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Gregor Schöner (gregor.schoener@ini.rub.de)

Institut für Neuroinformatik, Ruhr-Universität Bochum, 44870 Bochum, Germany

Abstract

Parsing actions entails that relations between objects are dis-
covered. A pervasively neural account of this process requires
that fundamental problems are solved: the neural pointer prob-
lem, the binding problem, and the problem of generating dis-
crete processing steps from time-continuous neural processes.
We present a prototypical solution to these problems in a neural
dynamic model that comprises dynamic neural fields holding
representations close to sensorimotor surfaces as well as dy-
namic nodes holding discrete, language-like representations.
Making the connection between these two types of represen-
tations enables the model to parse actions as well as ground
movement phrases—all based on real visual input. We demon-
strate how the dynamic neural processes autonomously gen-
erate the processing steps required to parse or ground object-
oriented action.
Keywords: relations; neural process model; action parsing;
dynamic field theory; grounded cognition; cognitive schemas

Introduction
If you were to describe the arrangement of furniture in your
office you would probably make use of the spatial relations
between different items. You may recognize without effort
that “the bookshelf is to the left of the desk” although this re-
lationship is not directly specified by perception and requires
active construal. In fact, relational processing may be founda-
tional to higher cognition (Halford, Wilson, & Phillips, 2010).

Evaluating even simple relations requires several coordi-
nated steps (Logan & Sadler, 1996): (1) binding each object
to a role (here, the desk is the reference object, the bookshelf
is the target object); (2) centering the reference frame on
the reference object; (3) applying a relational operator (here,
“to the left of”) to the target object in that frame. We have
previously realized these computational steps in a neural pro-
cess model (Lipinski, Schneegans, Sandamirskaya, Spencer,
& Schöner, 2012; Richter, Lins, Schneegans, Sandamirskaya,
& Schöner, 2014) that mapped spatial relational phrases sup-
plied in a language-like, discrete form, to a visual scene repre-
sentation, effectively grounding amodal input in perception.
Conversely, the model was able to complete partial phrases
by referring to the visual scene.

Here, we extend this model to the parsing of object-
oriented actions and the grounding of action phrases, such
as “the red ball is moving toward (or away from) the yellow
ball”. This is challenging for a neural process model as the
perceptual representations are inherently transient. We add
two components that extract motion directions through a neu-
ral dynamic model of motion detection (Berger, Faubel, Nor-
man, Hock, & Schöner, 2012) and transform the visual scene
to an intrinsic reference frame (van Hengel, Sandamirskaya,
Schneegans, & Schöner, 2012) based on the motion direction

of a reference object. The new model integrates this form of
action parsing with the grounding of spatial relationships of
the earlier model.

We use dynamic field theory (DFT; Schöner, Spencer, &
the DFT Research Group, 2015) as a theoretical framework.
DFT describes neural population activity by activation fields
that are defined over metric feature dimensions and evolve
continuously in time through a neural dynamics. While the
fields capture representations in a modal form close to the
sensorimotor surfaces, neural nodes sharing the same dynam-
ics enable modeling discrete, amodal representations. Mutual
coupling between fields and nodes allows for interaction be-
tween these two kinds of representations. By using only tools
from the DFT repertoire we arrive at a seamless process ac-
count that is pervasively neural. This requires that we solve
the following fundamental problems that arise from restric-
tions of neural mechanism and are not commonly addressed
in accounts of higher cognition.

First, information represented by neural activity cannot be
freely moved within and between neural populations, because
neural connectivity is fixed. In visual cortex, for instance, vi-
sual objects are represented in neural maps. Applying a neu-
ral operator to a location or an object in such a map is possible
only if it is connected to that location. Connecting operators
to every location in a map would require unrealistic neural re-
sources. The alternative is to connect the operator to only one
default region, a virtual fovea, and shift the representations of
objects to that region. This is analogous to the concept of an
attentional neural pointer of Ballard, Hayhoe, Pook, and Rao
(1997) and is achieved in our framework by steerable neural
mappings (Schneegans & Schöner, 2012).

