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Motor Schema &mdash; Based
Mobile Robot

Navigation

Ronald C. Arkin
School of Information and Computer Science
Georgia Institute of Technology
Atlanta, Georgia

Abstract

Motor schemas serve as the basic unit of behavior specifica-
tion for the navigation of a mobile robot. They are multiple
concurrent processes that operate in conjunction with asso-
ciated perceptual schemas and contribute independently to
the overall concerted action of the vehicle. The motivation be-
hind the use of schemas for this domain is drawn from neuro-
scientific, psychological, and robotic sources. A variant of the
potential field method is used to produce the appropriate
velocity and steering commands for the robot. Simulation re-
sults and actual mobile robot experiments demonstrate the
feasibility of this approach.

1. Introduction

Path planning and navigation, at the execution level,
can most easily be described as a collection of behav-
iors. &dquo;Don’t run into things!&dquo; &dquo;Go to the end of the
sidewalk, then turn right!&dquo; &dquo;Stay to the right side of
the sidewalk except when passing!&dquo; &dquo;Watch out for the
library-the turn is just beyond it!&dquo; &dquo;Follow that
man!&dquo; This collection of commands constitutes some
of the possible behaviors for an entity trying to move
from one location to another. Traditional control
structures- those that use an inflexible and rigid ap-
proach to navigation - do not provide the essential
adaptability necessary for coping with unexpected
events. These events might include unanticipated ob-
stacles, moving objects, or the recognition of a land-
mark in a seemingly inappropriate location. These
unexpected occurrences should influence, in an appro-
priate manner, the course that a vehicle (or person)
takes in moving from start to goal.

A solution to the problem of dynamic replanning in
this context can be drawn from models that have been

developed in the domains of brain theory and robot-
ics. Schemas, a methodology used to describe the in-
teraction between perception and action, can be
adapted to yield a mobile robot system that is highly
sensitive to the currently perceived world. Motor
schemas operating in a concurrent and independent,
yet communicating, manner can produce paths that
reflect the uncertainties in the detection of objects.
Additionally they can cope with conflicting data aris-
ing from diverse sensor modalities and strategies.
The purpose of this article is to provide insights into

the design of a control system based on motor
schemas for mobile robots. Section 2 describes the
motivations for the use of schema theory in this do-
main, drawing from work in both brain theory and ro-
botics. Section 3 discusses the tack taken for a motor
schema-based control system in the Autonomous
Robot Architecture (AuRA) (Arkin 1987b), utilizing a
mobile robot equipped with ultrasonic and video sen-
sors ; it is concerned specifically with the role of the
pilot and the motor schema manager. Section 4
presents the results of simulations using schemas that
specify different behaviors and draw on simulated
sensor input. Section 5 presents some schema-based
navigational experiments using the mobile robot
HARV. A summary and evaluation conclude this
article.

2. Motivation

The concept of schemas originated in psychology
(Bartlett 1932; Oldfield and Zangwill 1942; Piaget
1971) and neurology (Head and Holmes 1911;
Frederiks 1969). The model used for this paper draws
on more recent sources: the applications of schema
theory to brain modeling and robotics. As brain theory

 at INDIANA UNIV on October 5, 2009 http://ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com


93

can unequivocally be called a sound basis for the study
of intelligent behavior, the first part of this section will
present the contributions of brain science that in-
fluenced the design of the schema control system de-
scribed below. Roboticists for some time have drawn
on schema theory, but not always in the form envi-
sioned by brain theoreticians. The previous work in
robotics that relates to the schema-based approach to
navigation is described in the final part of this section.

2.1. What is a Schema?

Reactive/reflexive navigation is conducted through the
instantiation of motor schemas. Unfortunately, the
definitions of schema are highly variable, and the term
is probably overused. In order to provide context for
the discussion that follows, several definitions that are
closely allied with the philosophy of this paper are
cited below.
A schema is:

1. A pattern of action as well as a pattern for
action (Neisser 1976).

2. A mental codification of experience that in-
cludes a particular organized way of perceiving
cognitively and responding to a complex situa-
tion or set of stimuli (Merriam-Webster 1984).

3. A generic specification of a computing agent
(Lyons 1986a).

4. A control system that continually monitors
feedback from the system it controls to deter-
mine the appropriate pattern of action for
achieving the motor schema’s goals (Overton
1984).

5. An adaptive controller that uses an identifica-
tion procedure to update its representation of
the object being controlled (Arbib 1981 ).

In our case, each individual motor schema corresponds
to a primitive behavior that, when combined with
other motor schemas, can yield more complex behav-
iors. The pilot-selected schemas react to their world
via sensing and do not draw on an a priori world
model for navigation. Each motor schema has an em-
bedded perceptual schema (an identification proce-

dure) to provide the necessary sensor information for
the robot to relate to its world. The motivation for
motor schema usage draws on cognitive science, psy-
chological, neuroscientific, and robotic sources.

