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Abstract 

Sch6ner, G. and Dose, M., A dynamical systems approach to task-level system integration used to plan and control 
autonomous vehicle motion, Robotics and Autonomous Systems, 10 (1992) 253-267. 

Autonomous systems with multiple sensory and effector modules face the problem of coordinating these components while 
fulfilling tasks such as moving towards a goal and avoiding sensed obstacles. We propose a set of organizational principles 
for dealing with this problem. The ideas are (a) to plan in terms of task-related variables that abstract from effector degrees 
of freedom and peripheral sensor coordinates but succinctly capture behavioral constraints; (b) to generate time courses of 
behavior through a dynamical system of the planning variables. Task constraints, such as targets to be reached, obstables to 
be avoided, etc. are expressed as parts of the planning dynamics in a principled fashion invoking concepts of the qualitative 
theory of dynamical systems. System integration is possible in the sense that all information provided by the various sensory 
modules and all information required by the various effector modules becomes part of the planning dynamics. Compression 
of such behavioral information is achieved in a second layer in which the relative strengths of different contributions to the 
planning dynamics are governed by competitive dynamics that separate convergent information, which is integrated by 
selecting a representative, from non-redundant information, which is kept invariant. The capability of the system to perform 
stable planning, make planning decisions, and integrate redundant as well as complementary information is demonstrated by 
software simulations. These include the simulation of control errors on both the effector and the sensor side. 

1. Introduction 

In spite of much work on autonomous mobile 
robots (cf. [10,19] for a survey) the fundamental 
problem of integrating the sensory, effector, con- 
trol, and reasoning modules remains a major 
challenge. Recently, the fact that biological 
movement systems demonstrate solutions to the 
problem has begun to make an impact on think- 
ing about new approaches. Specifically, a broad 
spectrum of theoretical work on biological 
action-perception systems has led to a number of 
important notions that we briefly summarize: (a) 
Experimental work both in kinesiology (e.g., [30]) 
and neurophysiology (e.g., [13,7]) has revealed 

that reaching movements in monkeys and humans 
are planned by the central nervous system in 
task-related coordinate systems rather than pe- 
ripheral effector coordinates (e.g., joint angle 
forces). In theoretical accounts of human move- 
ment abstract, function-specific control variables 
have been introduced as the central level of tra- 
jectory planning (e.g., [12,25]). (b) It has been 
shown that movement planning and movement 
control are closely intertwined in the central ner- 
vous system (e.g., [4,15,18]). (c) The notion of 
sensory-motor schemas (e.g., [2]) posits that the 
action-perception loop is to some extent function- 
ally modular. A related idea is the concept of 
behavioral information ([29,27]) which suggests to 
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analyze action-perception strictly in terms of be- 
havioral requirements (this idea will be important 
below). (d) It has been shown that the coordina- 
tion activity of the nervous system is governed by 
dynamic laws of relational variables [28]. 

At the same time two important new ideas 
have arisen in robotics and action planning. First, 
the approach of behavior-based robotics (cf. [6] 
for review) seeks to avoid overloaded central rep- 
resentations and to avoid the notorious difficul- 
ties of Artificial Intelligence solutions to the ac- 
tion planning problem [6]. In a limited sense this 
approach may also be viewed as guided by analo- 
gies with biological systems (see [1] for such dis- 
cussion). Second, a new method has been devel- 
oped for the path planning problem based on 
moving a system in adequately designed potential 
fields (e.g., [19,16,17,20,3,9]). Essentially, in the 
local versions of this approach, path planning is 
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performed by a dynamical system, albeit not al- 
ways engineered in a very direct way. 

In this communication we propose to combine 
elements of the last two new engineering ap- 
proaches with theoretical ideas flowing from the- 
ories of biological motion. Specifically, we pro- 
pose a general strategy for dynamic task-level 
planning detailed in Section 2. The essential ideas 
are: (a) to introduce planning variables that cap- 
ture the planned behavior of the system at the 
level on which tasks are defined, so that behav- 
ioral constraints can be directly and clearly ex- 
pressed in terms of these variables; and (b) to 
achieve planning by generating a time course of 
the planning variables from a planning dynamics, 
a set of equations of motion of the planning 
variables. Different behavioral constraints con- 
tribute to the planning dynamics in a principled 
fashion. A second layer of dynamics is defined for 
the relative strenghts of different contributions to 
the planning dynamics. This layer, modelled on 
biological movement memory [26], leads through 
competition to sparse representation of sensed 
behavioral requirements. The benefits of such an 
approach include: (a) closed-loop stability of the 
action-perception behavior; (b) capability to make 
decisions based on sensory information; (c) acces- 
sibility to analysis by reducing the amount of 
interaction among different components of the 
dynamics. 

After laying out the general strategy (Section 
2), we present a concrete module for 2D path 
planning in Section 3 and demonstrate the prop- 
erties of the planning dynamics in this example in 
Section 4. 

2. Dynamic approach to system integration 

2.1. Planning dynamics 
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Planning variables: A task-related and behav- 
ior-oriented level of description is defined by 
introducing variables, x, that express the desired 
or planned behavior of the system. In terms of 
these planning variables behavioral constraints on 
the system must be directly and clearly express- 
able, for instance, as points or parametrized sets 
in the planning space spanned by these variables. 
Transformation of sensory module information 
into the planning variables and from there into 
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effector level coordinates must be possible, of 
c o u r s e .  

