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Abstract Accurately self-localizing a vehicle is of high
importance as it allows to robustify nearly all modern
driver assistance functionality, e.g . lane keeping and co-
ordinated autonomous driving maneuvers.

We examine vehicle self-localization relying only on
video sensors, in particular, a system of four fisheye cam-
eras providing a view surrounding the car, a setup cur-
rently growing popular in upper-class cars. The presented
work aims at an autonomous parking scenario. The me-
thod is based on park markings as orientation marks
since they can be found in nearly every parking deck
and require only little additional preparation.

Our contribution is twofold: 1) We present a new
real-time capable image processing pipeline for topview
systems extracting park markings and show how to ob-
tain a reliable and accurate ego pose and ego motion
estimation given a coarse pose as starting point. 2) The
aptitude of this often neglected sensor array for vehicle
self-localization is demonstrated. Experimental evalua-
tion yields a precision of 0.15m±0.18m and 2.01 ◦±1.91 ◦.
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1 INTRODUCTION

Today’s vehicles come with a large number of driver as-
sistance systems. These include lane keeping, adaptive
cruise control, and recognition of obstacles, traffic partic-
ipants, and further relevant objects like traffic signs and
traffic lights. The systems are capable of partly deriv-
ing the current traffic regulations and pointing them out
to the driver if necessary. Further expanding their areas
of application with the long-term objective of fully au-
tonomous driving sets a great challenge. One promising
approach to achieve this is to use static map data and in-
formation from infrastructure facilities, e.g ., surveillance
cameras, and other vehicles via car-to-X communication.

To fuse and later utilize this data, the knowledge of
the vehicle’s accurate position and orientation is essen-
tial. We regard this problem in potentially roofed en-
vironments, where GNNSs like GPS are not available,
and make use of common landmarks that we detect with
a camera array of four fisheye cameras providing a view
surrounding the whole vehicle. Our work covers a typical
example of an all-over infrastructure controlled driving
scenario, namely fully autonomous parking in a proto-
type parking deck.

We start with a detailed description of the scenario
we want to investigate (Sec. 2) and juxtapose it to the
techniques which are currently followed in the litera-
ture (Sec. 3). We present an image processing algorithm
(Sec. 4) for the topview system that is independently ex-
ecuted for each of the four camera’s input images. We
name and address the problems arising from the non-
perfect detection results and construct a Kalman filter
that estimates both the vehicle’s pose and its motion
(Sec. 5). Implementation remarks and real-time consid-
erations are provided (Sec. 6). The entire system is an-
alyzed thoroughly with the help of a highly accurate
LIDAR-based positioning system as reference (Sec. 7).
Likewise we examine its robustness to noisy initial poses
and evaluate the landmark detector itself with respect
to precision, recall, and range-dependency. We conclude
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Fig. 1 The problem at hand: The ego-vehicle is equipped
with an array of four fisheye cameras detecting park markings
in its near vicinity. Comparing those to a map of the parking
deck allows for a position estimation.

this paper with a discussion (Sec. 9) on the advantages
and drawbacks of the proposed method and map out
ways for further improvement (Sec. 8).

2 SETUP

Figure 1 shows an overview of the setup that we elabo-
rate on in this paper. A vehicle is deployed with fisheye
cameras that are installed at the two side mirrors, the
trunk lid, and the front bumper. We refer to this sensor
array as topview system. The choice of fisheye cameras
as sensor is plausible as it provides a wide-angle view
and, thus, localization of detections near and all around
the vehicle. Although we will focus in particular on a
four-camera fisheye setup, the methods and results can
be easily transferred to other systems permitting a view
surrounding the entire vehicle. Since these often rely on
wide-angle or fisheye cameras as well, we specifically ad-
dress the aptitude of those objectives for self-localization.

The landmarks that satisfy our requirements of being
already present, easily detectable, and widely used are
park markings, i.e. the straight bright lines separating
the parking lots. They can be described formally by their
two end points and, thus, have a very simple represen-
tation within the map which the parking deck’s control
system will have to transmit to the vehicle. On the other
hand, the markings are not unique. A self-localization
will, thus, only be possible if a coarse vehicle pose is
given beforehand. We will, however, demonstrate that
the use of park markings as landmarks can be sufficient
to perform a frame-by-frame egomotion estimation and
position tracking from a single initial vehicle pose. Fig-
ure 2 shows the processing pipeline that we will follow
throughout the paper.

3 RELATED WORK

The project that we want to embark on touches several
fields that we address in the following.

A large body of literature covers the detection of road
markings with mono cameras. These markings resemble
park markings in visual appearance, but may be curved.
Yenikaya et al (2013) provide a broad survey of the more
recent approaches. Veit et al (2008) compare local fea-
tures that are mostly based on relative brightness in or-
der to extract road markings on a per-pixel basis. Mc-
Call and Trivedi (2006) present a mature video-based
lane departure warning system incorporating a marking
detection, lane curvature estimation, and tracking.

Regarding the probabilistic approach for positioning
and motion estimation we cite Thrun (2002) as intro-
ductory reading and Haykin (2001) and Grewal and An-
drews (1993) for the mathematical basics on temporal
filtering. Schubert et al (2008) discusses the feasibility of
different motion models for passenger cars. Particularly
tailored to self-localization and mapping are the survey
by Thrun et al (2002) and the more recent papers by
Grisetti et al (2010), Lim et al (2011), and Engel et al
(2014) that cover different views, approximations, and
improvements of the initial formulation.

