ResearchGate

See discussions, stats, and author profiles for this publication at:

Detection of Traffic Signs in Real-World Images:
The German Traffic Sign Detection Benchmark

Conference Paper - August 2013

DOI: 10.1109/IJCNN.2013.6706807

CITATIONS READS
107 1,279

5 authors, including:

‘ University of Bonn b ~ Ruhr-Universitat Bochum

30 PUBLICATIONS 242 CITATIONS 27 PUBLICATIONS 611 CITATIONS

D)
Ny J

SEE PROFILE SEE PROFILE

a Ruhr-Universitat Bochum

26 PUBLICATIONS 611 CITATIONS

SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Project Music Classification on Personal Mobile Devices

Mapping on Demand -- Perception and Planning for Autonomous Micro Aerial Vehicles in the Vincinity of
Project

Obstacles

All content following this page was uploaded by on 29 May 2014.

The user has requested enhancement of the downloaded file.


https://www.researchgate.net/publication/242346625_Detection_of_Traffic_Signs_in_Real-World_Images_The_German_Traffic_Sign_Detection_Benchmark?enrichId=rgreq-e4c6a3ba761c0be58ad835bae939f39b-XXX&enrichSource=Y292ZXJQYWdlOzI0MjM0NjYyNTtBUzoxMDIwMzMzMjM0NjI2NTdAMTQwMTMzODA0ODY0MA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/242346625_Detection_of_Traffic_Signs_in_Real-World_Images_The_German_Traffic_Sign_Detection_Benchmark?enrichId=rgreq-e4c6a3ba761c0be58ad835bae939f39b-XXX&enrichSource=Y292ZXJQYWdlOzI0MjM0NjYyNTtBUzoxMDIwMzMzMjM0NjI2NTdAMTQwMTMzODA0ODY0MA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Music-Classification-on-Personal-Mobile-Devices?enrichId=rgreq-e4c6a3ba761c0be58ad835bae939f39b-XXX&enrichSource=Y292ZXJQYWdlOzI0MjM0NjYyNTtBUzoxMDIwMzMzMjM0NjI2NTdAMTQwMTMzODA0ODY0MA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Mapping-on-Demand--Perception-and-Planning-for-Autonomous-Micro-Aerial-Vehicles-in-the-Vincinity-of-Obstacles?enrichId=rgreq-e4c6a3ba761c0be58ad835bae939f39b-XXX&enrichSource=Y292ZXJQYWdlOzI0MjM0NjYyNTtBUzoxMDIwMzMzMjM0NjI2NTdAMTQwMTMzODA0ODY0MA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-e4c6a3ba761c0be58ad835bae939f39b-XXX&enrichSource=Y292ZXJQYWdlOzI0MjM0NjYyNTtBUzoxMDIwMzMzMjM0NjI2NTdAMTQwMTMzODA0ODY0MA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sebastian_Houben?enrichId=rgreq-e4c6a3ba761c0be58ad835bae939f39b-XXX&enrichSource=Y292ZXJQYWdlOzI0MjM0NjYyNTtBUzoxMDIwMzMzMjM0NjI2NTdAMTQwMTMzODA0ODY0MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sebastian_Houben?enrichId=rgreq-e4c6a3ba761c0be58ad835bae939f39b-XXX&enrichSource=Y292ZXJQYWdlOzI0MjM0NjYyNTtBUzoxMDIwMzMzMjM0NjI2NTdAMTQwMTMzODA0ODY0MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Bonn?enrichId=rgreq-e4c6a3ba761c0be58ad835bae939f39b-XXX&enrichSource=Y292ZXJQYWdlOzI0MjM0NjYyNTtBUzoxMDIwMzMzMjM0NjI2NTdAMTQwMTMzODA0ODY0MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sebastian_Houben?enrichId=rgreq-e4c6a3ba761c0be58ad835bae939f39b-XXX&enrichSource=Y292ZXJQYWdlOzI0MjM0NjYyNTtBUzoxMDIwMzMzMjM0NjI2NTdAMTQwMTMzODA0ODY0MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jan_Salmen?enrichId=rgreq-e4c6a3ba761c0be58ad835bae939f39b-XXX&enrichSource=Y292ZXJQYWdlOzI0MjM0NjYyNTtBUzoxMDIwMzMzMjM0NjI2NTdAMTQwMTMzODA0ODY0MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jan_Salmen?enrichId=rgreq-e4c6a3ba761c0be58ad835bae939f39b-XXX&enrichSource=Y292ZXJQYWdlOzI0MjM0NjYyNTtBUzoxMDIwMzMzMjM0NjI2NTdAMTQwMTMzODA0ODY0MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ruhr-Universitaet_Bochum?enrichId=rgreq-e4c6a3ba761c0be58ad835bae939f39b-XXX&enrichSource=Y292ZXJQYWdlOzI0MjM0NjYyNTtBUzoxMDIwMzMzMjM0NjI2NTdAMTQwMTMzODA0ODY0MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jan_Salmen?enrichId=rgreq-e4c6a3ba761c0be58ad835bae939f39b-XXX&enrichSource=Y292ZXJQYWdlOzI0MjM0NjYyNTtBUzoxMDIwMzMzMjM0NjI2NTdAMTQwMTMzODA0ODY0MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marc_Schlipsing?enrichId=rgreq-e4c6a3ba761c0be58ad835bae939f39b-XXX&enrichSource=Y292ZXJQYWdlOzI0MjM0NjYyNTtBUzoxMDIwMzMzMjM0NjI2NTdAMTQwMTMzODA0ODY0MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marc_Schlipsing?enrichId=rgreq-e4c6a3ba761c0be58ad835bae939f39b-XXX&enrichSource=Y292ZXJQYWdlOzI0MjM0NjYyNTtBUzoxMDIwMzMzMjM0NjI2NTdAMTQwMTMzODA0ODY0MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Ruhr-Universitaet_Bochum?enrichId=rgreq-e4c6a3ba761c0be58ad835bae939f39b-XXX&enrichSource=Y292ZXJQYWdlOzI0MjM0NjYyNTtBUzoxMDIwMzMzMjM0NjI2NTdAMTQwMTMzODA0ODY0MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marc_Schlipsing?enrichId=rgreq-e4c6a3ba761c0be58ad835bae939f39b-XXX&enrichSource=Y292ZXJQYWdlOzI0MjM0NjYyNTtBUzoxMDIwMzMzMjM0NjI2NTdAMTQwMTMzODA0ODY0MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sebastian_Houben?enrichId=rgreq-e4c6a3ba761c0be58ad835bae939f39b-XXX&enrichSource=Y292ZXJQYWdlOzI0MjM0NjYyNTtBUzoxMDIwMzMzMjM0NjI2NTdAMTQwMTMzODA0ODY0MA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Detection of Traffic Signs in Real-World Images: The German
Traffic Sign Detection Benchmark

