respectively, the width and
centers of the basis functions and y0 is the initial state y0 = y(t = 0 ).

Note that equation 2.3 is modulated by both g − y0 and x. The modulation
by x means that the forcing term effectively vanishes when the goal g
has been reached, an essential component in proving the stability of the
attractor equations. The modulation of equation 2.3 by g − y0 will lead to
useful scaling properties of our model under a change of the movement
amplitude g − y0 , as discussed in section 2.1.4. At the moment, we assume
that g ̸= y0 , that is, that the total displacement between the beginning and
the end of a movement is never exactly zero. This assumption will be relaxed
later but allows a simpler development of our model. Finally, equation 2.3
is a nonlinear function in x, which renders the complete set of differential
equations of our dynamical system nonlinear (instead of being a linear time-
variant system), although one could argue that this nonlinearity is benign
as it vanishes at the equilibrium point.

The complete system is designed to have a unique equilibrium point at
(z, y, x) = (0 , g , 0 ). It therefore adequately serves as a basis for constructing
discrete pattern generators, with y evolving toward the goal g from any ini-
tial condition. The parameters wi can be adjusted using learning algorithms
(see section 2.1.6) in order to produce complex trajectories before reaching
g . The canonical system x(see equation 2.2) is designed such that xserves
as both an amplitude and a phase signal. The variable xmonotonically and
asymptotically decays to zero. It is used to localize the basis functions (i.e.,
as a phase signal) but also provides an amplitude signal (or a gating term)
that ensures that the nonlinearity introduced by the forcing term remains
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by our interest in applying such dynamical systems to motor control prob-
lems, which are most commonly described by second-order differential
equations and require position, velocity, and acceleration information for
control. In this spirit, the variables y, ẏ, ÿ would be interpreted as desired
position, velocity, and acceleration for a control system, and a controller
would convert these variables into motor commands, which account for
nonlinearities in the dynamics (Sciavicco & Siciliano, 2000; Wolpert, 1997).
Section 2.1.7 expands on the flexibilities of modeling in our approach.

Choosing the forcing function f to be phasic (i.e., active in a finite time
window) will lead to a point attractive system, while choosing f to be
periodic will generate an oscillator. Since the forcing term is chosen to be
nonlinear in the state of the differential equations and since it transforms the
simple dynamics of the unforced systems into a desired (weakly) nonlinear
behavior, we call the dynamical system in equation 2.1 the transformation
system.

2.1.1 A Point Attractor with Adjustable Attractor Landscape. In order to
achieve more versatile point attractor dynamics, the forcing term f in equa-
tion 2.1 could hypothetically be chosen, for example, as

f (t) =
∑N

i=1 !i(t)wi∑N
i=1 !i(t)

,

where !i are fixed basis functions and wi are adjustable weights. Represent-
ing arbitrary nonlinear functions as such a normalized linear combination
of basis functions has been a well-established methodology in machine
learning (Bishop, 2006) and also has similarities with the idea of popula-
tion coding in models of computational neuroscience (Dayan & Abbott,
2001). The explicit time dependence of this nonlinearity, however, creates
a nonautonomous dynamical system or, in the current formulation, more
precisely a linear time-variant dynamical system. However, such a system
does not allow straightforward coupling with other dynamical systems and
the coordination of multiple degree-of-freedom in one dynamical system
(e.g., as in legged locomotion; cf. section 3.2).

Thus, as a novel component, we introduce a replacement of time by
means of the following first-order linear dynamics in x

τ ẋ=−αxx, (2.2)

where αxis a constant. Starting from some arbitrarily chosen initial state x0,
such as x0 = 1, the state xconverges monotonically to zero. xcan thus be
conceived of as a phase variable, where x= 1 would indicate the start of
the time evolution and xclose to zero means that the goal ghas essentially
been achieved. For this reason, it is important that x= 0 is a stable fixed
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Figure 1: Exemplary time evolution of the discrete dynamical system. The pa-
rameters wi have been adjusted to fit a fifth-order polynomial trajectory between
start and goal point (g = 1.0), superimposed with a negative exponential bump.
The upper plots show the desired position, velocity, and acceleration of this
target trajectory with dotted lines, which largely coincide with the realized
trajectories of the equations (solid lines). On the bottom right, the activation
of the 20 exponential kernels comprising the forcing term is drawn as a func-
tion of time. The kernels have equal spacing in time, which corresponds to an
exponential spacing in x.

transient due to asymptotical convergence of x to zero at the end of the
discrete movement.

Figure 1 demonstrates an exemplary time evolution of the equations.
Throughout this letter, the differential equations are integrated using Euler
integration with a 0.001 s time step. To start the time evolution of the
equations, the goal is set to g = 1, and the canonical system state is initialized
to x = 1. As indicated by the reversal of movement direction in Figure 1
(top left), the internal states and the basis function representation allow
generating rather complex attractor landscapes.

Figure 2 illustrates the attractor landscape that is created by a two-
dimensional discrete dynamical system, which we discuss in more detail in
section 2.1.5. The left column in Figure 2 shows the individual dynamical
systems, which act in two orthogonal dimensions, y1 and y2. The system
starts at y1 = 0, y2 = 0, and the goal is g1 = 1, g2 = 1. As shown in the vector
field plots of Figure 2, at every moment of time (represented by the phase
variable x), there is an attractor landscape that guides the time evolution of
the system until it finally ends at the goal state. These attractor properties
play an important role in the development of our approach when coupling
terms modulate the time evolution of the system.

2.1.2 A Limit Cycle Attractor with Adjustable Attractor Landscape. Limit
cycle attractors can be modeled in a similar fashion to the point attractor



Time parameter

timing variable, x

forcing function 
scaled with 
timing variable

and with 
amplitude of 
movement

332 Ijspeert et al.
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point of these equations. We call this equation the canonical system because
it models the generic behavior of our model equations, a point attractor
in the given case and a limit cycle in the next section. Given that equation
2.2 is a linear differential equation, there exists a simple exponential func-
tion that relates time and the state xof this equation. However, avoiding
the explicit time dependency has the advantage that we have obtained an
autonomous dynamical system now, which can be modified online with
additional coupling terms, as discussed in section 3.2.

With equation 2.2, we can reformulate our forcing term to become

f (x) =
∑N

i=1 !i(x)wi∑N
i=1 !i(x)

x(g − y0 ) (2.3)

with N exponential basis functions !i(x),

!i(x) = exp
(

− 1
2σ 2

i
(x− ci)

2
)

, (2.4)

where σi and ci are constants that determine, respectively, the width and
centers of the basis functions and y0 is the initial state y0 = y(t = 0 ).

Note that equation 2.3 is modulated by both g − y0 and x. The modulation
by x means that the forcing term effectively vanishes when the goal g
has been reached, an essential component in proving the stability of the
attractor equations. The modulation of equation 2.3 by g − y0 will lead to
useful scaling properties of our model under a change of the movement
amplitude g − y0 , as discussed in section 2.1.4. At the moment, we assume
that g ̸= y0 , that is, that the total displacement between the beginning and
the end of a movement is never exactly zero. This assumption will be relaxed
later but allows a simpler development of our model. Finally, equation 2.3
is a nonlinear function in x, which renders the complete set of differential
equations of our dynamical system nonlinear (instead of being a linear time-
variant system), although one could argue that this nonlinearity is benign
as it vanishes at the equilibrium point.

The complete system is designed to have a unique equilibrium point at
(z, y, x) = (0 , g , 0 ). It therefore adequately serves as a basis for constructing
discrete pattern generators, with y evolving toward the goal g from any ini-
tial condition. The parameters wi can be adjusted using learning algorithms
(see section 2.1.6) in order to produce complex trajectories before reaching
g . The canonical system x(see equation 2.2) is designed such that xserves
as both an amplitude and a phase signal. The variable xmonotonically and
asymptotically decays to zero. It is used to localize the basis functions (i.e.,
as a phase signal) but also provides an amplitude signal (or a gating term)
that ensures that the nonlinearity introduced by the forcing term remains

initial position
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Figure 1: Exemplary time evolution of the discrete dynamical system. The pa-
rameters wi have been adjusted to fit a fifth-order polynomial trajectory between
start and goal point (g = 1.0), superimposed with a negative exponential bump.
The upper plots show the desired position, velocity, and acceleration of this
target trajectory with dotted lines, which largely coincide with the realized
trajectories of the equations (solid lines). On the bottom right, the activation
of the 20 exponential kernels comprising the forcing term is drawn as a func-
tion of time. The kernels have equal spacing in time, which corresponds to an
exponential spacing in x.

transient due to asymptotical convergence of x to zero at the end of the
discrete movement.

Figure 1 demonstrates an exemplary time evolution of the equations.
Throughout this letter, the differential equations are integrated using Euler
integration with a 0.001 s time step. To start the time evolution of the
equations, the goal is set to g = 1, and the canonical system state is initialized
to x = 1. As indicated by the reversal of movement direction in Figure 1
(top left), the internal states and the basis function representation allow
generating rather complex attractor landscapes.

Figure 2 illustrates the attractor landscape that is created by a two-
dimensional discrete dynamical system, which we discuss in more detail in
section 2.1.5. The left column in Figure 2 shows the individual dynamical
systems, which act in two orthogonal dimensions, y1 and y2. The system
starts at y1 = 0, y2 = 0, and the goal is g1 = 1, g2 = 1. As shown in the vector
field plots of Figure 2, at every moment of time (represented by the phase
variable x), there is an attractor landscape that guides the time evolution of
the system until it finally ends at the goal state. These attractor properties
play an important role in the development of our approach when coupling
terms modulate the time evolution of the system.

2.1.2 A Limit Cycle Attractor with Adjustable Attractor Landscape. Limit
cycle attractors can be modeled in a similar fashion to the point attractor
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Figure 1: Exemplary time evolution of the discrete dynamical system. The pa-
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trajectories of the equations (solid lines). On the bottom right, the activation
of the 20 exponential kernels comprising the forcing term is drawn as a func-
tion of time. The kernels have equal spacing in time, which corresponds to an
exponential spacing in x.

transient due to asymptotical convergence of x to zero at the end of the
discrete movement.

Figure 1 demonstrates an exemplary time evolution of the equations.
Throughout this letter, the differential equations are integrated using Euler
integration with a 0.001 s time step. To start the time evolution of the
equations, the goal is set to g = 1, and the canonical system state is initialized
to x = 1. As indicated by the reversal of movement direction in Figure 1
(top left), the internal states and the basis function representation allow
generating rather complex attractor landscapes.

Figure 2 illustrates the attractor landscape that is created by a two-
dimensional discrete dynamical system, which we discuss in more detail in
section 2.1.5. The left column in Figure 2 shows the individual dynamical
systems, which act in two orthogonal dimensions, y1 and y2. The system
starts at y1 = 0, y2 = 0, and the goal is g1 = 1, g2 = 1. As shown in the vector
field plots of Figure 2, at every moment of time (represented by the phase
variable x), there is an attractor landscape that guides the time evolution of
the system until it finally ends at the goal state. These attractor properties
play an important role in the development of our approach when coupling
terms modulate the time evolution of the system.

2.1.2 A Limit Cycle Attractor with Adjustable Attractor Landscape. Limit
cycle attractors can be modeled in a similar fashion to the point attractor

acceleration

dotted: target
solid: approximation
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Figure 2: Vector plot for a 2D trajectory where y 1 (top left) fits the trajectory of Figure 1 and y 2 (bottom left) fits a minimum jerk
trajectory, both toward a goal g = (g1, g2) = (1, 1). The vector plots show (ż1, ż2) at different values of (y 1, y 2), assuming that only
y 1 and y 2 have changed compared to the unperturbed trajectory (continuous line) and that x 1, x 2, ẏ 1, and ẏ 2 are not perturbed. In
other words, it shows only slices of the full vector plot (ż1, ż2, ẏ 1, ẏ 2, ẋ 1, ẋ 2) for clarity. The vector plots are shown for successive
values of x = x 1 = x 2 from 1.0 to 0.02 (i.e., from successive steps in time). Since τ ẏ i = zi, such a graph illustrates the instantaneous
accelerations (ÿ 1, ÿ 2) of the 2D trajectory if the states (y 1, y 2) were pushed somewhere else in state space. Note how the system
evolves to a spring-damper model with all arrows pointing to the goal g = (1, 1) when x converges to 0.
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Figure 4: Illustration of invariance properties in the discrete dynamical systems,
using the example from Figure 1. (a) The goal position is varied from −1 to 1 in
10 steps. (b) The time constant τ is changed to generate trajectories from about
0.15 seconds to 1.7 seconds duration.

rhythmic systems can be established trivially with

ż → ż
k
, ẏ → ẏ

k
, ẋ → ẋ

k
, φ̇ → φ̇

k
. (2.10)

Figure 4 illustrates the spatial (see Figure 4a) and temporal (see Figure 4b)
invariance using the example from Figure 1. One property that should be
noted is the mirror-symmetric trajectory in Figure 4a when the goal is at a
negative distance relative to the start state. We discuss the issue again in
section 3.4.

Figure 5 provides an example of why and when invariance properties
are useful. The blue (thin) line in all subfigures shows the same handwritten
cursive letter a that was recorded with a digitizing tablet and learned by a
two-dimensional discrete dynamical system. The letter starts at a StartPoint,
as indicated in Figure 5a, and ends originally at the goal point Target0.
Superimposed on all subfigures in red (thick line) is the letter a generated
by the same movement primitive when the goal is shifted to Target1. For
Figures 5a and 5b, the goal is shifted by just a small amount, while for
Figures 5c and 5d, it is shifted significantly more. Importantly, for Figures
5b and 5d, the scaling term g − y0 in equation 2.3 was left out, which destroys
the invariance properties as described above. For the small shift of the goal
in Figures 5a and 5b, the omission of the scaling term is qualitatively not
very significant: the red letter “a” in both subfigures looks like a reasonable
“a.” For the large goal change in Figures 5c and 5d, however, the omission of
the scaling term creates a different appearance of the letter “a,” which looks
almost like a letter “u.” In contrast, the proper scaling in Figure 5c creates
just a large letter “a,” which is otherwise identical in shape to the original

scale goal from -1 to 1 scale time from 0.15 to 1.7
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of this thresholded trajectory piece. The factor 1.05 is to compensate for
the missing tails in the beginning and the end of the trajectory due to
thresholding.