Planning dynamics: Planning is achieved by gen- 
erating a time course of the planning variables 
from a planning dynamics, that is, a set of equa- 
tions of motion of the planning variables. To be 
specific, we assume this dynamics is first order 
(i.e., that the planning variables have been chosen 
such that this is the case), formally: 

~? = f ( x ) .  (1) 

The vector-field f ( x )  must be determined such 
as to capture task constraints as component forces 
that define attractors or repellors of the dynami- 
cal system. To design such vector-fields we make 
use of the language of the qualitative theory of 
dynamical systems (see [5] for elementary intro- 
duction, [14,22] for more advanced treatment). 
The following principles define the strategy with 
which the planning dynamics are determined. 
(1) Task constraints are parametrized in the 

planning variable space, i.e., they are ex- 
pressed as points or sets in that space. These 
points or sets are referred to below as behav- 
ioral information [29]. 

(2) Behavioral information defines contributions, 
finfo, to the planning dynamics: 
(a) Desired behaviors are modelled as attrac- 
tors of the dynamics. 
(b) Behaviors that must be avoided are mod- 
elled as repellors of the dynamics. 

(3) Each such contribution to the planning dy- 
namics is characterized by its range, d (meas- 
ured, for instance, in terms of exponential 
decay of the strength of the corresponding 
contribution to the vector field). , 

(4) The contributions of various task constraints 
to the total vector-field are treated addi- 
tively 1. 

.~= Efinfo(x, y).  (2) 
y 

This is essentially a recipe of  how to define the individual 
contributions rather than a constraint: The individual con- 
tributions are defined such as to generate  the desired phase 
portrait, characterized by invariant solutions and their sta- 
bilities, in the absence of all other contributions. 

Here various behavioral constraints are 
parametrized by vectors y. 

(5) The design of the functional form of the 
various items of behavioral information is 
constrained by the following observation: The 
extent to which different contributions to the 
planning dynamics cooperate or compete is 
determined by the functional dependence or 
independence of the corresponding force 
functions. Linearly dependent functions lead 
through superposition to averaging among the 
corresponding constraints. Linearly indepen- 
dent functions allow for expression of con- 
straints that are incompatible, contradictory, 
or independently valid. In that case the solu- 
tions of the planning dynamics may differ 
qualitatively (in number or nature) from the 
solutions designed into the individual contri- 
bution and thus may reflect decisions. Contri- 
butions may have the same functional form 
but centered around different values of the 
behavioral constraint, y. In this case the 
amount of overlap of the support areas deter- 
mines the extent to which the contributions 
cooperate (averaging) or compete (multi-sta- 
bility). 

(6) The relative strength, w, of each contribution, 
finfo(X, Y), to the planning dynamics is as- 
sessed in terms of the time scale, Tre I = 

11/finfo(X = Y, Y) I of the dynamics of the indi- 
vidual contributions in the vicinity of its in- 
variant solution. 

(7) The planning dynamics must be augmented 
by stochastic forcing functions for conceptual 
reasons: Because some constraints are mod- 
elled as repellors, escape from such unstable 
invariant solutions must be garanteed. 

Note that when the sensing-planning-action loop 
is closed, the parametrized task constraints may 
depend implicitly on time and explicitly on the 
planning variables, e.g., y =y[x(t)]. For instance, 
the behavioral requirements imposed by obstacles 
depend on the position of a robot vehicle, which 
in turn depends on the previously planned path, 
x(t). As a result, the analysis of the planning 
dynamics underlying the definition of the various 
forces remains applicable in the closed loop situ- 
ation only in an approximate sense. The range of 
validity of this approximation can be estimated on 
the basis of linear stability analysis of the invari- 
ant solutions. For given invariant solution, x0, the 



256 G. Sch6ner, M. Dose 

condition reads: 

0finfo 10Y 

J Oy Ox jx=x~<< ~-~-rx=x~, (3) 

in other words, the rate of change of the vector- 
field due to the change in behavioral information, 
y, must be much less than the rate of change due 
to the evolution of the planning variables. 

Clearly, the identification of adequate plan- 
ning variables is intimately linked with the identi- 
fication of relevant behavioral constraints and 
their dynamic modelling. The two ideas sketched 
here therefore form a self-consistent loop rather 
than two subsequent steps in the design of a 
planning dynamics. 

2.2. Competitive dynamics of constraint representa- 
tions 

Two types of problems remain unsolved by the 
planning dynamics as laid out above: (a) If redun- 
dant sensory information leads to multiple repre- 
sentation of the same underlying behavioral con- 
straint then the strengths of the corresponding 
contributions to the planning dynamics add up. 

This would link multisensory convergence auto- 
matically to enhanced behavioral significance. For 
example, an obstacle avoidance system would 
perform more extensive evasive action if an ob- 
stacle had been sensed multiply. Some form of 
normalization is necessary to truly achieve system 
integration. (b) Local dynamic path planning sys- 
tems suffer from spurious solutions if environ- 
ments become too cluttered. In biology, the prob- 
lem of avoiding collisions and the problem of 
finding a path in a constricted space are not 
necessarily linked. Mathematically, the problem 
of spurious solutions can be eliminated rigorously 
only at the cost of sacrificing the strict locality of 
the approach and by enduring considerable com- 
putations expense [9,23]. 