Second, for similar reasons of limiting the required neural
resources, the nervous system represents high-dimensional
visual information in multiple low-dimensional neural feature
maps, in particular in the early tiers of the cortical hierarchy.
To refer to any particular object, corresponding representa-
tional pieces must be bound together. In a neural implemen-
tation of the classical idea of binding through space (Treis-
man & Gelade, 1980), we endow every feature map with a
spatial dimension shared across maps and process objects se-
quentially in time (Schneegans, Spencer, & Schöner, 2015).

Third, the discrete processing steps this implies and that
are critical to all of higher cognition are natural in informa-
tion processing accounts but hard to achieve in neural process
models, in which neural activation evolves continuously in
time under the influence of input and recurrent connectivity.
In our model, discrete events emerge from continuous neural



dynamics through dynamic instabilities, at which the match
between neural representations of intentional states and their
conditions of satisfaction are detected (Sandamirskaya &
Schöner, 2010).

Finally, the problem of preserving role-filler bind-
ing (Doumas & Hummel, 2012) at the interface between the
modal and the amodal representations is also solved by se-
quential processing.

Methods
Dynamic field theory describes processes that characterize
neural activity at the population level. Models in DFT are
based on activation patterns defined as dynamic fields, u(x, t),
over continuous feature dimensions, x, (e.g., color or space).
These activation patterns evolve in time, t, under the influ-
ence of lateral interactions and external input based on the
following integro-differential equation

τu̇(x, t) =−u(x, t)+h+ s(x, t)+
∫

g(u(x′, t))w(x− x′)dx′.

Here, the activation’s rate of change, u̇(x, t), depends
on u(x, t) itself, on a time constant, τ, a negative resting
level, h, and external input, s(x, t), from sensors or other
fields. Lateral interaction is determined by convolving the
output of the field, g(u(x, t)), a sigmoid function with thresh-
old at zero, with an interaction kernel, w(∆x). The kernel
combines local excitation and surround inhibition along the
field’s feature dimension.

When presented with localized input above the output
threshold, lateral interaction leads to an instability, in which a
subthreshold solution becomes unstable and the field moves
to a new attractor, a self-stabilized activation peak. From such
instabilities, neural events emerge at discrete times from the
time-continuous dynamics of the fields. These events are crit-
ical for organizing sequential processes in DFT models.

Depending on the tuning of their interaction kernel, dy-
namic fields may either support multiple peaks or may be se-
lective and only create a single peak that suppresses all oth-
ers. Fields may also be tuned to hold self-sustained peaks
that remain even after input is removed. Fields can be defined
over single or multiple dimensions. Dynamic nodes share the
fields’ dynamic characteristics but do not span a feature di-
mension. Instead, they represent the ‘on’ or ‘off’ state of
discrete elements within an architecture.

DFT architectures consist of multiple fields and nodes that
are interconnected, where the output of one field is input to
another field. Fields of different dimensionalities may be con-
nected along the shared feature dimensions.

Architecture
The DFT architecture shown in Fig. 1 can deal with two types
of tasks. First, it can ground a language-like phrase such as
“the red object moving toward the yellow object”, that is, it
can find the objects in the scene that correspond to the phrase.
Second, it can generate a phrase such as the one above from

observing a video. Solving these tasks within a single neural
architecture requires integrating various components, which
we describe in more detail now.

Perception
The architecture receives video input from a camera or video
file. This input is fed into two three-dimensional perception
fields (top right of Fig. 1) that hold a representation of the
scene. Both fields share the spatial dimensions of the camera
image but the perception color field represents the color of
objects in the scene and the perception movement field, new
over the previous model (Richter et al., 2014), represents their
movement direction. To create the input to the perception
fields, each video frame goes through several preprocessing
steps. For the color field, the preprocessing is first based on
generic image processing algorithms. After these, activation
is generated that scales with the color saturation of objects in
the scene. For the movement field, the preprocessing consists
of a neural dynamic implementation of the counter-change
model of motion perception (Berger et al., 2012). Both per-
ception fields always have stable peaks of activation when
there are colored or moving objects in the scene. They project
activation into the spatial attention fields along the two spa-
tial dimensions and act as a saliency mechanism. They also
project directly into the reference and target field and enable
these fields to track moving objects even if spatial attention is
currently focused elsewhere.