2.2. Brain Theory and Psychology

The action-perception cycle provides a principal moti-
vation for the application of schema theory (Neisser
1976). Sensor-driven expectations provide the plans
(schemas) for appropriate motor action, which when
undertaken provide new sensory data that is fed back
into the system to provide new expectations. This
cycle of cognition (the altering of the internal world
model), direction (selection of appropriate motor be-
haviors), and action (the production of environmental
changes and resultant availability of new sensory data)
is central to the way in which schemas must interact
with the world.
Most significantly, perception should be viewed as

action-oriented. There is no need to process all avail-
able sensor data, only that data that is pertinent to the
task at hand. The question for the roboticist is how to
select from the wealth of available sensor data only
that which is relevant. By specifying schemas, each in-
dividual component of the overall task can make its
demands known to the sensory subsystem, and thus
guide the focus of attention mechanisms and limited
sensory processing that is available.
Guided by Arbib’s work (Arbib 1972; 1981 ) in the

study of the frog and its machine analog Rana Com-
putatrix, the frog prey selection mechanism serves as a
basis for analysis. In particular, Arbib and House
(1987) have developed a model for worm acquisition
by the frog in an obstacle-cluttered environment (a
spaced fence). Although Arbib and House describe two
models to account for the behavior of the frog, the
second is the most readily applicable to the mobile
robot’s domain (the first model is based on visual ori-
entation). In their work, they describe primitive vector
fields: a prey-attractant field, a barrier-repellent field,
and a field for the animal itself. These fields, when
combined, yield a model of behavior that is consistent
with experimental observations of the frog.
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In the mobile robot system described below, analogs
of these fields are used {prey-attractant ~ move-to-
goal, barrier-repellent ~ avoid-static-obstacle). Addi-
tionally, new fields are added to describe other motor
tasks (stay-on-path, avoid-moving-obstacle, etc.)

This model, in conjunction with expectation-driven
sensing, provides a basic correlate with the functioning
of the brain (albeit the frog brain). Although the brain
has been handling visually guided detours since time
immemorial, the benefits of using a neuroscience
model would wane if it proved impractical for a mo-
bile robot. In the sections following, the practicality of
this approach is demonstrated, especially regarding the
decomposition of the task to a form which is readily
adaptable to distributed processing. This is essential if
the real-time demands of mobile robot environmental
interaction are to be met.

2.3. Robotics

Schema theory as applied to robotics has almost as
many different definitions as there are developers. In
the realm of robotic manipulators, Lyons’ schemas
(Lyons 1986a) and Geschke’s servo processes (a
schema analog) (Geschke 1983) are used as approaches
to task level control. Overton (Overton 1984) has de-
scribed the use of motor schemas in the assembly do-
main. The UMass VISIONS group, guided by Rise-
man and Hanson (1987), has applied perceptual
schemas to the interpretation of natural scenes; Wey-
mouth’s thesis (Weymouth 1986) and Draper’s paper
(Draper et al. 1987) are prime examples of this work.
However, perceptual schemas as they appear in the
VISIONS system are not a principal concern of this
article.
One of the simplest and most straightforward defini-

tions for a schema is &dquo;a generic specification of a com-
puting agent&dquo; (Lyons 1986a). This definition fits well
with the concept of a behavior (an entity’s response to
its environment)-each schema represents a generic
behavior. Schema-based control systems are signifi-
cantly more than a collection of frames or templates

for behavior, however. The way in which they are set
into action and interact immediately distinguishes
them from simpler representational forms. The in-
stantiations of these generic schemas provide the po-
tential actions for the control of the robot. A schema
instantiation (SI) is created when a copy of a generic
schema is parameterized and activated as a computing
agent.
Other work in the path-planning domain, although

not schema-based, bears a resemblance to the schema
control system. Brooks ( 1986) uses a planning system
with a &dquo;horizontal decomposition&dquo; that effectively
emulates multiple behaviors. Payton (1986) describes
a multi-behavior approach for reflexive control of an
autonomous vehicle. The association of virtual sensors
with a selected set of reflexive behaviors bears a simi-

larity to the schema-based approach. However, an
arbitrary choice of behavior, based on a priority sys-
tem, is made during execution without provision for a
mechanism to combine the results of concurrent be-
haviors. ~adonoff et al. (1986) also incorporate multi-
ple behaviors for the control of a mobile robot and
similarly arbitrate between these behaviors, proposing
a production system for arbitrating competitive strate-
gies and the use of an optimal filter for the treatment
of complementary strategies.
The schema system described below is strongly in-