We propose to deal with both problems by 
introducing dynamic representations of behav- 
ioral constraints in terms of the relative strength 
factors, w. The dynamics of these relative 
strenghts must be competitive for those relative 
strengths representing redundant behavioral in- 
formation. Such convergent information acts on 
the planning dynamics only through the selected 
representative. Only behavioral information of 
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Fig. 1. The world coordinate system, (x w, yW), and the planning coordinate system, (x P, yP), are aligned, although this relative 
orientation need not be calibrated because only relative angles such as ~b - ~bobject matter. The R-coordinate system is centered at 
the real position of the system and is rotated against the W-system. The shift from P-system to R-system as well as the rotation 

simulate effector errors which accumulate over time. The planning dynamics is stable against such errors. 
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the same type competes, e.g. behavioral informa- 
tion dealing with different obstacles or behavioral 
information dealing with multiple targets. Behav- 
ioral constraints that are independently valid and 
non-redundant do not compete. Mathematical 
forms of competitive dynamics have been dis- 
cussed in the literature (e.g., [8,11]). Design of 
such highly non-linear dynamics becomes easier if 
parametrizations are chosen that are meaningful 
with respect to the invariant solutions. The time 
scale of the competitive dynamics must be chosen 
to be faster than the planning dynamics, so that 
sensory fusion occurs at a higher rate than plan- 
ning decisions. It is then assured that the qualita- 
tive analysis of the planning dynamics remains 
valid as the relative strength parameters become 
dependent on time and on the planning state. 

3. Two-dimensional path planning 

Consider a mobile system that (a) may move in 
the plane, (b) senses obstacles and estimates their 
parameters direction, distance, and linear size, 
and (c) is provided from higher system modules 
with either represented or sensed target coordi- 
nates. Both obstacles and target may be moving. 

3.1. The planning variables 

As a conceptual device we introduce a world 
coordinate system (upper index W) in the plane, 
described mathematically by cartesian coordi- 
nates, (x w, yW), with fixed origin (cf. Fig. 1). 
Because relevant objects may often rest with re- 
spect to each other, object parameters usually 
vary slowly in the world coordinate system. This 
enables design of the planning dynamics in which 
these object parameters can be treated as adia- 
batic variables neglecting their dependence on 
time and planning state. Furthermore, the world 
coordinate system may serve to integrate the ob- 
stacle avoidance module into a behavioral hierar- 
chy (cf. Discussion). In the presence of sensory 
information the world coordinate system has no 
operational meaning, however, because planning 
takes place in a second coordinate system (upper 
index P) centered in the mobile robot. Angles 
are measured from the x P-axis, which is assumed 
parallel to the xWaxis. Because only difference 
between angles enter into the actual planning 

dynamics calibration of the x P-axis is not neces- 
sary. 

In closed loop implementations, sensed objects 
are represented by their distance from the sys- 
tem, rob i, and the angle under which they are 
seen from the xe-ards. 

The movement path is given by the heading 
direction (b(t) measured from the xW-axis and 
the orbital velocity, v(t) in the W-system. The 
heading direction essentially captures the planned 
path. Behavioral constraints like moving towards 
targets and avoiding obstacles can be expressed 
in terms of heading direction. Specically, the di- 
rection (from a reference axis, here xe-axis) in 
which targets or obstacles are sensed specify, 
respectively, desired or undesired heading direc- 
tions. The velocity may be used to implement 
additional task constraints like stopping in front 
of targets, going slowly through bends, etc. These 
task are dealt with only cursorily in this commu- 
nication: we set velocity to a constant and turn 
vehicle motion off once we have reached the 
target to within a criterion distance. Note that in 
a sense the two-dimensional path planning task 
has been reduced to a one-dimensional dynamic 
problem. 

3.2. Targets 

The most basic task from which we construct 
all other desired behaviors is to move in a given 
direction, $. The corresponding contribution to 
the planning dynamics of ~b(t) is extremely sim- 
ple. A single fixed point attractor for ~b at ~b = 
defined by 

= a sin(~b - $) + noise, (4) 

where a determines the time scale of the plan- 
ning dynamics: ~'~ = 1/a. (Note that due to the 
angular character of ~b of the dynamics must be 
2~--periodic. For escaping instable fixpoints we 
add a gaussian white noise term. This equation is 
essentially the circular analog of linear dynamics 
having a single point attractor.) Only the differ- 
ence $ ( t ) - $  enters in the dynamics, rendering 
performance independent of calibration of the 
planning coordinate system. 

With this basic module, other behaviors can be 
constructed. For example, moving toward a sensed 
target takes just this form where $ is chosen as 
the angle, ~target, under which the target is seen 
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relative to the xCaxis. Note that as the system 
moves with finite velocity, the parameter //ttarget 
becomes a function of time and a functional of 
4~(t). The planning dynamics must be sufficiently 
fast for a given vehicle velocity (choice of %) so 
that ~ttarget varies much more slowly than ~b(t). As 
another task consider moving toward and along a 
straight line path in W-coordinates. This task can 
be decomposed into (a) moving parallel to the 
straight line path, (b) moving toward the straight 
line path. These targets are modelled by two 
functions of the form of Eq. (4) with ~, oriented 
parallel and towards the line path, respectively. 
Superposition of these target functions defines 
the dynamics, a case of achieving averaging 
through linearly dependent contributions to the 
planning dynamics. Other interesting tasks in- 
clude movement toward one of multiple targets 
(multiply functions of the form of Eq. (4) with 
range limiting factor leading to linear indepen- 
dence for targets sufficiently separated) and 
movement along arbitrary, parametrized paths 
(same decomposition as above but locally). 