For the rhythmic system, g is an anchor point that we set to the midposi-
tion of the demonstrated rhythmic trajectory g = 0.5(mint∈[1,...,P](ydemo(t)) +
maxt∈[1,...,P](ydemo(t))). The parameter τ is set to the period of the demon-
strated rhythmic movement divided by 2π . The period must therefore be
extracted beforehand using any standard signal processing (e.g., a Fourier
analysis) or learning methods (Righetti, Buchli, & Ijspeert, 2006; Gams,
Ijspeert, Schaal, & Lenarcic, 2009). The parameter r, which will allow us
to modulate the amplitude of the oscillations (see the next section), is set,
without loss of generality, to an arbitrary value of 1.0.

The learning of the parameters wi is accomplished with locally weighted
regression (LWR) (Schaal & Atkeson, 1998). It should be emphasized that
any other function approximator could be used as well (e.g., a mixture
model, a gaussian process). LWR was chosen due to its very fast one-shot
learning procedure and the fact that individual kernels learn independent
of each other, which will be a key component to achieve a stable parameter-
ization that can be used for movement recognition in the evaluations (see
section 3.3).

For formulating a function approximation problem, we rearrange equa-
tion 2.1 as

τ ż − αz(βz(g − y) − z)= f. (2.11)

Inserting the information from the demonstrated trajectory in the left-hand
side of this equation, we obtain

ftarget = τ 2ÿdemo − αz(βz(g − ydemo) − τ ẏdemo). (2.12)

Thus, we have obtained a function approximation problem where the pa-
rameters of f are to be adjusted such that f is as close as possible to ftarget.

Locally weighted regression finds for each kernel function %i in f the
corresponding wi, which minimizes the locally weighted quadratic error
criterion,

Ji =
P∑

t=1

%i(t)( ftarget(t) − wiξ (t))2, (2.13)

where ξ (t) = x(t)(g − y0) for the discrete system and ξ (t) = r for the rhyth-
mic system. This is a weighted linear regression problem, which has the
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ftarget = τ 2ÿdemo − αz(βz(g − ydemo) − τ ẏdemo). (2.12)
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It should be noted that a prudent choice of the coupling term is critical
and often needs to be specialized for different objectives. The design of
coupling terms is a research topic by itself. A typical example from the
domain of motor control is obstacle avoidance with the help of potential
fields (Khatib, 1986; Koditschek, 1987; Rimon & Koditschek, 1992). Here,
obstacles are modeled as repelling potential fields that are designed to
automatically push a control system to circumnavigate them in an online
reactive way instead of deliberative preplanning. Such reactive behavior
assumes that obstacles may appear in an unforeseen and sudden way, such
that preplanning is not possible or useful.

Fajen and Warren (2003) suggested a model for human obstacle avoid-
ance that is nicely suited to demonstrate the power of coupling terms in
our approach (Hoffmann et al., 2009). We start with a 3 degree-of-freedom
(DOF) discrete movement system that models point-to-point reaching in
a 3D Cartesian space. We denote the 3D position vector of the 3 DOF
discrete dynamical system by y = [y 1 y 2 y 3]T , with ẏ as the correspond-
ing velocity vector. The objective of a movement is to generate a reaching
movement from any start state to a goal state g = [g1 g2 g3]T . The discrete
dynamical system is initialized with a minimum jerk movement (Flash
& Hogan, 1985), which is frequently used as an approximate model of
smooth human movement. On the way to the goal state, an obstacle is posi-
tioned at o = [o1 o2 o3]T and needs to be avoided. A suitable coupling term
Ct = [Ct,1 Ct,2 Ct,3]T for obstacle avoidance can be formulated as

Ct = γ Rẏ θ exp(−βθ ), (3.2)

where

θ = arccos
(

(o − y)T ẏ
|o − y||ẏ|

)
, (3.3)

r = (o − y) × ẏ. (3.4)

The angle θ is interpreted as the angle between the velocity vector ẏ and the
difference vector (o − y) between the current position and the obstacle. The
vector r is the vector that is perpendicular to the plane spanned by ẏ and
(o − y), and serves to define a rotation matrix R, which causes a rotation
of 90 degrees about r (Sciavicco & Siciliano, 2000). Intuitively, the coupling
term adds a movement perpendicular to the current movement direction as
a function of the distance vector to the obstacle (see Hoffmann et al., 2009,
for more details). The constants are chosen to γ = 1000 and β = 20/π .

Figure 8 illustrates the behavior that the obstacle-avoidance coupling
term generates for various trajectories starting from different initial position
around the origin y = [0 0 0]T but ending at the same goal state g = [1 1 1]T .
Depending on the start position, the coupling term creates more or less
curved movements around the obstacle at o = [0.5 0.5 0.5]T . The behavior
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would not allow online modulation properties as presented in section 3.2.
Rescaling the splines in space and time for generalization is possible but
requires an explicit recomputing of the spline nodes.

Another alternative to fitting a dynamical system to observed data was
presented by Khansari-zadeh and Billard (2010), who used a mixture model
approach to estimate the entire attractor landscape of a movement skill from
several sample trajectories. To ensure stability of the dynamical system to-
ward an attractor point, a constraint optimization problem has to be solved
in a nonconvex optimization landscape. This approach is different from ours
in that it creates the attractor landscape in the state-space of the observed
data, while our approach creates the attractor landscape in the phase space
of the canonical system. The latter is low dimensional even for a high-DOF
system. A state-space mixture model for our humanoid robot above would
require a 60-dimension state space and thus would create computational
and numerical problems. However, state-space models can represent much
more complex attractor landscapes, with different realizations of a move-
ment in different parts of the state-space. Our approach creates inherently
stereotypical movements to the goal, no matter where the movements starts.
Thus, the state-space approach to fitting a dynamical systems appears to
pursue a quite different set of goals than our trajectory-based approach
does.

3.2 Online Modulation of the Dynamical Systems. One goal of mod-
eling with dynamical systems is to use the ability of coupling phenomena to
account for complex behavior. Imitation learning from the previous section
demonstrated how to initialize dynamical systems models with learning
from demonstration. In this section, we discuss different methods for how
dynamical system models can be modulated online to take dynamic events
from the environment into account. Those online modulations are among
the most important properties offered by a dynamical systems approach,
and these properties cannot easily be replicated without the attractor prop-
erties of our proposed framework.

3.2.1 Spatial Coupling. In Figure 7, we already included the possibility
of coupling terms for our dynamical systems model. Coupling terms can
affect either the transformation system or the canonical system, or both
systems. In this section, we address a coupling term in the transformation
system only, which will primarily affect the spatial evolution (y , ẏ , ÿ ) and
less the temporal evolution, which is more anchored in the canonical system.
Practically, we add a coupling term Ct to equation 2.1 to become

τ ż =αz(βz(g − y ) − z) + f + Ct, (3.1)

τ ẏ = z.

In a separate experiment [14], some of us recorded human
movements with a stylus on a graphics tablet. Subjects made
curved movements towards a target displayed on a screen.
During half of the trials (200ms after movement onset),
the target jumped to a different location, and we observed
how the subjects adapted their movement to the new goal.
The observed movement adaptation could be explained by
changing g in equation (11) - see Fig. 3 and [14]. Here, we
adapted the parameters wi such that the differential equation
reproduced a subject’s average movement to the original
goal.
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Fig. 3. Goal adaptation of the new DMP equations compared to human
behavior. (Left) Trajectories on a graphics tablet for one subject: raw
trajectories (yellow and cyan) and their means (red and blue) are shown.
The red curve is the movement to the original goal, and the blue curve is the
adaptation to the switching target. (Right) The adaptation of our dynamical
system to the new target (green dotted) is compared with the experimental
data (blue dashed).

IV. OBSTACLE AVOIDANCE

We exploit the robustness of dynamical systems against
perturbations for obstacle avoidance. To account for the
avoidance behavior, an additional term p(x,v) is added to
our differential equation (11),

v̇ = K(g−x)−Dv−K(g−x0)s+Kf(s)+p(x,v) . (14)

We first consider one obstacle with fixed position, then, many
obstacles, and, finally, moving obstacles.

A. Single static obstacle
Fajen and Warren [13] found a differential equation that

models human obstacle avoidance. Their equation describes
the steering angle ϕ (Fig. 4), which is modeled to change
according to

ϕ̇ = γ ϕ exp(−β |ϕ|) . (15)

For illustration, (15) is plotted in Fig. 5. For large angles,
ϕ̇ approaches zeros, i.e., a movement away from the obsta-
cle needs no correction. We combine equation (15) with

ϕ

End−effector position

Velocity

x

v Obstacleo

Fig. 4. Definition of the steering angle ϕ.
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Fig. 5. Change of steering angle ϕ. Here, the parameters γ = 1000 and
β = 20/π are used, the same as in the robot experiments.

our dynamic movement primitives. The change in steering
direction changes the velocity vector v as follows,

v̇ = Rvϕ̇ , (16)

where R is a rotational matrix with axis r = (o − x) × v

and angle of rotation of π/2; vector o is the position of
the obstacle. Equation (16) can be derived by writing v as
v = [v cos(ϕ); v sin(ϕ)] in the plane spanned by (o−x) and
v and by deriving this expression with respect to time.
We append the obstacle induced change in velocity as extra

term to our dynamic motion equation; thus we choose

p(x,v) = γRvϕ exp(−βϕ) , (17)

with ϕ = cos−1((o − x)T v/(|o − x| · |v|)); this value
is always positive. Obstacle-avoidance movements with this
extended DMP are shown in Fig. 6.
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Fig. 6. Obstacle avoidance in 2D space. Three separate movements are
shown, each with a different obstacle position (black dot). Goal positions
are marked by circles. Here, for simplicity, f(s) = (g − x0)s; thus, terms
depending on s vanish. The goal positions were shifted by 0.01 to the right
from the lines going through start and obstacle positions.

In the following, we show that (14) with (17) converges
to the goal position g. First, we demonstrate convergence
for one obstacle, and, then, extend to many obstacles. For
t → ∞, the terms in (14) that depend on s approach 0
exponentially; thus, we just need to study convergence of
the reduced equation

v̇ = K(g − x) − Dv + γRvϕ exp(−βϕ) . (18)

The state [x;v] = [g; 0] is a stationary point in the equation.
All other states converge to this point, which we will show
by constructing a Lyapunov function [15]. As Lyapunov
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Figure 8: Illustration of obstacle avoidance with a coupling term. The obstacle
is the large (red) sphere in the center of the plot. Various trajectories are shown,
starting from different start positions and ending at the sphere labeled “goal.”
Also shown is the nominal trajectory (green) that the discrete dynamical system
creates when the obstacle is not present: it passes right through the sphere.
Trajectories starting at points where the direct line to the goal does not intersect
with the obstacle are only minimally curved around the obstacle, while other
trajectories show strongly curved paths around the obstacle.

looks intuitively natural, which is not surprising as it was derived from
human obstacle-avoidance behavior (Fajen & Warren, 2003).

A more complex example of spatial coupling is given in Figure 9. Using
imitation learning, a placing behavior of a cup on a target was coded in a
discrete dynamical system for a 3D end effector movement of the robot, a
Sarcos Slave 7 DOF robot arm. The first row of images shows the unper-
turbed behaviors. In the second row, the (green) target is suddenly moved
to the right while the robot has already begun moving. This modification
corresponds to a change of the goal parameter g. The third row of images
demonstrates an avoidance behavior based on equation 3.2, when the blue
ball comes too close to the robot’s movement. We emphasize that one sin-
gle discrete dynamical system created all these different behaviors; there
was no need for complex abortion of the ongoing movement or replanning.
More details can be found in Pastor, Hoffmann, Asfour, and Schaal (2009).

3.2.2 Temporal Coupling. By modulating the canonical system, one can in-
fluence the temporal evolution of our dynamical systems without affecting
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support surface on the table, whereas the left arm gripped a

wooden cylinder on the left side of the workspace to sta-
bilize the body posture. After hearing an auditory signal,

the participants were instructed to reach for a cylindric

object located directly in front of them on top of the
starting platform (6 cm in diameter, 10 cm in height) at a

distance of 9 cm from the front edge of the table. The

object consisted of a small wooden part (2.5 cm in height)
which enables stable positioning and a top portion made

out of Styrofoam (10 cm in height). Participants were

instructed to transport the object to one of two possible
target platforms:

1. Target 1 (6 cm in diameter, 10 cm in height): At a
distance of 30 cm away from the starting platform in

straight ahead direction.

2. Target 2 (6 cm in diameter, 10 cm in height): Addi-
tionally shifted 15 cm to the right, thus positioned in a

direction diagonal to the starting position.

During movement participants had to avoid an obstacle
(6 cm in diameter, 15 cm (small) or 20 cm (medium) in

height) which was positioned at mid-distance between start

and target directly to the left or rather to the right of the
straight line connecting start and target. In each condition,

there was only one obstacle present which did not block the

view toward the target. The end of the data collection was
indicated by an auditory signal which differed from the

starting signal.

The actual recording session was preceded by few
warm-up trials to familiarize the participants with the task.