fluenced by Krogh’s (1984) generalized potential fields
approach and to a lesser degree by Lyons’ (1986b)
tagged potential fields. It bears a superficial resem-
blance to the integrated path-planning and dynamic
steering-control system described by Krogh and
Thorpe (1986). Potential fields are used, in each case,
to produce the steering commands for a mobile robot.
A major distinction between their system and our
schema model lies in the tracking of the individual
obstacles (individual SIs for each obstacle, important
for the treatment of uncertainty) and the incorporation
of additional behaviors such as road following and
treatment of moving obstacles. The state of each ob-
stacle’s SI is dynamically altered by newly acquired
sensory information. The potential functions for each
SI reflect the measured uncertainty associated with the
perception of each object. The schema approach is not
limited to obstacle avoidance, but is versatile enough
for road following, object tracking, and other behav-
ioral patterns.
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3. Approach

Motor schemas, when instantiated, must drive the
robot to interact with its environment. On the highest
level, this will be to satisfy a goal developed within the
planning system; on the lowest level, to produce spe-
cific translations and rotations of the robot vehicle.
The schema system enables the software designer to
deal with conceptual structures that are easy to com-
prehend and handle. The task of robot programming is
fundamentally simplified through the use of a &dquo;divide
and conquer&dquo; strategy.

3.1. Schema-Based Navigation

AuRA’s pilot is charged with implementing leg-by-leg
the piecewise linear path developed by the navigator.
To do so, the pilot chooses from a repertoire of avail-
able sensing strategies and motor behaviors (schemas)
and passes them to the motor schema manager for
instantiation. Distributed control and low-level plan-
ning occur within the confines of the motor schema
manager during its attempt to satisfy the navigational
requirements. As the robot proceeds, AuRA’s cartog-
rapher, using sensor data, builds up a model of the
perceived world in short-term memory. If the actual
path deviates too greatly from the path initially speci-
fied by the navigator as a result of the presence of
unmodeled obstacles or positional errors, the navigator
will be reinvoked and a new global path computed. If
the deviations are within acceptable limits (as deter-
mined by higher levels in the planning hierarchy), the
pilot and motor schema manager will, in a coordi-
nated effort, attempt to bypass the obstacle, follow the
path, or cope with other problems as they arise. Addi-
tionally, the problem of robot localization is con-
stantly addressed through the monitoring of short-term
memory and appropriate find-landmark schemas.
Multiple concurrent behaviors (schemas) may be
present during any leg, for example:

Stay-on-path (a sidewalk or a hall)
Avoid-static-obstacles (parked cars, trees, etc.)

A void-moving-obstacles ( people, moving vehicles,
etc.)

Find-intersection (to determine end of path)
Find-landmark (building for localization)

The first three are examples of motor schemas; the
last two, perceptual schemas. To provide the correct
behavior, a subset of perceptual schemas must be asso-
ciated with each motor schema. For example, in order
to stay on the sidewalk, a find-terrain (sidewalk) per-
ceptual schema must be instantiated to provide the
necessary data for the stay-on-path motor schema to
operate. If the uncertainty in the actual location of the
sidewalk can be determined, the SI’s associated veloc-
ity field, applying pressure to remain on the sidewalk,
will reflect this uncertainty measure. The same holds
for obstacle avoidance: if a perceptual schema for
obstacle detection returns the position of a suspected
obstacle and the relative certainty of its existence, the
actual avoidance maneuvering will depend not only
on whether an obstacle is detected but also on the

certainty of its existence. Differing strategies within
each SI will determine how to manage the perceptual
uncertainty. If an event is potentially fatal, even large
amounts of perceptual uncertainty will produce motor
behavior, but erring in the direction of safety.
An example illustrating the relationship between

motor schemas and perceptual certainty follows. The
robot is moving across a field in a particular direction
(move-ahead schema). The find-obstacle schema is
constantly on the lookout for possible obstacles within
a subwindow of the video image (windowed by the
direction and velocity of the robot). When an event
occurs (e.g., a region segmentation algorithm detects
an area that is distinct from the surrounding backdrop,
or an interest operator locates a high-interest point in
the direction of the robot’s motion), the find-obstacle
schema spawns off an associated perceptual schema
(static-obstacle SI) for that portion of the image. It is
now the static-obstacle SI’s responsibility to contin-
uously monitor that region. Any other events that
occur elsewhere in the image spawn off separate static-
obstacle SIs. Additionally an avoid-static-obstacle SI
motor schema is created for each detected potential
obstacle.
The motor schema SI hibernates, waiting for notifi-