3.3. Obstacles 

Sensory system components are assumed to 
provide the obstacle parameters: (a) 0obst: angle 
from the x/'-axis at which the obstacle center is 
seen (although only Oobst- ~b matters); (b) %bst: 
distance from the vehicle to the obstacle; and (c) 
Robst: size of the obstacle as described by a ra- 
dius. From this we determine the angle, 2A0obs = 
2arcsin(Robst/rou~t), subtended by the obstacle. 

Obstacles specify the behavior of avoiding to 
head toward the obstacle, specifically, to avoid 
heading anywhere within the interval of direc- 
tions, [~/obst -- A~obst, ~tobst -~- Ai//obst]" Dynamically, 
this constraint is expressed by defining a force- 
field contribution to the ~-dynamics that erects a 
repellor at 6ob~t" The repelling force must extend 
to the limits of the interval. A refinement is to 
specify the repelling direction interval with an 
adquately scaled vehicle size, dvehicl e, added to 
the obstacle's size, so that AI/Jtota ! = arcsin[(Robst 
+dvehicle)/robst]. We distinguish the following 
factors of this dynamic contribution: (a) The 
proper repelling force fobst(~b, ~0obst, robst, A~total); 
(b) a factor range angular((~, ~-/obst' A~/total) defining 
an angular range such that outside this range, 
parametrized by ~ as [tbobst- A~tota l -  ~, I//obst + 

A/~ttota I -~- •], the repelling force is negligibly small; 
(c) a factor, rangespatial(robst , Robst ) limiting the 
spatial range, parametrized by dobst , over which 
the force has appreciable strength; (d) the nor- 
malized relative strength factor, I w(t)l ~[0, 1] 
resulting from competitive dynamics (see below). 
The mathematical details are given in Appendix 
A. 

The contributions of different sensed obstacles 
have isomorphic functional form, but each func- 
tion is centered around the corresponding direc- 
tion to the obstacle, &i. Because the contributions 
have finite range in 0-space, the amount of over- 
lap of the respective ranges determines the extent 
to which multiple obstacle forces cooperate or act 
independently. For example, for closely matching 
ranges, different contributions superpose such 
that an obstacle in an averaged direction is 
avoided. When the ranges overlap little, the dif- 
ferent contributions are linearly independent and 
the individual direction in which obstacles are 
seen are avoided with the possibility of moving 
into directions between these forbidden zones. 
The cross-over from one regime to the other is 
mediated by instabilities enabling decision mak- 
ing (cf. Section 4). 

The complete ~b-dynamics read: 

q~ =ftarget + E I wi Irangesoatiaj(ri, R i )  
i 

× rangeangular(~b, @, A~total./)) 

XLbs t (~  , ~1i, ri, ~l/t(total,i)) , (5)  

where ftarget is one of the target forces discussed 
earlier. 

3.4. Competitive dynamics 

The ~b-dynamics generates reasonable paths 
on its own and endows the system with the de- 
sired closed-loop stability (see Section 4). How- 
ever, as discussed earlier (cf. Section 2.2) prob- 
lems (a) with multiple estimates of the same 
obstacle (lack of normalization) and (b) with spu- 
rious solutions in clustered environments still re- 
main unresolved. We propose to deal with both 
problems by weeding out the obstacle representa- 
tion through competitive dynamics of the relative 
strength factors, wi(t). The idea is that obstacles 
with sufficient overlap compete leading to activa- 
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tion of one representative, which is chosen in the 
most conservative manner, that is, as the one 
closest to the vehicle. Obstacles with little or no 
overlap do not compete and remain individually 
active with full strength. The overlap function 
need not be literally the geometric overlap of 
obstacles, but may take into account vehicle size, 
required safety margins, etc. 

Among a number of functional forms for com- 
petitive dynamics that have been proposed in the 
literature (e.g., [8,11]) we have chosen the follow- 
ing form ([26], for details see Appendix B): 

¢vi=a(i)(wi -w3)  - E T( i, J)w:wi + noise. 
j ~ i  

(6) 

This form has a number of technical advantages: 
(a) A potential exists guaranteeing relaxation to 
stationary state and prohibiting oscillatory and 
other nontrivial invariant solutions. (b) A number 
of attractor states can be determined analytically 
and their stability can be analyzed explicitly. This 
makes the 'mathematical engineering' problem 
much easier to handle. (c) The coefficients of the 
dynamics have immediate meaning in terms of 
the nature and stability of the various attractor 
solutions: (1) The function a(i) determines the 
competitive advantage of the i-th contribution: 
essentially, among competing solutions the one, 
iwin, with the largest positive factor a(iwi n) is 
turned o n  (Wiwin ~ -t- 1) while the competing con- 
tributions are turned off (wi---> 0) (for a more 
precise formulation see Appendix B). (2) The 
function ~/(i, j) determines the degree to which 
contributions i and j compete: For y(i, j )~  a(i) 
the contribution j competes with the contribu- 
tions i, while for 0 < 3,(i, j) << a(i), the relative 
strength dynamics of contribution i is indepen- 
dent of that of contribution j. 

