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On-Vehicle Video-Based Parking Lot Recognition
with Fisheye Optics

Sebastian Houben1, Matthias Komar2, Andree Hohm2, Stefan L̈uke2,
Marcel Neuhausen1, and Marc Schlipsing1

Fig. 1: The task at hand is to recognize parking lot rows
while passing by at a moderate speed. Four fisheye cameras
were installed to our prototype vehicle (front, rear, left,right)
to provide a 360◦ surround view.

Abstract— The search for free parking space in a crowded
car park is a time-consuming and tedious task. Today’s park
assistance systems provide the driver with acoustic or visual
feedback when approaching an obstacle or semi-autonomously
navigate the vehicle into the parking lot. However, finding a
free parking lot is usually left to the driver. In this paper, we
address this search problem via video sensors only. This can
be used as a help to the driver to quickly pass a parking deck
and, more important, can be regarded as a cornerstone to fully
autonomously parking vehicles.

A fisheye camera setup is presented that allows a 360◦ view
around the car. Subsequently, we describe in detail the image
processing steps for a) detecting b) locating and c) classifying
nearby parking lots, i.e., deciding whether it is free or occupied.
We tested our algorithm on several video sequences and
examined the detector’s accuracy, precision and recall, and the
classification performance.

Results show that the system is capable of performing this
task with an accuracy of 0.21m for nearby parking lots. This
allows to place the vehicle in an initial position for planning
and performing the actual parking manoeuvre.

I. INTRODUCTION

Due to the lack of free parking space the search for a
place to leave one’s vehicle, especially in urban areas, is
often time-consuming and tedious. The aim of the automotive
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industry and traffic management is therefore to automate
parking as far as possible.

The task is twofold: Firstly, one has to find a free parking
lot and, secondly, the parking manoeuvre must be performed.
Modern driver assistance systems provide feedback from
distance sensors or display of rear camera images. Also,
for certain types of parking lots there are systems that
plan a parking manoeuvre trajectory and execute it semi-
automatically.

The localization task, however, is handled differently.
Most solutions rely on permanently installed systems in the
parking deck to manage availability of free parking lots.

Wolff et al. [1] describe a system of magnetic sensors in-
stalled at each parking lot that must additionally be equipped
with transmission units to report their status. Likewise, radar,
infra-red, and sound sensors are used (cf. Idris et al. [2] for a
broad review). A recent paper by Ibisch et al. [3] describes
the use of Lidar sensors to autonomously navigate a vehicle
through a park deck.

On the other hand, since computation costs continue to
drop, video-based systems become more and more popular as
they can be implemented with already installed surveillance
cameras (True [4], Ichihashi et al. [5], Seo and Urmson
[6], Tschentscher and Neuhausen [7]). The authors report
an average detection accuracy of 94% up to 99%.

Nevertheless, the systems are attached to a certain location
and have to be connected to a parking management infra-
structure. In this paper, we present an on-vehicle system that
is able to locate parking lots while driving by at a moderate
speed. While processing time is uncritical, motion blur
should be avoided for the algorithm to perform optimally.
The entire approach is based on video sensors only as we
consider these to play a prominent role in future driver
assistance hardware.

We describe our setup in section II, explain in detail the
image processing steps in section III, analyse the detector’s
accuracy (Sec. IV), and close with possible extensions of our
system in future development (Sec. V).

II. VEHICLE SETUP AND CALIBRATION

For our task we deploy a prototype vehicle with a four-
camera setup that we will describe in the following. Fisheye
cameras are installed at the front bumper, the rear trunk lid,
and at each of the side mirrors. Since the field of view is
larger than 180◦ we gain a complete surround view which
strongly simplifies the marking detection between different
cameras. The calibration of the system is divided into three



steps: computing the intrinsic calibration parameters of all
cameras, estimating each relative ground plane orientation,
and connecting the ground plane images to a single bird’s
eye view.

For the sake of computation time the image transformation
is implemented via a lookup-table for every considered
ground plane pixel.

The intrinsic calibration,i.e., the mapping of image point to
view ray, is accomplished via the method of Scaramuzza et
al.[8]. As a radial distortion function we choose a polynomial
of degree4.

Because of the wide-angle lenses in use the ground plane
calibration is not straightforward. The well-establishedDLT
algorithm [9] is infeasible. The estimation of the ground
plane parameters is performed on rectangular calibration
objects (several meters in size) with known dimensions that
are marked in the recorded images. We found the following
procedure to yield satisfying results: For an initial solution
we intersect the view rays of the marked image points with
the current candidate plane. We alternately minimize the sum
of the scalar products of their connecting vectors (i.e., find
a plane where the intersection points form a rectangle) and
the size error (i.e., find a plane where the distances of the
marked rectangle are correct). An iteration of those two sub-
steps yields an initial ground plane estimation. To refine
this solution, we subsequently minimize the back-projection
error. That is, we predict each rectangle corner position from
the respective three other corners and compare its back-
projected image position with the actual one. Since this
problem has several local minima the final optimization step
relies on a good initial solution.