Vehicle self-localization with video sensors is in the
first place considered for refinement of GNSS (e.g . GPS)
positioning. Lategahn et al (2013) and Laneurit et al
(2005) rely on local image features and an IMU to local-
ize a vehicle in urban canyons where GPS is often unreli-
able. Chausse et al (2005) combine GPS, odometry, and
lane markings that are detected with a monocular cam-
era. Levinson et al (2007) propose to detect these mark-
ings by the reflection of infra-red light, building maps
with the help of a specially prepared vehicle beforehand.
Likewise, the works by Pink (Pink 2008; Pink et al 2009)
provide a detailed description of a system leveraging road
markings for vehicle self-localization. In a later paper
(Pink and Stiller 2010), a system for deriving a precise
map of possible markings with the help of aerial images
is presented. Similarly, Schreiber et al (2013) propose to
perform self-localization via detection of lane markings
and curbs that they detect with a stereo camera pair.
Wu and Ranganathan (2013) achieve a very accurate lo-
calization in the vicinity of special road markings like
direction arrows and other symbols on the lane. Finally,
we cite Schindler (2013) who allows for a self-localization
approach via fitting to a detailed map which holds all
road marking as arc splines. The use of high-level map
data is also promoted in Oberlander et al (2014) in order
to achieve sensor-independence.

The literature covering localization for passenger cars
in indoor or outdoor-indoor scenarios, on the other hand,
builds on very diverse methods. Several approaches rely
on radio or network signals (Fernandez-Madrigal et al
2007; Gonzalez et al 2007). Kiwan et al (2012) discusses
the optimal placement of base stations for this purpose.
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Egopose Estimation

Vehicle pose Detections Associated Detections

Map Data

Camera Image 1 Marking Detector Association / Matching

Camera Image 2 Marking Detector Association / Matching

Camera Image 3 Marking Detector Association / Matching

Camera Image 4 Marking Detector Association / Matching

Fig. 2 Data flow diagram of the proposed self-localization setup: Each camera image is searched for park markings (cf . Sec. 4)
using the currently estimated vehicle pose and the map data from the parking deck for presegmentation. The detections are
matched with the map data (cf . Sec. 5.2) and used for updating the vehicle pose (cf . Sec. 5.3). The detection and association
stage can be (and are) performed in parallel.

Due to the restricted routes a vehicle can follow indoors
the use of RFID tags is also discussed (Saab and Nakad
2011; Lakafosis et al 2010). Other forms of outside-in
systems for vehicle positioning include the use of LiDAR
(Ibisch et al 2013) or surveillance cameras (Ibisch et al
2014). Self-localization has been achieved via vehicle-
mounted laser range scanners (Kümmerle et al 2009,
2008). Literature that promotes the use of close-to-pro-
duction vehicle sensors are Bojja et al (2013) andWagner
et al (2010) using odometry and near-range obstacle de-
tection for positioning. The authors report accuracies of
2.5m – 5m which is sufficient for navigation but to low
to perform autonomous maneuvers.

Park markings are, in a sense, specialized road mark-
ings as they have a given length, road markings may be
continuous, and are not curved. While their finite dimen-
sions allow for an absolute positioning as will be pointed
out later, the straightness enables us to use specialized
features for a more reliable detection. We regard the lo-
calization problem with a topview camera system, which
is unusual but bears some advantages. Park markings are
sparsely distributed and similarly oriented making their
use for pose estimation ambiguous and, thus, difficult. At
the same time the driving maneuvers will be slower but
more complex which justifies the need for a detection of
landmarks all around the vehicle.

4 PARK MARKING DETECTION

Video-based detection of road markings with today’s real-
time capable image processing methods cannot, despite
all efforts, be performed reliably (Yenikaya et al 2013) al-
though the markings have outstanding characteristics in
order to facilitate their perception: they are a) uniform
b) bright c) straight lines with d) constant width e) on

the ground plane. Most methods, like pixel-based seg-
mentation or Hough transform, are fixed on a single one
of these features, like brightness or straightness, respec-
tively, thus, making it difficult to embrace the others.
On the other hand, an algorithm respecting all features
would have to traverse a large search space which is un-
likely to be performed in real-time. In the presented spe-
cialized scenario, it is, however, possible to restrict the
search space by taking advantage of the vehicle’s coarse
pose and backprojecting the park markings from their
known map position into the camera images (cf . Fig. 3
(a)). A sufficient region around the predicted markings
yields a useful presegmentation. Here, we present a partly
heuristic image processing pipeline considering all the
features a) - e) in order to arrive at a sufficiently reliable
detector.

In the following, we assume that the lens distortion
function and the extrinsic calibration, i.e. the position
and orientation w.r.t. the vehicle, of all cameras are known.
The former allows us to map an image coordinate pair to
a view ray emanating from the camera origin, the latter
yields the camera position and orientation with respect
to the vehicle coordinate system. We refer to section 5.1
for the formal details.

The presented pipeline consists of five stages (Fig. 3):

1. Transform the input image a) to a ground plane rep-
resentation b) (Sec. 4.1)

2. Determine symmetric structures c) within a given
width interval storing information about brightness,
width, orientation, and strength of the symmetry
(Sec. 4.2)

3. Join nearby symmetry pixels to short line segments
d) passing the stored pixel-wise features along
(Sec. 4.3)

4. Cluster these line segments to the final detections e)
which use the statistics to compute a confidence value
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Fig. 3 The proposed image processing pipeline: a) the input image (right side mirror camera) with the backprojected park
markings providing a search region (light blue) for further detections, b) the input image transformed to the ground plane,
c) visualization of the symmetry strength for every pixel, d) result of initial clustering into smaller line segments, e) result
of clustering to final detections, f) associations to backprojected park markings

5. Associate these detections with the predicted posi-
tion of the park markings within the camera image
f) (Sec. 5.2)

4.1 Ground plane representation

In order to deal with the strong image distortion that
the wide-angle cameras exert, the camera image is trans-
formed into a ground plane image, also known as birdseye
view. It provides an often used representation to facili-
tate the detection of ground-based objects since park
markings that appear curved in the input image become
rectilinear in this representation. With special regard of
the used wide-angle cameras it is worth mentioning the
advantage of applying a direct image transformation in-
stead of undistorting the image in 2D and subsequently
applying a homography. While this does not apply for
moderately distorting camera lenses, the effects on fish-
eye cameras can be significant since the undistortion in
2D might interpolate substantially between pixel posi-
tions, thus, providing already imprecise input for the fol-
lowing homography.