Sebastian HoubénJohannes StallkampJan Salmeh Marc Schlipsing, and Christian Igél

Abstract— Real-time detection of traffic signs, the task of detected signs. In this study, we focus on the detection step
pinpointing a traffic sign's location in natural images, is a for several reasons. First, although it is desirable in torac
challenging computer vision task of high industrial relevance. that both stages share computational resourees bperate

Various algorithms have been proposed, and advanced driver th feat th indeed b idered and
assistance systems supporting detection and recognitioffi waf- on the same features), they can indeed be considered an

fic signs have reached the market. Despite the many competing €valuated independently. This provides a better undetstgn
approaches, there is no clear consensus on what the state-of the processing chain and locates the shortcomings — and
of-the-art in thi_S field iS_. This can be_ accounted to the lack thus perspectives for improvement — of a system. Second,
of comprehensive, unbiased comparisons of those methods.high quality, freely available benchmarks for assessirg th

We aim at closing this gap by the "German Traffic Sign A L
Detection Benchmark” presented as a competition at IJCNN classification performance on traffic sign images do already

2013 (International Joint Conference on Neural Networks)We  €Xist €.9, [1]). It has been shown that state-of-the-art clas-
introduce a real-world benchmark data set for traffic sign sification methods lead to human-competitive performance

detection together with carefully chosen evaluation metds, given previous optimal detection [1], [2]. One might there-

baseline results, and a web-interface for comparing appraehes.  qre argue that the final sign classification problem can be
In our evaluation, we separate sign detection from classifation,
¢ regarded as solved.