After this ground plane estimation has been performed for
every camera image, the final surround view is created by
computing a two-dimensional rigid transformation between
the respective ground plane images. This is achieved by
manually marking two or more corresponding ground points.

The fields of vision of the installed fisheye cameras
overlap. Regarding the task at hand, it is reasonable to
prioritize the front and rear camera over the side cameras in
the overlapping area, since this allows a better and likely less
occluded view into the parking lots that the vehicle passes.
To avoid artificial edges at the transition from one camera to
another the images are cross-faded. Please refer to Fig. 2 and
compare the situation to the scheme in Fig. 1 for an overview.

III. IMAGE PROCESSING

Based on the bird’s eye image, the parking lot detection
algorithm that is presented here follows the steps below:

• Perform a coarse detection of the parking lot markings
via a local symmetry measure

• Estimate the lateral distance from the vehicle to the
parking lot row

• Estimate the parking lot row pattern and use it to predict
possible distant parking lots

• Classify the occupation status of all parking lots
• Stabilize the results with the help of temporal smoothing

For an overview of the computed values please refer to Fig. 2.

Fig. 2: Result of the calibration: the four camera inputs
transformed to a bird’s eye view of the vehicle surrounding

Fig. 3: The symmetry image provides a likelihood for the
presence of bright vertically oriented structures of a given
size (here:≈ 10cm). The lateral distance to the parking lot
(green arrow) can be determined by means of the functionp

that transforms each scan-line into a likelihood of a parking
lot pattern being present (cf. Sec.III-B). The green rectangle
shows the area that is subsequently regarded for computing
the offset and parking lot width (cf. Sec.III-C).

A. Local symmetry

We deploy a coarse but fast detector for a lateral position
likelihood of the parking lot markings. As these are bright
lines of a fixed widthw, we can efficiently apply the
following symmetry measure for each image line. For this,
we compute the gradient in horizontal direction and consider
thek gradient pixels with highest magnitude for each image
line. All pairs of those pixels are traversed and vote for
their respective centers if their distance is nearw and their
sign differs. The weight of the votes is determined by the
corresponding gradient magnitude of the bird’s eye image at
the very same position. In this way the detector encompasses
both the width and the brightness as features of the markings.
All vote centers form the symmetry image (cf. Fig. 3).

B. Lateral distance to vehicle

In the following steps, the aforementioned symmetry im-
age is used to pinpoint the parking lot row. Firstly, the
lateral distance of the vehicle to the parking lot markings
is estimated. For this purpose, we define a functionp that
maps the lateral offset to the likelihood of a parking lot row
being present at that position.
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Fig. 4: The functionp computed on the image in Fig. 3.
The two markings indicate the minimal distance of the
parking lots and the position the signal significantly changes,
respectively. The first is needed to estimate the noise of the
signal, the latter provides the estimated parking lot distance.

Since estimating a regular pattern, as described in section
III-C, is too costly we deploy the following heuristic: We
expect a parking lot row to create strong symmetry answers
and those to be equally distributed over the symmetry image
line. Especially the second criterion is important to increase
robustness against false signals from other symmetric struc-
tures,e.g., irregularities within the pavement. Thus, a sliding
average of each line is divided into a number of equidistant
bins for which a quantileq of the resulting symmetry values
is determined. Plotting those quantiles against the lateral
distance yields the desired functionp. Figure 4 shows an
example computed from the symmetry image in Fig. 3.

The rising edge ofp identifies the start of the parking lot
row. It is determined by finding the distance at which the
function growth exceeds the sliding standard deviation by
a given factor. By normalizing the growth by the standard
deviation a adaptation to pavement structure as well as
changing lighting conditions is introduced. The detailed
choice of this parameter is uncritical and can be performed
manually since the growing edge usually is very distinct.

C. Estimating the parking lot row

The lateral distance now enables us to examine the distri-
bution of the symmetry votes parallel to the driving direction.
Since these are mainly induced by the parking lot markings
the resulting profile should resemble a shifted version of the
Dirac comb (or Shah function). Thus, it can be parametrized
by the period,i.e., parking lot width, and an offset (cf. Fig. 5).

In order to facilitate the fit, the average over several scan-
lines,e.g., the green area in Fig. 3, is inspected and smoothed
by a median filter. The resulting signal is then thinned out by
considering only those values that are maximum among their
direct neighbours. This leaves very little relevant function
values.
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Fig. 5: The symmetry signal and the fitted Dirac comb.
The objective function for the fit accumulates the largest
symmetry values in a vicinity to each peak. These summands
are weighted by a Gaussian of the distance. The period and
offset allow to extrapolate the row of parking lots to distances
with less distinct markings.

