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Abstract

The goal of conjunctive visual search is to attentionally select
a location at which the visual array matches a set of cued fea-
ture values. Here we present a neural dynamic architecture
in which all neural processes operate in parallel in continu-
ous time, but in which discrete sequences of processing steps
emerge from dynamic instabilities. When biased competition
selects an object location at which not all conjunctive feature
values match the cue, the neural representation of a condition
of dissatisfaction is activated and induces an attentional shift.
Successful match activates the neural representation of a con-
dition of satisfaction that ends the search. The search takes
place in the current visual array but takes into account an au-
tonomously acquired feature-space scene memory.

Keywords: neural dynamic architecture; visual search; bind-
ing; visual working memory;

Introduction

Bringing an object into the attentional foreground through
visual search is a critical first step in almost all actions
that are directed at the outer world (Tatler & Land, 2016).
The search may be based on a set of visual features that we are
familiar with (for example, search for a large, blueish, verti-
cally aligned shape when looking for a bottle of Skyy vodka).
A large literature in visual cognition addresses many aspects
of visual search (Wolfe, 2015). Since Anne Treisman’s sem-
inal work on feature integration theory (Treisman, 1998), the
organization of visual search guided by the combination of
multiple feature dimensions (or conjunctions) into a parallel
and a serial stream has been a dominant theme. How the time
needed to find a searched item scales with the number of dis-
tractors, but also with the metric differences between targets
and distractors, is used to diagnose the organization of the
underlying processes.

In its most recent variant, the guided search hypothesis ac-
counts for a wealth of data by postulating that an early par-
allel stage of search is followed by a serial examination of
candidate items (Wolfe, 2007). At the core of this theory
is an information processing algorithm that starts diffusions
races for each examined item to determine the match to the
search criteria. Competitive guided search (Moran, Zehetleit-
ner, Muller, & Usher, 2013) puts a stronger emphasis on neu-
ral mechanisms by introducing inhibition into the selection
processes, but retains the information processing core.

An alternative is attentional engagement theory which rec-
ognizes that metric differences among distractors and be-
tween targets and distractors matter (Duncan.J & Humphrey,
1989). This account has been implemented in a connec-
tionist architecture (Humphreys & Miiller, 1993), in which
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inhibitory and excitatory coupling among feature encoding
units leads to grouping effects that explain how search for
feature conjunctions can occur pre-attentively (Humphreys,
2016). The model contains, however, elements of information
processing not grounded in neural terms. Neurally mechanis-
tic accounts for visual search (Deco & Rolls, 2004) are far
from capturing the behavioral features of conjunctive search
and are thus difficult to compare. A probabilistic graphical
model of visual attention (Chikkerur, Serre, Tan, & Pog-
gio, 2010) provides an integrated formal account for fea-
ture binding in terms of probabilistic inference. The de-
ployment of spatial attention to specific locations remains
outside the Baysian framework, however.

Our goal is to provide a neural processing account for
feature binding through space that autonomously orga-
nizes visual search as a sequence of neural operations.
We build on earlier work (Schneegans, Spencer, & Schoner,
2015) within Dynamic Field Theory (Schoner, Spencer, &
DFT Research Group, 2015), a theoretical framework for un-
derstanding cognition grounded in neural population activ-
ity. In the model, neural activation patterns evolve continu-
ously in time. Decisions emerge from dynamic instabilities,
in which peaks of activations arise. Sequences of such events
emerge from the interactions within the neural architecture.
Thus, the neural dynamics fundamentally evolves in parallel
across the entire architecture, but sequential processing steps
emerge under appropriate conditions. Items are not a concept
in this framework (Hulleman & Olivers, 2015), but depen-
dencies on the size of activated regions may reflect similar
dependencies.

Earlier we showed that this model can account for classi-
cal signatures of binding through space in change detection
paradigms (Schneegans et al., 2015). Here we show that the
theory can generate conjunctive visual searches. In this brief
paper we only demonstrate the emergence of the processes
of searching for a target object in the presence of distractor
items. The particular scenario involves looking at a visual
scene to which a target object is added at some point. The task
is to find a visually matching object (Malcolm & Henderson,
2009). All processing steps emerge from the time-continuous
dynamics of the neural architecture.