but still measure the performance on relevant categories o ) o .
signs to allow for benchmarking specialized solutions. The  Assessing the performance of traffic sign detection algo-
considered baseline algorithms represent some of the most rithms is more difficult than benchmarking the classificatio

popular detection approaches such as the Viola-Jones detec  stage. Since many systems focus on certain categories of
based on Haar features and a linear classifier relying on traffic signs such as speed limits, we propose to evaluate

HOG descriptors. Further, a recently proposed problem-speific . . .
algorithm exploiting shape and color in a model-based Hough algorithms based on their performance on three major cate-

like voting scheme is evaluated. Finally, we present the bes gories of signs. It has been shown that a website featuring

performing algorithms of the IJCNN competition. online submission and evaluation is able to highly excite
participation over long periods of timee.g, think of the
. INTRODUCTION Middlebury stereo vision benchmark [3]). Thus, we set up

Many real-world computer vision applications require aca web interface that allows to upload, evaluate, and rank
curate detection of context-relevant objects in video iesag solutions.
Traffic sign recognition is a challenging example, in which Both very problem-specific [4], [5], [6] as well as rather
the algorithms have to cope with natural and thus complegeneral object detection approaches [7], [8], [9] have been
dynamic environments, high accuracy demands, and reg@lroposed for traffic sign detection. We implemented and
time constraints. Therefore and because of the high industrevaluated a representative choice of them as baseline al-
relevance, many approaches for traffic sign detection ampbrithms. From the latter category, we consider a Viola-
recognition have been proposed. Advanced driver assistanibnes-type detector based on Haar-like features [10Jadine
systems featuring traffic sign recognition, usually lirdite discriminant analysis relying on HOG descriptors [11], and
to a subset of possible signs, have been deployed by thecolor template matching approach. As traffic signs are
automotive industry. Against this background it is surprisconstructed to be easily “detectable” by humans, there are
ing that an extensive unbiased comparison of traffic sigwell-defined cues (such as color and shape) that can be uti-
detection systems has been missing and that no sufficientized in order to design powerful machine vision algorithms
large benchmark data sets are freely available. Therefo®nong the specialized algorithms exploiting such cues, we
we propose theéserman Traffic Sign Detection Benchmarkconsider a recent method proposed in [6]. In our experinienta
(GTSDB). It comprises a large data set of real-world imeomparison, we are especially interested in the questian ho
ages as well as a systematic evaluation protocol, which ke general approaches and the problem-specific algorithm
supported by a public web interface. compare. It is to be expected that the latter achieves better

The traffic sign recognition process involves two mairresults.
stages, detection of the sign in an image or video streamIn the following, we briefly review successfully establighe
and the subsequent recognitione( classification) of the benchmarks in the domains of driver assistance systems.

Then we introduce our data set in Sec. Il and our evaluation

! Institute for Neural Computation, University of Bochum, Ge nrocedure in Sec. IV. Section V describes the considered

many, firstname.lastname (at) ini.rub.de , 2 Department of . . . ..
baseline detection algorithms and the empirical results. A

Computer Science, University of Copenhagen, Denmagk] (at) 4 a e =
diku.dk the time of this document’s writing, the IJCNN competition