No instruction was given about how to avoid the obstacle

(e.g. passing over the obstacle or sideways around the
obstacle). Nor were accuracy constraints placed on the

movements. Participants were discouraged from making
corrective actions after the movement ended. They were

told to perform the movement with a natural and consistent

speed. Trials in which participants collided with the
obstacle during avoidance movement were discarded and

rerun. Altogether, participants performed 10 experimental

conditions: 2 obstacle heights, 2 obstacle positions, 2 target
positions and for each target one condition without obstacle

(2 9 2 9 2 ? 2). Participants completed 15 repetitions of

each of the 10 configurations for a total of 150 pseudo-
randomly ordered trials. Symbols which are used for

describing the 10 configurations are composed out of target

position, obstacle position, and obstacle height, see
Table 1. Obstacle positions are also depicted in Fig. 1a.

For statistical analysis and computation of mean data, we

discarded the first three trials of each condition because
they deviated most in terms of movement time and spatial

paths.

Experiment 2

Experimental setup

Five healthy, right-handed participants (3 male and 2

female, 27.6 ± 0.81 (SE) years) contributed to this
experiment. The experimental setup was similar to the

previous experiment with the following modifications:

• Participants had to perform their movements to only

one target in straight ahead direction (target 1 of the

previous experiment).
• Obstacles were of three different heights: 15 cm

(small), 20 cm (medium), and 25 cm (tall).

• Obstacles were shifted from mid-distance nearer to the
start- (11 cm from start) or to the target-cylinder

(11 cm from target and respectively 19 cm from start).

Thus, obstacles were located at 4 positions (2 distances
(near, far) 9 2 directions (left, right)).

Accordingly, participants performed a total of 13
experimental conditions: 3 obstacle heights, 2 obstacle

directions (left, right), and 2 obstacle distances (near, far)

? one condition without obstacle (3 9 2 9 2 ? 1). Par-
ticipants completed 12 repetitions of each of the 13 con-

figurations for a total of 156 pseudo-randomly ordered
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Fig. 1 Experimental setup. a Experiment 1. Target 1 (T1) was
located in straight ahead direction and target 2 (T2) was additionally
shifted 15 cm to the right and thus positioned in a direction diagonal
to the starting position. Obstacles were located at mid-distance
between start and target either to the left or rather to the right of the
straight line connecting start and target. Obstacle locations O1 and O2
were only applied in combination with T1, whereas obstacle locations
O3 and O4 were combined with T2. Obstacles were of two different
heights. b All movements headed for T1. Obstacles were located
nearby the starting position (O1 and O2) or nearby the target location
(O3 and O4) and were of three different heights
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paths

Planarity and obstacle avoidance strategy

Although virtually unrestricted in space, obstacle avoid-

ance paths are approximately planar (Fig. 4a). This is

indicated by low levels of torsion during the movement,
see Fig. 4b. Absolute torsion averaged across obstacle

conditions and participants in the middle part of movement

(30–60 % of movement time) is 0.051 ± 0.013 cm-1.
Early and late values of torsion can only be estimated

unreliably as flagged by the strong variance visible in

Fig. 4b.
The plane of movement illustrated in Fig. 5 reflects

obstacle and target properties. The plane of motion asses-

sed by elevation (Eq. (5)) varies significantly with obstacle
position (F(1,9) = 23.47, P = 0.001). The mean elevation

angle is 57.69! ± 3.80! for obstacles on the left and

76.82! ± 2.12! for obstacles on the right reflecting that

obstacles on the right are more likely avoided over the top,
whereas obstacles on the left are more likely avoided

sideways, see Fig. 6. Similarly, the mean elevation angle /
is significantly smaller (F(1,9) = 23.56, P = 0.001) for
medium obstacles (63.82! ± 3.04!) than for small obsta-

cles (70.69! ± 2.45!). The significant interaction between

obstacle position and obstacle height (F(1,9) = 6.75,
P = 0.029) reveals that the elevation angle of the plane

decreases to a greater extent with obstacle height, if the
obstacle is positioned on the left.

Single trial movements from all participants show that in

some conditions (e.g. T1O2M: forward target, medium
obstacle on the right), variability is high as participants

variably use sideways, over the top, or even mixed paths,

see Figs. 5 and 6. Further, participants tend to have con-
sistent avoidance strategies (e.g. the violet participant’s

trajectory is usually biased to the left, while the pink par-

ticipant commonly follows the rightmost trajectories in the
setup).

Double peak structure of velocity

The tangential velocity is bell-shaped in no-obstacle con-

ditions. Near the obstacle, we often find a decrease in speed
resulting in a double peak structure of velocity as shown in

Fig. 7. The bimodal structure of velocity can be understood

by decomposing the tangential velocity into the velocities
of the transport component, _sðtÞ; and the lift/descend

component, _‘ðtÞ. Figure 7 visualizes this decomposition by

plotting the squares of these components of velocity jointly

with the squared tangential velocity (Eq. (7)). Generally,
the transport component of velocity is bell-shaped, whereas

the lift component is bimodal as velocity is reversed and

Fig. 3 Mean (over all participants) 3D obstacle avoidance paths from
the starting position (S) to both target positions (T1 and T2)

(a) (b)

Fig. 4 Spatial paths in the coronal plane (a) and corresponding single
trial torsion (b) for all obstacle conditions to target 1 of a
representative participant. As torsion values are small, end-effector

paths are planar and describe different movement planes which are
chosen right at movement onset according to obstacle properties
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the plane of movement depends 
on the obstacle height

goes through zero during the transition from lift to descend.

In the no-obstacle condition (left), the lift component is too

small for generating a double peak. The resulting bell
shape comes from the transport component. A medium

obstacle on the left (center, condition T2O3M) induces two

peaks in the lift component with a stronger peak in the
transport component leading to a single humped tangential

velocity. A medium obstacle on the right (right, condition
T2O4M) leads to a double peak in tangential velocity that

comes from the much larger peaks in the lift/descent

component.

Movement time, path length, and the isochrony principle

Movement time is independent of target conditions

(F(1,9) = 0.08, P = 0.784) but increases significantly for

obstacles on the right (F(1,9) = 15.67, P = 0.003) and with
obstacle height (F(1,9) = 113.10, P \ 0.001). A significant

interaction between obstacle position and obstacle height

(F(1,9) = 32.33, P \ 0.001) reveals that movement time

increases to a greater extent with obstacle height, if the
obstacle is positioned on the right part of the workspace

(Fig. 8a). This makes sense as obstacles on the left are

often avoided sideways, and thus, the obstacle’s height has
less impact on the avoidance movement and its duration.

Similarly, path length strongly depends on obstacle and
target conditions. Path length is significantly increased

for the second (more distant) target (F(1,9) = 117.16,

P \ 0.001), for obstacles on the right (F(1,9) = 32.36, P \
0.001), and for medium obstacles (F(1,9) = 94.35, P \ 0.001,

Fig. 8b).

Average velocity is larger for the distant target (F(1,9) =
126.70, P \ 0.001). It ranges from 43.64 ± 1.69 cm/s

(mean value for all paths to target 1 ± SE) to 48.02 ±

1.98 cm/s (mean value for all paths to target 2 ± SE). This
matches the observation that path length but not movement

Fig. 5 Planes of movement.
Single trial movement planes
from each participant and each
obstacle condition are shown.
Colors indicate different
participants (color figure online)

Fig. 6 Obstacle avoidance. Each point represents one movement and
illustrates the avoidance in x-direction and z-direction at the time of
obstacle passage. All movements from each participant are depicted.
The obstacle is marked in gray. The horizontal line denotes obstacle
height. Thus, all points above this line represent avoidance movements

passing over the top of the obstacle. Likewise, the vertical line denotes
collision free sideways passage of the obstacle. All points on the right
of this line indicate movements sideways around the obstacle and
those in the upper right denote a merged avoidance strategy. Colors
indicate different participants (color figure online)
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the plane of movement depends 
on the obstacle height

colors: participants…
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isochrony

time is larger for target 2 (isochrony, Fig. 8). More pre-

cisely, we found that both components of velocity, trans-

port (F(1,9) = 289.85, P \ 0.001) and lift (F(1,9) = 28.98,
P \ 0.001), are significantly increased for target 2. Aver-

age transport velocity ranges from 31.64 ± 0.92 cm/s

(mean value for all paths to target 1 ± SE) to 35.52 ±
1.11 cm/s (mean value for all paths to target 2 ± SE) and

average lift velocity ranges from 23.21 ± 1.25 cm/s (mean
value for all paths to target 1 ± SE) to 25.15 ± 1.36 cm/s

(mean value for all paths to target 2 ± SE).

Results: Experiment 2

The second experiment manipulates the point during the
transport movement at which the obstacle is encountered so

that the time structure of the induced obstacle avoidance

movement and the coordination between the two primitives
are probed.

Spatial paths

The amount of path change induced by obstacle avoidance

is significantly increased for obstacles on the right

compared to obstacles on the left (F(1,4) = 71.008,

P = 0.001) as well as for tall obstacles compared to small

obstacles (F(1.027,4.108) = 51.616, P = 0.002). Addition-
ally, there is a significant obstacle position 9 obstacle

height interaction (F(2,8) = 52.778, P \ 0.001) which

reveals a stronger increase in the amount of path change
with obstacle height if the obstacle is positioned on the

right. There is no significant effect of obstacle distance on
the amount of path change (F(1,4) = 1.900, P = 0.240).

The contrast between obstacle avoidance early versus

late in the movement can be best visualized by decom-
posing the trajectory into the transport primitive and the

lift/descend primitive as shown in Fig. 9a. Whereas the lift

component is very similar for near and far obstacles, the
transport component varies substantially, being delayed for

obstacles early in the movement path. At 30, 50, and 70 %

of movement time, we did not find any significant differ-
ences in lift excursion between near and far obstacles

(30 %: F(1,4) = 0.220, P = 0.664, 50 %: F(1,4) = 1.3322,

P = 0.313, 70 %: F(1,4) = 4, 65, P = 0.098) while the
transport component was significantly modulated by obstacle

distance (30 %: F(1,4) = 86.66, P = 0.001, 50 %: F(1,4) =

239.12, P\0.001, 70 %: F(1,4) = 87.47, P = 0.001).
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Fig. 7 Double peak structure of velocity (mean data of a representative participant). Adding the squared lift component of velocity and the
squared transport component of velocity yields the squared tangential velocity, see Eq. (7)
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Fig. 8 Isochrony principle. Path length (b), but not movement time (a) is increased for target 2. This is consistent with the isochrony principle
that predicts a constant movement duration when movement distance varies
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local isochrony

approximately the same time for near and far obstacles. A

possible generalization is continuous isochrony, according

to which the time it takes to reach any percentage excur-
sion (any percentage of maximal lift) is the same for near

and far obstacles or via points. The principle of local iso-

chrony is then the special case when looking at the maxi-
mum of lift (Fig. 13b).

In this account, there is no direct association between

global and local isochrony as the mechanisms from which
these principles emerge are different. Whereas global iso-

chrony is achieved by adjusting both the lift and the

transport component, local (and continuous) isochrony is
the consequence of a constant lift component that forces

the transport component to adapt in order to achieve

obstacle avoidance.

Time structure of obstacle passage

One might expect a relationship to hold between tangential

velocity and the point in time of obstacle passage. Fig-
ure 12 showed, however, that passage occurs at different

points in the tangential velocity profile for near versus for

far obstacles. This is consistent with local isochrony,
according to which the point of furthest excursion is cou-

pled to the velocity profile, not the point of obstacle pas-

sage. Thus, the tangential velocity profile is not directly
correlated to obstacle passage but instead linked to the

spatial path. This is consistent with findings of Flash and

Hogan (1985) who reported similarities in the kinematic

characteristics of obstacle avoidance movements, uncon-

strained movement, curved movements, and movements
through intermediate targets.

Conclusion

Our investigations show that naturalistic 3D obstacle
avoidance movements are surprisingly regular. Most

importantly, their kinematic structure can be understood in

terms of independent and invariant movement primitives:
lift/descent and transport. With this decomposition of

movements, we found that relatively complex characteris-

tics of movements like the double peak structure of velocity
and the principle of local isochrony can be understood.
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invariance of lift across space
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Abbildung 3.17: Über alle Probanden gemittelte Lift-Komponenten der Hin- und Rückbe-
wegung. Die Lift-Komponenten der Hin- und Rückbewegung sind nahezu invariant.

mit Messwiederholung mit den Faktoren Bewegungsrichtung (hin, zurück) und

Hindernishöhe (klein, mittel, groß) durchgeführt. Nur zu einem der untersuchten

Zeitpunkte (dem Zeitpunkt des Erreichens der 50%igen Lift-Amplitude in der

Senkbewegung) und nur für die nahe Hinderniskonfiguration kann ein signifikanter

Unterschied zwischen der Lift-Komponente der Hin- und der Rückbewegung fest-

gestellt werden. Die statistische Auswertung der Invarianz der Lift-Komponente

ist in Tabelle 3.10 zusammengefasst. Die Unabhängigkeit der Lift-Komponente

von der Bewegungsrichtung ist vor allem deshalb erstaunlich, da sich die Rück-

bewegung als Gesamtbewegung betrachtet deutlich von der Hinbewegung unter-

scheidet, siehe Abbildung 3.18. Dieser Unterschied kommt zum einen daher, dass

ein nahes Hindernis in der Hinbewegung in der Rückbewegung zu einem fernen

Hindernis wird. Zum anderen startet die Hinbewegung generell mit einer steileren

Flanke als die Rückbewegung. Also können auch bei der Betrachtung der Bewe-



scaling with movement time
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Abbildung 3.25: Bewegungszeit (Mittelwerte über alle Probanden ± Standardfehler) für
alle 4 Hinderniskonfigurationen mit den Geschwindigkeitsvorgaben

”
normal“ und

”
schnell“.