cation that the perceptual schema is sufficiently confi-
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dent in the obstacle’s existence to warrant motor ac-
tion. If the perceptual schema proves to be a phantom
(e.g., shadow) and not an obstacle at all, both the per-
ceptual and related motor SIs are deinstantiated before
producing any motor action. On the other hand, if the
perceptual SI’s confidence (activation level) exceeds
the motor SI’s threshold for action, the motor schema
starts producing a repulsive field surrounding the ob-
stacle.’ The sphere of influence (spatial extent of re-
pulsive forces) and the intensity of repulsion of the
obstacle are affected by the distance from the robot
and the obstacle’s perceptual certainty. Eventually,
when the robot moves beyond the perceptual range of
the obstacle, both the motor and perceptual SIs are
deinstantiated. In summary, when obstacles are de-
tected with sufficient certainty, the motor schema
associated with a particular obstacle (its SI) starts to
produce a force tending to move the robot away from
the object. Figure 1 A shows a typical repulsive field
for an avoid-static-obstacle SI. The control of the
priorities of the behaviors (e.g., when is it more impor-
tant to follow the sidewalk than to avoid uncertain but

possible obstacles) is partially dependent on the uncer-
tainty associated with the obstacle’s representation.
Other isolated motor schema velocity fields are shown
in Figure 1 B - D. A typical combination of motor
schemas is illustrated in Figure 2. Although the entire
field is expensive to compute, each active motor SI
need only determine the velocity vector at the robot’s
current location relative to the environmental object,
making the computation very rapid. Further, as the
SIs are activated in parallel, even better performance is
attainable.

Multiple instantiations of a single schema are fre-
quently the case. Each generic &dquo;skeleton&dquo; is parame-
terized when instantiated. Consequently, it is entirely
possible that two different instantiations of the same
generic schema produce significantly different fields
under similar sensory conditions (as in the case of
path following for a sidewalk or hall discussed above).
The parameters set at instantiation may depend on the
sensory events that triggered the instantiation or from
information retrieved by the pilot from LTM.

If each schema functions independently of the
others, how can any semblance of realistic and consist-
ent behavior be achieved? Two components are re-

quired to satisfactorily answer this question. First, a
combination mechanism must be applied to all the SI-
produced vectors. The result is then used to provide
the necessary velocity changes to the robot. The sim-
plest approach is vector addition. By having each
motor SI create a normalized velocity vector, a single
move-robot schema monitors the posted data for each
SI, adds them together, makes certain it is within ac-
ceptable bounds, and then transmits it to the low-level
robot control system. In essence, the specific velocity
and direction for the robot can be determined at any
point in time by summing the output vectors of all the
active individual SIs. As each motor SI is a distributed

computing agent (preferably operating on separate
processors on a parallel machine) and needs only to
compute the velocity at the point the robot is currently
located and a few points in its projected track (and not
the entire velocity field), real-time operation is within
reach.
The second component of the response to the ques-

tion posed in the previous paragraph is communica-
tion. Potential fields can have problems with dead
spots or plateaus where the robot can become
stranded. By allowing communication mechanisms
between the SIs, the forces of conflicting actions can
be reconciled. Lyons (1986a) proposes message passing
between ports on one SI and connected ports on an-
other SI as a schema communication mechanism.

Alternatively, a blackboard mechanism is used in the
VISIONS Schema Shell (Draper et al. 1987). In either
case, communication mechanisms can solve problems
that might otherwise prove intractable. An example to
illustrate this point follows.
The robot is instructed to move in a particular di-

rection, stay on the sidewalk, and avoid static obsta-
cles. Suppose that the sidewalk is completely blocked
by an obstacle; eventually the velocity would drop to 0
and the robot would stop (Fig. 3A). The fact that the
vehicle has stopped is detected by the stay-on-path SI
through interschema communication with the move-
robot SI (the move-robot SI combines the individual
motor SIs and communicates the results to the low-
level motor control system). The stay-on-path SI, when
created for this particular instance, was instructed to

1. The obstacle is first grown in a configuration space manner
(Lozano-Perez 1982) to enable the robot to be treated henceforth as
a point for path planning purposes.
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Fig. 2. Combined motor
schemas; two avoid-static-
obstacle SIs + one stay-on-
path Sl + one move-to-goal
SI. (A) 2-D representation.
(B) 3-D analog.

yield if an obstacle blocks the path. The stay-on-path
motor schema reduces its field (Fig. 3B) and allows
the robot to wander off the sidewalk, thus circumnavi-
gating the obstacle. As soon as the direction of the
force produced by the offending obstacle indicates it
has been successfully passed, the stay-on-path field
returns to its original state, forcing the robot back on
the path (Fig. 3C).

Suppose, however, the stay-on-path SI was instan-
tiated for a hall. Then, under no circumstances would
the force field associated with the stay-on-path SI be
reduced, or else the robot would crash into the wall.
The robot would instead stop and signal for the navi-
gator (higher level component of the planner) to be
reinvoked and produce an alternate global path that
avoids the newly discovered blocked passageway.
These communication pathways are specified within
the schema structures themselves.

