
Organizing and flexibly updating timed actions:
An attractor dynamics approach

Farid Oubbati, Mathis Richter, Gregor Schöner
Institut für Neuroinformatik, Ruhr-Universität Bochum

Universitätsstr. 150, 44780 Bochum, Germany
Email: {farid.oubbati, mathis.richter, gregor.schoener}@ini.rub.de

Abstract— Humans excel at coordinating complex
actions with the environment, most visibly in racket
and ball sports, but pervasive in most other human
activity as well. This challenge has been taken up
by roboticists in demonstrations of robotic catching,
juggling, and ball playing. We address how multiple
different movements may be timed in relation to
sensory events, but also organized sequentially. The
generation and organization of the movements is cou-
pled to online sensory information so that the system
adjusts to perturbations both by varying movement
parameters and by activating or deactivating different
movement components. The approach builds on os-
cillator and neural dynamics models of human timed
action. We formulate the approach in a simple task
in which a robot arm keeps hitting a ball back up
an inclined plane. The reactions to different kinds of
perturbations are demonstrated.

I. Introduction
Although they come naturally to us, activities like

playing table tennis are complex and challenging. Within
split-seconds we must solve and coordinate many tasks
that include detecting the ball, estimating its future
trajectory, initiating a movement that will hit the ball
at the right time with the right velocity, direction, and
orientation of the racket, and returning the racket while
tracking the ball to get ready for the next interception.
These actions are continuously chained together and
flexibly tuned to the environment, both to respond to
abrupt perturbations (e.g., to still reach a ball that was
reflected by the net) and to adapt to changing conditions
(e.g., to adjust to different players or rackets).

Roboticists have studied problems of this kind because
they exemplify core elements of autonomous action,
in particular, the problem of timing a robot’s action
to external events. Broadly speaking, there are three
strands of such work. (1) Specific robotic solutions to
interception problems [1], [2], [3], [4] are often very fast
and accurate, but use specific algorithms that are not
easily generalized to generic timing tasks. Typically, the
demonstrations only address a single timed action such as

The authors acknowledge the financial support of the Euro-
pean Union Seventh Framework Programme FP7-ICT-2009-6 un-
der Grant Agreement no. 270247—NeuralDynamics. This work
reflects only the authors’ views; the EC is not liable for any use
that may be made of the information contained herein.

a single catch. Repeated timed actions are organized by
algorithms that fail, however, to provide flexibility in the
face of perturbations or change. (2) Approaches based
on learning movement primitives from human demon-
stration are adaptive in the sense that they learn from
a given demonstrator [5]. During production a learned
primitive is selected or several are blended together
[6], [7], [8]. The models produce periodic repetitions of
timed acts, although the flexible updating to changing
sensory input and the reorganization of action sequences
in response to perturbations are not typically addressed.
(3) Periodic timed motor acts may be generated from
nonlinear oscillators into which an effector system is
coupled [9], [10]. Such systems may repeat timed actions
that can be synchronized with sensed events, but are
limited with respect to the complexity and heterogeneity
of the timed actions.

Missing from this literature is a systematic approach
to the organization of timed actions in which both the
individual timed movement components as well as the
sequencing mechanism are tied to changing sensory in-
formation. In this paper, we outline a dynamical model
that takes a first step into this direction. We focus on
how different discrete timed movements (here, moving
a racket to intercept an approaching ball, hitting the
ball, and returning the racket to a reference line) can be
organized into sequences and coordinated flexibly based
on perceptual input.

We build on earlier work that models timed human
movement [11] based on nonlinear neural oscillators [12].
In that work, discrete motor acts were generated from
oscillators that were activated and deactivated based on
sensory input [13], so that they were timed reliably rela-
tive to a sensed event while remaining coupled to the time
varying sensory input. Previous robotic versions [14], [15]
used this principle to organize initiation, updating, and
termination of a single timed action. Here, we show how
a set of different timed actions can be organized and
coordinated. This requires an approach to behavioral
organization that is sensitive to timing. We formulate
the approach in terms of a specific, simple task in which
a robot arm holding a racket keeps a ball on an inclined
plane by hitting it back up whenever the ball returns to
the bottom.



Fig. 1. Diagram of the experimental setup of the ball hitting task.