Dynamic Field Theory

Dynamic Field Theory (DFT) (Schoner et al., 2015) is a the-
oretical framework for understanding perception, motor be-
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havior, and cognition based on neural principles. The activity
in neural populations is modeled by activation fields, u(x,?),
whose metric dimensions, x,are defined by the input or output
connectivity of the fields to sensory or motor surfaces. The
neural dynamics of the activation fields,

Ti(x, 1) = —u(x,t) + h+s(x,1) —&—/OJ(x—x/)G(u(x/,t))dx

generates the time-continuous evolution of neural activation
patterns on the time scale T. Two classes of stable solu-
tions exist (Amari, 1977). Activation patterns that remain
below the threshold of a sigmoidal nonlinearity, 6(u) =
1/(1 4 exp[—Pu]), are stable as long as localized inputs,
s(x,t), remain weak relative to the resting level, & < 0, so
that intra-field interaction is not significantly engaged. Such
sub-threshold activation patterns may still be structured along
the field’s dimension, x. Supra-threshold peaks of activation
are self-stabilized by the neural interaction, whose kernel,
®(x — x') is locally excitatory and inhibitory over longer dis-
tances, x —x’ (see figure 1). Self-stabilized activation peaks
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Figure 1: Dynamic neural field

are the units of representation in DFT. Their stability enables
continuous online coupling to time-varying sensory and mo-
tor signals.

Peaks emerge when the sub-threshold solution becomes
unstable in the detection instability. Time-continuous, graded
changes of input may thus induce events at discrete moments
in time at which neural interaction engages. This is how
sequences of neural activation patterns emerge from the un-
derlying time-continuous neural dynamics in DFT. Peaks be-
come unstable in the reverse detection instability which oc-
curs at lower levels of input activation, leading to the hys-
teretic stabilization of detection decisions.

Fields may be selective when inhibitory interaction allows
only a single peak to form within a field, or they may support
multiple self-stabilized peaks. Peaks may be sustained once
localized input is removed, forming the basis for working
memory. Multi-dimensional fields may represent conjunc-
tions of feature dimensions, for example, the conjunction of
color and space. Zero-dimensional fields are dynamic neural
nodes (DNN), that represent categorical states.

Field Architectures

The stability of the two classes of activation patterns makes it
possible to couple fields while retaining their dynamic prop-
erties. The dynamics of the resulting neural architectures may

thus still be understood in terms of the dynamic instabilities
in each component field.

The coupling among activation field is may be structured
by connection kernels that weigh the output of one field as
it provides input to any location of the receiving field. Such
projections may preserve the dimensionality of the fields, or
may expand or contract the field dimensionality (Zibner &
Faubel, 2016). Dimensionality expansions may take the form
of ridges (or tubes, or slices), in which input along one or
several of the receiving field’s dimension is constant. Dimen-
sionality contractions typically entail integrating along a con-
tracted dimension or a relevant subspace.

Peak detectors are a limit case of contractions in which a
dynamic neural node receives input from the integrated out-
put of an entire field so that the node becomes activated only
if at least one supra-threshold peak of activation is present
in its source field. Dynamic neural nodes that project onto
a field by expansion are called boost nodes. They may in-
duce detection instabilities or their reverse in the target field.
Within architectures, such boost nodes may effectively mod-
ulate the flow of activation by enabling or disabling particular
branches of an architecture to create units of representation.
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Figure 2: The Change Detection Module connected to an El-
ementary Control Unit (ECU). Feature values in the visual
array and the scene memory are compared in parallel along
each feature dimension. The change detection field and con-
nected peak detector nodes signals a mismatch if the attended,
the expected, and the change detector fields all carry a peak.
A match is signaled if both the attended and the expected field
carry peaks, but the change detector field does not. A single
mismatch is sufficient to activate the CoD. The CoS is acti-
vated only when a match is detected along each of the speci-
fied dimensions.

Match and change detection The representational content
of two fields may be compared by projecting onto a third field
or node. In match detection, a peak in the third field is only
formed when the peak locations in the two source fields over-
lap sufficiently. Change detection is the opposite relationship,



in which a peak is formed in the third field only when the
peak locations in the source fields differ sufficiently (Johnson,
Spencer, Luck, & Schoner, 2009). This is based on a combi-
nation of inhibitory and excitatory input as illustrated in the
bottom three fields of Figure 2.

Process organization In dynamic field architectures, se-
quences of activation states are organized through sub-
structures of dynamic fields and dynamic nodes illustrated
in Figure 2. Each such Elementary Control Unit (ECU)
(Richter, Sandamirskaya, & Schoner, 2012) represents a par-
ticular processing step by an intention node that activates a
subset of the architecture. Its intended outcome is detected
by a peak detector that represents the Condition of Satisfac-
tion (CoS). Failure to achieve this outcome may lead to acti-
vating a node that represents the Condition of Dissatisfaction
(CoD) (for example, via a change detector that picks up the
mis-match between the intended and the achieved representa-
tional state). Typically, both CoS and CoD nodes inhibit the
intention node. CoS nodes are often self-excitatory so that
they remain activated and prevent reactivation of the intention
node, while CoD nodes are not self-excitatory, allowing for
renewed attempts at the same process. Different such ECUs
may be coupled to organize more complex tasks.