phase has just ended. We present the results of the best- I1l. DATASET

performing approaches in Sec. V. The images for our benchmark dataset have been selected
from sequences recorded near Bochum, Germany, on several
tours in spring and autumn 2010. They capture different
Many benchmarks in the domain of driver assistance haweenarios (urban, rural, highway) during daytime and dusk
been widely accepted once they were made available. In mdsaturing various weather conditions. Figure 1 shows sgver
cases, the contribution was not limited to publishing novedxamples. The recorded traffic signs are normed by the Vi-
data, but included the definition of appropriate evaluatioenna Convention on Road Signs and Signals that harmonizes
methodologies. their appearance in 62 countfes
Detecting humans in images is a very challenging task .
that is needed for various security relevant applicationé' Data collection and format
Therefore, many datasets for pedestrian detection have bee We used aProsilica GC 1380CHcamera with automatic
published €.g, [12], [13], [14], [15]). The.enpeda.project ~ exposure control, recordinBayerpattern [25] images with
(see also [16]) offers nine datasets for the evaluation @f resolution ofi360 x 1024 pixels. For the final benchmark
different computer vision techniques including steregovis  dataset, the images were clippedI®60 x 800 pixels as the
estimation of optical flow, object detection and tracking. lower part mainly shows the front lid and is therefore not
Traffic sign detection is a currently well-studied and broadask-relevant.
field of research. The survey by Mggelmose et al. [17] All images in the dataset were convertedR&B color
provides detailed analysis on the most recent developmergpace employing an edge-adaptive, constant-hue demesaick
Most approaches make use of two prominent featurédd method [26], [27] and were stored in raw PPM file
of traffic signs: color and shape. Due to diverse naturdrmat. All relevant traffic signs that are visible in the iges
lighting conditions the treatment of color is difficult andwere labelled manually. The ground-truth data is storedhin a
many heuristics have been applied [6], [18]. Regardingshapexternal CSV file and is additionally included in each PPM
one can say that two paradigms are currently persued: modéle comment for convenience.
based and Viola-Jones-like methods. B
The model-based approaches rely on robust edge detection o . )
and aim at connecting them to regular polygons or circles The traffic sign sizes vary between 16 and 128 plx.els wW.r.t.
[19], [20], usually via a Hough-like voting scheme or tem-he longer edge. Boun_dmg boxes.are not necessarily square
plate matching. The Viola-Jones-like detectors compute 4@ to the aspect ratio of the sign types and perspective
number of fast and robust features and try to identify trainedistortions. Our final dataset comprises 900 full images con
patterns by use of different possibly weak classifiers [21]. taining 1206 traffic signs. We split the dataset randomlg int
Beyond our benchmark, there are publicly availabl& raining (600 images, 8.46.traff|c s_lgns) and an_evaluauon
datasets that are important to mention here: nenmer S€t (300 images, 360 traffic signs). If images contain theesam
Swedish Traffic Signdataset [22] provides the remarkable "€@l-world traffic sign, it is ensured that they are assigtued
amount of 20,000 images from video sequences of whidhe same s_et. Nevertheless, most trafn(_: sign instances occu
20% have been annotated by the authors. ThH&STIF only once in our dataset. Thus, the training set can be split
projecf[23] has started to assemble data packages with trdkrther,e.g, for cross-validation. _
fic sign sequences every year since 2009 containing 1,000 toEVery image is annotated with the rectangular regions of
6,000 images. Thetereopolisdatabask(cf. [24]) comprises mterest_ (ROIs) of the VISIb.|e traffic signs and the spe_zm_flc
847 images with 273 road signs from 10 different classes raffic sign class€.g, stop sign, speed limit 60, speed limit

However, these datasets consist of continuous video $0; €tc.). Although we clearly want to distinguish the task o
quences, mostly recorded on a single tour and day. aAgdetection and classification, we found it useful to divide th

cordingly, the same traffic sign instance will repeat sdver§i9n5 into three_ competition-relevant categorigs thatld/o_u
times in the dataset. More important, lighting conditionsla Suit the properties of several known traffic sign detection
driving scenario (rural, urban, highway) have little vada. algorithms. The categories are prohibitive signs, manglato

We try to adress this issue by providing single images art9nS, and danger signsf( Tab. I). A minority of the anno-
presenting most traffic sign instances only onéef. Sec. tated signs do not fall into any of those categories and are,
). thus, not important for the competition itself. Nevertlssie

we do provide these annotations for the sake of completeness

Il. RELATED WORK

Data organization

http://iwww.mi.auckland.ac.nz/index.php?option=

com_content&view=article&id=43 IV. EVALUATION PROCEDURE

“The currently available URL idittp:/www.cvl.isy.liu.se/ The benchmark requires all participants to build and train
research/traffic-signs-dataset/download . . . .

Ihttp:fwww.zemris fer.hrssegvic/mastit/ their detector using the training set only. All learning and
datasets.shtml optimization such as classifier training, model selection,

4www.itowns.fr/lbenchmarking.html

5There is actually one traffic sign instance that happenedrtoup twice. Shttp://www.unece.org/fileadmin/DAM/trans/

We did not realize this before the dataset was published conventn/signalse.pdf



Fig. 1. Some example images from the dataset. They représenariance in weather, lighting, and driving scenarios.