II. Robotic Scenario
Our robotic scenario consists of a simplified ball hitting

task, in which a robot continuously hits a ball that is
rolling down an inclined plane (see Fig. 1). We use a
robot equipped with an anthropomorphic arm with eight
degrees-of-freedom (DoF) and a vision system, which is
used to track the ball and predict its trajectory. The
robotic arm holds a small table tennis racket (10.5 cm in
diameter) and must hit the ball with it to drive it back
up the inclined plane. The region in which the robot arm
can hit the ball is constrained by safety limits on both
sides at the bottom of the inclined plane (marked with a
checkerboard pattern in Fig. 1). We use a colored rubber
ball with a radius of 3 cm and weight of 66 g. The arm
moves forward to a virtual hitting line at the bottom of
the inclined plane and hits the ball as it is crossing the
line. After the ball is hit, the arm moves back to a virtual
base line, ready to initiate another hitting movement.
Ideally, the robot drives the ball back up the inclined
plane with every hit and thus keeps it in play at all times.

This robotic scenario captures the essential problems
we address in the paper: The task consists of different
phases, all of which must be organized and coordinated
based on input from the camera system. The movements
have to be parametrized to be precise both in space and
time to drive the ball back up the inclined plane in an
angle that makes the next hit possible, if not easier. The
scenario enables us to easily introduce different types
of perturbations and analyze how the model deals with
them.

III. Components of Timed Movement
A. Timed movements

Trying to hit an oncoming ball with a racket requires
at least the following from the movements. (1) The
movements need to be precise in space and time, such
that the racket hits the target at a specific point in space
and time. (2) The movements need to be able to adapt
to changes in the target. (3) The movements must be
switched on and off.

To fulfill these requirements, all movements within
our model are controlled by a dynamical system that
consists of different classes of behaviors. In the movement
behaviors, a limit cycle oscillator controls a movement
variable (here, the x- and y-position of the end-effector
and its azimuth orientation) and executes a ballistic
movement within a given time. In between movements,
the postural behaviors stabilizes the movement variable
at its current position.

The dynamical system for a movement is of the form

τ

(
ẋ
ẏ

)
= −cpost a

(
x − xpost

y

)
+cmove H(x, y)+η, (1)

where x is a timing variable that determines the end-
effector trajectory, y is an auxiliary variable, and η is a
noise term. The weights cpost, cmove ∈ [0, 1] can switch on
the influence of the postural behaviors and movement be-
haviors, respectively. In the postural behaviors, x relaxes
to the fixed point xpost, where the time constant τ and
the constant a > 0 influence the relaxation time. In the
movement behaviors, the change rate of x is determined
by the Hopf oscillator

H(x, y) =
(

λ −ω
ω λ

) (
x − r − xinit

y

)
−

(
(x − r − xinit)2 + y2) (

x − r − xinit
y

)
, (2)

where xinit is the value of x at the beginning of the move-
ment. r = 1

2 (xtarget − xinit) is the radius of the oscillator
and xtarget is the target position of the movement; λ = r2

is derived from the radius. Finally, ω = 2π
T is the angular

frequency and T the cycle time of the oscillator. Note
that Eq. 2 requires that the value of xinit be memorized.
In our dynamical approach, we model this by

ẋinit = cmem a(xinit − xreal), (3)

in which the memory xinit is updated to the current value
of xreal. The initial value of the radius of the oscillator,
rinit, is memorized by a similar dynamical system. This
update behavior can be activated or deactivated using the
weight cmem ∈ [0, 1].

1) Adaptation of movement time: With the model
described so far, we are able to generate ballistic move-
ments that reach a target xtarget in a specified time.
However, the target position and the movement time
are only predictions based on noisy sensory data. Even
if the sensors were perfect, the oncoming ball could be
perturbed and change its course. While the equations
deal with changing target positions, the cycle time T
of the oscillator needs to be adapted to accelerate or
decelerate the movement. We update the cycle time to
satisfy the ratio

T

2rinit
= ttim

d
, (4)

where rinit is the radius of the oscillator at the beginning
of the movement, ttim is the time that remains for the



movement to be executed, and d = xtarget − xreal is the
remaining distance.

To summarize, a single timed movement consists of
three separate behaviors: the postural, movement, and
update behavior. In order to function properly, these be-
haviors must be activated and deactivated in the correct
sequence: the initial position must be memorized before
starting to move and the movement has to suppress the
postural behavior. The necessity of organizing behaviors
in time becomes even more apparent when building entire
architectures based on discrete behaviors.