Neural dynamic architecture

The dynamic neural architecture illustrated in Figure 3 is ca-
pable of autonomously exploring the visual array by atten-
tionally selecting locations, memorizing feature values asso-
ciated with those locations, and visually searching for cued
feature conjunctions. The neural dynamics switches between

these three functional modes as the neural nodes organized
into three ECUs shown on the right become active. By boost-
ing a portion of the architecture, each node enables relevant
activation fields to form peaks (illustrated by matching colors
in Figure 3). The switches among the three functional modes
are mediated by the change detection module described in
Figure 2 that signals when matching feature values are writ-
ten in the scene memory (memorize,explore) or when loca-
tions have been found at which visual features match the cue
(visual search). The architecture is implemented in cedar,
a software framework for neural dynamic systems that en-
ables real-time numerical simulation (Lomp, Richter, Zibner,
& Schoner, 2016).

Visual input is obtained from a camera that points down
onto a table surface, on which colored rectangles of vary-
ing orientation, width and length are placed. Figure 4 illus-
trates the four feature channels. Color is extracted by trans-
forming RGB values into hue-space. Orientation is obtained
from four elongated center-surround filters that are applied to
the thresholded saturation of the camera stream. Width and
length are extracted using a pyramid of center-surround fil-
ters of increasing size and implementing a one-way inhibition
along this dimension.

Exploration is the process of sequentially attending to
salient locations in the visual array. This process is driven
by a “dorsal” channel, the Spatial Salience map in retinal co-
ordinates that receives weighted input from the Space/Feature
(S/F) Bottom-Up feature channels. The Spatial Salience map
projects through a semi-linear threshold function into the
Spatial Salience Attention field that selects a single location
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Figure 3: Scene representation architecture. Each field stack represents four fields, one for each feature dimension: color,
orientation, width, and length. Connections between different field stacks couple the corresponding feature fields. Fields and
nodes highlighted in color receive a boost when the intention-node highlighted in the same color is activated. They are below

the activation threshold when that node is not activated.
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Figure 4: The camera image and the four extracted 3D maps
(2D visual space vs. 1D feature dimension plotted along the
vertical axis).

by forming a peak at the most salient position. That location
is selected in the S/F Bottom-up Attention field and the feature
values at that location are then extracted in the F' Bottom-up
Attention field.

This separation of feature and location is critical when
the coordinate transform from the retinal to a fixed, scene-
centered frame is taken into account. That coordinate trans-
form needs to operate only on the output of the Spatial
Salience Attention field, which is then recombined with the
extracted Bottom-up Feature attention to form the S/F' Mem-
ory defined over allo-centric space.

Match between the feature value in the bottom-up and the
memory attention fields signals the condition of satisfaction
of the explore node, which inhibits the associated intention
node leading to a de-boosting of the Spatial Salience Atten-
tion and a destabilization of all peaks in all attention fields,
while peaks in the S/F Memory field is sustained. The ex-
plore may be reactivated if it is not inhibited by the other
modes, leading to renewed attentional selection of a salient
location. The inhibition of return memory trace associated
with the Spatial Salience Attention field steers attentional se-
lection towards locations that have not recently been selected.

Attentional selection is also influenced by a two-layer tran-
sient detector that excites spatial locations, which are subject
to rapid change in saliency, potentially overriding the current
focus of attention ((see (Berger, Faubel, Norman, Hock, &
Schoner, 2012) for details)).

Memorizing involves representing feature values in a refer-
ence field to use, in this architecture, as a cue to visual search.
By boosting the F Reference Gate, the memorize intention
node forwards the currently attended feature values to the F
Reference Memory field, inducing formation of sustained ac-
tivation peaks. The match between the feature values in the F
Reference Memory with the feature values in the F' Memory
Attention field activates the condition of satisfaction of the
memorize node. This releases the intention node of the visual
search mode from inhibition.

Visual Search brings those locations into the attentional
foreground at which feature values matching the cue are de-
tected. Boosting the F Search Cue field, the visual search
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Figure 5: Influence of a cued feature value (top-right) on the
Spatial Salience field (bottom). The three locations matching
the orientation cue are boosted in salience. Two of these loca-
tions are already in visual memory (third row, right column).
Their salience is slightly elevated.

intention node enables the induction of a peak representing
the cued feature values based on input from the F Reference
field.