Since most of the algorithm is based on the ground
plane representation, in the remainder, operations are as-
sumed to be performed in this coordinate system unless
stated otherwise.

4.2 Symmetry detection

Albeit simple, the search for symmetry in images is still
an often adopted method for presegmenting image re-

gions, e.g ., for further object detection. In the present
case, symmetry is one of the core features. We, hence, set
up a symmetry detector that gathers additional charac-
teristics on the observed structures in the process. In the
beginning, after contrast-equalizing the birdseye view, its
gradient images in x- and y-directions are computed and
a non-maxima suppression is performed leaving only the
most pronounced edges from the image and, thus, speed-
ing up the subsequent symmetry search. Although the
resolution varies due to irregular sampling of the camera
image, it suffices to compute the gradient of the birdseye
view instead of performing the ground plane transform
on the gradients of the camera image itself and applying
Leibniz’ rule. The following description is formalized in
algorithm 1.

For each pixel p with adequate gradient magnitude, a
nested search is initiated that follows the direction given
by the gradient. A pixel q with a likewise strong gradient
forms a symmetry pair with p if their orientation differs
by a vicinity of π, i.e. if they are nearly converse. The
directed search can be performed by the highly efficient
Bresenham sampling.

In order to gather the aforementioned characteristics
about the symmetry pair (p, q), which are later used to
support the clustering, online mean and variance esti-
mators are deployed for selected features along the entire
symmetry detection stage. Let I be the gray value image,
∇I its gradient image, p = p1, ..., pm = q the Bresenham-
sampled pixel positions and c = round (0.5(p+ q)) the
symmetry pair’s centre. We define the following quanti-
ties in order to propagate the substantial features of each
symmetry pixel:
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– Line intensity : The marking is assumed to be bright
and distinct from its environment. The intensity L :=
I(c) at the center of the symmetry pair is, hence, an
important feature.

– Line intensity variance: Likewise, the region between
the two pixels defining the symmetry is expected to
be of constant brightness. For each directed search,
the gray value variance V := V ark=1,...,m(I(pk)) is,
thus, estimated as a measure of brightness uniformity.

– Average gradient strength: As a measure for the dis-
tinctness of the symmetric structure, the mean gra-
dient magnitude G := Mean(||∇I(p)||, ||∇I(q)||) of
the symmetry pair is assigned to their central posi-
tion. The value is averaged over all symmetry pairs
that share the same center pixel c.

– Average symmetry distance S := ||p− q||: The mark-
ings’ width is assumed to be constant. In order to use
this information in later algorithm stages, the dis-
tance of the symmetry pixel pair is assigned to the
center pixel and averaged analogously to the average
gradient strength.

– Average symmetry orientation: Also, with the mark-
ing’s rectilinearity in mind, the orientationO := ∇I(q)+
(−∇I(p)) of the symmetry pixel pair is assigned to
and likewise averaged in the center pixel.

In conclusion, one obtains a symmetry image with
the most distinct symmetric structure where each valid
pixel carries the aforementioned statistics.

4.3 Initial Clustering

As a method to efficiently extract the most plausible line
segments, we propose an initial clustering method based
on pixel-wise neighborhood relations resembling a region
growing method. Starting from a pixel in the symmetry
image, i.e. a center of at least one symmetry pair from
the previous stage, that has not been clustered so far
and carries a sufficiently large average gradient strength
and a sufficiently low line intensity variance, the method
performs a region growing in direction of the average
symmetry orientation likewise by Bresenham’s sampling
algorithm (cf . algorithm 2). The adjacent pixel is added
to the current candidate line segment if it is no member
of another line segment and carries similar line intensity
L, average symmetry distance S, and average symmetry
orientation O. Similar to the individual center pixels,
the following statistical measures are computed on each
cluster and updated for each new pixel that is added to
the line segment:

– Average symmetry distance S̄ := Mean(S)
– Average line intensity L̄ := Mean(L)
– Average line intensity variance V̄ := Mean(V )
– Average symmetry orientation covariance

Ō := Cov(O)

Algorithm 1: Symmetry detection

Input :
– Gradient image ∇I = (Ix, Iy) of ground plane

representation
– Magnitude threshold θ, orientation threshold α, and

maximum symmetry width τ

Output:

– L(c), V (c), G(c), S(c), and O(c) for every detected
symmetry pixel c

1 for p = (x, y) pixel position in ∇I do
2 if ||∇I(p)|| > θ then
3 Init Bresenham’s algorithm at p in direction

∇I(p)
4 for q as next pixel according to Bresenham do
5 if ||p− q|| > τ then
6 break

7 Update online variance Ṽ with I(q)
8 if ||∇I(q)|| > θ AND

|∡(∇I(p),∇I(q))− π| < α then
9 Compute center pixel

c := round(0.5(p+ q))

10 Compute L̃, G̃, Õ, and S̃ via
definitions of sec. 4.2

11 Update online averages L(c), G(c),

S(c), O(c), and V (c) at c with L̃, G̃,

Õ, S̃, Ṽ

In this way, the statistics are propagated to the final
clustering stage. The region growing process is able to
close smaller gaps by a continuously updated penalty
value that is incremented for every improper pixel and
decremented for every fitting pixel. The amount depends
on the feature the mismatch occurred on: G, L, V , S, or
O. If it exceeds a given threshold, the growing process is
stopped.