The framework for behavioral organization is based on
DFT, which we now briefly review.

B. Dynamic Field Theory
Dynamic Field Theory (DFT) [16] is a neural variant

of the attractor dynamics approach. We use it here as
an integrating framework between the low level sensory-
motor streams of the robot and the higher level cognitive
functions of the model, for instance its perceptual repre-
sentations and its organization of behaviors.

Within DFT, dynamic neural fields (DNFs) are used to
represent neural activity patterns over continuous, metric
feature dimensions (e.g., color or space). The activation
pattern evolves in continuous time t, as described by the
following dynamic equation, which can be traced back to
Grossberg [17] and was analyzed by Amari [18]

τ u̇(x, t) = −u(x, t) + h + S(x, t)

+
∫

ω(x − x′)f(u(x, t))dx′. (5)

In Eq. 5, u(x, t) describes the activation of a DNF
at feature location x and time t. Without external
input S(x, t), the activation will relax to the resting
level h < 0 and the output of the DNF, given by
the sigmoidal function f(u(x, t)), will be zero. With
sufficient external input, the DNF will produce output as
well as lateral interaction within the feature dimension.
The type of interaction is governed by the interaction
kernel ω(∆x) and comprises local excitation and global
or mid-range inhibition, promoting the formation of
localized peaks of activation. Within DFT, such peaks
are the units of representation for motor parameters,
perceptual items, and memory items.

A zero-dimensional DNF is a dynamical node that
represents a discrete instance of a percept or behavior.

C. Behavioral organization
A framework for behavioral organization based on

DFT, previously introduced and implemented on a hu-
manoid robot in a grasping task [19], is extended to
flexibly organize timed behaviors.

1) Elementary behaviors: Within DFT, the behaviors
that are organized are elementary behaviors (EB). EBs
consist of two parts, an intention and a condition of
satisfaction (CoS), each of which is represented by a
dynamical node and a dynamic neural field (DNF) (see

Fig. 2. Elementary behavior (EB) in Dynamic Field Theory.
Each EB consists of two parts: the intention represents the desired
change of the EB in the world, while the condition of satisfaction
(CoS) represents the sensory signal expected for the successful
completion of the EB.

Fig. 2). While the intention node simply determines
whether the EB is active or inactive, the intention field
describes the EB’s connection to the world. For instance,
the intention field of an EB ‘move arm’ would represent
desired movement parameters of the arm (e.g., the target
position) and would be connected to its motors.

The CoS field of an EB receives input from the in-
tention field, describing the desired outcome of the EB
(e.g., the end-effector of the arm at the target posi-
tion). Additionally, the CoS field receives input from the
sensory system, describing the current state of the EB
(e.g., the current position of the end-effector). If the two
inputs overlap, a peak forms in the CoS field, signaling
the successful completion of the EB. This peak activates
the CoS node, which in turn inhibits the intention node,
switching off the EB. Explicitly modeling the beginning
and end of an EB in this way allows us to close the
gap between discrete actions and the continuous sensory-
motor streams they are connected to.

2) Generating sequences: By default, all EBs relevant
for a task are activated at the same time. The sequential
organization of EBs derives from constraints that are
represented by dynamic coupling terms and are defined
within pairs of EBs. A precondition constraint prevents
a first EB (e.g., here, the update EB) from becoming
active until a second EB (e.g., here, the movement
EB) is completed. The constraint is represented by a
precondition node, a dynamical node that is activated by
task input and inhibits the intention node of the second
EB. As soon as the first EB is finished, its CoS node
will activate and inhibit the precondition node, releasing
the intention node of the second EB from inhibition and
thereby allowing its execution.

A suppression constraint between two other EBs pre-
vents one of them (e.g., here, the postural EB) from
becoming active while the other (e.g., here, the move-



Fig. 3. A movement module as used in our architecture to control
timed movements. The two leftmost EBs (in the dashed box) can
be activated and deactivated by EBs on a higher level (using the
colored nodes as input and output), while the postural EB is always
active by task input (blue node). The nodes labeled ‘p’ and ‘s’
represent the precondition and suppression node, respectively.

ment EB) is active at the same time. This constraint
is represented by a suppression node, a dynamical node
activated by task input and simultaneous input from
the intention node of the first EB. When activated, the
suppression node inhibits the intention node of the other
EB. A second suppression constraint can be added to
create a competition—a bidirectional suppression con-
straint, where the two EBs suppress each other.