TABLE |
A. Methodology
EACH TRAFFIC SIGN IS ASSIGNED TO ONE OF THREE CATEGORIESHE
FOURTH COLLECTION CONTAINS ALL SIGNS WHICH ARE NOT RELEVANT The output of typical object detection algorithms on a
TO THE COMPETITION given image contains a list of rectangular regions of irgere
N _ Each submitted ROK is evaluated against every ground-
@ prohibitory signs truth G by applying the Jaccard similarity coefficiént
A danger signs sne
N
0 mandatory signs J(S,G) = W €[0,1],

= v @@ other signs

using a binanjoss function/, with a threshold€¢.g, J, = 0

if J < 0.6 andJ, = 1 otherwise). If more than one submitted
ROI intersects a ground-truth ROI with a Jaccard coefficient
above the given threshold, the one with maximum value is

design decisions, parameter tunirgfc is performed on used, _the others are ignoreicg., they neither count as hit
the training data. The evaluation data set is solely meaRf" MISS.

for performance assessment and does not contain groundBy choice of a category for the competing detection
truth data. It could be used for semi-supervised [28] and@lgorithm, the set of ground-truth traffic signs is fixed. §hi
transductive learning [29], but this is explicitly not ineth also means that detecting a sign from another but the relevan
scope of our benchmark. The final evaluation as well as ti@tegory is counted as false positive.

comparison with other algorithms is performed separately o

the web serverdf. Sec. IV-B). 7also referred to as Pascal measure



B. Benchmark website |:I E E |:I:| E
We provide a benchmark websitecf( Fig. 2) that

allows participar_lts to evaluate_ their results onlinegg 3. Basic types of Haar wavelet features used for theaviones
http://benchmark.ini.rub.delt requires the upload of a detector.

result file and the selection of a traffic sign category.

Results are computed server-side and displayed instantly
in the precision-recall plot of the particular category. consists of a certain number of weighted 1-dimensional

It is allowed and desired to let the participants providéhreshold classifiers that are fed with a single feature.
several result files to build up a connected front for theqrerf ~ During the stage-wise training, initially selected deitact
mance graph. As this could allow to overfit the parameters @nd false-positive rates are guaranteed to be met by each
the evaluation dataset the number of results a participagt mcascade stage which is trained usiddaBoost[30]. Thus,
upload for one detection method is limited. Furthermore, thone is able to estimate the final performance given the
evaluation during the competition phase is performed onlgumber of stages. The training set for stagés given by
on a subset of the whole ground truth data. The final resul@l positive examples and the false-positives remainirneraf
computed from the complete dataset are revealed after thi@gen—1, where those for the first stage are chosen randomly
competition has ended. from the full images.

To define a linear ranking to nominate a clear winner The real-time capability of the approach is mainly enabled
among the teams we use the area under the precision-redsiltwo properties: Most sliding windows are only evaluated
curve (0 — 100%) as a final score. by the first stages which contain few classifiers/featurbs. T

In conclusion, the server-side evaluation combined witfeatures offered during training are simple Haar-like fite
a given upload limit and a preliminary partial evaluatiorwhich can be evaluated cheaply using a pre-calculated inte-
provides objective assessment of all submitted results ageal image of gray values. In fact, once the pre-calculation
at the same time prevents cheating during the benchmaik. done on the full image, responses of all basic types
However, manual annotation of all evaluation images cannof Haar-like features (see Fig. 3) is computed by 5-8

be efficiently prevented. additions/ subtractions and a single division, indepehdén
position and size.
V. BASELINE ALGORITHMS During detection, the sliding window was scaled to cover

We provide a number of baseline algorithms. These serddl possible sign sizes. In order to achieve robustnessrttsva
as example how the benchmark data is meant to be usi@germediate sized examples, positive samples were ralydom
and will incent the competitive element in the benchmarkcaled within the selected range. The same was done for
initially. We focus on the use of the training set for leamin translation, which is introduced during training to alloor f

and parameterizing these algorithms. larger step sizes of the sliding window.
) 2) Detection based on HOG featurebtistograms of ori-
A. Baseline methods entated gradients (HOG) have been proposed for pedestrian