This primary clustering is mostly heuristic. In par-
ticular, pixels are not assigned to the line segment that
they match best, but the one that considers them first
and sufficiently matches the requirements. Likewise, the
use of a penalty value provides a rather crude model in
order to control the line growing. The overall procedure
is, however, fast and efficient enough to be applied in a
real-time capable system.

4.4 Line Segment Clustering

The final stage is a single-linkage clustering of the line
segments from the previous step that exceed a given
length τLen. Each such cluster is represented by a sin-
gle line which we obtain via the principal component of
all clustered lines’ endpoints. Furthermore, the charac-
teristics S̄, L̄, V̄ , Ō are propagated from the line segments
to the encompassing clusters. Let C(1), C(2) be two sep-

arate clusters considered for linkage, C
(i)
p , C

(i)
q , i = 1, 2
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Algorithm 2: Initial clustering

Input :
– L(c), V (c), G(c), S(c), and O(c) from symmetry

detection for each symmetry pixel c
– Thresholds τG, τV , τL, τS , τO, τpen
– Penalties φL, φS , φO, φgap, φhit

Output:

– Found line segments
– Start and end points a(l), b(l) and L̄(l), V̄ (l), S̄(l), and

Ō(l) for every line segment l

1 for c set by symmetry detection with G(c) > τG AND
V (c) < τV AND yet unmarked do

2 Start new line segment l and include c

3 for s = {−1, 1} do
4 Init Bresenham’s algorithm at c in direction

∡(O(c)) + sπ
2

5 Init penalty P := 0
6 for q as next pixel according to Bresenham do
7 if G(q) > τG AND V (q) < τV AND q yet

unmarked then
8 if |L(c)− L(q)| < τL AND

|S(c)− S(q)| < τS AND
|O(c)−O(q)| < τO then

9 Include q into l

10 Update L̄(l), V̄ (l), S̄(l), Ō(l)
11 Update end points a(l), b(l)
12 P := P − φhit

13 Mark q

14 else
15 if |L(c)− L(q)| ≥ τL then
16 P := P + φL

17 if |S(c)− S(q)| ≥ τS then
18 P := P + φS

19 if |O(c)−O(q)| ≥ τO then
20 P := P + φO

21 else
22 P := P + φgap

23 if P > τpen then
24 break

both of their respective representing lines’ endpoints and

C
(i)

S̄
, C

(i)

L̄
, C

(i)

V̄
, C

(i)

Ō
, i = 1, 2 the propagated characteris-

tics. The decision whether or not to continue clustering
is based on the magnitude of the following quantities:

– Distance in image coordinates:
Clustered line segments should lie in local distance.

The quantitymin(||C
(1)
p −C

(2)
p ||, ||C

(1)
p −C

(2)
q ||, ||C

(1)
q −

C
(2)
p ||, ||C

(1)
q − C

(2)
q ||) is to be restricted.

– Orientation deviation:
They should be similarly oriented. The orientation

∡(C
(1)
p − C

(1)
q , C

(2)
p − C

(2)
q ) is, thus, thresholded.

– Difference of their average symmetry distance:
This ensures that the line segments belong to sym-
metric structures with similar width. The measured
width deviation |C

(1)

S̄
−C

(2)

S̄
| is supposed to be small.

– Difference of their average line intensity:
The line segments originate from markings with sim-

ilar brightness. The brightness deviation |C
(1)

L̄
−C

(2)

L̄
|

is restricted.
– Difference of their average line intensity variance:

The brightness variation is supposed to be similar.

The difference in brightness variance |C
(1)

V̄
− C

(2)

V̄
|

should not exceed a given threshold.

In order to arrive at a confidence for each of the final
clusters, the propagated measures are processed by a lo-
gistic regression and mapped to a value between 0 and 1
as in,

(1 + exp{b+ wSCS̄ + wLCL̄

+wV CV̄ + wOCŌ + wili + wglg})
−1

(1)

for chosen weights wS , wL, wV , wi, wg and an offset b.
Additionally, the regression encompasses the length of
the detected line in image li and ground plane lg coordi-
nates as further important indicators. This provides an
easy and reliable measure to decide which detections can
be used for the following self-localization stage.

4.5 Parameter choice

The presented image processing pipeline depends on 40
parameters. Only some of them are addressed explic-
itly in the preceding explanations: thresholds for pair-
ing symmetry pixels, penalty terms for clustering of line
segments, weights for the distance computation of the
final clustering, and weights for the logistic regression
providing the confidence. Few of them relate to physical
characteristics, e.g ., the interval of the symmetry pair
distance corresponds to the width of a park marking.
For the choice of most parameters no reasonable heuris-
tic can be found. Therefore, we set up a Covariance Ma-
trix Adaptation (CMA) (Hansen 2006) optimization rou-
tine. The park markings were labeled manually in a small
number of representative camera images. In order to ob-
tain a fitness function, the detections’ confidence was
thresholded with different values to create a precision-
recall curve (cf . Fig. 6). The area under this curve, a
value between 0 and 1, provides a useful measure for the
aptitude of the current candidate parameters.

There is no side condition on the detector’s execution
time. In principle, the optimization may suggest param-
eters with a lot of thresholded symmetry pixels entering
the computationally demanding clustering stages (cf . 6)
which would then forbid real-time applicability. As it
turns out, passing only few symmetry pixels to the clus-
tering results in more reliable detections which in turn
increases the precision. Thus, this option is preferred by
the optimization routine. Also, the detection length is
an important criterion but not explicitly enforced within
the optimization. Again, clustering detections to longer
results tends to yield better precision.
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5 EGO POSE ESTIMATION

Despite all effort the proposed image processing system
can not be assumed to yield perfect results. Park mark-
ings may be detected only partially or missed entirely.
In the design of the following ego pose estimation rou-
tine we do assume, however, that a detection either lies
completely on the respective marking in the image or is
a false detection. To be precise, we, hence, assume that a
correct detection will not exceed the respective marking’s
end points. This poses an important clue for positioning
as is shown in the following. The presented approach can
be separated in two parts: the association part assigning
the plausible detections to park markings from map data
using the currently assumed vehicle pose (or discarding
them if there is no plausible matching) and the estima-
tion part computing this pose and the vehicle motion.