D. Movement module
With these concepts of behavioral organization, we can

now organize the three (elementary) behaviors of a single
timed movement (see Section III-A) into a movement
module. As shown in Fig. 3, each of the EBs is represented
by an intention node and field, and condition of satis-
faction (CoS) node and field. The postural EB does not
have a CoS because it is always active unless suppressed.
Additionally, we have defined behavioral constraints that
generate a meaningful sequence of these three EBs: a
suppression node deactivates the postural EB whenever
the movement EB is active and a precondition node
makes sure that the update EB is active before the
movement is initiated. The output (i.e., the sigmoided
activation) of the intention node of each EB is then used
as control variables (i.e., cpost, cmove, cmem of Eq. 1 and
3), thereby controlling the influence of each EB on the
motors of the robot.

As long as the movement module is deactivated, the
postural EB remains active and holds the end-effector
at its current position. When the module is activated,
the excitatory top-down input reaches both the update
EB and the movement EB. Due to the precondition
constraint, the update EB is executed first and updates
the initial position of the movement, leading to the
CoS node of the update EB to become active. The latter
inhibits the precondition node, which in turn releases the
movement EB from inhibition. As soon as that EB turns
on, the suppression node deactivates the posture EB and
the ballistic movement is executed. Once it is finished,
the posture EB is no longer suppressed and reactivates.

IV. Architecture
A. Perception and motor systems

The main perceptual input of the architecture (see
Fig. 4) is based on the signal of a single, stationary
camera that monitors the inclined plane. We estimate
the position of the ball based on a color segmentation
and use a Kalman estimator to predict the point, xhp,
at which the ball will cross the hitting line and the time,
ttim, it will take the ball to reach that point. Due to the
simplicity of the estimator, we only get those predictions
when the ball is rolling down the inclined plane. The
prediction of the hitting point xhp is represented by
a peak of activation in a dynamic neural field (the
‘perceptual field’ in Fig. 4) that is defined over the width
of the inclined plane (i.e., its x-axis). Thus, the field
only has a peak if the perceptual input currently yields
a prediction of where the ball will cross the hitting line
and if that point lies within the safety limits of the robot
(see Fig. 1).

On the motor end of the architecture, our model
controls the position and orientation of the end-effector
in space, where the end-effector is defined as the center of
the table tennis racket. That control signal is converted
to velocities for the eight joints of the robot arm using a
closed form solution for the inverse kinematics.

B. Hierarchical structure and behavioral organization
Fig. 4 shows that the architecture has two hierarchical

levels of elementary behaviors. The lower level consists of
three movement modules, controlling the position of the
end-effector along the x-axis and y-axis of the inclined
plane, and the azimuth orientation ϕ of the end-effector,
respectively. These movement modules can be activated
and reused by the four EBs on the higher level

• Move to ball: This EB moves the end-effector toward
the point xhp, where the ball trajectory will cross
the hitting line. The EB activates the movement
modules controlling both the x- and y-position of
the end-effector.

• Move to base line: Moves the end-effector back to-
ward the base line of the inclined plane but controls
the end-effector position along the y-axis only.

• Move hand forward: This is the actual hitting move-
ment, which involves only the hand segment of the
arm and controls the azimuth orientation ϕ of the
racket.

• Move hand backward: Moves the hand segment of
the arm back to a reference angle. This EB also only
controls ϕ.

The architecture is autonomous in that it organizes
and coordinates its own behaviors based on sensory input
and the prediction of the ball trajectory derived thereof.
The EBs “move to ball” and “move hand forward”
can only be activated when a prediction is available
for the hitting point of the ball. That means, there is
a precondition constraint between the perceptual field,



Fig. 4. Architecture that controls the robotic arm and organizes its behaviors in the ball hitting task.

representing the prediction, and the two EBs (see Fig. 4).
Each of the EBs suppresses the EB for the reciprocal
movement (e.g., “move hand forward” suppresses “move
hand backward”). Thus, without a prediction, the default
behavior of the robot is to return to the base line and
retract its hand in anticipation of the next ball. Once the
arm has returned, the postural behaviors are activated
to keep the arm at its current position. To reduce the
distance that the arm has to travel toward the ball along
the x-axis in the next timed movement the end-effector
tracks the position of the ball until the next prediction of
xhp is available. As soon as that happens, the EB “move
hand forward” is disinhibited. A second precondition is
lifted from the EB “move hand forward” as soon as the
ball has reached a certain distance threshold and initiates
the hit.

