Attractor dynamics approach to behavior generation: vehicle motion Part 2: sub-symbolic approach

Gregor Schöner
Institute for Neural Computation, RUB

Behavioral dynamics

constraints: obstacle avoidance and target acquisition

Behavioral dynamics

so far, we had a "symbolic" approach to behavioral dynamics: the "obstacles" and "targets" were objects, that have identity, are preserved over time...and are represented by contributions to the behavioral dynamics

"symbolic" approach

requires high-level knowledge about objects in the world ("obstacles", "targets", etc) and perceptual systems that extract parameters about these...

is that necessary?

"sub-symbolic" approach

low-level implementation: use sensory information directly, not via objects

Target acquisition: still symbolic

- targets are segmented... in the foreground
- => need neural fields to perform this segmentation from low-level sensory information: Dynamic Field Theory ...

- obstacles need not be segmented
- do not care if obstacles are one or multiple: avoid them anyway...

- \blacksquare each sensor mounted at fixed angle θ
- \blacksquare that points in direction $\psi = \Phi + \theta$ in the world
- erect a repellor at that angle

$$f_{\text{obs},i}(\phi) = \lambda_i(\phi - \psi_i) \exp\left[-\frac{(\phi - \psi_i)^2}{2\sigma_i^2}\right]$$
 $i = 1, 2, \dots, 7$

Note: only Φ - ψ =- θ shows up, which is constant!

=> force-let does not depend on Φ!

2 VII obst

$$f_{\text{obs},i}(\phi) = \lambda_i(\phi - \psi_i) \exp\left[-\frac{(\phi - \psi_i)^2}{2\sigma_i^2}\right] \qquad i = 1, 2, \dots, 7$$
$$\lambda_i = \beta_1 \cdot \exp\left[-\frac{d_i}{\beta_2}\right]$$

Repulsion strength decreases with distance, d_i

=> only close obstacles matter

$$f_{\text{obs},i}(\phi) = \lambda_i(\phi - \psi_i) \exp\left[-\frac{(\phi - \psi_i)^2}{2\sigma_i^2}\right]$$

$$\sigma_i = \arctan\left[\tan\left(\frac{\Delta\theta}{2}\right) + \frac{R_{\text{robot}}}{R_{\text{robot}} + d_i}\right].$$

Cangular range

2 depends on sensor

cone Δθ and size

over distance

 $\Delta\theta$

=> as a result, range becomes wider as obstacle moves closer

summing contributions from all sensors

$$\frac{d\phi}{dt} = f_{\text{obs}}(\phi) = \sum_{i=1}^{7} f_{\text{obs},i}(\phi)$$

- but why does it work?
- shouldn't there be a problem when heading changes (e.g. from the dynamics itself)?

- but why does it work?
- shouldn't there be a problem when heading changes (e.g. from the dynamics itself)?

- but why does it work?
- shouldn't there be a problem when heading changes (e.g. from the dynamics itself)?

Behavioral Dynamics

Bifurcations

bifurcation as a function of the size of the opening between obstacles

 $\uparrow d\phi/dt$

- bifurcation as a function of the size of the opening between obstacles
- =>tune distance dependence of repulsion so that bifurcation occurs at the right opening

Bifurcations

Bifurcation on approach to wall

- initially attractor dominates: weak repulsion
- bifurcation
- then obstacles dominate: strong repulsion and total repulsion

Bifurcation on approach to wall

same with small opening

Bifurcation on approach to wall

at larger
 opening:
 repulsion
 weak all the
 way through:
 attractor
 remains stable

Tracking attractor

as robot
 moves around
 obstacles,
 tracks the
 moving
 attractor

Tracking attractor

as robot
moves in
between
obstacles, the
dynamics
changes but
not the
attractor

Tracking attractors

Observation:

- even though the approach is purely local, it does achieve global tasks
- based on the structure of the environment!

Conclusion

- attractor dynamics works on the basis lowlevel sensors information
- as long at the force-lets model the sensorcharacteristics well enough to create approximate invariance of the dynamics under transformations of the coordinate frames

Summary

- behavioral variables
- attractor states for behavior
- attractive force-let: target acquisition
- repulsive force-let: obstacle avoidance
- bistability/bifurcations: decisions
- can be implemented with minimal requirements for perception