5.1 Mathematical formalism

The vehicle’s pose at a point of time t is given by 5
parameters

xt = (p(t)x , p(t)y , φ(t), v(t), ω(t))T ∈ R
5 (2)

where (px, py) is the current position in ground plane
coordinates, φ its orientation w.r.t. the ground plane
normal, v its velocity in direction of its nose, and ω its
turn rate around the vehicle coordinate system’s origin.
Whenever the point of time is unambiguous, we drop
the subscript t. The ground plane is assumed to be flat
in order to constrain the number of degrees of freedom
to three (2D position and orientation). Section 7.2 cov-
ers the applicability of this model. The Kalman filter (cf .
Sec. 5.3) models the state uncertainty as a multidimen-
sional Normal distribution which is given by the covari-
ance matrix P ∈ R

5×5. Furthermore, let Rcam ∈ R
3×3

and tcam ∈ R
3 be the orientation and position of the

regarded camera within the vehicle coordinate system
where

p 7→ Rcam(p− tcam), p ∈ R
3 (3)

defines a rigid transformation from vehicle into camera
coordinates. With d : R3 → R

2 as lens distortion func-
tion mapping view rays from the camera centre tcam to
their respective image coordinates we obtain

p 7→ d (Rcam (Rveh (p− tveh)− tcam)) , p ∈ R
3 (4)

to predict a point p from the map data to the respective
camera. For a common choice of d we refer to Scaramuzza
et al (2006). The vehicle pose tveh, Rveh can be derived
from the first three elements of x via

tveh =





px
py
0



 and Rveh =





cos(φ) sin(φ) 0
− sin(φ) cos(φ) 0

0 0 1



 . (5)

In order to vice versa map a given image point p′ ∈ R
2

to its view ray within vehicle coordinates, consider

p′ 7→ RT
camd−1 (p′) + tcam. (6)

5.2 Association

First, a 1-on-1 association of detections with park mark-
ings cannot be deployed since a marking can encompass
several partial detections. The association routine, thus,
independently selects an adequate park marking for each
detection or discards it if no such marking is found.
Wrong associations are particularly critical as they can
later introduce estimation errors which quickly accumu-
late over time and lead to divergence of the pose estima-
tion. In order to find those adequate markings a distance
measure is introduced incorporating the distance of the
detection to the marking’s expected position in image co-
ordinates and a deviation in orientation. Hence, the cur-
rent vehicle pose x is needed to predict a marking’s posi-
tion in the camera image and its uncertainty P in order
to usefully threshold this distance measure. Therefore,
if the vehicle position is uncertain, the matching will be
more eager to also match to more distant line detections.
Two heuristics avoid wrong associations: First, only park
markings in front of the regarded camera within a given
vicinity are considered. Second, the detection’s distance
to the second closest marking compared to its distance
to the closest marking has to be large.

We present the algorithm to compute the distance
from a line detection to its park marking: The use of
wide-angle optics does not allow to simply project the
line’s end points to the park marking whose image is a
curve in the camera image. It is, however, important for
the later estimation stage to measure the deviation of de-
tection and expectation in sensor, i.e. image coordinates.
In a first step, we project the detection’s end points to
the marking’s curve in the image.

Refer to Fig. 4 for a scheme on the geometric opera-
tions. Basically, an orthogonal projection of the detection
on the regarded marking is performed in ground plane
coordinates. The result is backprojected into camera co-
ordinates.

First, the currently assumed pose x allows us to pre-
dict the camera pose and, hence, the relative position
of both end points CD of a regarded park marking. In
order to compute the distance from the detection with
end points a and b to CD, we regard A and B, the in-
tersection of a’s and b’s view rays (cf . eq. (6)) with the
ground plane. A and B are projected onto CD obtaining
A′ and B′.

One has to pay attention on the limited dimensions
of CD. Thus, if A′ or B′ do not lie between C and D,
i.e.

(A′ −D)T (A′ − C) > 0 or (B′ −D)T (B′ − C) > 0, (7)
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A

B

B'=B''

A'O

b

b''

D

c=a''a

C=A''

d

Fig. 4 Geometric operations in order to project the partial detection ab in the distorted camera image to the park marking
CD in world coordinates. An example of this procedure is also sketched in Fig. 3 (f). The camera pose is obtained from the
current estimated pose x.

they are assigned the position of the closer point of C
and D, respectively, yielding A′′ and B′′ which are then
backprojected via eq. (4) into the image to retrieve the
final line segment a′′b′′. It is possible that a′′ = b′′. In
this case the according detection-marking association is
discarded.

To summarize, for a given pose x it is laid out how
to project a detection to map data and, thus, how to
define a distance measure between both of them. In or-
der to also account for the present pose uncertainty P ,
the entire procedure is repeated for several candidate
poses. As stated in line 8 from algorithm 3, we con-
sider the sigma points via P and compute χ(k) with
k = 0, ..., 10 denoting 11 candidate poses that can be
used to retrieve a′′k and b′′k for k = 0, ..., 10 via the pro-
cedure presented in the previous paragraph. Let further
ϕk := ∡(b′′k − a′′k), ϕ

′′ := ∡(a′′, b′′), and ϕ := ∡(a, b) be
the orientation of b′′k − a′′k , b

′′ − a′′, and b − a w.r.t. the
horizontal axis, respectively. We capture the distribution
of the 11 backprojected line points by the covariance ma-
trix

C := Cov({a′′0 , ..., a
′′

10, b
′′

0 , ..., b
′′

10}) (8)

and the orientation variance by

V := V ark(ϕk). (9)

The distance of the actual detection to the park mark-
ing with assumed pose x is then taken in terms of the
Mahalanobis distance w.r.t. C and V :

(a− a′′)TC−1(a− a′′) + (b− b′′)TC−1(b− b′′)

+
(ϕ− ϕ′′)2

V
. (10)

Thus, with the presented heuristic we are able to trans-
form the ego pose uncertainty P into C and V which
provides a usable form to measure matching distances in
distorted camera coordinates.