C. Racket orientation and timing during hitting
In our scenario, the ball is the easier to hit the

straighter it rolls down the inclined plane and the earlier
the prediction of its hitting point is available. Thus,
during the hit, we control the racket to drive the ball up
the inclined plane as straight and with as much speed as
possible.

We assume that upon impact, the ball makes an
ideal elastic collision with the racket. From the incoming
velocity vector of the ball we continuously compute the
azimuth orientation the racket must have during the hit
in order to reflect the ball straight up the inclined plane.
However, since the velocity vector of the ball changes
over time, the desired racket orientation—and thus our
entire movement plan—changes as well. To adapt to that
change, we adjust the cycle time of the movement as
described in Eq. 4. This gives us a timed movement that
correctly orients the racket during the hit.

We maximize the speed of the hitting movement by
controlling its initiation time. The hitting movement
initiates when the time-to-impact falls below a variable
threshold. We tune that threshold so that the velocity
required to execute the movement stays just below a

Fig. 5. Trajectories of the ball and the racket for a successful hit.

maximum velocity allowed for the end-effector due to
hardware limitations.

V. Results
We present results from a physically realistic Matlab

simulation as well as preliminary results from a hard-
ware implementation that illustrate the flexibility of our
approach to organize timed movements.

A. Simulation results
The simulation results consist of four experiments in

which we perturb the trajectory of the ball in different
phases of the robot’s movement. In an additional experi-
ment, we gathered statistical data about the performance
of the robot.

1) Successfully hitting the ball: The first scenario sim-
ply demonstrates that the robot is able to hit the ball
and drive it back up the inclined plane. Fig. 5 shows the
trajectories of both the ball and the racket when viewed
from above the inclined plane.

We will now use this experiment to explain what is
happening within our model during a hitting movement.



Fig. 6. Time courses of meaningful variables of the architecture
during a successful hit. From top to bottom, the plots show (1)
whether a prediction for the ball hitting point xhp is available, (2)
the time to impact, (3), the activation of the intention nodes of the
high level EBs, (4,5) the position of the racket along the x- and
y-axis, and (6) the azimuth orientation of the racket.

You can follow along using the time courses of some of
the meaningful variables of the model shown in Fig. 6.
At t = 0 s, the ball is launched upwards from the bottom
of the inclined plane. It reaches the highest point and
starts rolling back down the plane at t ≈ 2.56 s, at
which time the vision system provides a prediction of
the hitting point and the time-to-impact, forming a peak
in the perceptual field. The intention node of the EB
‘move to ball’ (abbreviated with ‘mtb’ in Fig. 6) turns
on and initiates a timed movement that drives the end-
effector toward the predicted hitting point. As the ball
approaches the hitting line and the estimated time-to-
impact falls below a variable threshold value (at t ≈
3.95 s), the EB ‘move hand forward’ (mhf) gets activated.
It starts a timed movement of the racket orientation ϕ,
leading to a hit of the ball (t ≈ 4.42 s). The hit drives the
ball back up the inclined plane, removing the prediction
of where the ball will cross the hitting line (i.e., the peak
in the perceptual field falls away). The intention nodes of
the EBs ‘move hand backward’ (mhb) and ‘move to base
line’ (mtbl) switch on and initiate movements that drive

Fig. 7. Trajectory of the racket when the ball is reflected during the
racket movement. As before, the colored lines show the trajectories
of the ball and racket. The thin black lines show the trajectories
had the ball not been reflected.

the racket orientation ϕ back to the initial orientation
and the position of the end-effector back to the base line
(along the y-axis), respectively. At the same time, the
end-effector starts tracking the ball along the x-axis.

2) Ball reflected during movement: This experiment
demonstrates how the model reacts when the prediction
of the hitting point disappears while the end-effector is
moving toward the ball. To probe this in the experi-
ment, the ball is reflected and suddenly starts moving
upward on the inclined plane. Fig. 7 shows that the
model autonomously reacts to this unexpected change
by initiating a fixed time movement back to the base
line. The end-effector waits there, ready to initiate the
next hitting movement, while tracking the ball position
horizontally.