The generation of competition through dynam- 
ics (rather than by means of symbolic computa- 
tion) leads to continous behavior. For example, if 
the optimal representative of redundant informa- 
tion is not unique, multistable dynamics result in 
which hysteresis or history effects prevent the 
system from oscillating among possible options. 
Symbolic computation is more difficult to inte- 
grate into stable control behavior. 

4. Results 

We first focus on the ~b-dynamics, keeping the 
relative strengths w/ fixed, to demonstrate the 
properties of stability and flexibility. Subse- 
quently, the working in unison of the two layers 
of dynamics is examined. We simulated the plan- 
ning dynamics in software by numerically solving 
the corresponding differential equations. 

4.1. Stability of the planning dynamics 

The proposed planning dynamics is stable if 
operated in closed loop, i.e., when obstacle and 
target parameters are derived at each point in 
time from sensory input and movement com- 
mands take effect in the physical world (instanti- 
ated and situated system). To simulate this situa- 
tion we store objects in world coordinates and 
determine the two planning parameters distance 
and angle by transforming into the P-system and 
using polar coordinates. Control errors on the 
effector side are introduced by allowing that at 
each point in time the system position may be 
translated and rotated against the planned posi- 
tion (cf. Fig. 1). These errors are assumed to be 
gaussian random variables with constant mean 
and variance per unit time (leading to linear drift 
of the mean and gaussian white noise for the 
random error in the continuous time limit). To 
keep track of the accumulating error we intro- 
duce a coordinate system (upper index R, cf. Fig. 
1) centered at the real system position and ro- 
tated to represent real heading direction of the 
system. A second error with constant mean and 
variance is added to the object parameters dis- 
tance and angle to simulate sensor errors, but this 
error is not accumulated over time. Note that the 
object parameters are determined in the R-sys- 
tem but are then fed without further transforma- 
tion into the planning dynamics which operate at 
the level of the P-system. Fig. 2 illustrates that 
the system, symbolized by a crossed circle, stably 
achieves its tasks in spite of accumulating and 
random effector and sensor error. For instance, 
in the simulated closed-loop operation an exter- 
nally induced sudden shift of the vehicle position 
in the plane would be compensated successfully 
(although, if large enough, it may lead to a differ- 
ent path being followed toward the target). This 
form of independent in closed-loop of a calibra- 
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Fig. 2. Simulation of the planning dynamics: a target position 
is achieved while avoiding sensed obstacles in spite of accu- 
mulating effector and random sensor errors. The vehicle is 
symbolized by a crossed circle, the size of which reflects the 
vehicle size, dvehicl  e. The obstacles are open circles, the target 
is the filled circle. The figure shows the real trajectory and the 

vehicle at different times. 

tion of the planning coordinate system is illus- 
trated in Fig. 3. 

Stability and independence of calibration of 
the command level is important if the obstacle 
avoidance module is to be incorporated into a 
behavioral hierarchy. It assures that the behav- 
ioral level of this module (e.g., avoiding sensed 
obstacles) works stably in relation to the informa- 
tion provided by the sensory systems on the same 
level independently of the quality of task con- 
straints provided by higher modules (e.g., world 
coordinate system). Stability is achieved because 
behavioral information (e.g., ~bobst) is weakly time 
and state-dependent through choice of coordi- 
nate system. 

The dynamic architecture accomodates moving 
obstacles as demonstrated in Fig. 4. Clearly, as 
long as the change in obstacle parameters is slow 
in comparison to the relaxation time of the plan- 
ning dynamics, no conceptual difference exists 
between stationary and moving obstacle avoid- 
ance. The range of available velocities limits, of 
course, the obstacle speeds that can be handled 
successfully by the system. Furthermore, without 
extra effort we may also let two autonomous 
systems, governed each by a dynamical planning 
architecture, avoid collision with each other: The 
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Fig. 3. Independence of the obstacle avoidance module from 
calibration of the planning coordinate system: Initially the 
vehicle moves toward a target position. At position A the 
vehicle is abruptly moved to point B while keeping its heading 
direction. The planning dynamics changes the heading direc- 
tion adequately. At point C another abrupt shift puts the 
system to point D. At the same time the heading direction is 
abruptly rotated by ~'. The vehicle proceeds towards the goal 
avoiding successfully a sensed obstacle. We display both the 
real trajectory (solid line) and the 'planned' trajectory (dotted 
line). Note that due to the external perturbations, the plan- 
ning coordinate system is completely decalibrated both trans- 
lationally and rotationally. This does not affect the simulated 
closed-loop performance. Note, however, that we assume that 
the sensory modules solve the segregation problem of detect- 

ing which is target and which is obstacle. 

~ . ~  GOAL 

Fig. 4. Dynamic obstacle avoidance: While the vehicle moves 
to the goal positions on the right side of the figure, a dynamic 
obstacle, depicted by an open circle, moves to the left. The 
intermediate positions of obstacle and vehicle are simultane- 

ous. 

Fig. 5. Collision avoidance of two vehicles: Assuming that the 
two vehicles sense each other as dynamic obstacles collision 
avoidance results from dynamical obstacle avoidance. The 

depicted intermediate positions are simultaneous. 
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two systems need  only de tec t  each  o t h e r  as obs ta -  
cles. This  is d e m o n s t r a t e d  in the  s imula t ion  shown 

in Fig. 5. 