It is entirely possible that the trajectory of the robot
can be computed for a small distance rather than just
its instantaneous velocity at the immediate location.
Each motor schema would have to interact with the
move-robot SI, using the vector summation output to
determine the position of the robot relative to its per-
ceptions for the next time step. This is of particular

significance if the sensor sampling rates are low. Tra-
jectories can be determined that reflect the robot’s
perceptions at a given point in time, rather than just
reacting to current sensing. This is of value in deter-
mining when to activate other schemas in anticipation
of special problems or needs. Care must be taken in
highly dynamic environments (e.g., moving objects) so
that the plans developed do not ignore changes in the
world that are evidenced only through perception.
Another approach explored is the addition of a

background stochastic noise schema. This SI produces
a low-magnitude random direction velocity vector that
changes at random time intervals but persists sum-
ciently long to produce a change in the robot’s position
if the robot’s velocity was otherwise zero. Its role is to
perturb the velocity of the robot slightly, removing the
robot from undesirable equilibrium points that arise
when the active motor SIs counterbalance each other.
This schema would serve to remove the robot from

any potential field plateaus or ridges upon which the
robot becomes perched (e.g., from a direct approach to
an obstacle; Fig. 4). Other traps common to potential
field approaches (e.g., box canyons) can be handled by
establishing hard real-time deadlines for goal attain-
ment. If these deadlines are violated, the pilot is rein-
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Fig. 3. Blocked sidewalk
scenario. (A) Robot stops in
dead spot due to pressure to
both remain on sidewalk and
avoid the obstacle. (B) Gain
lowered on stay-on-path SI

allows robot to bypass obsta-
cle. (C) Once obstacle is
passed stay-on-path SI re-
turns to normal, forcing
robot back onto the sidewalk.

voked to establish an alternate route using STM data
gathered by the cartographer during the route traversal.

It is worth noting that a single sensory event may
have two or more SIs associated with it. For example,
if the robot is looking for a mailbox to get its bearings

for localization purposes, a perceptual schema for
localization (find-landmark) would process portions of
the image that are likely to be mailboxes. If the mail-
box happens to be in the path of the vehicle, a concur-
rent avoid-static-obstacle SI would view that object
not as a mailbox but rather as an obstacle, and would
be concerned only with avoiding a collision with it.
This &dquo;divide and conquer&dquo; approach based on action-
oriented perception simplifies programming and over-
all system design.

3.2. Distinguishing Characteristics of Schema-Based
Navigation

Several features distinguish schema-based navigation
from other existing mobile robot navigation schemes
(Brooks 1986; Krogh and Thorpe 1986). Superficially
it may appear that a schema is a potential field; it is
not. The output of a schema is a single velocity vector
derived from a potential field formulation of the
forces exerted upon the robot at any particular point
in space. The entire potential field is never computed
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by the robot, and only a single vector based on the
robot’s current perception of the world is used to com-
pute its trajectory through space (the full-field figures
presented in this paper serve only to enhance the
reader’s comprehension). Thus the computational
demand of any single schema is quite small.
The schema itself is an active individual computing

agent. This methodology differs from Brooks’ sub-
sumption architecture (Brooks 1986) by avoiding
layering entirely and instead setting up a dynamic
network of schemas based on the current goals of the
robot. There is no layering at all; it is more of a soup-
like collection of networked autonomous agents whose

configuration changes dynamically as the needs and
perceptions of the vehicle change. Lyons’ port auto-
mata formulation for schemas (Lyons 1986a) presents
a formal model for setting up the network of schemas.
Schemas are not merely frames.
A principal research issue for mapping this naviga-

tional methodology onto distributed hardware in-
volves dynamic load balancing, as there exists no
a priori method for determining the total number of
schemas to be invoked before navigation is under-
taken. Since each obstacle detected will have an asso-
ciated avoid-obstacle SI, and there is no means of
foretelling how many individual obstacles will be en-
countered at any one time during the robot’s path
traversal, the total number of SIs active cannot be pre-
dicted ahead of time.
One other distinguishing characteristic of our use of

schemas lies in their ability to allow perceptual uncer-
tainty to affect the potential field output of the active
motor schemas. As each motor SI has an embedded

perceptual schema, if the perceptual process can pro-
vide a measure of belief in its perception, the motor
schema can reflect that belief by acting lethargically in
the presence of questionable evidence or by discount-
ing it entirely.

In summary, schema-based navigation is unique in
many aspects: it is a dynamic network of active com-
puting agents as opposed to a layered architecture; the
configuration of schemas is based on the robot’s cur-
rent perceptual needs and desired motor behaviors of
the vehicle realized from a priori knowledge of the
robot’s world and goals; its ability to reflect uncertainty
in perception readily; its roots that are motivated by
psychological and neuroscientific studies (Arkin 1988);

and the existence of formal models useful for its im-

plementation (Lyons 1986a).

