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Abstract— Laser scanners have been proven to provide reli-
able and highly precise environment perception for micro aerial
vehicles (MAV). This oftentimes makes them the first choice
for tasks like obstacle avoidance, close inspection of structures,
self-localization, and mapping. However, artificial environments
may pose problems if the scene is self-similar or symmetric
and, hence, localization becomes ambiguous if only relying on
distance measurements (e.g., when flying along a parallel aisle).

In this paper, we propose to tackle these instances by
introducing visual fiducial markers into the scene, detecting
them with copter-mounted cameras and fusing these detections
with laser-based self-localization in a graph optimization. Our
approach abstracts the underlying multiple stages of laser-based
SLAM to a slim interface that is only connected to the map
building process and augments the self-localization in uncertain
situations.

We demonstrate the applicability of our approach during
experiments in an indoor scenario with sparsely distributed
fiducial markers. The test encompasses accurate map building
with both the laser scanner and video cameras and subsequent
relocalization relying on the detection of fiducial markers only.

I. INTRODUCTION

Highly accurate simultaneous localization and mapping
(SLAM) is one of the most important capabilities for micro
air vehicles (MAV) as nearly all high-level systems like
mission and trajectory planning, dynamic replanning, and
obstacle avoidance rely on its robust and accurate func-
tioning. Particularly, in GPS-denied scenarios, e.g., during
indoor operation, the aforementioned tasks become even
more demanding due to lack of free space.

SLAM algorithms that are based on the readings of a
rotating laser scanner have been shown to yield highly
precise self-localization and dense and accurate detection
of permanent structures and dynamic obstacles [1], [2] for
many MAV-related applications. The said setup allows for
range measurements in virtually all directions, but is, as a
caveat, unable to distinguish between detected materials. In
consequence, if a single scan does not unambiguously match
the map, e.g. in symmetric or repetitive environments, both
the self-localization and mapping may suffer from motion
drift or worse, wrong map matching and, subsequently,
loss of localization. The combination with video cameras
via visual SLAM methods might alleviate this problem,
however, in particular in indoor environments structures may
be repetitive in visual appearance as well.
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Fig. 1: The SLAM pipeline utilizes the laser scanner readings
to continuously extend an accurate high-resolution map of
the MAV’s surroundings. Cameras are able to detect the
visual markers that were sparsely distributed in the outer
walls and the inner structure in order to stabilize the system
in otherwise ambiguous situations. Yellow nodes depict
laser-based keyframes. They are connected by registration
constraints to each other and to green tag observation nodes,
which are connected by blue observation constraints to the
visual fiducials (red squares).

In this paper, we propose to disambiguate these situations
by use of visual markers (cf. Fig. 2) that are tracked with one
or more cameras. We build upon the well-known AprilTags
[3] that provide an artificial aligned planar pattern whose
orientation and distance can (due to known size) be estimated
from a single image. They carry an encoded integer along
with an error correction code to make multiple tags distinct.
It is, vice versa, possible to estimate the position of the
camera sensor from a single detected tag. This estimation
is, however, prohibitively unstable and would require the
presence of multiple markers in a close distance to the robot
at any time. In combination, a laser scanner based SLAM
system can provide a localization prior that is then refined
by the detection of a single tag.

Since the detection is lightweight compared to the com-
putational demand of laser-based SLAM, we consider it a
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Fig. 2: A camera image taken during the described experiments (left) and the map acquired by the laser scanner up to that
point (right). April tags are shown with a red border.

highly beneficial supplement at low cost.
As our two main contributions, we propose how to

seamlessly integrate both the laser scanner and the camera
sensors in a graph-optimization framework without the need
for a detailed sensor model (Sec. III) and demonstrate the
effectiveness of our setup by experiments in an indoor sce-
nario that allow to assess the solely video-based localization
and relocalization within a known map that was previously
recorded using both sensors (Sec. IV).

II. RELATED WORK

For an overview over visual fiducial markers we refer the
reader to [4], [5] for the very popular ARTag system and its
successors, as well as [6] covering the less common coding
systems. In contrast to ARTags, AprilTags [3] are distributed
as open-source and show higher robustness against occlusion,
lighting conditions, and lens distortion which is why they
have also been used for camera calibration [7].