As an objective function we define the sum of the respec-
tive largest symmetry values in a vicinity of each Dirac peak.
The summands are weighted by a Gaussian of the distance
to that largest symmetry value. At this point we do also gain
a confidence for the presence of a parking lot row via the
quality of the fit. The ratio of the unweighted sum over the
total signal energy yields a robust indicator.

With the help of the Dirac comb it is now straightforward
to predict the parking lot markings at a further distance. This
helps to find lots with a symmetry answer too low to be
detected individually.

D. Occupation status

After having pinpointed the parking lot positions, image
sections with the estimated width and fixed depth are passed
to a classifier described in the following: Since we need to
tell free from occupied space, a binary classification problem
needs to be solved. Given a large set of labelled training
images, we appliedLinear Discriminant Analysis(LDA) to
train a linear classifier. Linear discrimination using LDA
gives surprisingly good results in practice despite its simplic-
ity. We apply regularization to ensure proper conditioningof
the covariance matrix [10, Sec. 4.3.1].

In order to robustly classify any kind of vehicle as
occupiedwe decided not to train an explicit car detector,
but to provide the classifier low-level structural features. A
Difference-of-Gaussian(DoG) filter is applied to each trial
image and a histogram over the area of the whole parking
lot is generated therefrom. Depending on the filter size the
feature vector is rather small (20–50 features) and, thus,
supports fast classification from few examples.

The involved feature parameters (filter size, histogram
resolution, etc.) as well as the regularization parameter



Fig. 6: The upper row show examples of free parking lots,
the lower row examples of occupied ones.

were optimized through grid search. Cross-validation on two
independent training datasets was performed therefor.

E. Temporal smoothing

All measured values,i.e., the lateral distance, the Dirac
comb’s parameters, its quality of fitting, and the classification
result on each parking lot image, are temporally integrated
in order to yield more stable results. This is implemented
by means of a Kalman filter, containing a constant-velocity
model, for the Dirac comb’s shift and an exponential smooth-
ing of all other variables.

F. Implementation and real-time capability

The image processing pipeline was implemented in C/C++
and tested on a Intel Core i7 CPU (2 GHz). Although
the algorithm is eligible for parallelization the computation
was performed on a single core. Performance measurements
yielded that the whole system worked at 15 fps, the compu-
tation of the bird’s eye image (without further processing)
took 15 ms per frame.

IV. EXPERIMENTS

In order to evaluate our approach we labelled3 sequences
with 150 to 495 frames. The scenarios comprise manoeuvres
in roofed parking decks and open-air under stable weather
conditions. The annotations were carried out manually by
marking all parking lots in the bird’s eye image and in-
dicating the occupation status. For practical reasons the
annotations were only performed every5th frame. Hence,
in total 2073 parking lots were labelled.

The accuracy of the parking lot detection was examined
by five means:

• the error in correctly predicting the presence of a
parking lot row,

• the errors in correctly detecting parking lots (false
positives / false negatives)

• the deviation in the lateral distance estimation
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Fig. 7: This plot shows the presence of parking lot rows
in one annotated sequence over time. The raw and smoothed
fitting confidence donates a measure that reliably follows the
ground truth.

• the deviation in parking lot width estimation,
• and the classification error for the occupation status.

In the following sections we inspect these errors on the
complete image processing pipeline. This also includes the
temporal smoothing of the single-frame results by adequate
filter techniques. Since we expect the performance to de-
crease with greater distance to the vehicle, the deviation from
ground truth will as well be presented with respect to their
relative position.

A. Presence of parking lot row

As presented in Sec. III-B the vehicle’s distance to a
parking lot row is estimated by detection of a rising edge
in the lateral overall symmetry in the bird’s eye image. A
temporal average of the goodness of fit value (cf. Sec. III-C)
is a useful criterion for the presence of a parking lot row. If
the lateral distance cannot be determined the goodness of fit
is set to0 for that frame.

Figure 7 shows the course of the goodness of fit for a
sequence. Ground truth, raw and temporally smoothed values
are plotted.

B. Precision and recall of the parking lot detection

If the presence of a parking lot row has been verified
the detector described in Sec. III-B and III-C is initiated
to recognize the single parking lots. Figure 8d and 8e show
its reliability by the averaged precision and recall relative
to the vehicle position. The quick drop in performance for
parking lots w. r. t. vehicle distance can be accounted to the
aberration in the bird’s eye image due to little resolution for
distant regions as well as the changing pitch of the car.