4. Simulation

Simulations were run on a VAX 750 using the follow-
ing motor schemas: stay-on-path, move-ahead, move-
to-goal, avoid-static-obstacle. An example simulation
run (Fig. 5) shows the sequence of resultant overall
force fields based on perceived entities. These entities
include path borders, goals, and obstacles. The grid
size is 64 units by 64 units and the sensory sampling
update time (once per second) is based on a nominal
velocity of 1 unit/s. The maximum vector length for
display purposes has been set to 2.0 normal velocity
units. The actual vector magnitude within the obsta-
cles is set to infinity. All obstacles are currently mod-
eled as circles (as in Moravec’s tangent space [Moravec
19811). The field equations for several of the motor
schemas appear below.
The field equations for both the avoid-static-obstacle

and stay-on-path schemas are linear. An example
showing the velocity produced by an obstacle (0) is
given below:

Avoid-obstacle

where:

S = sphere of influence (radial extent of force
from the center of the obstacle)

R = radius of obstacle
G = gain
d = distance of robot to center of obstacle

~direction = along a line from robot to center of obsta-
cle, moving away from obstacle
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More complex equations could be used (e.g., cubic
as in Krogh and Thorpe [1~9$6~) but were deemed
unnecessary for the low velocities of our vehicle.

Stay-on-path

where:

In this simulation, the uncertainty in perception was
allowed to decrease the sphere of influence of an ob-
stacle. When a threshold was exceeded (50% certain),
the sphere of influence of the obstacle started increas-
ing linearly as the certainty increased, up to its maxi-
mum allowable value. Another alternative is to in-
crease the gain on the obstacle proportionately with
the increase in certainty (up to its maximum).

Figure 5A illustrates the robot’s course on a sidewalk
moving toward a goal. The course is studded with
eight obstacles. Note how the vector fields change as
the robot encounters more obstacles along the way
(Fig. 5C-D). When the robot has successfully navi-
gated obstacles and they have moved out of range,
their representation is dropped from short-term mem-
ory, and the associated motor schema is deinstan-
tiated. The robot stays on the path for the complete

course (Fig. 5B), successfully achieving its goal while
avoiding each obstacle.

5. Experiments in Motor Schema - Based
Navigation

A real-time schema experimentation/demonstration
system has been developed using the mobile robot
HARV (a Denning Research Vehicle), based on sens-
ing using ultrasonic and encoder data. The hooks for
tying in visual sensing are in place but are currently
not implemented as a result of the slow processing
speeds for vision. Vision experiments using HARV are
described in Arkin, Riseman, and Hanson (1987).

Five different motor schemas have been imple-
mented : move-ahead (encoder-based), move-to-goal
(encoder-based), avoid-static-obstacle (ultrasonic-
based), noise (sensor-independent), and follow-the-
leader (ultrasonic-based). The user is able to select the
collection of motor schemas to use and associate a

perceptual schema with each. After schema selection is
complete, robot motion is initiated. The vehicle then
behaves in an intelligent manner in response to its
environmental stimuli. Several of the more interesting
behaviors are described below. It should be noted that
the schemas for this system emulate distributed pro-
cessing but actually are evaluated sequentially.

Related results for experimental robot performance
have been previously reported by this author (Arkin
1987a,b) and other researchers (Brooks and Connell
1986; Triendl and Kriegman 1987) using different
navigational methodologies. In particular, Brooks’
robot at MIT (Brooks and Connell 1986) exhibits sim-
ilar motor performance for the avoidance, wandering,
and wall-following behaviors in the context of his
subsumption architecture.

5.1. Avoidance

By instantiating the avoid-static-obstacle schema with
ultrasonic perception, the robot manifests an interest-
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ing behavior. The schema instantiation can be con-
trolled by altering either the gain, which affects the ve-
locity of the vehicle, or the sphere of influence of
detected obstacles, which increases its sensitivity to the
environment. When activated, the robot seeks out a
potential field minimum and remains there unmoving
(or slightly oscillating in cluttered environments as a
result of the limited sampling rates and noise in the
sensor data).

If a change in the environment occurs (e.g., a person
approaches), the robot is repulsed and seeks out a new
potential minimum. The robot can be &dquo;herded&dquo; by
following behind it, forcing it to move to a desired
location. It avoids obstacles during its journey and
then settles into its new location when the environ-
ment stabilizes. Figure 6 illustrates this process.