The cued feature provides slice input to the F/S Memory
Cue and the Bottom-up Cue fields. As a result, the F/S Mem-
ory Cue represents locations at which scene memory repre-
sents matching feature values. The F/S Bottom-Up Cue rep-
resents locations at which the current visual array signals
matching feature values. The two fields provide top-down
input to the Spatial Salience field that biases attentional se-
lection toward locations matching the cue (figure 5).

Once a location has been selected, the associated feature
values are extracted along the bottom-up path and matched to
the search cue. A match activates the condition of satisfaction
of visual search, a mismatch activates the condition of dissat-
isfaction. The threshold for match detection is tuned to signal
match only when all specified feature dimensions contribute
and it is that conjunction of match conditions that effectively
“binds” the feature values in visual search.

Visual Search using a Reference Object

Figure 6 demonstrates how sequences of neural events
emerge from the time-continuous neural dynamics as the two
functional modes of memorize and visual search are com-
bined to perform a conjunctive search based on feature values
extracted from a cued visual location. In this demonstration
we add a new object to a visual scene that has been previously
explored and committed to scene memory. The changed loca-
tion is detected in a field of transient detectors that provides
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Figure 6: Time course of a visual search based on a reference object. The top row shows time courses of activation of relevant
dynamic neural nodes. Activation snapshots at selected points in time (indicated by grey lines) are shown in the next two rows.
The Spatial Salience and the Spatial Salience Attention field are shown across retinal space. The thresholded activation level is
color coded (blue indicates low, red indicates high levels). In the three bottom rows, 1D-fields across orientation are illustrated

(input in cyan, activation in blue, thresholded activation in red).

localized excitatory input to the Spatial Salience Attention
field. This transient detector serves as an activation trigger
for the overall task activating the memorize and visual search
processing modes. The time courses of relevant dynamical
neural node activation levels as well as activation snapshots
of the relevant activation fields are depicted in Figure 6.

At the beginning of the demonstration (first column of Fig-
ure 6), the architecture is scanning the visual scene in explore
mode with one object in the attentional foreground while
other objects are already represented by activation peaks in
the S/F Memory fields. Once the new object is added to the
visual scene (second column), it is attentionally selected due
to localized input from the array of transient detectors, over-
writing the previously attended location. Feature values at
this location are extracted analogously as in the explore be-
havior.

The active memorize mode helps forward this feature vec-
tor to the F reference field (third column). A matching peak
in that field terminates the memorize mode by activating its
CoS, which disinhibits the visual search mode and starts a
cued visual search.

Top-down influence along the four feature dimensions bi-
ases the Spatial Salience field (analogously to figure 5). Note
that the new object’s position is inhibited by the inhibition of
return memory trace (not depicted). Peak generation along
different feature dimensions may take different amounts of
time as a function of stimulus metrics, so that spatial selection
in the Spatial Attention field may lead to a less than complete
feature overlap with the cue. Here, the orientation change de-
tection field forms a peak, sufficient to activate the CoD node
(fifth column). That change response deboosts the Spatial
Salience Attention field and enables the attentional selection
of a second item, which, in this case, fits the cue along all
feature dimensions. This activates the match mode and then
the CoS node of the visual search mode. That concludes the
visual search with the sought location and the associated fea-
ture values in the attentional foreground (sixth column).

Conclusion

We have shown how a sequence of activation patterns
emerges in a neural dynamic architecture that represents four
different feature-space conjunctions and is linked to on-line



visual input. The organization of that sequence enables the
system to autonomously build a representation of the visual
scene and to detect changes to the scene. Defining an added
visual element as the target object, we showed how the ar-
chitecture autonomously searches the scene for matching ele-
ments, both within its internal scene representation as well as
based on the current visual input. That search is fundamen-
tally based on parallel activation dynamics, but sequential ex-
amination of candidate regions of the visual array emerges.
Autonomously generating the entire sequence of processes
required to find a cued object is the key innovation here,
compared to related work within the same theoretical
framework of neural dynamics (Fix, Rougier, & Alexan-
dre, 2011) and within a Baysian probabilistic framework
(Chikkerur et al., 2010).

The present architecture does not address gaze shifts,
although we have done so in earlier work (Schneegans,
Spencer, Schoner, Hwang, & Hollingworth, 2014). The coor-
dinate transforms involved in linking current retinal informa-
tion to the scene representation are the route cause of the pro-
cessing bottleneck that leads to the emergence of a sequential
phase in the visual search demonstrated here.

Among tasks for future work is the need to link to the
rich literature on how search times depend on the complexity
of the search array (Wolfe, 2015). Preliminary results show
that when the correct item is selected first, search time
increases linearly with the number of distractors due to
global inhibition in the saliency field.
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