Fiducial markers have been successfully deployed to
estimate the pose of static and moving objects in robot
experiment setups (cf. e.g., [8]) and camera-tracking in VR
settings (cf. [6]). Their use for purely visual SLAM has
been demonstrated in [9] and [10] in an EKF-based filter
framework, but by design both methods rely on the presence
of multiple tags within the field of view at any time.

As a long-term prospect, the automatic disambiguation of
self-localization by human-readable text labels is desirable,
as it avoids the preparation of the environment for robot
operation. First attempts have been presented [11], but are
only able to distinguish between a small number of words in
real-time. General approaches that do not rely on predefined
dictionaries and font systems [12] are promising, but far from
applicable in real-time on embedded hardware.

III. METHOD

Our aim is to combine two types of sensors that have com-
plementary characteristics. The laser-scanner setup yields
highly accurate pose estimations with a good estimate of
its covariance at a low rate of 2Hz. Video cameras, on the
other hand, are able to provide detections with a much higher
frequency (≈ 30Hz), but these are sparsely distributed and
do, hence, result in a much coarser localization.

We present a graph-based approach with three types
of nodes—laser-based keyframes, camera poses, and tag
poses—and sparse constraints between them, based on reg-
istration of keyframes, laser-based pose tracking, and tag
observations. In order to integrate the measurements of the
corner points of each detected AprilTag, the formulation aims
at minimizing the reprojection error in image coordinates.
This holds the assumption that the reprojection error is
isotropic and invariant to the position of the tag within the
image. Since the relative pose between a camera and a tag
bears six degrees of freedom and four coordinates pairs
are determined, it would be possible to derive a covariance
estimation by bootstrapping the tag detections, but we neglect
this possibility for its computational demand and assume a
static isotropic uncertainty.

A. Laser-based Localization

We built upon the setup described in our previous work
[13] and refer the reader to [14], [15] for related reading.
Briefly, two laser-scanners are mounted upon a rotary disk
that is rigidly attached to the copter frame and allows to
take range measurements in all directions over the course
of an entire rotation which takes 0.5 s. The accumulated
readings are transformed into a point cloud built around the
scanner disk. As the copter moves during scan acquisition,
this accumulation requires odometry estimates that can be
retrieved from IMU readings and visual odometry. We will
refer to such an accumulated point cloud as a 3D scan.
Registering a 3D scan with the current scene representation
that was built up to that point yields a highly precise copter
pose estimate. Aligning all scans to a global map is done
in a two-stage hierarchical fashion in order to restrict the
computational cost. First, 3D scans are registered to an ego-
centric 3D map representation that contains the most recent
observations. After a given distance, the egocentric map
is registered with neighboring egocentric maps to form an
allocentric map of laser-based keyframes. The data structures
(scan, egocentric map, allocentric map) represent different
levels of detail and densities of the accumulated readings.
Thus, the computational complexity in order to match each
hierarchy level also increases.



We abstract this laser-based localization and mapping
pipeline into two crucial items that are used in the sensor
fusion approach described below. First, the poses that result
from the local-to-global registration are utilized as keyframes
in the later graph-optimization. Second, the low-rate ego-
localization received by registering a single scan are inter-
polated in order to obtain estimates for the camera position
and orientation at the time of a tag detection.

B. Detection of Fiducial Markers
Olsen et al. [3] describe an efficient algorithm for detection

of AprilTags even under severe lens distortion. In our setup,
we use a stereo array of three pairs of wide-angle cameras
but rectify them to satisfy the pinhole model (cf. [16]). Please
also note that the algorithm is able to derive the orientation
of the quadratic tag and can, hence, identify all four corners
independently from the relative camera rotation. Let s be the
size of the quadratic tag and
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its corner points in an aligned coordinate frame with origin
at the tag’s center. In the following, the subindices w, a, c,
and l denote the coordinate frames world, apriltag, camera,
and laser, respectively. If the pose of the tag represented as
the 4×4 matrix TA,wa ∈ SE(3) is known, we can compute(
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for all pi,a ∈ P

to obtain the four corner points relative to an allocentric
frame w. We define
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as the projection from a point in said world frame to its
corresponding image coordinates. TC,cw denotes the pose of
the camera C, KC its calibration matrix. If an AprilTag is
detected, the four corner points xi,c ∈ R2 for i = 1, ..., 4 are
given in image coordinates. Via
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one sets up eight equations with eight unknowns in the matrix
TA,ca to retrieve the relative pose of the detected AprilTag
w.r.t. the camera frame.