Attention
The core of the attentional system consists of two three-
dimensional attention fields. They are defined over the same
dimensions as the two perception fields but their activation
remains below threshold unless additional input arrives from
a feature attention field or a spatial attention field.

A pair of one-dimensional fields spans each feature dimen-
sion (color and movement direction): the intention field rep-
resents feature values for guided search and impacts on the
three-dimensional attention fields; the condition of satisfac-
tion (CoS) field matches input from the attention fields against
what is represented in the intention field.

Two spatial attention fields are defined over the two spatial
dimensions of the camera image. One field allows for mul-
tiple simultaneous peaks and projects into the reference and
target fields. The other only allows for a single peak; it can
be boosted to induce a selection decision on multiple candi-
date objects. A peak generated in this spatial attention field
suppresses activation at all other locations in the other spatial
attention field. It further projects into the three-dimensional
attention fields, enabling peaks to form there that represent
the feature values at the selected location (which then impact
on the CoS fields). This implements a neural mechanism of
feature binding across space (Schneegans et al., 2015).

Coordinate transformation
The two-dimensional reference field and target field each rep-
resent the spatial position of their respective objects. The tar-



Fig. 1: Architecture with activation snapshots while it is generating a phrase about a video. Fields are shown as color-coded
activation patterns; for three-dimensional fields, two-dimensional slices are shown. Node activation is denoted in opacity-
coded circles. Spatial templates are illustrated as color-coded weight patterns (bottom left). Excitatory synaptic connections
are denoted by lines with arrow heads, inhibitory connections by lines ending in circles. Transformations to and from polar
coordinates are marked with a ‘T’. Coordinate transformations are denoted as diamonds.

get field projects into the relational field via a steerable neu-
ral mapping (upper left blue diamond in Fig. 1) that shifts
the representation of the target objects so that it is centered
on the reference object. This transformation to a new refer-
ence frame is implemented as a convolution for performance
reasons.

The shifted representation of the target objects is then ro-
tated around the reference object. This transforms the tar-
get representation into an intrinsic reference frame defined
by the reference object’s movement direction. This rotatory
transformation, new over the previous model, is realized by a
steerable neural mapping that shifts activation patterns along
the azimuth of the polar coordinate representation of the re-
lational field (lower left blue diamond in Fig. 1). The extent
of the shift is determined by the movement direction of the

reference object, which is held by the rotation field.

The rotated target representation is projected into the rela-
tional CoS field. A second input to this field from spatial con-
cept nodes encodes the associated spatial templates through
weight patterns (illustrated in the lower left of Fig. 1). Over-
lap of the two inputs leads to a peak that represents the se-
lected target. The steerable neural maps thus make it possible
to apply the relational operator encoded in the fixed weight
patterns to objects at any visual location in any orientation,
implementing neural pointers.

The relational CoS field projects into the selective spatial
attention field via reverse transformations for rotation and
shift (upper and lower right diamonds in Fig. 1). Selec-
tive spatial attention projects into the three-dimensional at-
tentional fields, forming peaks there that in turn project to the



feature fields, which may activate production nodes.

Concepts
Concepts like ‘red’ or ‘toward’ are represented by discrete
nodes (denoted by circles in Fig. 1) that project with pat-
terned synaptic weights into their respective feature fields.
The nodes come in pairs: memory nodes (blue circles) act
as an interface to a user who may activate them as input or
observe them as output; production nodes (pink circles) gate
the impact of their respective memory nodes onto the archi-
tecture. Note that there are copies of such pairs of nodes for
each role that a concept may appear in (e.g., two pairs for
‘red’, as reference and as target), enabling role-filler binding.
The synaptic weight patterns between nodes and fields could
be learned by Hebbian learning rules but are hand-tuned here.