3.5.3 Lift- und Transport-Komponente in Abhängigkeit von

der Geschwindigkeit der Bewegung

Für diesen Teil der Analyse wurde der Startpunkt der Bewegung als derjenige

Zeitpunkt festgelegt, bei dem die Geschwindigkeit erstmals (rückwärts von der

maximalen Geschwindigkeit aus gemessen) 30% der maximalen Geschwindigkeit

unterschreitet. Ähnlich wurde der Endpunkt als der Zeitpunkt berechnet, bei dem

die Geschwindigkeit (von der maximalen Geschwindigkeit aus gemessen) 20% der

maximalen Geschwindigkeit erstmals unterschreitet. Durch diese Berechnung des

Start- und Endpunktes wird ein kleiner Teil des zurückgelegten Pfades (< 1.5 cm)

abgeschnitten. Die Länge des abgeschnittenen Pfades am Startpunkt unter-

scheidet sich jedoch nicht signifikant für
”
normale“ und

”
schnelle“ Bewegungen

(F(1,6) = 0.017, P = 0.900) und liegt bei 1.34 ± 0.13 cm (
”
normal“) und bei

1.37 ± 0.26 cm (
”
schnell“). Das Gleiche gilt für den berechneten Endpunkt der

Bewegung (F(1,6) = 3.485, P = 0.112).

Wie in Abbildung 3.26 zu sehen, ist die Lift-Komponente für Bewegungen

mit
”
normaler“ und

”
schneller“ Geschwindigkeit annähernd identisch. Selbst die

KAPITEL 3. ERGEBNISSE 77

Start

Ziel

11 cm

11 cm

35 cm

O1

O2

Abbildung 3.24: Versuchsaufbau Experiment 5. Das Ziel befand sich in orthogonaler
Richtung zur Tischkante und war 35 cm von der Startposition entfernt. Die Hindernisse
befanden sich nahe der Startposition (O1) oder nahe der Zielposition (O2).

Tabelle 3.15: Abkürzungen für die 8 Versuchsbedingungen des fünften Experiments. Die
Abkürzungen setzen sich aus der Hindernisposition (Distanz zur Startposition), der Höhe des
Hindernisses und der Geschwindigkeitsvorgabe zusammen. O1SN bezeichnet beispielsweise eine
Ausweichbewegung mit

”
normaler“ Geschwindigkeit über ein kleines Hindernis, welches sich

nahe der Startposition befindet.

Hindernisposition Hindernishöhe Geschwindigkeit
nah: 11 cm fern: 24 cm klein: 20 cm groß: 30 cm normal schnell

O1 O2 S T N F

3.5.2 Bewegungszeit

Die Bewegungszeit ist für Bewegungen mit der Geschwindigkeitsvorgabe
”
schnell“

signifikant kürzer als für Bewegungen mit
”
normaler“ Geschwindigkeit (F(1,6) =

43.687, P = 0.001). Aus Abbildung 3.25 geht hervor, dass die Bewegungszeit

innerhalb einer Geschwindigkeitsvorgabe für die vier verschiedenen Hindernisbe-

dingungen einem gleichbleibenden Muster folgt. So ist die Bewegungszeit für

große Hindernisse signifikant länger als für kleine Hindernisse (F(1,6) = 79.285,

P < 0.001) und für nahe Hindernisse (Position O1) signifikant kürzer als für

ferne Hindernisse (Position O2) (F(1,6) = 14.036, P = 0.010).
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3.5.2 Bewegungszeit

Die Bewegungszeit ist für Bewegungen mit der Geschwindigkeitsvorgabe
”
schnell“

signifikant kürzer als für Bewegungen mit
”
normaler“ Geschwindigkeit (F(1,6) =

43.687, P = 0.001). Aus Abbildung 3.25 geht hervor, dass die Bewegungszeit

innerhalb einer Geschwindigkeitsvorgabe für die vier verschiedenen Hindernisbe-

dingungen einem gleichbleibenden Muster folgt. So ist die Bewegungszeit für

große Hindernisse signifikant länger als für kleine Hindernisse (F(1,6) = 79.285,

P < 0.001) und für nahe Hindernisse (Position O1) signifikant kürzer als für

ferne Hindernisse (Position O2) (F(1,6) = 14.036, P = 0.010).
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Abbildung 3.26: Lift-Komponente (Mittelwerte über alle Probanden) für alle Hinderniskon-
figurationen mit

”
normaler“ und

”
schneller“ Geschwindigkeit.

maximale Amplitude der Lift-Bewegung unterscheidet sich nicht signifikant in

Abhängigkeit von der Geschwindigkeitsvorgabe (F(1,6) = 0.033, P = 0.861).

Das Gleiche gilt auch für den zeitlichen Verlauf der Lift-Bewegung.

Wie in den vorherigen Experimenten wurden zur Analyse der Form der Lift-

Komponente (unabhängig von der maximalen Amplitude) die Zeitpunkte, zu

denen 50% bzw. 100% der maximalen Lift-Amplitude erreicht wurden, berechnet.

Eine dreifaktorielle ANOVA mit Messwiederholung hat ergeben, dass sich die

Zeitpunkte des Erreichens der jeweiligen Auslenkungen nicht signifikant für die

Faktoren Geschwindigkeit und Hindernisdistanz unterscheiden, siehe Tabelle 3.16.

Übereinstimmend mit den Ergebnissen aus Experiment 3, führt lediglich die Va-

riation der Hindernishöhe zu einer marginal veränderten Form der Lift-Amplitude.

Die Transport-Komponente hingegen unterscheidet sich nach 25% der Bewe-

gungszeit signifikant im Hinblick auf die Geschwindigkeitsvorgabe, siehe Tabel-

le 3.17. Nach 50% bzw. 75% der Bewegungszeit ist jedoch kein signifikanter
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Start
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11 cm
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35 cm
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Abbildung 3.24: Versuchsaufbau Experiment 5. Das Ziel befand sich in orthogonaler
Richtung zur Tischkante und war 35 cm von der Startposition entfernt. Die Hindernisse
befanden sich nahe der Startposition (O1) oder nahe der Zielposition (O2).

Tabelle 3.15: Abkürzungen für die 8 Versuchsbedingungen des fünften Experiments. Die
Abkürzungen setzen sich aus der Hindernisposition (Distanz zur Startposition), der Höhe des
Hindernisses und der Geschwindigkeitsvorgabe zusammen. O1SN bezeichnet beispielsweise eine
Ausweichbewegung mit

”
normaler“ Geschwindigkeit über ein kleines Hindernis, welches sich

nahe der Startposition befindet.

Hindernisposition Hindernishöhe Geschwindigkeit
nah: 11 cm fern: 24 cm klein: 20 cm groß: 30 cm normal schnell

O1 O2 S T N F

3.5.2 Bewegungszeit

Die Bewegungszeit ist für Bewegungen mit der Geschwindigkeitsvorgabe
”
schnell“

signifikant kürzer als für Bewegungen mit
”
normaler“ Geschwindigkeit (F(1,6) =

43.687, P = 0.001). Aus Abbildung 3.25 geht hervor, dass die Bewegungszeit

innerhalb einer Geschwindigkeitsvorgabe für die vier verschiedenen Hindernisbe-

dingungen einem gleichbleibenden Muster folgt. So ist die Bewegungszeit für

große Hindernisse signifikant länger als für kleine Hindernisse (F(1,6) = 79.285,

P < 0.001) und für nahe Hindernisse (Position O1) signifikant kürzer als für

ferne Hindernisse (Position O2) (F(1,6) = 14.036, P = 0.010).
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Abbildung 3.27: Transport-Komponente (Mittelwerte über alle Probanden) für alle Hinder-
niskonfigurationen mit

”
normaler“ und

”
schneller“ Geschwindigkeit.

3.6 Experiment 6

Die Experimente 4 und 5 deuten darauf hin (siehe Diskussion), dass es eine

zusätzliche Komponente geben könnte, die unabhängig von Lift und Transport

ist und auf eine Reaktion auf ein Hindernis zurückzuführen ist, welche von

dessen Position und Höhe sowie von der Geschwindigkeit der Bewegung abhängt.

Das sechste Experiment diente einer genaueren Untersuchung der postulierten

Hindernis-Komponente.

3.6.1 Versuchsaufbau

An diesem Experiment haben 10 Probanden (3 weibliche und 7 männliche) im

Alter von 27.90±0.92 Jahren teilgenommen. Der Versuchsaufbau war ähnlich wie

im vierten Experiment mit den folgenden Erweiterungen: (1) die Hindernisposi-

tionen entlang der Start-Ziel-Linie waren systematisch angeordnet (mit gleichem



elementary behaviors

based on planarity

decompose movement into 
transport and lift 
component

binormal vector BðtÞ of the 3D end-effector trajectory

based on a reference frame that is anchored on the table
and centered on the marker on top of the moved object in

its initial position.

BðtÞ ¼ TðtÞ $ NðtÞ ð4Þ

where T ¼ _xðtÞ
_xðtÞk k is the unit tangent vector and N ¼ _TðtÞ

_TðtÞk k is

the unit normal vector. Then, we transformed Cartesian
coordinates of BðtÞ into spherical coordinates using the

Matlab function ‘‘cart2sph’’ and thereby obtained the angle

b(t) which is enclosed by the unit binormal vector BðtÞ and
the table plane. The elevation angle of the movement plane

was then determined as

/ðtÞ ¼ 90% & bðtÞ ð5Þ

Finally, the mean elevation angle / was computed as a

circular mean over 30–60 % of movement time when
torsion was minimal.

Decomposition of the end-effector path into the transport
primitive and the lift/descend primitive

We decompose the end-effector path into two primitives:
the transport component and the lift/descend component.

The transport component, s, is obtained by projecting the

path onto the straight line connecting the start position to
the target position. By choice of coordinate system, this

corresponds to the Euclidean y-component (for target 2 in

experiment 1 after a rotation of the coordinate frame). The
lift/descend component,

‘ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðtÞ2 þ zðtÞ2

q
ð6Þ

is the orthogonal complement. Here, we shifted the z-axis

up such that the marker on the transported object was at the
origin prior to movement onset. Note that the lift

component is defined to only be positive. This is
consistent with our experimental setting where start and

target positions are at the same height. Because the

movement is approximately planar, these components
largely reflect the movement within the movement plane

as illustrated in Fig. 2. The tangential velocity,

sðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_‘ðtÞ2 þ _sðtÞ2

q
; ð7Þ

is thus composed of the velocities of the two primitives.

Statistical analysis

Single means for each participant for each condition were
calculated and entered into a repeated measures analysis of

variance (ANOVA) with three main factors in SPSS. For

experiment 1, main factors were obstacle position (left,

right), obstacle height (small, medium), and target position
(target 1, target 2). For experiment 2, we used obstacle

position (left, right), obstacle distance (near, far), and

obstacle height (small, medium, tall) as main factors.
Where appropriate, F statistics were corrected for viola-

tions of the sphericity assumption using the Greenhouse-

Geisser correction. Pair-wise comparisons were performed
using Student’s t tests, the P values were adjusted for

multiple comparisons using Bonferroni correction. Data

values are reported as mean ± standard error (SE). Alpha
was set at P = 0.05 for all statistical analyses.

Results

Results: Experiment 1

Spatial paths

All spatial end-effector paths reflect obstacle avoidance

and differ with respect to target and obstacle positions, see
Fig. 3. The amount of path change induced by obstacle

avoidance (Eq. (3)) is significantly higher for obstacles on

the right compared to obstacles on the left (F(1,9) =
28.938, P \ 0.001) as well as for medium obstacles com-

pared to small obstacles (F(1,9) = 205.424, P \ 0.001).

Further, there is a highly significant obstacle position 9
obstacle height interaction (F(1,9) = 44330.605, P \ 0.001)

revealing a stronger increase in the amount of path change

with obstacle height if the obstacle is positioned on the
right. This is consistent with the observation that obstacles

on the left were avoided with a stronger sideway strategy

(see below).

Fig. 2 Decomposition of the end-effector path into the lift/descend
primitive and the transport primitive
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lift vs. transport

Plotting the lift against the transport component in

Fig. 9b reveals how the spatial path is skewed differently
depending on obstacle conditions. The path rises steeply in

the early movement phase for near obstacles and falls

steeply in the end phase for far obstacles. Interestingly, the
lift components in Fig. 9a are bell-shaped when plotted

against time but skewed when plotted as paths against the

transport component, see Fig. 9b.
The invariance of the lift component contrasts with the

modulation of the transport component for early versus late
obstacles. For a statistical analysis of the invariance of the lift

shape, we evaluated the points in time at which 50 and 100 %

of maximal lift excursion is reached.The point of 50 %
excursion is reached twice, once for lift and once for descent.

The means of these times were as follows: 50 % (upwards):

242.70 ± 3.61 ms (near obstacle) versus 240.27 ± 2.27 ms
(far obstacle); 100 %: 402.10 ± 4.40 ms (near obstacle)

versus 401.27 ± 3.20 ms (far obstacle); 50 % (downwards):

589.50 ± 7.92 ms (near obstacle) versus 589.40 ± 9.42 ms

(far obstacle). These times did not depend significantly on

the distance of the obstacle (50 % (lift): F(1,4) = 0.832,
P = 0.413, 100 %: F(1,4) = 0.094, P = 0.775, 50 % (des-

cent): F(1,4) \ 0.001, P = 0.985). In contrast, for the trans-

port component, the points in time to reach 25, 50, and 75 %
of the transport amplitude differed significantly between the

obstacle near versus far condition: (25 %: F(1,4) = 144.97,

P \ 0.001, 50 %: F(1,4) = 362.43, P \ 0.001, 75 %:
F(1,4) = 3054.75, P \ 0.001). Figure 9a illustrates that the

time to reach any of the three points is larger for near
obstacles.

Figure 9c and d show how both components of the

trajectory are influenced by obstacle height. First, an
increase of obstacle height leads to a larger amplitude of

the lift component (F(1.019,4.076) = 37.544, P = 0.003).