C. Joint Graph-based SLAM
We propose to fuse the two sensor modalities by a graph-

based formulation that represents the sparsity of the cost
function that is continuously minimized for copter pose and
map estimation. It is composed of three error terms

arg min
L,C,A

{eP(L, C) + eB(L) + eD(C,A)} , (1)

where L and C are poses obtained for the laser-based local-
ization and the cameras at different points of time, and A
represents the tags whose position is assumed static. eP and
eD denote the discrepancy between the current configuration
(L, C,A) and the sensor readings in the respective point
of time. All terms will be defined more precisely below.
Implementation was done with help of the g2o framework
[17].

In order to traverse pose hypothesis in a gradient-descent
formulation, we denote tq(T ) = (tx, ty, tz, qx, qy, qz) the 6-
element vector corresponding to the rigid transform T . It
contains the translational part (tx, ty, tz) and the vector part
of the unit quaternion describing the change in orientation.
Thus, one retrieves the full quaternion as

(qw = 1−
√
q2x + q2y + q2z , qx, qy, qz).

Since the gradient descent is performed in this six-
dimensional vector space, an expression for tq−1 is needed
in order to obtain the respective transformation matrix. It
is given in Equation (4). A numerically stable algorithm to
compute tq(T ) is stated in [18].

The graph is constructed from three types of vertices (cf.
Fig. 3):
• L denotes the set of laser-based keyframes that are

added to the graph whenever a registration of the local
and the global map has been performed. The vertices
L = (TL,lw) ∈ L carry the copter pose TL,lw at the
time of the registration.

• C denotes the set of camera keyframes that are added
to the graph whenever a previously unknown tag is
detected or a known tag as been observed from a signif-
icantly distant position. The vertices C = (TC,cw,KC)
carry the camera pose TC,cw as well as the calibration
matrix KC of the respective camera. Please note that
KC is required to define optimization constraints (see
below), but remains itself fixed for the course of the
optimization. It can be obtained beforehand by means
of camera calibration.

• A denotes the set of AprilTags which are added to the
graph whenever a new tag is observed by a camera. The
vertices A = (TA,aw, P ) carry their pose and the corner
points (cf. Sec. III-B) that are also assumed fixed.

Two types of edges define constraints among the vertices:
• The set ED is composed of edges E =
((CE , AE),x1,E,c, ...,x4,E,c) that impose a constraint
due to the detection of a tag AE ∈ A in camera
keyframe CE ∈ C. A detection is given by the four
corner points of the tag x1,E,c, ...,x4,E,c in image
coordinates (cf. Sec. III-B)

• The set EP is composed of edges E =
((LE , CE), TE,lc, IE) imposing a relative pose
constraint between a laser-based keyframe LE ∈ L
and a camera keyframe CE ∈ C. Each edge carries
the relative pose as well as the information matrix
IE ∈ R6×6 as the inverse of the pose covariance w.r.t.
the vector representation tq(TE,lc).



• The set EB with edges E = ((LE , L
′
E), TE,ll, IE)

is defined analogously to EP and imposes constraints
between laser-based keyframes L,L′ ∈ L whose local
maps overlap.

With this notation set, we now specify Eq. (1):

arg min
TL,TC ,TA

with
(TL)∈L

(TC ,KC)∈C
(TA,PA)∈A

{eP(L, C, EP) + eB(L, EB) + eD(C,A, ED)}
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where d denotes the Mahalanobis metric

d : Rn × Rn×n → R : d(x, I) 7→ xT Ix.

and NB(V ), NP(V ), ND(V ) refer to the subset of edges
from EB, EP , ED, respectively, that are incident to V .

D. Camera-only Localization

As camera images arrive at a much higher rate than laser-
based localization can be computed it can be necessary to
estimate the pose of a camera solely with the help of its
marker detections. To this end, one computes

arg min
TC with (TC ,KC)∈C

{eD({TC} ,A, ED)} . (3)

E. Implementation Details

As the minimum of the cost function from (2) is invariant
under rigid transformations, one pose (usually the pose of
the copter when initialized) is fixed and excluded from the
optimization. The graph construction process is embedded
straightforwardly into a relocalization task, i.e., retrieving
the current pose within a known map. At the start of the
system, the mapping and AprilTag detection is executed as
usual. If an already known tag is perceived, an according
edge between the new and the previously known graph is
added. Unfixing the anchor pose will now align both graphs
during the optimization phase.