5.3 Estimation

The estimation stage computes the position and orien-
tation of the ego vehicle in two dimensions for a fixed
detection-marking association that has been determined
in the previous stage (cf . Sec. 5.2). A Constant-Turn-
Rate-Velocity-Model (CTRV) is applied to model the ve-
hicle dynamics. Schubert et al (2008) report sufficiently
precise results for CTRV compared to several more so-
phisticated motion models. Pose and motion parameters
are combined in a single status vector which is updated
by a Kalman Filter (Haykin 2001) that combines two
paradigms, an Extended Kalman Filter (EKF) for trans-
ferring the status vector (prediction) and an Unscented
Kalman Filter (UKF) for processing the landmark ob-
servations (update). Refer to algorithm 3 for a detailed
overview.

The EKF uses the transfer function’s gradient in the
Gaussian propagation of uncertainty to transform the
status distribution from one time step to the next with
the help of a local linear approximation. The transfer
function f , i.e. the motion model, can be expressed by
an analytic representation:

f(x) =











px + v
ω
(− cos(φ+ ω∆t) + cosφ)

py +
v
ω
(sin(φ+ ω∆t)− sinφ)

φ+ ω∆t
v
ω











(11)

Jf(x) =











1 0 J13 J14 J15
0 1 J23 J24 J25
0 0 1 0 ∆t
0 0 0 1 0
0 0 0 0 1











(12)
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Algorithm 3: Ego pose estimation filter

Input:
– Transfer function f with Jacobian Jf and noise

covariance Q
– Observation function h with noise covariance R
– Observations zt at time t
– Initial state x0 and state covariance P0

1 t := 0
2 x := x0

3 for t do
4 t := t+ 1
5 // Prediction (EKF)

Predict state: x̂ := f(x)
6 Transform state uncertainty:

P̂ := Jf(x)PJf(x)T +Q

7 Compute eigenvectors p(i) from P̂

8 // Update (UKF)
Compute sigma points:
χ(0) := x

χ(i) := x+
√

10
1−α

p(i) for i = 1, ..., 5

χ(i) := x−
√

10
1−α

p(i−5) for i = 6, ..., 10

9 Compute weights:

w(0) := α
w(i) := 1−α

10
for i = 1, ..., 10

10 Compute predicted observations ẑ via eq. (21):
11 Compute observation uncertainty:

S :=
10
∑

i=0

w(i)
(

h
(

χ(i)
)

− ẑ
)(

h
(

χ(i)
)

− ẑ
)T

+R

12 Compute innovation:
y := z − ẑ

13 Compute Kalman gain:

V :=
10
∑

i=0

w(i)
(

χ(i) − x
)(

h
(

χ(i)
)

− ẑ
)T

K := V S−1

14 if
√

(Ky)T P̂−1(Ky) < 3 then
15 Compute new state:

x := x̂+Ky
16 Compute new state uncertainty:

P := P̂ −KSKT

17 else
18 Use predicted state only:

x := x̂
19 Use predicted state uncertainty only:

P := P̂

J13 =
v

ω
(sin(φ+ ω∆t)− sinφ) (13)

J14 =
1

ω
(− cos(φ+ ω∆t) + cosφ) (14)

J15 = ∆t
v

ω
sin(φ+ ω∆t) (15)

−
v

ω2
(− cos(φ+ ω∆t) + cosφ) (16)

J23 =
v

ω
(cos(φ+ ω∆t)− cosφ) (17)

J24 =
1

ω
(sin(φ+ ω∆t)− sinφ) (18)

J25 = ∆t
v

ω
cos(φ+ ω∆t) (19)

−
v

ω2
(sin(φ+ ω∆t)− sinφ) (20)

Similar to a particle filter, a UKF generates candi-
dates, called sigma points, from the current state’s co-
variance but in an unrandomized fashion (line 8 in al-
gorithm 3). For each of these poses the projected line
segments of the detections to the backprojected park
markings are computed as described in Sec. 5.2. The end
points a′′0 and b′′0 of the projections of the most likely
pose are used as the predicted observations which are
compared to those of the actual detections a and b in or-
der to compute the update to the status vector refining
the vehicle pose. Let accordingly a(j) and b(j) be the end

points of all associated marking detections and a
′′(j)
0 and

b
′′(j)
0 those of the backprojections of the associated map
marking under the currently assumed vehicle pose xt+1

for j = 1, ...,m. The observation z, expected observation
ẑ and observation prediction h(.) are chosen as:

z :=
(

a(1), b(1), ..., a(m), b(m)
)T

(21)

ẑ :=
(

a
′′(1)
0 , b

′′(1)
0 , ..., a

′′(m)
0 , b

′′(m)
0

)T

(22)

h
(

χ(i)
)

:=
(

a
′′(1)
i , b

′′(1)
i , ..., a

′′(m)
i , b

′′(m)
i

)T

(23)

The use of the rather uncommon UKF allows to apply
this procedure, which is cumbersome to express in ana-
lytic terms. It avoids explicitly computing the gradient
of this transformation, which would be necessary in an
EKF, and coping with possible degeneration of a particle
filter. Furthermore, it allows to handle some subtleties
we have not described in detail, e.g . as not all relevant
park markings may be visible from every candidate vehi-
cle pose, the observation vector’s size has to be adapted
dynamically.