Process organization
The processes within the architecture are organized by in-
stabilities of neural nodes that switch components ‘on’ or
‘off’. These discrete events thus emerge from the time-
continuous neural dynamics. Process organization is based
on a structural principle borrowed from behavioral organi-
zation (Richter, Sandamirskaya, & Schöner, 2012). The
core structure is the elementary behavior, which consists of
two dynamic substrates. The intention node (green circle in
Fig. 1) determines whether a process is active and has impact
on connected structures. The condition of satisfaction node
(CoS, red circle) is activated once a process has terminated
and inhibits the intention node, turning the process off. Here,
we employ elementary behaviors that control the grounding
of the reference object (reference behavior), the target object
(target behavior), and the spatial relation term (spatial relation
behavior) (top left in Fig. 1). Role-filler binding is preserved
during grounding by processing reference and target objects
sequentially, organized by the precondition node (black cir-
cle) that inhibits the intention node of the target behavior until
the reference behavior has terminated.

Results
In the following, we describe the dynamic processes that un-
fold within the architecture as it executes tasks. The results
come from numerical solutions of the architecture’s differ-
ential equations.1 To simplify visual object recognition, we
use a scene with uniformly colored objects on a white back-
ground.

Parsing an action
Fig. 2 illustrates the processes within the architecture as it
generates a phrase about a video in which a red ball rolls to-
ward a yellow ball (see top right of Fig. 1).

At t = 0 we give a boost into the architecture, which im-
pacts the intention nodes of all behaviors. After this boost, the
architecture runs autonomously in continuous time, without

1The architecture is implemented and simulated using the C++
framework cedar (Lomp, Zibner, Richter, Rano, & Schöner, 2013).

any further intervention from user or program. First, the ref-
erence object is grounded; the target behavior is inhibited by
the precondition constraint until the reference behavior is fin-
ished. Without information about which objects to describe,
the architecture decides based on their saliency. At t1, the se-
lective spatial attention field shows a saliency advantage for
the moving red object in the lower left corner.

At t2, the spatial attention field has made a selection deci-
sion and formed a peak. This creates a self-sustained peak in
the reference field, selecting the moving object as reference.
It also activates the production node ‘reference: red’ (top of
Fig. 2) by projecting activation into the color CoS field via
the attention color-space field (both not shown in Fig. 2; see
Fig. 1). At the same time, the rotation angle field (not shown
in Fig. 2) forms a representation of the object’s movement
direction, which it receives from the attentional movement-
space field. It will later be used as a parameter to rotate the
target objects. At this point, the architecture has grounded the
reference object. That is, it has formed a connection between
the continuous representations in the fields and the discrete
representations in the nodes.

At t3, the behavior to ground the reference object has been
inhibited by its CoS node and the behavior to ground the tar-
get object has become active. However, even though the ref-
erence behavior is inactive, the peak in the reference field
is still tracking the position of the moving object, because
it receives input from the perception fields. Contrary to the
reference behavior, the selective spatial attention field is not
boosted during the target behavior, allowing multiple target
candidates to be projected to downstream fields. The target
field has formed three peaks at the positions of the remaining
objects. The field’s output is transformed and projected into
the relational field, where the target positions are now rep-
resented relative to that of the reference object. This repre-
sentation is rotated around the reference object and projected
into the relational CoS field.

At t4, the relational CoS field has formed a peak at the tar-
get position that overlaps most with the spatial template for
the relation ‘toward’. This activates the corresponding pro-
duction node ‘spatial: toward’.

At t5, the activation from the relational CoS field is trans-
formed and projected back into the selective spatial attention
field, from there into the attentional color-space field, and
from there into the target field as well as the color CoS field.
The peak in the color CoS field activates the production node
‘target: yellow’.

At this point, the architecture has produced the relational
phrase ‘red toward yellow’ and has created a grounding of
this phrase in sensorimotor representations.