Three established detection algorithms are providedgtection yielding high performance [11]. They have also
namely: a Viola-Jones detector, a linear classifier based deen successfully applied for other tasks including traffio
HOG features, and a model-based approach representitgfection and classification [9]. Based on image gradients,
several similar algorithms that have been proposed durirgtifferent histograms were calculated: first for small non-
the last years [4], [5], [20]. overlappingcells that cover the whole image and then for

Vision algorithms for driver assistance systems usualliarger blocks that integrate over multiple cells. Computa-
need to fulfill strong real-time constraints. Hence, we drawon of histograms involves strong normalization introihge
a particular focus on real-time capability of the algorithm robustness towards intensity changes. The coarse spatial
evaluated here. This is, however, not required in order ®ampling leads to translation invariance.
participate in the competition. On the contrary, we assume Detection was performed using a sliding-window approach
that the comparison of real-time and non-real-time alparg  at different scales employing a linear classifier. In casttra
can provide important hints for the future development ef fa to the original authors, we trained the classifier usingdime
detectors. discriminant analysis [31] (LDA) instead of using a linear

1) The Viola-Jones detectoiThe detection approach by support vector machine (SVM). The main advantage of LDA
Viola and Jones introduced in 2001 has become one of tiire the given scenario is that no hyperparameter tuning is
most popular real-time object detection frameworks [10]equired.

Original results were presented on the face detection enobl  In order to identify adequate negative examples, the train-
but the approach can easily be transferred to other domaitrsgy was performed iteratively. For the first iteratiof,

The detector is basically a cascade of binary linear classiegative examples were collected randomly from the trginin
fiers which are subsequently applied to the sliding windowet, whereP is the number of positive examples. After
input. An example is passed through the cascade as longagplying LDA, we extended the training set 3y negative
it is positively classified by the current stage. Each stagexamples that were still detected by the current interntedia
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Fig. 2. The web interface during the competitidtttp://benchmark.ini.rub.deThe precision-recall curves of the submitted approachesslaown, as is
the ranking by means of the area-under-curve measure.

classifier. After 10 iterations the final detector is traif@th  deployed and the result is thresholded for the most proniinen
11 - P examples). edges. The remaining set of edge pixels was then searched

3) Model-based methodMost of today’s model-based for triangles and circles by an adapted version of a Hough
methods take advantage of two salient features of traf'f%“me detector.
signs: color and shape. Color is often used to decrease

the problem size and only regard image regions within Regarding the shape detection attempt, we used a Hough-
the desired color range, whereas shape features are thga yoting scheme that searches for exactly as many edge
examined to distinguish traffic signs from other similarlyteatyres in the expected orientation as needed to pinpoint
colored objects. We chose the scheme described in [6] {ge shape’s extent and position (2 edge pixels for cir-
represent several methods from other publications thakWOEIes/ellipses, 3 for triangles). In conclusion, the votacep

on similar principles. is less cluttered and it is easier to locate the maxima

In brief, we applied a pixel-wise transformation to therepresenting detected shapes. The intensity of an edgdaixe
input image resulting in a color likelihood image that yld considered in the weight of its corresponding vote. Thaeefo
every pixel's probability to carry a certain traffic sign ool edges in proximity to traffic sign colors happen to induce
On the transformed image, a Canny edge detector [32] wasonger votes.



Fig. 5. A choice of false positive results of prohibitive ftwow) and
danger sign detection (bottom row).

Fig. 4. Five most significant Haar features selected for tret fitage of
each of the 3 trained detectors.

TABLE I
DETECTION RATE OF ALL ALGORITHMS AT A PRECISION OFL0 %.
B. Setup
. . . Algorithm ® A ®
We used the 600 images of the training dataset to train HOG + LDA | 913 % | 90.7 % | 69.2 %
all baseline approaches independently for three of thet eigh Hough-like | 55.3% | 65.1 % | 34.7 %
subsets. Viola-Jones | 98.8 % | 74.6 % | 67.3 %

The Viola-Jones detector was mainly trained as proposed

by the original authors. Nevertheless, we randomly geadrat

new negative examples after each stage in order to improéPla-Jones method turned out to be very high we addition-
robustness. Moreover, we added a final training step whefdy truncated the classifier cascade in order to achieve a

all missed examples left in the training set are determindygher recall.
by applying the sliding window search. The detection rate of the Viola-Jones approach was highest