In order to handle wrong detection associations, an-
other simple criterion for outlier detection is deployed.
The Mahalanobis distance of the Kalman update, i.e.
the difference of the predicted state x̂t and the corrected
state xt+1, is taken w.r.t. the current state covariance
matrix (cf . line 14 in algorithm 3). If this distance ex-
ceeds a fixed threshold, the new state is highly unlikely
which is then accounted to a wrong detection. Thus, in
this case all detections of that frame are discarded.

6 IMPLEMENTATION

The whole processing pipeline consisting of image pro-
cessing, detection association, and pose estimation was
implemented in C++ in fast but not particularly opti-
mized code. Being executed on a single core, the average
runtime per camera and frame amounted to 40.0ms on
a test system with a Intel i7-4702MQ CPU at 2.20GHz
with 8 GB RAM. Table 1 gives a detailed analysis of
the runtimes of all algorithm sub-steps. The runtime was
taken by processing all test sequences (cf . Sec. 7). Thus,
different weather, lighting, and parking occupation con-
ditions were covered. The total average runtime over all
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Algorithm sub-step Execution time [ms]
mean ± std

Image segmentation via vehi-
cle pose

7.3± 2.9

Line detection (total) 32.1± 3.4
Brightness equalization 5.8± 0.3
Groundplane transform 5.0± 0.6
Gradient computation 8.8± 1.2
Threshold largest gradients 3.7± 0.4
Symmetry detection 4.9± 0.9
Pixel clustering 1.9± 0.6
Line clustering 1.8± 0.6

Landmark association 0.4± 0.3
Pose estimation 0.3± 0.2

Total runtime 40.0± 4.5

Table 1 Execution times of all algorithm sub-steps

scenarios was between 43.0ms and 38.9ms. Thus, despite
different conditions the runtime proves itself stable.

The biggest percentage of the computational resources
can be attributed to the image processing stage (39.4ms),
rendering the association stage (0.4ms) and the estima-
tion stage (0.3ms) negligible. Since four cameras have to
be processed, this results in a frame rate of 5Hz, which
we assume to be sufficient for ego pose estimation. How-
ever, for the experiments we had a multi-core CPU at our
disposal allowing to process all cameras in parallel. Re-
garding the details of the image processing pipeline, we
learn that the preprocessing steps dominate the compu-
tation costs: contrast equalization , ground plane trans-
form (Fig. 3 b)), and gradient computation and thresh-
olding are much more computationally demanding than
the more sophisticated parts, namely symmetry detec-
tion (Fig. 3 c)), line growing (Fig. 3 d)), and final clus-
tering (Fig. 3 f)).

The most critical parts of the algorithm are those
with superlinear complexity: symmetry detection, pixel
clustering, and line clustering. In order to guarantee for
a restricted execution time, the problem size of these
sub-steps is restricted via the parameters θ (Sec. 4.2),
τG (Sec. 4.3), and τLen (Sec. 4.4).

The presegmentation using the known vehicle ego
pose (Fig. 3 a)), which aims at robustifying the detection
results, also decreases the runtime for the marking detec-
tion stage. While the detection on a full image (900×550
pixels) takes 53.8ms, the presegmentation is at 7.3ms,
reducing the remaining image processing cost to 32.1ms
per image. In conclusion, even assuming the runtime on a
full camera image as worst case, the presented processing
pipeline is real-time capable.

7 EXPERIMENTS

The aim of the experimental evaluation presented in this
section is twofold: we provide a thorough analysis of
the detectors capabilities independently from the self-
localization setup and look into the entire ego pose es-

timation pipeline. The tests were performed in a roofed
prototype parking deck that was open to public traf-
fic, thus, allowing for real-life scenarios and parking lot
occupation. In order to arrive at a highly accurate repre-
sentation of the park markings, their position was mea-
sured by a tachymeter with an accuracy below 1 cm. The
two used vehicles were equipped with a topview camera
system as described in Sec. 2. The cameras had a view
angle of 177 ◦ and were mounted at a height of 0.6m
(front bumper), 1.0m (side mirrors), and 0.8m (trunk
lid). The vehicle dimensions amounted to 2.1m × 4.8m
with the side mirror cameras at a distance of 1.8m from
the front end. The cameras captured images at a res-
olution of 1280×800 pixels, the ground plane represen-
tation, however, was chosen at a resolution of 900×550
pixels (4 cm2 per pixel). The image processing pipeline
was initiated with the same set of optimized parameters
(cf . Sec. 4.5) for all 8 cameras. In some experiments the
rear camera was switched off (cf . Fig. 10).

The evaluation dataset comprised twelve sequences
covering drives along the parking deck as well as park-
ing maneuvers recorded on different times of day with
different lighting scenarios and parking deck occupation.
As reference localization method a LIDAR-based system
(Ibisch et al 2013) was used which is reported to have
a positioning error of less than 8.5 cm. The initial pose
was taken from this system as well, all other poses are
computed only based on the pose (and its uncertainty)
from the previous frame estimation. Since the LIDAR
system did not cover regions for more complex maneu-
vers, the two end points of the park markings were la-
beled manually in some sequences and an ego pose was
framewisely estimated by gradient descent. Noise in the
range of the mean back projection error of the pose was
added to the labeled markings and yielded a deviation of
0.04m±0.03m and 2.01 ◦±1.91 ◦. This can at the same
time be seen as the maximum possible accuracy with the
proposed setup.