C. Deviation of lateral distance

The accuracy of the lateral distance estimation is depicted
in Fig. 8a, the mean error accounts to12.4 pixels (≈ 0.25
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(a) The error in parking lot determination w. r. t. the relative
vehicle position. Parking lots close to the car can be pinpointed
with an error of10.2 pixels (≈ 0.20 meters)
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(b) The error in parking lot width estimation w. r. t. the relative
vehicle position. The widths of parking lots close to the car
can be pinpointed with an error of10.4 pixels (≈ 0.21 meters)
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(c) The error in parking lot classification w. r. t. the relative
vehicle position. Due to occlusions and perspective distortions,
the classification performance drops rapidly at larger distances.
Also note that due to the lack of these, the error minimizes
for parking lots next to the vehicle. Please note that the error
evaluation is done framewise.
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(d) The parking lot detection rate w. r. t. the relative vehicle
position. Due to worse resolution and changing pitch the
classification performance drops rapidly at larger distances.

−400 −200 0 200 400 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Position [pixels]

D
et

ec
tio

n 
pr

ec
is

io
n

(e) The parking lot detection precision w. r. t. the relative vehi-
cle position.



Avg. Value Avg. Value (near distance)

Lateral distance deviation 12.4px 10.2px

Width estimation error 16.7px 10.4px

Classification error 3.6% 3.2%

Detection rate 0.59 0.86

Detection precision 0.84 0.90

TABLE I: Several performance quantities of the presented
image processing pipeline are shown for the whole surround-
ing and parking lots in a close environment (≈ 4.0m in front
and behind the vehicle).

m), but is below10.2 pixels (≈ 0.20 m) for currently passed
parking lots.

D. Deviation of parking lot width

The spatial distribution of the error within the width esti-
mation (cf. Fig. 8b) shows a similar course. On the average,
we get an error of16.7 (≈ 0.33 m), and accordingly10.4
(≈ 0.21 m) at a nearer distance

E. Classification performance

The distribution of the parking lot classification perfor-
mance is depicted in Fig. 8c. Again, the loss in performance
for distant parking lots can mostly be attributed to occlusion
of parking lots by other parked vehicles. The average classi-
fication error accounts to3.6% and3.2% for near vehicles.
One can observe as well that the classification of parking
lots recorded with the side cameras is most reliable because
the relevant image region is only moderately distorted.

V. FUTURE WORK

We have presented a system for video-based parking lot
recognition that is based on a stitched view around the
vehicle. The detection algorithm searches for regular patterns
of markings to stabilize single-detections and to predict the
positions of possible parking lots at a farer distance. The
task of classifying the occupancy is performed by a linear
classifier on Difference-of-Gaussian features.

In the future we want to test the accuracy of our system
with respect to world dimensions. Since the current surround
view still suffers from moderate distortion, we will conduct
experiments to refine the initial calibration of the camera sys-
tem. Furthermore, for a versatile parking pilot it is imperative
to deal with arbitrary oriented and less well-marked parking
lots. The hardware in use allows for a higher resolution of
the bird’s eye image but at the cost of computation time. It
is to be expected that this will further reduce the errors in
the current detection process.

Our results show that the current detection accuracy of
0.33m average is sufficient to allow for placing the vehicle
nearby a free parking lot and provide the necessary initializa-
tion for computing and performing the parking manoeuvre.
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[3] A. Ibisch, S. Sẗumper, H.Altinger, M. Neuhausen, M. Tschentscher,
M. Schlipsing, J. Salmen, and A. Knolls, “Autonomous driving in a
parking garage: Vehicle-localization and tracking using environment-
embedded lidar sensors,” inProceedings of the IEEE Intelligent
Vehicles Symposium, 2013, submitted.

[4] N. True, “Vacant parking space detection in static images,” University
of California, San Diego, Tech. Rep., 2007.

[5] H. Ichihashi, T. Katada, M. Fujiyoshi, A. Notsu, , and K. Honda,
“Improvement in the performance of camera based vehicle detector
for parking lot,” in Proceedings of the IEEE International Conference
on Fuzzy Systems, 2010, pp. 1950–1956.

[6] Y.-W. Seo and C. Urmson, “Utilizing prior information to enhance self-
supervised aerial image analysis for extracting parking lotstructures,”
in Proceedings of IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2009, pp. 339–344.

[7] M. Tschentscher and M. Neuhausen, “Video-based parking-space
detection,” inProceedings of the Forum Bauinformatik, 2012, pp. 159–
166.

[8] D. Scaramuzza, A. Martinelli, and R. Siegwart, “A toolboxfor easy
calibrating omnidirectional cameras,” inProceedings of the IEEE
International Conference on Intelligent Robots and Systems, 2006, pp.
7–15.

[9] R. I. Hartley and A. Zisserman,Multiple View Geometry in Computer
Vision, 2nd ed. Cambridge University Press, 2004.

[10] T. Hastie, R. Tibshirani, and J. Friedman,The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. Springer-Verlag,
2001.

View publication statsView publication stats

https://www.researchgate.net/publication/257515963