Each stage of the cascade was trained until it fulfilled & our pool of methods independent of the chosen category.
detection rate 099% and a false positive rate af%, ending The HOG classifier performed comparably wedf.(Fig. 5
after 10 stages. Our Haar-feature set contains 5 basic tyf@& @ choice of misdetections from the Viola-Jones and the
in 3 scales and all possible positions within the windowOG detector). Itis also notable that the general perfocean
resulting in a pool of 5445 features. The search window wafopped for mandatory (blue circular) and danger signs (red
scaled by a factor of.25 — starting with24 x 24 pixels — triangular). We account this to the higher variability as
and translated by /12 of the respective windows size. rotation and perspective changes have a larger eféegt, (

Refer to Fig. 4 for an illustration of the most salient Haarmandatory signs are placed at differing heights and angles
features. The evaluation of the Viola-Jones detector isdasdue to the corresponding lane). Both the model-based and
on our own implementation. Nevertheless, there is oneyfreefne HOG method could handle this difficulty better due to
available within the OpenC/library. the use of higher-order shape features.

For the HOG feature approach, we used the implemen-In summary, a classic general-purpose detector yielded
tation provided by Dalal and TrigdsWe employed HOG Very promising results and clearly outperformed a state-of
cells of size5 x5 pixels and a block size dfx 2 cells. For the-art model-based approach. However, the performance on
the search window we considerég6 cells which translates special subsetse(g, mandatory signs) is yet too low for a
to a sizes of30 x 30 pixels. Detection was performed on anPossible industrial application.
image pyramid with scale factorg2’ wherei =0, ..., —5.

For the model-based approach, we found the YUV color
space to yield best results in preliminary experiments (in The competition attracted 18 teams between the middle
accordance with [6]). All traffic sign examples from theof February and the end of March 2013 to submit over 110
training set were segmented to capture their main coloesults to the online evaluation system. 6 teams decided to
(red or blue). The medians of each sign’s color values apublish their approaches in papers that were accepted for
afterwards used as the centers of a mixture of Gaussiapgblication in the IJCNN proceedings. As a glimpse to the
distribution that provide the pixel-wise probability fona variety of methods we asked the three best-performing teams
initial image transformation. to summarize their work for this paper: [33], [34], [38].

VI. COMPETITION ALGORITHMS AND PERFORMANCES

C. Results A. Team LITS1

We assessed the proposed algorithms on the three Cate"I'he model is divided into two modules: the ROI extrac-
gories of the evaluation datasetf( Sec. IV for the per-

. t'Pn module and the recognition module. The ROl module
formance measure). In order to construct precision-recall . o common bproperties of sian borders in each
frontlines for all methodsdf. Fig. 6, 5, cf. Tab. Il), we P prop g

chose varying thresholds on the classifier output (HOGE@tegory’ and considerably reduces the search space with

Hough vote (model-based approach), and the answer of t gh efficiency for further processing. It consists of three

final classifier stage (Viola-Jones). Since the precisiothef steps. The first step is th? pixel-wise colpr classification,
which transforms the color images to gray images such that

8http://opencv.willowgarage.com _the ch_aracteristic color for the traff_ic sigr_ls is denotedigh h
Shttp:/Aww.navneetdalal.com/software intensity and other colors as low intensity.
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Fig. 6. Precision-Recall plots of all baseline algorithmmstbe chosen categories.

The second step conducts shape matching over the gr TABLE I
p p g g (a.:XMPETITION RANKING BY AREA-UNDER-CURVE(AVERAGE OVERLAP)

images to find the possible sign locations. The third step

refines the ROIs. The recognition module performs finer Team

Prohibitive

Danger

Mandatory

validations over the ROIs and generates the final detectionwgy@HIT501

results. It extracts HOG (histogram of oriented gradients) Iiﬁ'gi

and color histograms from each ROI, and concatenates themggjognacvLab

100% (91%)
100% (88%)
100% (87%)
99.98% (85%)
98.11% (82%)

99.91% (86%)
100% (87%)
98.85% (86%)
98.72% (87%)

99.78% (86%)
96.55% (86%)

