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Second order dynamics

B source: Bicho, Schoner, Robotics and
Autonomous Systems 21:23-35 (1997)



Second order dynamics

M idea: go to even lower level
sensory-motor systems:

B a sensor that only knows there is a
target or an obstacle on the left vs.
on the right...

B but is not able to estimate the
heading of either

B a motor system that is not calibrated
well enough to steer into a given
heading direction in the world




dynamical variable

B turning rate omega rather than heading
direction

M can be enacted” by setting set-points for
velocity servo controllers of each motor

B target: information about target being to the
left, to the right, or ahead, but no calibrated
bearing, psi, to target

B obstacle: turning rate

B to the right when obstacle close and to the left
B to the left when obstacle close and to the right

B zero when obstacle far



dynamics of turning rate:
obstacle avoidance

B pitch-fork normal form (to get left-right
symmetry)

B but symmetry potentially broken by additive
constant: biases bifurcation toward left or
toward right

w= (e + -lz—:rr)cgbngbs + aw — yw3



obstacle avoidance

w= (e + -lz—:rr)cgbngbs +ow — yw

(a) dynamics of turning rate (b) dynamics of turning rate
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obstacle avoidance

B in absence of obstacle in forward direction
(distance large): alpha negative, constant zero

(a) dynamics of turning rate
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obstacle avoidance

B in presence of obstacle in forward direction,
symmetric bifurcation to desired avoidance
rotations: alpha positive, constant zero

(b) dynamics of turning rate
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obstacle avoidance

M in presence of obstacle to the right of current
heading: tangent bifurcation removes attractor
at negative omega, alpha negative, constant
negative

(¢) dynamics of tuming rate (d) dynamics of turning rate
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mathematical form

B compute constant and alpha from obstacle force lets
w = (a + %N)CobgFobs + oW — ;Vw3
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bifurcations as

an obstacle is
approached
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dynamics: target acquisition

M a sensor for a target on the left sets an attractor at
positive turning rate, strength graded with intensity

M a sensor for a target on the right sets an attractor at
negative turning rate, strength graded with intensity

dynamics of turning rate

A

\\ turning rate
|

5\

AN

dynamics of turning rate

A

\ turning rate
h . —P-

AN




mathematical formulation

M force-let of i (@ — w;)*
gi(w) = ——(w — w;) exp| —2 s |-
each target T Aw
sensor (i = right or left)
® summed to Gleft (W) + Bright (w)

total dynamics



putting it to work on a simple
platform
B Rodinsky!

M circular platform with
passive caster wheel

B two (unservoed)
motors

M5 IR sensors

m2 LDR’s

M microcontroller

MC68HCAI A0
Motorola (32 K RAM),
8 bit
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wdeo demonstratlon




why does it work!?

B here the dynamics exists instantaneously
while vehicle is heading in a particular
direcition

B while the vehicle is turning under the
influence of the corresponding attractor for
turning rate, the dynamics is changing!

B typically undergoing an instability as vehicle’s
heading turns away from an obstacle...



what is the benefit of using
second order dynamics!

M ability to integrate constraints which do not
specify a particular heading direction, only
turning direction

M ability to impose a desired turning rate =>
enhances agility in turning

M ability to control the second derivative of
heading direction=angular acceleration:
enables taking into account vehicle dynamics



quantitative comparison

Overall Statistics
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[Hernandes, Becker, Jokeit, Schoner, 2014]



Other implementations

B cooperative
robot vehicles,
by Estela
Bicho, Portugal

B autonomous
wheel-chair by
Pierre Mallet,
Marseille