The transport component is also modulated: For near
obstacles, the transport trajectories diverge in an early part

of movement as tall obstacles delay the transport compo-

nent’s progression to a greater extent than small obstacles,

(a) (b)

(c) (d)

Fig. 9 a Single trial lift and transport components of trajectory for
corresponding near and far obstacle conditions (O2T, O4T) of a
representative participant. In b the lift component is plotted against
the transport component, allowing a direct view into the movement
plane. Beyond, mean (over all participants) lift and transport

components of trajectory are shown for near (c) and far (d) obstacles
of varying heights. With growing height the amplitude of the lift
component increases. The height of the obstacle modulates the early
part of the transport component for early obstacles and correspond-
ingly the late part of the transport component for late obstacles
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support surface on the table, whereas the left arm gripped a

wooden cylinder on the left side of the workspace to sta-
bilize the body posture. After hearing an auditory signal,

the participants were instructed to reach for a cylindric

object located directly in front of them on top of the
starting platform (6 cm in diameter, 10 cm in height) at a

distance of 9 cm from the front edge of the table. The

object consisted of a small wooden part (2.5 cm in height)
which enables stable positioning and a top portion made

out of Styrofoam (10 cm in height). Participants were

instructed to transport the object to one of two possible
target platforms:

1. Target 1 (6 cm in diameter, 10 cm in height): At a
distance of 30 cm away from the starting platform in

straight ahead direction.

2. Target 2 (6 cm in diameter, 10 cm in height): Addi-
tionally shifted 15 cm to the right, thus positioned in a

direction diagonal to the starting position.

During movement participants had to avoid an obstacle
(6 cm in diameter, 15 cm (small) or 20 cm (medium) in

height) which was positioned at mid-distance between start

and target directly to the left or rather to the right of the
straight line connecting start and target. In each condition,

there was only one obstacle present which did not block the

view toward the target. The end of the data collection was
indicated by an auditory signal which differed from the

starting signal.

The actual recording session was preceded by few
warm-up trials to familiarize the participants with the task.

No instruction was given about how to avoid the obstacle

(e.g. passing over the obstacle or sideways around the
obstacle). Nor were accuracy constraints placed on the

movements. Participants were discouraged from making
corrective actions after the movement ended. They were

told to perform the movement with a natural and consistent

speed. Trials in which participants collided with the
obstacle during avoidance movement were discarded and

rerun. Altogether, participants performed 10 experimental

conditions: 2 obstacle heights, 2 obstacle positions, 2 target
positions and for each target one condition without obstacle

(2 9 2 9 2 ? 2). Participants completed 15 repetitions of

each of the 10 configurations for a total of 150 pseudo-
randomly ordered trials. Symbols which are used for

describing the 10 configurations are composed out of target

position, obstacle position, and obstacle height, see
Table 1. Obstacle positions are also depicted in Fig. 1a.

For statistical analysis and computation of mean data, we

discarded the first three trials of each condition because
they deviated most in terms of movement time and spatial

paths.

Experiment 2

Experimental setup

Five healthy, right-handed participants (3 male and 2

female, 27.6 ± 0.81 (SE) years) contributed to this
experiment. The experimental setup was similar to the

previous experiment with the following modifications:

• Participants had to perform their movements to only

one target in straight ahead direction (target 1 of the

previous experiment).
• Obstacles were of three different heights: 15 cm

(small), 20 cm (medium), and 25 cm (tall).

• Obstacles were shifted from mid-distance nearer to the
start- (11 cm from start) or to the target-cylinder

(11 cm from target and respectively 19 cm from start).

Thus, obstacles were located at 4 positions (2 distances
(near, far) 9 2 directions (left, right)).

Accordingly, participants performed a total of 13
experimental conditions: 3 obstacle heights, 2 obstacle

directions (left, right), and 2 obstacle distances (near, far)

? one condition without obstacle (3 9 2 9 2 ? 1). Par-
ticipants completed 12 repetitions of each of the 13 con-

figurations for a total of 156 pseudo-randomly ordered

30 cm 

15 cm 

O4 15 
 cm 

20 
 cm 

O1 

T1 T2 
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O2 

T1 T2 
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6 cm O4 O3 

O4 15 
 cm 

20 
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25 
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11 cm 

30 cm 

(a) (b)

Fig. 1 Experimental setup. a Experiment 1. Target 1 (T1) was
located in straight ahead direction and target 2 (T2) was additionally
shifted 15 cm to the right and thus positioned in a direction diagonal
to the starting position. Obstacles were located at mid-distance
between start and target either to the left or rather to the right of the
straight line connecting start and target. Obstacle locations O1 and O2
were only applied in combination with T1, whereas obstacle locations
O3 and O4 were combined with T2. Obstacles were of two different
heights. b All movements headed for T1. Obstacles were located
nearby the starting position (O1 and O2) or nearby the target location
(O3 and O4) and were of three different heights

Exp Brain Res (2012) 222:185–200 187

123

Author's personal copy

near far

near
far



lift vs. transport
KAPITEL 3. ERGEBNISSE 60

0 50 100

0

10

20

30

0 50 100

0

10

20

30

0 50 100

0

10

20

30

0 50 100

0

10

20

30

0 50 100

0

10

20

30

0 50 100

0

10

20

30

Lift

Transport

Zeit (%)

nah
fern

Hinbewegung Rückbewegung

O1S vs O3S

O1M vs O3M

O1H vs O3H

O1S vs O3S

O1M vs O3M

O1H vs O3HL
ift

 u
n
d

T
ra

n
sp

o
rt

 (
c
m

)

(a) (b)

Abbildung 3.15: Lift- und Transport-Komponente. Dargestellt sind Mittelwerte über alle
Probanden. (a) Die Position des Hindernisses entlang der Start-Ziel-Linie (nah vs. fern) hat
einen großen Einfluss auf die Transport-Komponente, wohingegen die Lift-Komponente sich
nur marginal verändert. (b) Eine Veränderung der Höhe des Hindernisses wirkt sich auf die
Lift-Amplitude aus. Zusätzlich hat die Höhe des Hindernisses je nach Position des Hindernisses
einen lokalen Einfluss auf die Transport-Komponente.

wegung gilt der gegenteilige E↵ekt, da das nahe Hindernis in der Rückbewegung

zu einem fernen Hindernis wird. Eine signifikante Höhe ⇥ Distanz-Interaktion

für die prozentualen Zeitpunkte des Erreichens von 25% (F(2,12) = 49.876,

P < 0.001), 50% (F(2,12) = 63.008, P < 0.001) und 75% (F(2,12) = 70.891,

P < 0.001) des zurückgelegten Transportweges zeigt, dass dieser Distanz-E↵ekt

für große Hindernisse besonders stark ausgeprägt ist.

Die Höhe des Hindernisses beeinflusst die Amplitude der Lift-Bewegung,

siehe Abbildung 3.15(b) (F(2,12) = 1287, 235, P < 0.001). Auch die Transport-

Komponente verändert sich in Abhängigkeit von der Höhe des Hindernisses. Eine
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Abbildung 3.14: Versuchsaufbau Experiment 3. Das Ziel befand sich in orthogonaler
Richtung zur Tischkante und war 32 cm von der Startposition entfernt. Die Hindernisse
befanden sich nahe der Startposition (O1), mittig zwischen Start und Ziel (O2) oder nahe der
Zielposition (O3) und hatten drei verschiedene Höhen. Zur Analyse der Gelenkwinkel wurden
starre Körper mit jeweils 3 Infrarotmarkern auf allen Segmenten des Arms und an der Schulter
der Probanden angebracht.

die Bewegungsebene nicht frei wählen, sondern mussten das Objekt über das

Hindernis hinweg bewegen (vertikale Ebene). Um eine Gelenkwinkelanalyse zu

ermöglichen, wurden starre Körper, die jeweils mit drei Infrarotmarkern ausgestat-

tet waren, auf allen Segmenten des rechten Arms der Probanden befestigt, siehe

Methoden, Abschnitt 2.5. Das Experiment bestand aus 9 Versuchsbedingungen:

3 Hindernispositionen und 3 Hindernishöhen (3 ⇥ 3). Jede Versuchsbedingung

wurde 15-mal durchgeführt, so dass sich für jeden Probanden 135 Bewegun-

gen in pseudo-randomisierter Reihenfolge ergaben. Die Abkürzungen für die 13

Versuchsbedingungen können aus Tabelle 3.7 entnommen werden.
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Abbildung 3.16: Normalisierte Lift-Komponente (gemittelt über alle Probanden) in
Abhängigkeit von der Höhe des Hindernisses. Von links nach rechts verschiebt sich die Position
des Hindernisses entlang der Start-Ziel Linie in Richtung Ziel.

3.3.3 Lift- und Transport-Komponente: Hin- vs. Rückbe-

wegung

Durch die zusätzliche Betrachtung der Rückbewegung soll mit diesem Experiment

geprüft werden, ob die Invarianz der Lift-Komponente auch für die Rückbewe-

gung gilt und in wieweit sich die Hin- und Rückbewegung hinsichtlich der Lift-

und der Transport-Komponente unterscheiden. In Abbildung 3.17 sind die Lift-

Komponenten der Hin- und Rückbewegungen aller Hinderniskonfigurationen in

normalisierter Zeit dargestellt. Es fällt sofort auf, dass die Lift-Komponenten

der Vorwärts- und Rückwärts-Bewegung für alle Hinderniskonfigurationen nahezu

identisch sind. Auch die Bewegungszeit der Hin-und Rückbewegung unterscheidet

sich nicht signifikant (F(1,6) = 0.083, P = 0.784). Die gemittelte Bewegungszeit

beträgt 641.37ms ± 21.78ms für die Hinbewegung und 644.97ms ± 31.10ms

für die Rückbewegung.

Für die statistische Analyse der Invarianz der Lift-Komponente wurden für die

Hin- und die Rückbewegung jeweils die prozentualen Zeitpunkte des Erreichens

der 50%igen Lift-Amplitude in der Aufwärts- und Abwärtsbewegung sowie der

100%igen Lift-Amplitude berechnet. Für jede der drei Hindernis-Distanzen (nah,

zentral, fern) und für jeden der oben genannten Zeitpunkte wurde eine ANOVA
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3.4 Experiment 4

In den vorherigen Experimenten war es nicht möglich, eine invariante Transport-

Komponente bei Variation der Höhe des Hindernisses nachzuweisen. Um eine

genauere Untersuchung der Invarianz der Transport-Komponente zu ermöglichen,

wurde die Bewegung im Gegensatz zu den bisherigen Experimenten in horizonta-

ler Richtung durchgeführt, wodurch die Reichweite der Transportbewegung auf

60 cm vergrößert werden konnte.

3.4.1 Versuchsaufbau

An diesem Experiment haben 3 weibliche und 5 männliche Probanden im Alter

von 29.25±0.82 Jahren teilgenommen. Der Versuchsaufbau ist in Abbildung 3.22

dargestellt. Start und Ziel wurden horizontal zum Probanden in einer Entfernung

Start Ziel

60 cm

O1 O2 O3 O4 O5

15 cm

20 cm

30 cm

15 cm

20 cm

30 cm

Abbildung 3.22: Versuchsaufbau Experiment 4. Das Ziel befand sich in horizontaler Rich-
tung zur Tischkante und war 60 cm von der Startposition entfernt. Die Hindernisse befanden
sich nahe der Startposition (O1 bzw. O2), mittig zwischen Start und Ziel (O3) oder nahe der
Zielposition (O4 bzw. O5). Es wurden drei Hindernishöhen getestet.

von 60 cm zueinander angeordnet. Wie in den vorherigen Experimenten wurden

die Bewegungen von einem zylinderförmigen Startpodest (6 cm Durchmesser

und 10 cm Höhe) zu einem ebenso gestalteten Zielpodest durchgeführt. Um

eine möglichst breite Variation an Hindernispositionen entlang des Pfades zu

testen, wurden die Hindernisse bei der Hälfte der Probanden auf die äußeren
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3.4.2 Transport-Komponente in Abhängigkeit von der Hin-

dernishöhe

Übereinstimmend mit den Experimenten 2 und 3 gibt es eine Abhängigkeit der

Transport-Komponente von der Höhe des Hindernisses. Nahe Hindernisse (Positi-

on O1 und O2) führen zu einer Verzögerung der Transport-Bewegung (bis hin zu

einer initialen Rückwärtsbewegung), die mit zunehmender Höhe des Hindernisses

verstärkt wird, wohingegen ferne Hindernisse (O4 und O5) den symmetrischen Ef-

fekt nahe der Zielposition hervorrufen, siehe Abbildung 3.23. Zentrale Hindernisse

hingegen führen zu einer vollständig invarianten Transport-Bewegung, die keine

Abhängigkeit von der Hindernishöhe aufweist. In den vorherigen Experimenten

konnte dies nicht überprüft werden, da sich aufgrund der geringen Reichweite der

Transport-Komponente alle Hindernisse einschließlich des zentralen Hindernisses

zu nah an der Start- bzw. an der Ziel-Position befanden.
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Abbildung 3.23: Einfluss der Höhe des Hindernisses auf die Transport- und Lift-Komponente
in Abhängigkeit von der Distanz des Hindernisses zur Startposition (Mittelwerte über alle
Probanden). Von links nach rechts (O1 bis O5) verschiebt sich die Position des Hindernisses
kontinuierlich in Richtung Ziel. Nahe Hindernispositionen führen zu einer Modulation der
Transport-Komponente in Abhängigkeit von der Höhe des Hindernisses, die im ersten Teil der
Bewegung überwiegt. Ferne Hindernisse haben den gegenteiligen E↵ekt. Einzig die zentrale
Hindernisposition (O3) zeigt eine vollständige Invarianz der Transport-Komponente von der
Höhe des Hindernisses. Die Lift-Amplituden skalieren mit der Höhe des Hindernisses.