5.2. Exploration

By combining the noise schema with the avoid-static-
obstacle schema, exploration behavior can be ob-
served. The noise schema’s gain (strength) and persist-
ence (how frequently the direction changes) can be set
at startup by the experimenter. The robot meanders
about the lab, exploring different regions while avoid-
ing collision with the obstacles.
The robot responds quite well to changes in its envi-

ronment, as when people surround it during a demon-
stration. The biggest problem the robot faces is the
slow sensor sampling, which makes its reflexes quite
slow. The vehicle can also be herded when running in
this behavioral mode, but it is not quite as obedient,
moving in the general direction forced upon it, but
occasionally making some slight sidesteps as a result of
the presence of noise. Actually this form of herding is
more reminiscent of an animal’s behavior, and HARV
has been likened to a sheep by some observers when it
is running in this mode.

5.3. Hall Following

By instantiating the move-ahead schema with an
avoid-static-obstacle schema, the robot is able to safely

Fig. 6. Avoidance behavior.
Robot is initially stationary
(A). Robot is approached
(B), is repulsed, and moves
to its new position and stops

(C). This behavior is pro-
duced by the instantiation of
an avoid-static-obstacle
schema.
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travel down a hall. Although there is no model of the
hall at the schema level, the robot senses the two sides
as obstacles and positions itself near the center. The
move-ahead schema drives it forward.
HARV responds to changes in the hall structure

itself such as pillars, seeking out the middle of the hall.
Small obstacles placed near the wall are interpreted as
part of the wall by the ultrasonic sensors. Open door-
ways pose no problem as long as the move-ahead di-
rection is roughly parallel to the hall. If this direction
points steeply into the wall, the robot might pass
through an open door (see door entry, described in
section 5.5), but since the angle into the wall typically
must be at least 45 ° or more for normal doorway
entry, this allows a latitude of about 90 (±45°) of
error in the move-ahead direction for successful navi-
gation of halls using this method.

5.4. Navigation in the Presence of Obstacles

The same combination of schemas allows for naviga-
tion in cluttered hallways or outdoor situations. The
move-to-goal schema can be substituted freely for the
move-ahead schema if desired. Fig. 7 shows the robot’s
course through a series of cluttered obstacles outdoors.
The move-to-goal schema relies on the shaft encoders
to move the robot to a particular point. This is accom-
plished by specifying the distance to and direction
toward the goal and then monitoring the encoder data
to provide the input to the move-to-goal SI.
The robot’s minimum detectable ultrasonic sensor

reading is 0.9 ft. For this reason, whenever the ultra-
sonic sensor returns a value of 0.9, the robot must
consider a collision to be imminent. This effectively
increases the robot’s diameter by almost 2 ft, making
it more difficult to squeeze through tight spaces. This is
particularly evident in the indoor hallway examples. A
consequence of this fact, when coupled with the slow
sampling rates for ultrasonic data (2 - 3 s for a com-
plete scan, transmission, and interpretation by the
VAX), is the production of motion oscillations when
the robot is operating under continuous motion in

constricted areas. The vehicle moves from side to side
in a dance-like motion as it squeezes through the con-
gested spot. The robot still attains its navigational goal
and does not crash into obstacles, but it takes more
time than would otherwise be necessary. This problem
will vanish when the processing and communication
speeds are improved. On the other hand, if the velocity
of the robot is increased over the 0.3 -0.4 ft/s used for
these examples, the problem would be exacerbated. To
attain higher velocities, faster processing is necessitated.
The experimental schema system offers three types

of motion: step-by-step mode, where each motor step
must be approved by the operator (used chiefly for
debugging new schemas); lurch mode, where the robot
waits approximately 2 s per step while sensor process-
ing is completed between moves; and continuous mo-
tion, where the robot acquires sensor data while mov-
ing. The problem with continuous motion is that the
vehicle changes its position in the 2 or 3 s it takes to
process the sensor data. Generally this is not a prob-
lem, but it can give rise, especially in tight quarters, to
the oscillatory situations described above. All of the
behaviors shown in this section work well in continu-
ous motion, with the possible exception of door entry
(described below), again as a result of tight quarters.

5.5. Single Wall Following

A &dquo;drunken sailor&dquo; walk can be produced by directing
a move-ahead schema into a wall with the obstacle
avoidance behavior active (Fig. 8). The robot slides
along a repulsive field a specified distance from the
wall, reacting to obstacles as it moves. This allows the
robot to enter doorways if the vector pointing into the
wall is sufficiently large in magnitude and its angle is
sufficiently steep.

It is difficult to get the robot to enter normal door-
ways when it is operating in continuous mode. As
stated above, this is a consequence of the data being
old relative to the robot’s current position. It also re-
quires some finesse in proper selection of gains and
angle of attack to produce smooth door entry behavior.
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Fig. 7. Navigation (outdoor).
A move-to-goal SI (shaft-en-
coder-based) was used in-
stead of a move-ahead SI,
the goal being a location
near the distant cone that

does not have a ball on it.
The robot’s course winds

through the obstacles while
making its way toward the
goal.

 at INDIANA UNIV on October 5, 2009 http://ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com


108

Fig. 8. wall folrowing
( &dquo;drunken sailor&dquo;) behavior
produced by the combination
of a move-ahead SI directed
obliquely into the wall while
keeping the obstacle avoid-

ance behavior active. In the
sequence shown, the robot
follows the single wall, mov-
ing around the obstacle, and
then staggers toward the
staircase.