4.2. Flexibility through instabilities 

T h e  con t r ibu t ions  of  the  d i f ferent  obs tac les  
a re  l inear ly  i n d e p e n d e n t  if the  sha red  suppor t  is 

zero,  tha t  is, if the  in tervals  [~b i -Al~ t i , t o t a  I --~, I~ i 
q- Al~i,total -{- t~] and  [~j - A~j,total - t~, I/tj -t- AI/Ij,tota 1 
+ 8] a re  disjoint .  These  con t r ibu t ions  b e c o m e  
increas ingly  d e p e n d e n t ,  as the i r  over lap  in- 
creases .  The re fo re ,  the  degree  of  angu la r  over lap  

be tw e e n  obs tac les  d e t e r m i n e s  to  which  extent  the  

co r r e spond ing  behav io ra l  r eq i r emen t s  a re  aver-  
aged  or  act i ndependen t ly .  A t  the  crossover  be-  

tween  these  two l imit  cases  ins tabi l i t ies  may  oc- 
cur. This  is i l lus t ra ted  in Fig. 6: W h e n  two obs ta-  
cles a re  suff iciently far  f rom each  o ther ,  the  cor-  
r e spond ing  vec tor - f ie ld  con t r ibu t ions  share  l i t t le 
suppor t  and  are  thus  l inear ly  i n d e p e n d e n t .  The  
s u m m e d  force- f ie ld  has  repe l lo r s  co r r e spond ing  
sepa ra te ly  to each  r e q u i r e m e n t  with an a t t r ac to r  
in be tween .  I f  we dec rease  the  d i s tance  be tween  
the  two obstacles ,  the i r  sha red  suppor t  a rea  de-  
creases .  A t  a cr i t ical  d i s tance  value ,  the  a t t r ac to r  
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Fig. 6. Decisions in the planning dynamics: Two situations are shown, with obstacles separated by more than a vehicle size (top) 
and less than a vehicle size (bottom). In the left column the realized paths are plotted: The vehicle passes between the obstacles to 
reach the target through the most direct path if possible. For obstacles that are too closely spaced the path changes qualitatively 
and now circumnavigates both obstacles on one side. In the right columnn the corresponding initial ~b-dynamics are plotted. The 
contributions to the individual obstacles are shown (dashed lines) as well as their superposition (solid line). On top, the obstacles 
are sufficiently separated (in angle) so that the individual contributions share only little support and the two separate repeUors are 
erected. Between the two repellors an attractor exists allowing for passage between the obstacles. In the bottom panel the obstacles 
are sufficiently close to each other (in angle) to share a fair amount of support: the two repellors combine into one intermediate 

repellor. This qualitative change of the dynamics as a function of the distance of the two obstacles is a bifurcation. 
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between the two repellors becomes unstable and 
the summed vector-field has a single repellor, 
now reflecting the requirements imposed by both 
obstacles in an averaged fashion. Behaviorally, 
this bifurcation leads to a qualitative change in 
the planned path. For large distance between 
obstacles, three paths are possible, depending on 
initial conditions: passing the two obstacles on 
the right or on the left, or else, passing in be- 
tween the two obstacles. For smaller distances, 
the path in between the obstacles is not available 
anymore. The range of initial conditions from 
which this path is chosen shrinks to zero at the 
critical distance. Note that the critical distance 
depends on the vehicle size and is determined - 
in the functional description chosen here - ex- 
actly by the distance below which the vehicle fails 
to pass physically between the two obstacles. 

This instability reflects both an active form of 
system integration and an essential piece of flexi- 
blity of the path planning system: System integra- 
tion is achieved in the sense that two (and analo- 
gously, multiple) obstacles that are sufficiently 
close to each other are fused into just one obsta- 
cle in terms of the actual behavior. Flexibility is 
achieved in the sense that as the sensed environ- 
ment changes the system may change its planning 
solution continuously, but also discontinuously. 
This is illustrated in Fig. 7 where an additional 
obstacle leads to the selection of a qualitatively 
different corresponding path. Again, instabilities 
are at the origin of such flexibility: if the addi- 
tional constraint is gradually increased in strength 
from zero, a bifurcation in the path planning 
dynamics occurs. Near the decision regime multi- 
stable regimes usually exist (except in special 
symmetric situations), in which several paths are 
possible. An advantage of the dynamic approach 
to path planning as compared to symbolic deci- 
sion making is that hystersis leads in such situa- 
tion to the maintenance of stability within the 
decision zone: The system will tend to persist in 
one solution to the path planning problem until 
another solution is more stable than the realized 
one. 

The problems dynamic path planners have in 
cluttered environments (cf. Introduction, [9]) can 
be discussed in terms of instabilities. In potential 
field formalisms the problems appear as stable 
stationary positions of the vehicle other than the 
target. In the present approach the problem shows 
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Fig. 7. Flexibility: Here an obstacle has been added to the 
configuration of Fig. 2 (hatched circle). The resulting path 
takes a different route. If in a Gedankenexper iment  we in- 
crease the strength of the added obstacle from 0 to a finite 
value then the abrupt change of the path also represents a 

bifurcation of the planning dynamics. 
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Fig. 8. The reduction of the obstacle contributions through 
competitive dynamics of  relative strengths is illustrated in a 
standard situation. Obstacles with relative strength near  one 
are plotted as solid circles, obstacles with near  zero strength 
as dashed circles. Note that the active representat ion may 
change as the vehicle moves. Rasters of  obstacle contributions 
as shown on the right may arise from visual obstacle detection 
procedures such as the inverse perspective method [21]. The 