Für die statistische Analyse wurde die Transport-Komponente zunächst auf

eine Länge von 60 cm normalisiert, da die Länge der Transportbewegung mit

zunehmender Höhe des Hindernisses von 59.77 cm ± 0.11 cm (kleines Hinder-
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3.6.3 Transport-Komponente in Abhängigkeit von der Hin-
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Abbildung 3.30: Einfluss der Höhe des Hindernisses auf die Transport- und Lift-Komponente
in Abhängigkeit von der Distanz des Hindernisses zur Startposition (Mittelwerte über alle
Probanden). Von links nach rechts (O1 bis O5) verschiebt sich die Position des Hindernisses
schrittweise in Richtung Ziel. In der ersten Zeile ist die Hinbewegung (Bewegung von Start
zu Ziel) und in der zweiten Zeile die Rückbewegung (von Ziel zu Start) abgebildet. Die
Referenzbewegung ohne Hindernis ist in schwarz dargestellt.

Wie in den vorherigen Experimenten bereits gezeigt, führen nahe Hindernisse

(Position O1 und O2) zu einer initialen Verzögerung der Transport-Komponente,

während ferne Hindernisse (Position O3 und O4) gegen Ende der Bewegung eine

bereits weiter fortgeschrittene Transport-Komponente zur Folge haben, siehe

Abbildung 3.30 (oben). Diese beiden E↵ekte werden mit zunehmender Höhe

des Hindernisses verstärkt. Aus Tabelle 3.19 geht hervor, dass die Höhe von

nahen Hindernissen (O1 und O2) die Transport-Komponente der Hinbewegung

hauptsächlich im ersten Teil der Bewegung signifikant beeinflusst, während der

Einfluss der Höhe von fernen Hindernissen auf die Transport-Komponente im

zweiten Teil der Bewegung überwiegt. Diese Abhängigkeit der Transport-Kom-

ponente von der Hindernishöhe nimmt mit der Distanz des Hindernisses zur Start-

bzw. zur Zielposition stetig ab, so dass die Höhe eines Hindernisses, welches mittig
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Start Ziel

60 cm

O1 O2 O3 O4 O5

15 cm

30 cm 30 cm

7.5 cm 15 cm

Abbildung 3.29: Versuchsaufbau Experiment 6. Das Ziel befand sich in horizontaler Rich-
tung zur Tischkante und war 60 cm von der Startposition entfernt. Die Hindernisse befanden
sich nahe der Startposition (O1 bzw. O2), mittig zwischen Start und Ziel (O3) oder nahe
der Zielposition (O4 bzw. O5) und waren jeweils 1.5 cm (von Außenkante zu Außenkante)
voneinander entfernt. Es wurden drei Hindernishöhen getestet.

Tabelle 3.18: Abkürzungen für die 16 Versuchsbedingungen des sechsten Experiments. Die
Abkürzungen setzten sich aus der Hindernisposition (Distanz zur Startposition) und der Höhe
des Hindernisses zusammen. O1S bezeichnet beispielsweise ein kleines Hindernis, welches sich
nahe der Startposition befindet.

Hindernisposition Hindernishöhe
kein Hin-
dernis

nah:
15 cm

nah:
22.5 cm

mittig:
30 cm

fern:
37.5 cm

fern:
45 cm

klein:
20 cm

mittel:
27.5 cm

groß:
35 cm

– O1 O2 O3 O4 O5 S M T

so dass sich für jeden Probanden 160 Bewegungen in pseudo-randomisierter

Reihenfolge ergaben.

3.6.2 Bewegungszeit

Die Bewegungszeit ist für große Hindernisse signifikant länger als für kleine

Hindernisse (F(2,18) = 41.812, P < 0.001). Alle drei getesteten Höhenänderun-

gen führen zu einer signifikanten Änderung der Bewegungszeit. Die gemittelte

Bewegungszeit beträgt für kleine Hindernisse 997.56 ± 35.4 cm, für mittelgroße

Hindernisse 1057.30 ± 43.81 cm und für große Hindernisse 1142.56 ± 49.73 cm.

Die Veränderung der Position des Hindernisses entlang der Start-Ziel-Linie hat

hingegen keinen signifikanten Einfluss auf die Bewegungszeit (keine Signifikanzen

im post-hoc Test).
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time is larger for target 2 (isochrony, Fig. 8). More pre-

cisely, we found that both components of velocity, trans-

port (F(1,9) = 289.85, P \ 0.001) and lift (F(1,9) = 28.98,
P \ 0.001), are significantly increased for target 2. Aver-

age transport velocity ranges from 31.64 ± 0.92 cm/s

(mean value for all paths to target 1 ± SE) to 35.52 ±
1.11 cm/s (mean value for all paths to target 2 ± SE) and

average lift velocity ranges from 23.21 ± 1.25 cm/s (mean
value for all paths to target 1 ± SE) to 25.15 ± 1.36 cm/s

(mean value for all paths to target 2 ± SE).

Results: Experiment 2

The second experiment manipulates the point during the
transport movement at which the obstacle is encountered so

that the time structure of the induced obstacle avoidance

movement and the coordination between the two primitives
are probed.

Spatial paths

The amount of path change induced by obstacle avoidance

is significantly increased for obstacles on the right

compared to obstacles on the left (F(1,4) = 71.008,

P = 0.001) as well as for tall obstacles compared to small

obstacles (F(1.027,4.108) = 51.616, P = 0.002). Addition-
ally, there is a significant obstacle position 9 obstacle

height interaction (F(2,8) = 52.778, P \ 0.001) which

reveals a stronger increase in the amount of path change
with obstacle height if the obstacle is positioned on the

right. There is no significant effect of obstacle distance on
the amount of path change (F(1,4) = 1.900, P = 0.240).

The contrast between obstacle avoidance early versus

late in the movement can be best visualized by decom-
posing the trajectory into the transport primitive and the

lift/descend primitive as shown in Fig. 9a. Whereas the lift

component is very similar for near and far obstacles, the
transport component varies substantially, being delayed for

obstacles early in the movement path. At 30, 50, and 70 %

of movement time, we did not find any significant differ-
ences in lift excursion between near and far obstacles

(30 %: F(1,4) = 0.220, P = 0.664, 50 %: F(1,4) = 1.3322,

P = 0.313, 70 %: F(1,4) = 4, 65, P = 0.098) while the
transport component was significantly modulated by obstacle

distance (30 %: F(1,4) = 86.66, P = 0.001, 50 %: F(1,4) =

239.12, P\0.001, 70 %: F(1,4) = 87.47, P = 0.001).
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Fig. 7 Double peak structure of velocity (mean data of a representative participant). Adding the squared lift component of velocity and the
squared transport component of velocity yields the squared tangential velocity, see Eq. (7)
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Fig. 8 Isochrony principle. Path length (b), but not movement time (a) is increased for target 2. This is consistent with the isochrony principle
that predicts a constant movement duration when movement distance varies
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support surface on the table, whereas the left arm gripped a

wooden cylinder on the left side of the workspace to sta-
bilize the body posture. After hearing an auditory signal,

the participants were instructed to reach for a cylindric

object located directly in front of them on top of the
starting platform (6 cm in diameter, 10 cm in height) at a

distance of 9 cm from the front edge of the table. The

object consisted of a small wooden part (2.5 cm in height)
which enables stable positioning and a top portion made

out of Styrofoam (10 cm in height). Participants were

instructed to transport the object to one of two possible
target platforms:

1. Target 1 (6 cm in diameter, 10 cm in height): At a
distance of 30 cm away from the starting platform in

straight ahead direction.

2. Target 2 (6 cm in diameter, 10 cm in height): Addi-
tionally shifted 15 cm to the right, thus positioned in a

direction diagonal to the starting position.

During movement participants had to avoid an obstacle
(6 cm in diameter, 15 cm (small) or 20 cm (medium) in

height) which was positioned at mid-distance between start

and target directly to the left or rather to the right of the
straight line connecting start and target. In each condition,

there was only one obstacle present which did not block the

view toward the target. The end of the data collection was
indicated by an auditory signal which differed from the

starting signal.

The actual recording session was preceded by few
warm-up trials to familiarize the participants with the task.

No instruction was given about how to avoid the obstacle

(e.g. passing over the obstacle or sideways around the
obstacle). Nor were accuracy constraints placed on the

movements. Participants were discouraged from making
corrective actions after the movement ended. They were

told to perform the movement with a natural and consistent

speed. Trials in which participants collided with the
obstacle during avoidance movement were discarded and

rerun. Altogether, participants performed 10 experimental

conditions: 2 obstacle heights, 2 obstacle positions, 2 target
positions and for each target one condition without obstacle

(2 9 2 9 2 ? 2). Participants completed 15 repetitions of

each of the 10 configurations for a total of 150 pseudo-
randomly ordered trials. Symbols which are used for

describing the 10 configurations are composed out of target

position, obstacle position, and obstacle height, see
Table 1. Obstacle positions are also depicted in Fig. 1a.

For statistical analysis and computation of mean data, we

discarded the first three trials of each condition because
they deviated most in terms of movement time and spatial

paths.

Experiment 2

Experimental setup

Five healthy, right-handed participants (3 male and 2

female, 27.6 ± 0.81 (SE) years) contributed to this
experiment. The experimental setup was similar to the

previous experiment with the following modifications:

• Participants had to perform their movements to only

one target in straight ahead direction (target 1 of the

previous experiment).
• Obstacles were of three different heights: 15 cm

(small), 20 cm (medium), and 25 cm (tall).

• Obstacles were shifted from mid-distance nearer to the
start- (11 cm from start) or to the target-cylinder

(11 cm from target and respectively 19 cm from start).

Thus, obstacles were located at 4 positions (2 distances
(near, far) 9 2 directions (left, right)).

Accordingly, participants performed a total of 13
experimental conditions: 3 obstacle heights, 2 obstacle

directions (left, right), and 2 obstacle distances (near, far)

? one condition without obstacle (3 9 2 9 2 ? 1). Par-
ticipants completed 12 repetitions of each of the 13 con-

figurations for a total of 156 pseudo-randomly ordered
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Fig. 1 Experimental setup. a Experiment 1. Target 1 (T1) was
located in straight ahead direction and target 2 (T2) was additionally
shifted 15 cm to the right and thus positioned in a direction diagonal
to the starting position. Obstacles were located at mid-distance
between start and target either to the left or rather to the right of the
straight line connecting start and target. Obstacle locations O1 and O2
were only applied in combination with T1, whereas obstacle locations
O3 and O4 were combined with T2. Obstacles were of two different
heights. b All movements headed for T1. Obstacles were located
nearby the starting position (O1 and O2) or nearby the target location
(O3 and O4) and were of three different heights
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O2T, O4S, O4M, O4T) shows that there is a significant

effect of obstacle height (F(2,6) = 89.602, P \ 0.001).
Pairwise comparisons using the Bonferroni correction

detected a significant increase in the time to reach the

second acceleration peak when obstacle height changes
from small to medium (P = 0.021), from small to tall

(P = 0.004), and from medium to tall (P = 0.008). The

mean second peak of acceleration is reached after
356.86 ± 3.86 ms for small obstacles, after 411.98 ± 4.50

ms for medium obstacles, and after 457.82 ± 5.88 ms for
tall obstacles. We had observed the same synchronization

of acceleration peaks in the first experiment (F(8,72) =

1.623, P = 0.133), but report this effect here, as variation
in obstacle positions along the path of the movements

challenges this invariance more strongly. Shifting the

obstacle nearer to the participant or further away has a
major impact on the spatial path, but leaves the point in

time at which the first peak of acceleration is reached

unaffected (F(1,4) = 0.926, P = 0.390).
During obstacle avoidance, the acceleration profile often

shows a re-acceleration after the first peak. Looking at the

lift/descent and the transport primitives of acceleration
separately, we find that the first peak of lift/descent

acceleration occurs at the same time for all obstacle

conditions (F(11,44) = 0.855, P = 0.589, Fig. 11b). The
transport component of acceleration peaks later in time

compared to the lift/descent component (F(1,4) = 14.74,

P = 0.018, Fig. 11c). In the presence of obstacles, the

transport component of acceleration is often bi-phasic. Its
second peak largely determines the second peak of the total

acceleration profile.

Time structure of obstacle passage

In order to evaluate the extent of covariation between an
obstacle’s position and the time structure of the induced

avoidance movement, we plotted single trial velocities and
marked the event of obstacle passage therein. Figure 12

shows velocity profiles of three participants for a medium

height obstacle on the right in both distance conditions.
This illustrates a number of observations: (1) Obstacle

passage always happens after traversal of the dip in tan-

gential velocity. Interestingly and maybe contrary to first
intuition, tangential velocity is already on the rising edge

during the event of obstacle passage. (2) Peaks in velocity

are not strictly coupled to the event of obstacle passage.
While, in the near condition, the passage happens on the

rising edge of the second peak, the event of passing the

obstacle is shifted to later for far obstacles. This effect is
limited by the enlargement of the initial velocity peak for

far obstacles (Fig. 10). (3) In contrast to obstacle passage,

the point of furthest excursion from the straight path
(maximum amplitude of the lift component) is strongly

coupled to the speed profile. This is especially true for the

Fig. 10 Modulation of the double peak structure of tangential
velocity due to varying obstacle properties. Adding the squared lift
and the squared transport component of velocity yields the squared
speed. From left to right obstacle height changes from small to tall. In

the bottom row speed profiles are shown for trials in which obstacles
are located close to the starting position while in the top row speed
profiled for far obstacle locations are depicted. Mean data from a
representative participant are shown
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support surface on the table, whereas the left arm gripped a

wooden cylinder on the left side of the workspace to sta-
bilize the body posture. After hearing an auditory signal,

the participants were instructed to reach for a cylindric

object located directly in front of them on top of the
starting platform (6 cm in diameter, 10 cm in height) at a

distance of 9 cm from the front edge of the table. The

object consisted of a small wooden part (2.5 cm in height)
which enables stable positioning and a top portion made

out of Styrofoam (10 cm in height). Participants were

instructed to transport the object to one of two possible
target platforms:

1. Target 1 (6 cm in diameter, 10 cm in height): At a
distance of 30 cm away from the starting platform in

straight ahead direction.

2. Target 2 (6 cm in diameter, 10 cm in height): Addi-
tionally shifted 15 cm to the right, thus positioned in a

direction diagonal to the starting position.