IV. EXPERIMENTS

We demonstrate the effectiveness of our approach with
the help of a hexacopter (cf. Fig. 4) equipped with six wide
angle cameras and the spinning laser scanner disk described
in section III-A. The cameras possess a field of view of
more than 180◦ and show, hence, severe image distortion.

For the experiments either two cameras of a stereo pair were
calibrated extrinsically and only a region around the optical
center was undistorted and rectified leaving the effective field
of view at 120◦. An example is shown in Fig. 2. This allows
to use the pinhole model during the optimization stage (cf.
Sec. III). The calibration among cameras and laser scanner
is derived from the CAD model of the copter.

In the regarded scenario, the copter is manually flown
along a course of approximately 25m inside a factory
building at moderate velocity of up to 1m s−1. In sparsely
distributed locations, AprilTags are pasted at the height of
the flying copter and on the ground. Figure 2 shows a part
of the experimental setup.

The used AprilTags were printed from the family 36h11
[3] at a side length of 0.163m. This parametrizes binary
patterns with a pairwise Hamming distance of at least 11
bit which enormously robustifies the detection stage. In fact,
we did never experience false positive detections or false
decoding of a correctly detected tag.

In the first part of the experiment, the proposed SLAM
algorithm was deployed to construct a map with both the
laser scanner and the six video cameras pinpointing the
positions of the detected AprilTags within this map. A result
is shown in Fig. 1. The course contained a loop closing which
allows the laser-based mapping to be globally consistent.
In the second part, single video frames were extracted
from the sequence and a localization via AprilTags was
performed. This setup is supposed to mimic a relocalization
task where the copter has to find its position with respect to
a known map. To assess the quality of the camera-derived
pose, a comparison with the laser-based self-localization was
performed. This reference positioning is known to be highly
accurate. The precision is reported in the range of a few
centimeters [2].

Figure 5 covers the evaluation of the pose estimated from
single camera frames. In total, 13 AprilTags were detected
in 749 images. Due to the sparse distribution of tags 697
frames contained a single detection and 50 contained two
of them. Tags were detected at a distance from 0.61m to
4.99m. Figures 5(a) and (b) show the distributions of the re-
localization error. The average accuracy is at 0.50m±0.85m
(median: 0.19m) / 10◦±15◦ (median: 4◦) for frames with
a single detection and 0.78m±1.22m (median: 0.22m) /
14◦±21◦ (median: 4◦) for frames with two tag detections.
Indeed, both distribution show a clear mode at a reasonable
accuracy, but suffer from strong outliers. The distance esti-
mation to the detected tag, which is depicted in Fig. 5(c) is
performed very accurately at 3.15 % / 3.82 % on average. For
the scope of our experiments no clear correlation between
self-localization accuracy and detection characteristics like
distance to the tag or view angle could be established (cf.
Fig. 5(d), (e), (f)). Also, all tags show a very similar error
distribution leaving none of them particularly unsuited or
hard to use for relocalization.
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Fig. 3: Graph-representation of the optimization problem at hand: The vertex sets A, C, and L correspond to the estimation
variables, the edge sets EP and EB to pose constraints, and ED to a reprojection constraint. The same color coding is used
in both depictions.
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Fig. 4: Scheme of the deployed copter (right) and the laser scanner (left). The spinning disk with mutually skewed two laser
scanners and their respective scan range is depicted below the central core. The outer mounting carries three stereo pairs of
wide-angle cameras.

V. CONCLUSIONS

We have demonstrated that fiducial markers present a
viable approach to supplement laser-based self-localization
and mapping algorithms. In particular, AprilTag patterns
provide a simple and fast method to amend a location with
unique markers that can be detected and decoded efficiently
and very robustly. These properties make them ideal can-
didates to supplement SLAM approaches. The presented
graph-optimization ansatz allows a seamless and continuous
integration of their position and information in a detailed
map. We have demonstrated that this map is eligible to allow
for a solely camera-based relocalization although additional
filtering due to the presence of detection outliers will be
necessary. Indeed, we experienced that particularly if the
estimation of the tag is poor and a wrong tilt is perceivable,

the localization error grows rapidly.
In the future, we plan to investigate methods to integrate

the map by the laser scanner and fiducial markers more
directly. We expect the knowledge of planar surfaces in the
scene to provide helpful priors for initializing newly detected
tags dramatically reducing the problem of wrong tilt.
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