3) Hitting movement re-initiation: After a hit, a timed
movement usually brings the end-effector to the base
line to get ready for the next hitting action. In this
experiment, the ball is deliberately hit too weakly, so
that it quickly returns and a new prediction of its hitting
point is available before the end-effector reaches the base
line (see Fig. 8). The model initiates a hitting movement
while the end-effector is still on its way to the base line.
The robot is able to hit the ball again.

4) Ball deviated during movement: As described in
Section III, the cycle time of the timed movements
is adapted online to changes in the predicted target
position. This experiment demonstrates this adaptation
by deviating the ball trajectory while the end-effector is
moving toward the predicted hitting point of the ball.
Fig. 9 shows the trajectory of both the ball and the
end-effector alongside the trajectories they would have
had, had the path of the ball not been altered. It also
shows that the robot is able to adapt to the deviation
and accelerate the movement to successfully hit the ball.



Fig. 8. A hitting movement is re-initiated while the end-effector
is still moving to the base line.

Fig. 9. Trajectory of the racket when the ball is deviated to the
left during the racket movement. The thin black lines show the
trajectories of the ball and racket had the ball not been deviated.

5) Statistical data: Statical data were gathered during
a simulated experiment in which the robot continuously
drove the ball up the inclined plane for as long as
possible. The experiment consisted of 1000 trials, where
in each trial the robot hits the ball until it fails. After it
misses a ball, the next trial is initiated by introducing a
new ball on the inclined plane with a random speed and
launching angle.

If the ball crosses the hitting line within the safety
zones that the robot arm cannot reach (see Fig. 1), this is
not counted as a failure. A new ball is introduced without
resetting the hitting counter.

The statistical data was gathered for inclinations of 5◦

and 10◦ of the plane and is shown in Table I. The success
rate is computed as the number of successful hits divided
by the total number of hits (including fails). The other
measures are the mean, standard deviation and median
of successive hits. For a plane inclination of 5◦, the mean
deviation between the position of the racket and the ball

TABLE I
Performance of the simulated robot on successive ball

hits with two different plane inclinations.

Plane incl. Success rate Mean Standard dev. Median
(◦) (%) (Hits) (Hits) (Hits)
5 95.442 20.938 34.781 10
10 92.432 12.214 11.305 9

TABLE II
Performance of the real robot on successive ball hits.

Plane incl. Success rate Mean Standard dev. Median
(◦) (%) (Hits) (Hits) (Hits)
2 95.192 19.8 16.825 19

at the hitting moment is 21.2 mm, while for failed hits,
the mean deviation is 68 mm. For the plane inclination of
10◦, the mean deviation is 18 mm during successful hits
and 134.9 mm during failed hits.

B. Hardware results
To evaluate the hardware implementation, we repeated

the last experiment shown for the simulation, in which
the robot continuously drives the ball up the inclined
plane for as long as possible. Table II shows the statistical
data gathered during 10 trials. As in simulation, the
ball is reintroduced after the robot misses it. If the
ball crosses the hitting line within the safety zones, a
new ball is reintroduced without resetting the hitting
counter. The limitation in the inclination angle is due to
the inherent speed limits of the robotic hardware. The
maximum number of consecutive hits was 54. Without
ignoring balls that pass through the safety zones, the
maximum was 25. Fig. 10 shows a photo of the robotic
arm hitting the ball.

Fig. 10. Photo of the robotic arm just before hitting the ball.



VI. Conclusions
The architecture developed here integrates the gener-

ation and the organization of timed movements through
coupled limit cycle oscillators and neural attractor dy-
namics that are tied to online sensory information. As a
result, the system is ready to abort running behaviors
as well as to initiate or re-initiate inactive behaviors
at any time in response to external perturbations. The
system may also update movement parameters such as
amplitude and movement time on the fly when such
perturbations shift the timing and spatial constraints.
Here we demonstrated the system in a ball hitting sce-
nario that entails coordinating multiple different actions,
while remaining relatively simple. Because the approach
is consistent with a body of work on neural dynamics
architectures for cognitive robotics [20], it enables in-
tegrating timing constraints into cognitive robots more
broadly.

References
[1] W. Hong and J.-J. E. Slotine, “Experiments in hand-eye

coordination using active vision,” in Experimental Robotics
IV, vol. 223, pp. 130–139, Springer, 1997.