During movement participants had to avoid an obstacle
(6 cm in diameter, 15 cm (small) or 20 cm (medium) in

height) which was positioned at mid-distance between start

and target directly to the left or rather to the right of the
straight line connecting start and target. In each condition,

there was only one obstacle present which did not block the

view toward the target. The end of the data collection was
indicated by an auditory signal which differed from the

starting signal.

The actual recording session was preceded by few
warm-up trials to familiarize the participants with the task.

No instruction was given about how to avoid the obstacle

(e.g. passing over the obstacle or sideways around the
obstacle). Nor were accuracy constraints placed on the

movements. Participants were discouraged from making
corrective actions after the movement ended. They were

told to perform the movement with a natural and consistent

speed. Trials in which participants collided with the
obstacle during avoidance movement were discarded and

rerun. Altogether, participants performed 10 experimental

conditions: 2 obstacle heights, 2 obstacle positions, 2 target
positions and for each target one condition without obstacle

(2 9 2 9 2 ? 2). Participants completed 15 repetitions of

each of the 10 configurations for a total of 150 pseudo-
randomly ordered trials. Symbols which are used for

describing the 10 configurations are composed out of target

position, obstacle position, and obstacle height, see
Table 1. Obstacle positions are also depicted in Fig. 1a.

For statistical analysis and computation of mean data, we

discarded the first three trials of each condition because
they deviated most in terms of movement time and spatial

paths.

Experiment 2

Experimental setup

Five healthy, right-handed participants (3 male and 2

female, 27.6 ± 0.81 (SE) years) contributed to this
experiment. The experimental setup was similar to the

previous experiment with the following modifications:

• Participants had to perform their movements to only

one target in straight ahead direction (target 1 of the

previous experiment).
• Obstacles were of three different heights: 15 cm

(small), 20 cm (medium), and 25 cm (tall).

• Obstacles were shifted from mid-distance nearer to the
start- (11 cm from start) or to the target-cylinder

(11 cm from target and respectively 19 cm from start).

Thus, obstacles were located at 4 positions (2 distances
(near, far) 9 2 directions (left, right)).

Accordingly, participants performed a total of 13
experimental conditions: 3 obstacle heights, 2 obstacle

directions (left, right), and 2 obstacle distances (near, far)

? one condition without obstacle (3 9 2 9 2 ? 1). Par-
ticipants completed 12 repetitions of each of the 13 con-

figurations for a total of 156 pseudo-randomly ordered
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Fig. 1 Experimental setup. a Experiment 1. Target 1 (T1) was
located in straight ahead direction and target 2 (T2) was additionally
shifted 15 cm to the right and thus positioned in a direction diagonal
to the starting position. Obstacles were located at mid-distance
between start and target either to the left or rather to the right of the
straight line connecting start and target. Obstacle locations O1 and O2
were only applied in combination with T1, whereas obstacle locations
O3 and O4 were combined with T2. Obstacles were of two different
heights. b All movements headed for T1. Obstacles were located
nearby the starting position (O1 and O2) or nearby the target location
(O3 and O4) and were of three different heights
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lift component, in which the point of furthest excursion

coincides with the zero point in velocity. Surprisingly, the

point in time with maximum excursion is roughly the same
for near and far obstacles (F(1,4) = 0.049, P = 0.836).

Mean time to furthest excursion is 412.47 ± 7.89 ms for

near obstacles and 411.80 ± 7.83 ms for far obstacles. This
holds, although the traveled path until reaching the point of

furthest excursion is significantly longer for far obstacles

(F(1,4) = 22.67, P = 0.009). Mean traveled path until fur-
thest excursion is 22.65 ± 0.52 cm for near obstacles and

24.30 ± 0.77 cm for far obstacles. In light of the fact that

the first peak of lift velocity is equal for near and far
obstacles (F(1,4) = 0.64, P = 0.467), the modulation of the

transport component is solely responsible for the isochro-

nous arrival at the point of furthest excursion for near and
far obstacles. This modulation strengthens the first part of

total speed until the point of furthest excursion and sub-

sequently weakens the second part of total speed.

General discussion

In this work, we investigated naturalistic 3D obstacle

avoidance movements. We analyzed the spatial path and its

decomposition into movement primitives, the planarity of

movement path, the dependence of the movement plane on

the obstacle configuration, the velocity structure and the
isochrony principle. Some of these analyses had been

performed for 2D movements, for aimless 3D movements,

as well as for drawing movements of 3D figures, but not for
naturalistic 3D obstacle avoidance movements, in which

objects are transported relative to a surface. We also

evaluated the timing and spatial structure of movements
relative to obstacle conditions. This is an important aspect

which goes beyond most previous work. In the following

paragraphs, we summarize our findings and conclusions for
the investigated aspects.

Planarity and obstacle avoidance strategy

Although unrestricted in 3D space, the movement path is

largely planar throughout the whole motion. Torsion val-
ues were shown to be small from the initial movement

phase almost up to the target position. These findings

prove that the plane of motion for the whole movement is
chosen right from the beginning. Systematic investigations

of different obstacle locations and heights confirmed that

movement planes reflect obstacle properties. Thus,
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Fig. 11 Mean (over all participants) acceleration. In a, total accel-
eration and the simultaneous arriving at the first peak is shown. The
black rectangle encloses the first 500 ms of the acceleration curve.
The lift/descend (b) and transport (c) accelerations are cut off at those
500 ms. The first peak of acceleration (a) occurs almost simulta-
neously for all conditions independent of obstacle position and height.
The lift (descend primitive also reaches the first peak of acceleration

at the same time for all obstacle configurations (b). The transport
acceleration (c) which is often bi-phasic contributes to the first peak
and provides the main part of the second peak peak in total
acceleration. In d the point in time and value of the first and second
acceleration peaks are shown for all participants. Colors indicate
conditions (color figure online)
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obstacle avoidance affects the motion plan as a whole, not
only in the vicinity of the obstacle. Obstacles on the right

are usually avoided by going over, and corresponding

movement planes are close to vertical. Similarly, obstacles
on the left promote a sideways avoidance strategy with a

near horizontal plane. Finally, obstacle height also influ-

ences the movement plane, whereas lower obstacles are
likely avoided over the top (vertical plane), tall obstacles

provoke a sideways avoidance (horizontal plane). As both

obstacle height and position influence the avoidance
strategy, the slope of the resulting plane often represents a

combination of both avoidance strategies induced by

obstacle configurations.

The global isochrony principle

In Experiment 1, we were able to confirm the validity of

the isochrony principle (Viviani and McCollum 1983)

according to which movement duration remains approxi-
mately constant as travel distance varies. Whereas classical

evidence comes from pointing and drawing movements in

2D, we observed isochrony for 3D obstacle avoidance
movements. In matching obstacle conditions, avoidance

movements to target 1 and target 2 had the same duration,

although the traveled distance differed by about 10 %. In
light of the observed planarity of the movement paths, the

observed isochrony is consistent with the earlier descrip-

tions of that principle (Viviani and McCollum 1983;
Viviani and Flash 1995).

Decomposition into lift and transport primitive

and structure of velocity

We found that we could decompose the planar trajectory

into two movement primitives, the transport primitive and

the lift/descend primitive that, to some extent, are inde-
pendent of each other. The transport component describes

the movement from the initial position to the target posi-

tion along a straight path. The lift and descent sub-move-
ments are the orthogonal complements of the transport

component. We were able to show that these components

vary independently as obstacle conditions are changed.
Shifting the obstacle along the line that links start and

target location does not change the lift/descent component

while the transport component is initially delayed for
obstacles close to the start position. Since we found the lift

component to be invariantly bell-shaped, the combined

trajectory’s shape is largely determined by the transport
component. As transport initially stagnates for near

obstacle conditions, the lift component dominates the

combined trajectory at onset. Symmetrically, the lift
component dominates the end of the combined trajectories

for far obstacle conditions. This results in overall skewed

movement paths (Fig. 9b).
We obtained similar results with respect to obstacle

height. While the bell-shaped lift/descent-component

scales with obstacle height, the transport component varies
little. In the transport component, we did observe, however,

an interaction between obstacle proximity and height. The

Fig. 12 Single trial velocity for three participants. Obstacle passage
and the point of furthest excursion are marked in the velocity profile.
For each participant velocities are shown from a movement with a tall

obstacle on the right for near obstacles (beyond) and for far obstacles
(above). Bold lines denote obstacle passage while diamonds indicate
the points of furthest excursion
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support surface on the table, whereas the left arm gripped a

wooden cylinder on the left side of the workspace to sta-
bilize the body posture. After hearing an auditory signal,

the participants were instructed to reach for a cylindric

object located directly in front of them on top of the
starting platform (6 cm in diameter, 10 cm in height) at a

distance of 9 cm from the front edge of the table. The

object consisted of a small wooden part (2.5 cm in height)
which enables stable positioning and a top portion made

out of Styrofoam (10 cm in height). Participants were

instructed to transport the object to one of two possible
target platforms:

1. Target 1 (6 cm in diameter, 10 cm in height): At a
distance of 30 cm away from the starting platform in

straight ahead direction.

2. Target 2 (6 cm in diameter, 10 cm in height): Addi-
tionally shifted 15 cm to the right, thus positioned in a

direction diagonal to the starting position.

During movement participants had to avoid an obstacle
(6 cm in diameter, 15 cm (small) or 20 cm (medium) in

height) which was positioned at mid-distance between start

and target directly to the left or rather to the right of the
straight line connecting start and target. In each condition,

there was only one obstacle present which did not block the

view toward the target. The end of the data collection was
indicated by an auditory signal which differed from the

starting signal.

The actual recording session was preceded by few
warm-up trials to familiarize the participants with the task.

No instruction was given about how to avoid the obstacle

(e.g. passing over the obstacle or sideways around the
obstacle). Nor were accuracy constraints placed on the

movements. Participants were discouraged from making
corrective actions after the movement ended. They were

told to perform the movement with a natural and consistent

speed. Trials in which participants collided with the
obstacle during avoidance movement were discarded and

rerun. Altogether, participants performed 10 experimental

conditions: 2 obstacle heights, 2 obstacle positions, 2 target
positions and for each target one condition without obstacle

(2 9 2 9 2 ? 2). Participants completed 15 repetitions of

each of the 10 configurations for a total of 150 pseudo-
randomly ordered trials. Symbols which are used for

describing the 10 configurations are composed out of target

position, obstacle position, and obstacle height, see
Table 1. Obstacle positions are also depicted in Fig. 1a.

For statistical analysis and computation of mean data, we

discarded the first three trials of each condition because
they deviated most in terms of movement time and spatial

paths.

Experiment 2

Experimental setup

Five healthy, right-handed participants (3 male and 2

female, 27.6 ± 0.81 (SE) years) contributed to this
experiment. The experimental setup was similar to the

previous experiment with the following modifications:

• Participants had to perform their movements to only

one target in straight ahead direction (target 1 of the

previous experiment).
• Obstacles were of three different heights: 15 cm

(small), 20 cm (medium), and 25 cm (tall).

• Obstacles were shifted from mid-distance nearer to the
start- (11 cm from start) or to the target-cylinder

(11 cm from target and respectively 19 cm from start).

Thus, obstacles were located at 4 positions (2 distances
(near, far) 9 2 directions (left, right)).

Accordingly, participants performed a total of 13
experimental conditions: 3 obstacle heights, 2 obstacle

directions (left, right), and 2 obstacle distances (near, far)

? one condition without obstacle (3 9 2 9 2 ? 1). Par-
ticipants completed 12 repetitions of each of the 13 con-

figurations for a total of 156 pseudo-randomly ordered
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Fig. 1 Experimental setup. a Experiment 1. Target 1 (T1) was
located in straight ahead direction and target 2 (T2) was additionally
shifted 15 cm to the right and thus positioned in a direction diagonal
to the starting position. Obstacles were located at mid-distance
between start and target either to the left or rather to the right of the
straight line connecting start and target. Obstacle locations O1 and O2
were only applied in combination with T1, whereas obstacle locations
O3 and O4 were combined with T2. Obstacles were of two different
heights. b All movements headed for T1. Obstacles were located
nearby the starting position (O1 and O2) or nearby the target location
(O3 and O4) and were of three different heights
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approximately the same time for near and far obstacles. A

possible generalization is continuous isochrony, according

to which the time it takes to reach any percentage excur-
sion (any percentage of maximal lift) is the same for near

and far obstacles or via points. The principle of local iso-

chrony is then the special case when looking at the maxi-
mum of lift (Fig. 13b).

In this account, there is no direct association between

global and local isochrony as the mechanisms from which
these principles emerge are different. Whereas global iso-

chrony is achieved by adjusting both the lift and the

transport component, local (and continuous) isochrony is
the consequence of a constant lift component that forces

the transport component to adapt in order to achieve

obstacle avoidance.

Time structure of obstacle passage

One might expect a relationship to hold between tangential

velocity and the point in time of obstacle passage. Fig-
ure 12 showed, however, that passage occurs at different

points in the tangential velocity profile for near versus for

far obstacles. This is consistent with local isochrony,
according to which the point of furthest excursion is cou-

pled to the velocity profile, not the point of obstacle pas-

sage. Thus, the tangential velocity profile is not directly
correlated to obstacle passage but instead linked to the

spatial path. This is consistent with findings of Flash and

Hogan (1985) who reported similarities in the kinematic

characteristics of obstacle avoidance movements, uncon-

strained movement, curved movements, and movements
through intermediate targets.

Conclusion

Our investigations show that naturalistic 3D obstacle
avoidance movements are surprisingly regular. Most

importantly, their kinematic structure can be understood in

terms of independent and invariant movement primitives:
lift/descent and transport. With this decomposition of

movements, we found that relatively complex characteris-

tics of movements like the double peak structure of velocity
and the principle of local isochrony can be understood.