representat ion at the final state is shown. 
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up in the form of attractors in the ~b-dynamics 
which allow the system to pass between obstacles 
even if the passage way is narrower than the 
vehicle size (plus safety margin). For two individ- 
ual obstacles the instability discussed above pre- 
vents such moves. Essentially, the attractor in the 
heading direction between the two obstacle col- 
lides with two repellors (one stemming from each 
obstacle) and is turned unstable in a pitchfork 
bifurcation. By analyzing this bifurcation it is 
possible to design at which critical distance be- 
tween two obstacles this instability is to occur 
based on the spatial constraints of obstacle size, 
safety margin, etc. If force functions of more than 
two obstacles overlap, this analysis becomes quite 
difficult (cf. top panel of Fig. 9). Essentially, the 

bifurcation analysis is strictly local in nature and 
this locality is destroyed as additional obstacles 
must be taken into account. The same mechanism 
underlies the problem of spurious minima in po- 
tential field approaches, in which velocity and 
heading direction are coupled, however, leading 
to the vehicle stopping rather than passing 
through narrow passages. Ways of dealing with 
this problem must deal with nonlocality. One way 
to do this to design the vector-field of the dynam- 
ics based on non-local information, e.g., by solv- 
ing a Laplace equation into which all obstacles 
and targets enter as boundary conditions [9]. In 
our approach a dynamics of representation weeds 
out the set of represented obstacles and thus 
tends to reduce cluttering. 

• GOAL .... 

¢ 

GOAL 

¢ 

Fig. 9. Alleviating the problems of path planning in cluttered environments through competitive dynamics: The three clusters of 
obstacles shown in the upper left panel lead to a spurious attractor in the ~-dynamics as illustrated in the upper right panel. The 
corresponding path leads to collision with the central obstacle (because velocity is constant in our simulations). The spurious 
attractor is due to the non-local effects of multiple contributions. When the competitive dynamics or relative strengths is 
implemented (bottom panels), the clusters are weeded out and three normalized representative contributions are selected (solid 
circles) while most obstacle forces are turned off (dotted circles). The spurious attractor disappears and no danger of collision exits. 
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4.3. Reducing representations through competitit,e 
dynamics 

Analytic analysis (see Appendix B) for two 
overlapping obstacle contributions shows that two 
cases can be distinguished: (a) For large overlap 
(y(i, j )>a( i ) )  the contributions compete and 
lead to stable activation of the contribution i 
closer to the system: w i = l ,  w i=O. (b) If the 
system is very close to the obstacles (y(i,  j ) <  
a(i)), then both contributions are activated but 
with a reduced weight leading to averaging among 
the obstacles: 

~ a(i)a(j) - o~(j)T(i, j )  
wi = a ~ - - - S y - U : ~ ' : - ~ : )  ' (7) 

and analogously for w i. For very small overlap 
(y(i,  j )<<a ( i ) )  the contributions have relative 
strength near one: w i = w i ~ 1. Essentially this 
means that competition is induced whenever the 
overlap of obstacle contributions measured on an 
adequate scale is larger than the distance be- 
tween obstacles and system. Fig. 8 illustrates how 
the dynamics of the representation reduces obsta- 
cle information in this case: Competition leads to 
selection of a few representatives for a group of 
overlapping obstacles. Note that the representa- 
tion may change as the vehicle moves. The com- 
petitive advantage is determined by the distance 
of the system from the obstacle creating the ten- 
dency to select the closest sensed obstacle as a 
representative. This mechanism is useful as the 
vehicle moves along a wall sampled as a row of 
sensed obstacles as shown in Fig. 10: At all times 
a suitable obstacle close to the vehicle is acti- 
vated. The bottom panel of Fig. 9 explains how 

.o,, , :o : , :o : , : , :o  
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Fig. 10. The system moves smoothly along a wall sampled as a 
string of obstacles. Note the weeding out  of  the representa-  
tion. The relative strengths of different contributions are 
indicated using the same convention as in Fig. 8, The situa- 
tion depicted is the one corresponding to the last intermedi- 

ate position before reaching the goal. 

C I 
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Fig. I1. This final figure combines all features: two vehicles 
avoid each other as well as a set of obstacles that samples 
walls. The dynamics of the obstacle relative strength reduces 

the wall representation. 

the competitive dynamics of the relative strengths 
alleviates the problems with cluttered environ- 
ments. 

5. Discussion 

In this report we have presented a general 
strategy to integrate sensory and effector systems 
in a task-related manner through defining plan- 
ning dynamics on the level of behavior-based 
variables. All behavioral constraints are repre- 
sented as forces acting on the planning dynamics. 
The relative strengths of different contributions 
are governed by a competitive dynamics which 
selects representatives of redundant information. 
By numerically solving a model system describing 
path planning in 2D including simulation of sen- 
sor and effector error we have demonstrated (1) 
the stability of the planning dynamics in closed- 
loop operation; (2) the flexibility of the path 
planning dynamics including capability to change 
paths abruptly as the sensed environment changes 
continuously; (3) the capability of the relative 
strength dynamics to reduce sensory information 
in a behaviorally relevant way. The strengths of 
our specific solution to the path planning prob- 
lem are' (a) straightforward design of behavioral 
and task constraints into dynamics of the plan- 
ning variables; (b) accessibility of the dynamics to 
analytic treatment granting control of instabili- 
ties; and (c) reduction of a 2D planning problem 
to a one-dimensional dynamic problem. Fig. 11 
illustrates some of the features of our method: 
avoidance of dynamical obstacles, collision avoid- 
ance of two vehicles, moving along walls, reduc- 
ing representations. 