[2] T. Senoo, A. Namiki, and M. Ishikawa, “Ball control in high-
speed batting motion using hybrid trajectory generator,” in
IEEE International Conference on Robotics and Automation,
pp. 1762–1767, IEEE Press, 2006.

[3] B. Bäuml, T. Wimböck, and G. Hirzinger, “Kinematically
optimal catching a flying ball with a hand-arm-system,” in
IEEE/RSJ International Conference on Intelligent Robots
and Systems, pp. 2592–2599, 2010.

[4] H. Li, H. Wu, L. Lou, K. Kühnlenz, and O. Ravn, “Ping-pong
robotics with high-speed vision system,” in 12th International
Conference on Control Automation Robotics & Vision, 2012.

[5] S. Schaal, A. Ijspeert, and A. Billard, “Computational ap-
proaches to motor learning by imitation,” Philosophical Trans-
actions of the Royal Society (London) Series B, vol. 358,
pp. 537–547, 2003.

[6] S. Kim, E. Gribovskaya, and A. G. Billard, “Learning motion
dynamics to catch a moving object,” in 10th IEEE-RAS
International Conference on Humanoid Robots, pp. 106–111,
IEEE Press, 2010.

[7] K. Mülling, J. Kober, and J. Peters, “A biomimetic approach
to robot table tennis,” in International Conference on Intelli-
gent Robots and Systems, pp. 1921–1926, IEEE Press, 2010.

[8] J. Kober, M. Glisson, and M. Mistry, “Playing catch and
juggling with a humanoid robot,” in IEEE-RAS International
Conference on Humanoid Robots, IEEE Press, 2012.

[9] M. Buehler, D. E. Koditschek, and P. J. Kindlmann, “Planning
and control of robotic juggling and catching tasks,” The Inter-
national Journal of Robotics Research, vol. 13, no. 2, pp. 101–
118, 1994.

[10] A. Nakashima, Y. Sugiyama, and Y. Hayakawa, “Paddle jug-
gling of one ball by robot manipulator with visual servo,” in
Proceedings of the International Conference on Robotics and
Automation, IEEE Press, 2006.

[11] W. H. Warren, “The dynamics of perception and action,”
Psychological Review, vol. 113, no. 1, pp. 358–389, 2006.

[12] G. Schöner and J. A. S. Kelso, “Dynamic pattern generation
in behavioral and neural systems,” Science, vol. 239, pp. 1513–
1520, 1988.

[13] G. Schöner, “Dynamic theory of action-perception patterns:
The time-before-contact paradigm,” Human Movement Sci-
ence, vol. 3, pp. 415–439, 1994.

[14] G. Schöner and C. Santos, “Control of movement time and
sequential action through attractor dynamics: A simulation
study demonstrating object interception and coordination,” in
Proceedings of the 9th Intelligent Symposium On Intelligent
Robotic Systems, pp. 15–24, 2001.

[15] M. Tuma, I. Iossifidis, and G. Schöner, “Temporal stabilization
of discrete movement in variable environments: an attractor
dynamics approach,” in IEEE International Conference on
Robotics and Automation, pp. 863–868, IEEE Press, 2009.

[16] G. Schöner, Dynamical Systems Approaches to Cognition,
ch. Dynamical, pp. 101–126. Cambridge, UK: Cambridge
University Press, 2008.

[17] S. Grossberg, “A theory of human memory: self-organization
and performance of sensory-motor codes, maps, and plans,” in
Progress in Theoretical Biology, Vol. 5 (R. Rosen and F. Snell,
eds.), pp. 500–639, 1978.

[18] S.-i. Amari, “Dynamics of pattern formation in lateral-
inhibition type neural fields,” Biological Cybernetics, vol. 27,
no. 2, pp. 77–87, 1977.

[19] M. Richter, Y. Sandamirskaya, and G. Schöner, “A robotic
architecture for action selection and behavioral organization
inspired by human cognition,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 2457–2464,
IEEE Press, 2012.

[20] S. K. U. Zibner, C. Faubel, I. Iossifidis, and G. Schöner,
“Dynamic neural fields as building blocks of a cortex-inspired
architecture for robotic scene representation,” IEEE Trans-
actions on Autononous Mental Development, vol. 3, no. 1,
pp. 74–91, 2011.