Acknowledgments The authors acknowledge support from the
German Federal Ministry of Education and Research within the
National Network Computational Neuroscience—Bernstein Fokus:
‘‘Learning behavioral models: from human experiment to technical
assistance’’, Grant FKZ 01GQ0951.

References

Abend W, Bizzi E, Morasso P (1982) Human arm trajectory
formation. Brain 105(Pt 2):331–348

Atkeson CG, Hollerbach JM (1985) Kinematic features of unre-
strained vertical arm movements. J Neurosci 5(9):2318–2330

(a) (b)

Fig. 13 a The modulation of the double peak structure of velocity is
achieved by a postponement of the transport primitive for near
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excursion (F), enabling an isochronous arriving at this point in near

and far obstacle conditions. b The principle of local isochrony is a
direct consequence of a constant, bell-shaped lift primitive for both
obstacle locations. The point of furthest excursion (F) is merely
shifted in space, not in time, as the transport component adjusts to
obstacle distance
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3.6.3 Transport-Komponente in Abhängigkeit von der Hin-

dernishöhe
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Abbildung 3.30: Einfluss der Höhe des Hindernisses auf die Transport- und Lift-Komponente
in Abhängigkeit von der Distanz des Hindernisses zur Startposition (Mittelwerte über alle
Probanden). Von links nach rechts (O1 bis O5) verschiebt sich die Position des Hindernisses
schrittweise in Richtung Ziel. In der ersten Zeile ist die Hinbewegung (Bewegung von Start
zu Ziel) und in der zweiten Zeile die Rückbewegung (von Ziel zu Start) abgebildet. Die
Referenzbewegung ohne Hindernis ist in schwarz dargestellt.

Wie in den vorherigen Experimenten bereits gezeigt, führen nahe Hindernisse

(Position O1 und O2) zu einer initialen Verzögerung der Transport-Komponente,

während ferne Hindernisse (Position O3 und O4) gegen Ende der Bewegung eine

bereits weiter fortgeschrittene Transport-Komponente zur Folge haben, siehe

Abbildung 3.30 (oben). Diese beiden E↵ekte werden mit zunehmender Höhe

des Hindernisses verstärkt. Aus Tabelle 3.19 geht hervor, dass die Höhe von

nahen Hindernissen (O1 und O2) die Transport-Komponente der Hinbewegung

hauptsächlich im ersten Teil der Bewegung signifikant beeinflusst, während der

Einfluss der Höhe von fernen Hindernissen auf die Transport-Komponente im

zweiten Teil der Bewegung überwiegt. Diese Abhängigkeit der Transport-Kom-

ponente von der Hindernishöhe nimmt mit der Distanz des Hindernisses zur Start-

bzw. zur Zielposition stetig ab, so dass die Höhe eines Hindernisses, welches mittig
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Start Ziel

60 cm
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15 cm

30 cm 30 cm

7.5 cm 15 cm

Abbildung 3.29: Versuchsaufbau Experiment 6. Das Ziel befand sich in horizontaler Rich-
tung zur Tischkante und war 60 cm von der Startposition entfernt. Die Hindernisse befanden
sich nahe der Startposition (O1 bzw. O2), mittig zwischen Start und Ziel (O3) oder nahe
der Zielposition (O4 bzw. O5) und waren jeweils 1.5 cm (von Außenkante zu Außenkante)
voneinander entfernt. Es wurden drei Hindernishöhen getestet.

Tabelle 3.18: Abkürzungen für die 16 Versuchsbedingungen des sechsten Experiments. Die
Abkürzungen setzten sich aus der Hindernisposition (Distanz zur Startposition) und der Höhe
des Hindernisses zusammen. O1S bezeichnet beispielsweise ein kleines Hindernis, welches sich
nahe der Startposition befindet.

Hindernisposition Hindernishöhe
kein Hin-
dernis

nah:
15 cm

nah:
22.5 cm

mittig:
30 cm

fern:
37.5 cm

fern:
45 cm

klein:
20 cm

mittel:
27.5 cm

groß:
35 cm

– O1 O2 O3 O4 O5 S M T

so dass sich für jeden Probanden 160 Bewegungen in pseudo-randomisierter

Reihenfolge ergaben.

3.6.2 Bewegungszeit

Die Bewegungszeit ist für große Hindernisse signifikant länger als für kleine

Hindernisse (F(2,18) = 41.812, P < 0.001). Alle drei getesteten Höhenänderun-

gen führen zu einer signifikanten Änderung der Bewegungszeit. Die gemittelte

Bewegungszeit beträgt für kleine Hindernisse 997.56 ± 35.4 cm, für mittelgroße

Hindernisse 1057.30 ± 43.81 cm und für große Hindernisse 1142.56 ± 49.73 cm.

Die Veränderung der Position des Hindernisses entlang der Start-Ziel-Linie hat

hingegen keinen signifikanten Einfluss auf die Bewegungszeit (keine Signifikanzen

im post-hoc Test).
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positiven Hindernis-Komponenten, die zeitlich etwas verzögert beginnen. Positive

Hindernis-Komponenten deuten an, dass die Transport-Komponente im Vergleich

zur Kontrollbedingung schon weiter fortgeschritten ist. Wird das Hindernis bis

zur äußeren Position nahe des Ziels (O5) verschoben, so nimmt die Amplitude

der Hindernis-Komponente weiter zu.
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Abbildung 3.31: Hindernis-Komponente (Mittelwerte über alle Probanden) der Hin- (oben)
und Rückbewegung (unten). Von links nach rechts (O1 bis O5) verschiebt sich die Position
des Hindernisses schrittweise in Richtung Ziel. Eine negative Hindernis-Komponente bedeutet,
dass die Transport-Komponente hinter der Kontrollbedingung zurückliegt, sich also näher an
der Start-Position befindet.

Insgesamt wird die negative Amplitude der Hindernis-Komponente in der Hin-

bewegung bei einer kontinuierlichen Verschiebung des Hindernisses in Richtung

Ziel immer flacher, während der zweite, an Position O1 noch sehr flache und

kurze positive Teil der Hindernis-Komponente gleichzeitig an Größe gewinnt. An

Position O3 sind beide Teile der Komponente ausgewogen und von Position O4

an nimmt der zweite positive Teil Überhand.

Die Hindernis-Komponente der Rückbewegung ist ähnlich mit dem Unter-

schied, dass die Hindernisse auf den Positionen O1 und O2 in der Rückbewe-

gung ferne Hindernisse darstellen. Dies führt verglichen mit der Hinbewegung

zu einer zeitlich nach hinten verschobenen Ausbildung der negativen Amplitude
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unnormalized time experiment:
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4 Reaching while avoiding obstacles

2.2 A neural timing mechanism

The timed nature of human movement generation gave rise to the notion that
movement plans are generated by limit cycle oscillators, whose coupling among
each other and to sensory inputs obtains coordination [19, 20]. Here we employ
the generic neural oscillator that characterizes stable limit cycle oscillation at
the level of neural populations [1]. Activation in a small population of excitatory
neurons, u, is reciprocally coupled to the activation of a small population of
inhibitory neurons, v:

⌧ u̇ = �u� c · �(v) + h+ su (1)

⌧ v̇ = �v + c · �(u) + h+ sv (2)

where ⌧ is a time constant, c is a coupling constant and � is s sigmoid non-
linearity. This model generates relaxation-oscillator like limit cycle solutions for
appropriate choices of the constants, h < 0, sv, and su [1].

To generate smooth oscillatory solutions whose cycle time can be tuned, and
that can be turned on and o↵ through external signals, we modified this model
as follows. (1) We use a semi-linear sigmoid function �(x) = x for x > 0 and
�(x) = 0 for x <= 0. (2) We use symmetric inputs, su = sv = s, which can be
varied in time so that h + s > 0 when movement is initiated and h + s <= 0
when movement is stopped.

In the first quadrant (u > 0 and v > 0), the system is linear:

⌧

✓
u̇

v̇

◆
=

✓
�1 �c

c �1

◆✓
u

v

◆
+ h+ s (3)

and can be solved for initial conditions, u(0) = 0, v(0) = 0 as:

u(t) = ⌧(h+ s)C2


sin(ct/⌧)e�t/⌧ +

C1

C2

⇣
cos(ct/⌧)e�t/⌧ � 1

⌘�
(4)

v(t) = C2 + ⌧(h+ s)C1 [sin(ct/⌧) + cos(ct/⌧)] e�t/⌧ (5)

where C1 = (c � 1)/(c2 + 1), and C2 = (c + 1)/c2 + 1). The trajectory of u(t)
resembles a slightly deformed sinusoidal curve in the first quadrant and returns
to zero at tf . For h 6= s, that time does not depend on s or h. The portion
of u(t) between the two zero crossing (from initial time 0 to tf , which is the
duration of the movement) will be used to generate a timed velocity profile, its
slight asymmetry matching the observed kinematic data. The integral over u(t)
from t = 0 to t = tf is then the traveled distance:

I = ⌧
2(h+ s)C2 [c+ C3 � C3tf + e

�tf/⌧ (6)

(� sin(ctf/⌧)� c cos(ctf/⌧) + cC3 sin(ctf/⌧)� C3 cos(tf/⌧)) ]

with C3 = C1/C2.The derivative of u(t) is given by:

u̇ = (h+ s)C1e
�t/⌧ [C2 (�c sin(ct/⌧)� cos(ct/⌧))� sin(ct/⌧) + c cos(ct/⌧)] (7)
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To summarize, a variant of the Amari oscillator that has four parameters (⌧ ,
h, c and s) can be used to generate a timed velocity signal from its first period,
the duration depending on c and ⌧ . The distance, I, generated by the velocity
signal can be computed analytically.

Movement task and mapping onto model parameters The modeled move-
ment task entails moving the hand to a target at horizontal distance, d, from the
starting position with a movement duration, tf . Both initial and target position
are on a table surface from which the hand must be lifted. An obstacle placed
at distance, do, from the initial position and height, ho, must be avoided.

The model parameter, ⌧ and h, are considered fixed (see below), while s and c

are used to achieve the task constraints distance and movement time. Specifically,
we set the movement time through the parameter, c: tf ⌘ tf (c). This function
can be inverted numerically, which we did here, or could be learned by a feed-
forward neural network.

Dynamic neural oscillator field The parameters representing movement dis-
tance and duration are obtained within the larger neural architecture sketched
below as dimensions of neural field representations. To generate the variety of
possible movements, we defined, therefore, a matching bank of Amari oscillators
spanned by two parameter dimension, a, and b:

⌧ u̇(a, b) = �u(a, b)� c(a) · �(v(a, b)) + h+ s(a, b) (8)

⌧ v̇(a, b) = �v(a, b) + c(a) · �(u(a, b)) + h+ s(a, b) (9)

The dimension, a, represents the intended duration, a ⌘ tf . The dimension, b,
represents the intended movement distance. Input to the oscillator bank is given
as a ”box-car” filter centered on the desired a, b values, so that s = 1 for small
intervals along a and b, while s = 0 elsewhere.

The neural oscillators do not depend directly on the second dimension, b,
which is merely used to modulate movement distance on read-out from the os-
cillator bank:

Vbank(t) =
1

N

Z

a

Z

b
W (a, b)⇥(u(a, b)(t)) db da (10)

where ⇥ is the Heavyside-index function, Vbankis the e↵ective velocity signal, and
N is a scaling factor that depends on the area of non-negative activated neurons
inside the blob induced by s(a, b). By weighting each oscillator with W (a, b) =
b/I(a), the dimension b e↵ectively controls the amplitude of the movement that
results from the oscillator at b in the sense that its integral over time delivers
the desired distance (based on Equation 6).

2.3 Generating transport, lift, and obstacle component of the
movement

To generate the lift and transport components of the movement we invoke two
identical copies of the neural oscillator bank, which we activate at slightly o↵set
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locations (a, b), so that signals of two slightly di↵erent durations result, V fast(t)
and V

slow(t). We also use the temporal derivatives V̇ fast(t) and V̇
slow(t) of these

two signals. The lift velocity component is simply the derivative of the slow
timing signal:

v
LIFT(t) = V̇slow(t) (11)

scaled in obstacle avoidance to achieve an intended maximal lift elevation which
is the obstacle height. The Transport velocity component has a more complicated
form to adapt to the spatial location of of obstacles:

v
TRANSPORT(t) = Vfast(t)

+ ↵2H(do)Wslow(tfslow , do)V̇fast(t)

� ↵1Wfast(tffast , do)V̇slow(t) (12)

where ↵1, ↵2, ↵3, are model parameters and H = ↵3 + do. Here we fitted these
three parameters, although they could be learned in a forward neural network
as well. The term Vfast(t) carries the end-e↵ector precisely onto the target, while
the other terms modulate that trajectory, decelerating and accelerating it alter-
nating. Specifically H introduces the influence of the obstacle position, while the
Wslow term introduces the influence of the obstacle height.

The durations for the two banks are chosen so that:

tffast = Tbase� (13)

tfslow = � (14)

for � = 1 + (�ho/Tbase) for the obstacle height ho and values of � and Tbase

obtained by linear regression from the experiments.

2.4 Movement generation architecture

Beyond the timing component described in detail here, the model contains 3
additional structures as indicated in Figure 2.4. These are described in detail
in [23]. The first transforms a neural representation of the visually attended
object into a neural representation centered in the initial position of the hand,
which enables reading of the intended movement distance. The second controls
the sequential organization of movement initiation and termination and provides
input about the intended movement durations. The third takes the movement
signals obtained from the timing module described above and passes it through
an inverse kinematic map and a simple muscle control model (essentially a mass-
spring model) to generate the actual simulated movement trajectory.

3 Results

We show comparisons of selected Transport and Lift velocities between experi-
ment and simulation of our model. The model was built with the software cedar,
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Conclusion

Simple DMP approach enables learning while 
retaining equifinality … 

but does not capture timing as obstacles are 
avoided.

New dynamic primitive from multiple 
oscillators that capture such timing