With a 45 ° angle of attack and 1. 3 gain (1.0 is baseline)
for the move-ahead schema, and a sphere of influence
of 2.5 feet and gain of 0.7 for the avoid-obstacle
schema, good results have been obtained. 

5.6. Impatient Waiting

The potential fields methodology is strongly in evi-
dence when the robot moves into a box canyon. The
robot ends up in a potential well and is not able to
make meaningful progress. Normally, after a time-out
occurs based on a hard real-time deadline, the pilot
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and/or navigator would be reinvoked to compute an
alternate path. Suppose, however, the blockage is tem-
porary, as a result of closed doors at the end of a hall
or an elevator. The robot can wait, rocking around in
its potential well, until the obstruction is removed.
This behavior is similar to what might be evidenced
by a fly at a window. When the path becomes un-
blocked, the robot continues ahead, trying to satisfy its
initial goals. Fig. 9 depicts this process.

5.7. Follow the Leader

HARV can track a moving object (with additional
obstacle avoidance behavior to aid maneuvering in
tight situations if desired). The appearance is similar
to walking the robot on an invisible leash. It turns and
tracks the nearest object within a given ultrasonic
sensor spread, moving more rapidly as the distance
between robot and object increases, but avoiding con-
tact with the tracked object. The potential well (the
ideal distance separating the tracked object and the
robot) is user-specifiable, as is the separation distance
at which the robot abandons following. Vision algo-
rithms, well suited for this particular type of tracking,
will be exploited for this purpose when suitable real-
time image processing hardware arrives.

6. Summary and Conclusions

Motor schemas serve as a means for reactive/reflexive
navigation of a mobile robot. This schema-based
methodology affords many advantages, including the
use of distributed processing, which facilitates real-
time performance, and the modular construction of
schemas for ease in the development, testing, and
debugging of new behavioral and navigational pat-
terns. Complex behavioral patterns can be emulated
by the concurrent execution of individual primitive SIs.

The use of velocity fields to reflect the uncertainty
associated with a perceptual process is another impor-
tant advance. By allowing the force produced by a
perceived environmental object to vary in relationship
to the certainty of the object’s identity (whether it be
an obstacle, goal path, or whatever), dynamic replan-
ning is trivialized. Since the sensed environment pro-
duces the forces influencing the trajectory of the robot,
when the perception of the environment changes, so
do the forces acting on the robot, and consequently so
does the robot’s path. This is all accomplished at a
level beneath the a priori knowledge representations.

It is interesting to note that what might appear to be
a naive approach, the summing of the individual vec-
tor outputs of the SIs, works quite well, both in simu-
lations and the experimental results described in sec-
tions 4 and 5. Certainly as the velocity increases, so
does the need to account for the velocity of the robot
itself in the generation of its trajectory. More complex
formulations have been forwarded by both Khatib
(1985) and Krogh (1984) for obstacle avoidance using
potential fields. These and other approaches for both
potential field formulation and combination mecha-
nisms surely merit additional investigation. Work is
currently underway in extending the two-dimensional
schema system to three dimensions (Arkin 1987a),
ultimately providing navigational capabilities in both
the aerospace and undersea domains.
There are times when this methodology of low-level

reactive planning will fail, as it suffers from the pitfalls
common to potential fields. Failure is detected when
the robot’s velocity drops to unacceptably low levels
(in the case of potential field minima) or by exceeding
a hard real-time deadline (in the case of cyclic behav-
ior). At those times, the pilot is reinvoked to conduct
a &dquo;local-global&dquo; form of planning. The pilot draws on
information present in short-term memory, including
instantiated meadows that are relevant to this particu-
lar leg and a sensor-based world model built by the
cartographer. This form of replanning should be
needed only rarely, as navigational planning helps to
ensure avoidance of modeled obstacles. Generally only
unmodeled obstacles can lead to the breakdown of
schema-based navigation. Higher level knowledge
must then be invoked to maneuver the robot out of its
dilemma. Most of the time, however, schema-based
navigation is more than adequate for the task.
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Fig. 9. Impatient waiting
(’fly at a window&dquo;). When
the robot enters a potential
well, a move-ahead SI directs
the robot to the end of the
hall, while the avoid-static-
obstacle behavior keeps it

from colliding with the door.
The robot roves impatiently
at the end of the corridor
until the door is opened. At
that point, it moves through
the door and continues on its

way.
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