Grounding a phrase
The architecture can also ground a phrase that it is given by
user input. Due to space constraints, we cannot describe the
process at the same level of detail. The process is very similar
to that of grounding spatial relations reported earlier (Richter
et al., 2014). The user supplies the phrase by activating mem-
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Fig. 2: Activation time courses of relevant production nodes (top) and activation snapshots of relevant fields at five points in
time (bottom). Fields are color-coded using the color map on the bottom left.

ory nodes through manual boosts. Visual search for objects
is then guided, as opposed to bottom-up saliency-driven. For
instance, to ground the reference object, its red color is rep-
resented in the color intention field, bringing up peaks of red
objects in the attentional color-space field—analogously with
yellow objects for the target. Similarly, the template for spa-
tial relations preshapes the relational CoS field and only al-
lows peaks that overlap with the template. The grounding is
established once a representation in the fields has been estab-
lished for each element of the supplied phrase.

Discussion
We have extended a neural process model of spatial relations
to include parsing of object-oriented actions and grounding of
movement phrases. In the model, space-time continuous ac-
tivation patterns are both coupled to sensory input and linked
to neural representations of cognitive schemas like move to-
ward or move away from. This provides a neural processing
account of the interaction between sensorimotor activation,
conceptual processing, and language, that theories of percep-

tual symbols (Barsalou, 2008) and embodied construction-
grammar (Bergen & Chang, 2013) postulate. The integrative
nature of the model leads us to confront fundamental issues
such as the neural pointer problem, the binding problem, and
how discrete processing steps emerge from time-continuous
neural dynamics. Our solutions derive from the conceptual
commitments of the theoretical framework of dynamic field
theory.

We build on existing modeling approaches to the ground-
ing of language that are neurally inspired but do not typi-
cally adhere to neural principles as consistently. For instance,
the Neural Theory of Language (Feldman, 2006) is a hy-
brid framework that combines neural network concepts with
ideas that are not compatible with neural process thinking.
Similarly, Madden, Hoen, and Dominey’s (2010) model for
embodied language complements neural networks with al-
gorithms that are not neurally based. Some models invoke
neural concepts to account for psychophysical data. For in-
stance, Regier and Carlson (2001) use the notion of an atten-
tional vector sum to capture spatial terms. Such models are



not typically embedded into architectures that autonomously
generate the complete sequence of processing steps required
to ground and generate language.

The ambition of a neural process account for higher cog-
nition is shared with the group of Eliasmith (2013). Their
Neural Engineering Framework (NEF) enables spiking neu-
ral networks to realize vector symbolic architectures (Gayler,
2004). In this substantially different approach, concepts and
objects are represented by high-dimensional vectors through
an encoding and decoding stage and transient neural patterns
computed by superposition and projection. DFT, in contrast,
is based on self-stabilized activation patterns defined over a
few feature dimensions. Whether DFT and NEF can span
the same range of cognitive phenomena—which approach is
more consistent with neural reality is open for now.

The current model is open to extension in various direc-
tions, such as incorporating learning, scaling the number of
concepts, and building more complex sequences of process-
ing steps. Higher-order schemata (e.g., source-path-goal;
Lakoff & Johnson, 1999) may be realized similar to what we
demonstrated here. Exploiting the working memory implicit
in our representations may enable us to link to relational men-
tal models (Knauff, 2013).
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G. (2013). A software framework for cognition, em-
bodiment, dynamics, and autonomy in robotics: cedar.
In V. Mladenov (Ed.), ICANN (pp. 475–482). Heidel-
berg: Springer.

Madden, C., Hoen, M., & Dominey, P. F. (2010). A cog-
nitive neuroscience perspective on embodied language
for human-robot cooperation. Brain Lang, 112(3),
180–8.

Regier, T., & Carlson, L. A. (2001). Grounding spatial lan-
guage in perception: an empirical and computational
investigation. J Exp Psychol Gen, 130(2), 273–98.

Richter, M., Lins, J., Schneegans, S., Sandamirskaya, Y., &
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