100% (79%)
96.98% (90%)
92% (89%)
95.76% (86%)
86.97% (82%)
97.62% (85%)
96% (89%)

to obtain a rich and robust representation of traffic sign  NII-UIT
appearance. Support vector machines are trained on them m"ﬂn
and used to judge whether a ROI is a target sign or not.
Viola-Jones
HOG + LDA
B. Team VISICS Hough-like

90.81% (88%)
70.33% (78%)
26.09% (76%

46.26% (84%)
35.94% (79%)
30.41% (68%)

44.87% (88%)
12.01% (77%)
12.86% (78%)

Recently, variants of the integral channel features detect
have shown excellent results in terms of speed (50 fps) ) o
and quality for the task of pedestrian detection, improving 1he features used in the two filterings are both HOG,
over most existing methods [35], [36]. Since traffic signs arand the classifiers used are LDA and IK-SVM respectively.
rigid objects designed to be recognizable, a detector bastfe baseline is enough to give high recall and precision for
on a single template, such as the channel features detecRjPhibitory signs, while some extra steps are needed for the

initially proposed by Dollar et al. [37], seems to fit theother two categories. For danger signs, we perform progcti
requirements. adjustment to the ROIs and re-classify them with HOG and

Three classifiers are trained, each for one category SVM. For mandatory signs, we train a class-specific SVM for

the GTSDB. The training time per classifier is around 4&2ch class of mandatory sign, and if any of the SVMs outputs

minutes. Traffic signs are detected using a sliding windoRSitive response for a ROI, then the ROI is determined to
approach. Besides searching traffic signs at differenescal be a true positive. _Expenmental resuIFs_ show the proposed
we also search for signs with different aspect ratios. Thi@€thod give very high recalls and precisions for all theehre
helps to detect slightly rotated traffic signs (around th&3t€gories, but the processing time for.on(.a image is several
gravity axis) by approximating the correct perspectivedgra S€CONdS, not enough for real-time application.

formation. Each detector runs at 2.5 Hz. Using techniqugs Results

like approximating nearby scales, multi-scale models enev

ST . Table 11l shows a ranking of the seven leading teams for
approximating nearby ratios, we expect the be able to reach C .
. . €ach traffic sign category. Three teams managed to achieve
a much higher detector speed as shown in [35].

perfect results in a category. The salient algorithms bfear
C. Team wgy@HIT501 outperform our baseline methods (as they Were_me_ant to).
. _ ~ One can also observe that the mandatory traffic sign are
We present a coarse-to-fine algorithm for traffic sigmarder to detect. This can be attributed to their blue color
detection. Firstly, it roughly finds out all candidate RO#s i shades, that seems to be hard to distinguish in natural scene

a 20 x 20 sliding window, which referred to as the coarsend the fact that they are installed near the ground which
filtering; secondly, the candidate ROIs are resized t0x40 might make them prone to vandalism.

40 windows and further verified, which referred to as the

fine filtering; finally, non-maximal suppression is perfodne VII. CONCLUSION

to suppress multiple nearby ROIs. The coarse filtering is Traffic sign detection is a challenging computer vision task
capable to find out even the smallest signs in the imagesf high industrial relevance. However, good benchmarks for
but it also outputs many false positives, which are mostliraffic sign detection algorithms have been missing so far. W
filtered out in the fine filtering. therefore presented a large real-world data set for evatyat



such algorithms together with a reasonable performan¢ss)
metric, baseline results, and a web-interface for comparin

approaches. We attracted 18 teams to a participate in a
competition held at [JCNN 2013. [17]

The publicly available data comprises a training set con-
taining manual annotations as ground-truth and an evaluati
set. The results on the latter were reported through a web-
interface that provides immediate feedback about the ow#f]
performance compared to all other participants. In our as-
sessment scheme, we allow to measure the performance on
relevant subclasses of signs to benchmark different types [4°!
traffic sign detectors.

We have implemented a number of baseline algorithnigo]
that we consider to cover the currently favoured techniques
However, they fall short on the performance of the prominenjy;
competition algorithms. Regarding the variety of drivimgla
weather conditions these results are very promising and wil
hopefully take a strong influence on the development gf
general-purpose industrial traffic sign detection systems
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