From the present work generalization is neces- 
sary and possible in at least two directions. First, 
the action-perception loop implemented here is 
essentially a module for obstacle avoidance in 
2D. We have not exploited so far the fact that the 
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design carefully takes into account organizational 
principles of behavior-based robotics. In a next 
step, the existing module can be incorporated 
into a hierarchy of action-perception loops. The 
next higher level, for instance, could be con- 
cerned with determining target positions based 
on its own sensory information and parametri- 
cally modulated by target properties (e.g., sensory 
parameters: 'look for red ball' etc.). The output 
of this module would not act directly on the 
effectors but serve to provide the target parame- 
ters to the present module. This level would 
essentially solve the segregation problem hinted 
at in Fig. 3. 

A second generalization is to use the approach 
in more abstract planning tasks. In this paper, 
one-dimensional planning dynamics were consid- 
ered. In principle, however, formulations in more 
than one dimension are possible as well, the only 
cost being the increased analytical difficulty. On 
the other hand, formulations in two dimensions 
may be particularly advantageous. In polar coor- 
dinates, one dimension captures the direction of 
change, such as the angular variable used in this 
article. The second dimension, a radial variable, 
is free to control the rate of change and thus to 
provide for rate invariance. Higher-dimensional 
problems (e.g., a robot arm) can be mapped onto 
two dimensions by exploiting topographic repre- 
sentations (e.g., [24]). In this way, more complex 
trajectory planning in general control situations 
can be achieved with essentially the same strategy 
as laid out in this article. 
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Appendix 

A. Obstacle forces: Mathematical details 

The repelling function: 

fobst((~' I//obst' robst, •0total) 

0o  t, ex [1 I ] 
(8) 

The angular range: 

rangeanguiar (~b, qSobst, A~tntal ) 

= ½ [tanh(hl{cos ( ~b - qGbst) 

-cos(2a0tota, + 6)}) + 1], (9) 

where h x determines the force cut-off's steep- 
ness. (In the simulations we always chose h~ = 
4./(COS(2A0total ) -- COS(2A0total + (~)).) 

The spatial range: 

rangespatial( robst, Robst) 

robs t -- Robst -- dvehicl e ] 
= exp - ~obsl ' (10) 

where we scale according to the distance from 
the vehicle to the outer boundary of the obstacle. 

B. Competitive dynamics: Mathematical details 

In the dynamics Eq. (6) the relative strengths 
are normalized to [ - 1 ,  1] with a redundant sign, 
so that the actual strength to be used is the 
modulus, I wi] E [0, 1]. The competitive advan- 
tage of contribution i: 

a( i )  = 1 + exp - ~- ~]1 ,  2]. 

(al) 

The overlap of contributions i and j: 

• , [ [ [d( i , j ) -max(Ri ,  Rj)-d.r'l'~] 
Y(i'J)=~thf[1--tanht2"5 t min(Ri, Rj)+d" ))] 

]0, th[, (12) 

where d(i, j)  is the distance between the centers 
of the two obstacles and f = (R s + d v ) / ( R  i + d r) 
for R i > Rj and f = 1 else. r(i ,  J) jointly with f 
defines an overlap measure of two obstacles that 
carefully deals with cases where one obstacle is 
contained in the other, t h is a constant. Note that 
a( i )>  0 and y(i, j ) >  0 at all times to assure 
boundedness. 

We note the following analytical results in 
useful limit cases: 

(1) The competitive states where all relative 
strengths are zero except one (index, say, /max) 
which is unity are stationary solutions. Such states 
are stable as long as a ( j ) <  y(j,/max) for all 
j 4: ima x.  If all obstacles considered compete (finite 
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~,(i, j)), and we consider a situation where the 
system approaches such a group of obstacles, 
then initially all these competitive states are mul- 
tistable until one state first violates this condi- 
tion. The index j for which the condition is first 
violated (maximal a ( j ) )  defines a competitive 
state for ima~=j which is the only one that re- 
mains stable. Hence, the corresponding obstacle 
is turned on, all others are turned off. [For proof, 
first convince yourself that wg.,,x= +1, wj= 0 
( j  ~ i) is a stationary solution of the dynamics 
and then perform linear stability theory.] Obsta- 
cles that have no or negligable overlap with all 
other obstacles are turned on at all times. 

(2) For two obstacles all stationary states can 
be determined analytically and linear stability 
theory can be performed (although it is lengthy) 
We find: 
(1) w i =wj = 0 is unstable for any a ( i ) >  0, a(j) 

>0 .  
(2) w i = 0; wi = 1 is stable as long as c~(i) < y(i, j) 

(and analogously for the symmetric case). 
(3) For a(i) > y(i, j) and a(j) > y(j, i) there is a 

noncompetitive solution 

~ a( i )a( j )  - a ( j )y ( i ,  j) 
(13) 

These two conditions are necessary for the 
existence and sufficient for the stability for 
the solution. Note  that this solution leads for 
y(i,j)~O and y(j,i)--,O to the case of  
non-overlapping obstacles which do not com- 
pete at all. 
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