7.1 Detector Performance

In order to inspect the performance of the video-based
park marking detection proposed in Sec. 4, the algorithm
was executed on all sequences. Since the backprojected
park markings are accurate enough, a correct association
was deemed a correct detection, hence, the backprojected
map data is used as ground truth. Visual inspection re-
vealed no falsely associated detections. Figures 5 and 6
show the detection stage’s performance in terms of pre-
cision and recall. The results are presented w.r.t. the
distance of the marking to the camera which we regard
as primary factor for the detection rate. We learn that
a reliable detection of around 95% precision is possible
when detecting park markings at a distance between 4
and 8m. The detection rate for markings in even farther
distance is very low. Furthermore, far-distant markings
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Fig. 6 Detector performance for different detection ranges.
The input image was presegmented for the range-restricted
detector runs which narrows its search space.

lie in close proximity when projected to the camera im-
age. A possible confusion is therefore likely which is then
prevented by the association stage (cf . Sec. 5.2).

7.2 Estimation error due to flat world assumption

As pointed out in Sec. 5, the Kalman filter manages a two
dimensional vehicle position and orientation. However,
the ground plane was slightly sloped to the middle of
the deck. The slope amounted to 0.01m at a distance of
1.0m. Indeed, in a real-life scenario it is more likely to
have two dimensional rather than three dimensional map
data at one’s disposal. Since this model inconsistency is
rather common in self-localization, we examine the effect
of the flat world assumption on the localization accuracy
with the help of simulations:

A position was randomly drawn on the slanted plane
and checked to have 6 markings closer than 8.0m which
we considered sufficient for self-localization. The relative

directions of the markings w.r.t. the position were com-
puted and rotated into the unslanted ground plane. The
discrepancy between the rotated relative directions and
the markings from the flat map data were minimized by
adapting the vehicle’s position and orientation in 2D.
Thus, effects of imprecise detection or ego pose estima-
tion are excluded. The pose before and after the mini-
mization yields the estimation error due to the flat world
assumption. Based on 73 trials, we arrived at an average
positioning error of 0.09m and an orientation error of
0.2 ◦. Figure 7 shows a distribution of the drawn posi-
tions and their flat world estimations.

7.3 Dependency on Inital Position

The ego pose estimation pipeline has to be initialized
with a coarse vehicle pose as the used markings are in-
distinguishable and can, thus, provide only a relative
pose estimation. The necessary accuracy of this initial
pose was examined by considering several positions in the
available sequences. To arrive at a useful accurate posi-
tion, which can be regarded as current ground truth, the
system was initialized with the coarse LIDAR pose and
presented the same camera image several times, thus,
mimicking a stationary vehicle and refining the pose grad-
ually. Afterwards, offsets in position and orientation were
added to the ground truth pose and the refinement was
started all over again. Figure 8 shows the deviation of the
repeatedly refined poses from the possibly noisy ground
truth. The added offsets in position are separated in the
directions parallel and orthogonal to the park markings
since parallel positioning along the markings is in prin-
ciple ambiguous.

7.4 Ego Pose Estimation Accuracy

Figure 10 shows the course of the LIDAR-based position-
ing system or alternatively the poses obtained by man-
ual labelling (cf . Sec. 7) in comparison to the proposed
self-localization pipeline from some of the test sequences.
Please note that the LIDAR system did not provide con-
tinuous tracks. Again the positioning error is split into
the directions parallel and orthogonal to the park mark-
ings. Figure 9 shows histograms of the respective pose es-
timation errors. They amounted to 0.23m±0.24m (par-
allel position), 0.15m±0.18m (orthogonal position), and
2.01 ◦±1.91 ◦ (orientation).

8 FUTURE WORK

In future work we will examine ways to provide the nec-
essary initial positioning and stabilize the motion esti-
mation by sensor fusion. Further stabilization can be
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achieved by encompassing additional distinguishable ab-
solute landmarks into the detection stage. These land-
marks will, however, most likely be artificial. Further-
more, we want to evaluate the use of IMU readings to sta-
bilize the motion estimation during difficult maneuvers
when too few markings are close-by. Alternatively, as an
external approach relying on already installed hardware
we want to use surveillance cameras to detect and ap-
proximately localize the vehicle (Ibisch et al 2014).

9 CONCLUSION

The analysis shows that the image processing pipeline
yields very reliable detections if the confidence thresh-
old is chosen adequately high. We arrive at a detection
rate of about 30% of all markings closer than 8m which
turns out to be sufficient for self-localization. This shows
that a topview wide-angle camera system can usefully be
deployed for near-range vehicle-surrounding landmarker
detection even if only few of them are close-by and barely
distinguishable.

Although the system turned out to be very reliable,
ambiguous markings are used which enables a purely rel-
ative motion estimation only. For safety-critical applica-
tions an update of the absolute position from time to
time is therefor inevitable. This update can, however, be
coarse (12 ◦ orientation and 0.9m position discrepancy)
as has been shown in the analysis.

The accuracy of the entire self-localization pipeline
lies within the reference system’s order of magnitude.
A slightly worse accuracy can be found for positioning
along the park marking axis. Although this is certainly
due to the special configuration of the parking garage
that was used in the presented experiments and only
posesses parallelly aligned lines, a similar setup is usual
in many other parking decks.

In conclusion, the presented setup yields reliable and
precise information that we consider a highly important
building block for operating a fully-autonomous parking
deck.
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(a) Ground truth obtained by manually labeled land markings. Captured without rear camera.
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(b) Ground truth by LIDAR-based positioning system
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(c) Ground truth by LIDAR-based positioning system
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(d) Ground truth obtained by manually labeled land markings. Captured without rear camera.

Fig. 10 Estimation and ground truth of vehicle pose. The parking lot occupancy during experiments is given by the crosses
in the map overview.
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(e) Ground truth obtained by manually labeled land markings. Captured without rear camera.
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(f) Ground truth obtained by manually labeled land markings
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(g) Ground truth obtained by manually labeled land markings. Captured without rear camera.
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(h) Ground truth obtained by manually labeled land markings

Fig. 10 Estimation and ground truth of vehicle pose. The parking lot occupancy during experiments is given by the crosses
in the map overview.
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