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Video-based Trailer Detection and Articulation Estimation

Lukas Caup1, Jan Salmen1, Ibro Muharemovic2, and Sebastian Houben1

Abstract— Even for experienced drivers handling a roll
trailer with a passenger car is a difficult and often tedious
task. Moreover, the driver needs to keep track of the trailer’s
driving stability on unsteady roads. There are driver assistance
systems that can simplify trajectory planning and observe the
oscillation amplitude, but they require additional hardware.

In this paper, we present a method for trailer detection and
articulation angle measurement based on video data from a
rear end wide-angle camera. It consists of two stages: to decide
whether or not a trailer is coupled to the vehicle and to estimate
its articulation angle. These calculations work on single video
frames. The vehicle is therefore not required to be in motion.
However, we stabilize the single frame estimations by temporal
integration.

We perform training and parameter optimization and eval-
uate the accuracy of our approach by comparing the results
to those of an articulation measurement unit attached to a
test vehicle’s hitch. Results show that it can very reliablybe
determined whether or not a trailer is coupled to the vehicle.
Furthermore, its articulation can be estimated with a mean
error of less than two degrees.

I. INTRODUCTION

Today’s vehicles possess a variety of advanced driver
assistance systems to provide comfort and security in dif-
ficult driving situations. These systems include traffic sign
detection, emergency braking, lane control, blind spot assist
and others. Assistance systems do exist for trailers, however,
today they are deployed in trucks only since they require
additional hardware. Nevertheless, most passenger car drivers
do also consider handling a trailer as a difficult and cumber-
some driving situation.

There are several situations that deserve special focus:
Manoeuvring in narrow spaces, e. g. , in parking scenar-
ios [1], requires careful handling of the vehicle to control
the trailer’s trajectory. This includes avoidance of jackknife
where the trailer becomes uncontrollable [2] after exceeding
a certain articulation angle. Furthermore, if the trailer starts
to oscillate, especially on higher speed, a routine situation
can quickly become dangerous [3].

In all these scenarios an accurate measurement of the
trailer’s articulation angle with respect to the vehicle is
substantial in order to predict the upcoming trailer trajectory
and pass that information to the driver. Additionally, the
oscillations over time should be tracked to raise a warning if
the amplitude or oscillation rate exceeds a given threshold.

In this paper, we propose to measure this angle with a
rear-view fisheye camera. This hardware and some general
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Fig. 1: An example image for articulation estimation. The
trailer’s shadow creates a symmetric structure (upper right
corner) in the transformed image (logarithm shown) that may
be confused with the drawbar axis, as it creates strong edges
whereas the drawbar itself is hard to detect. This situation
confirms the need for a relative brightness measure and a
careful selection of all symmetry maxima.

computation unit can be found in today’s medium-sized
vehicles as they are used in situations like backup control
or obstacle recognition during parking.

We present a simple and fast video-based trailer assistance
framework while relying solely on this built-in hardware
aiming at middle and upper class vehicles that are occasion-
ally used for trailer tours. Our approach makes very little
assumptions on the trailer’s visual appearance, namely, it
only expects the drawbar to be symmetric. This rather general
detection approach allows for an application on arbitrary
trailer models with no need for training data.

II. RELATED WORK

Video-based driver assistance systems are increasingly
important for intelligent vehicles. Today’s systems already
make use of many different camera systems (e. g., monoc-
ular/stereo, grayscale/Bayer-pattern, visible light/infrared,
etc.) that can be mounted at different positions and with
different perspectives. For reasons of pedestrian safety the



USA will soon introduce an obligation for rear-view cameras
in every new vehicle [4].

The use of wide-angle (fisheye) cameras is especially
promising since the observable surrounding is much larger
with nearly identical hardware costs. Installing two (up
to six) fisheye cameras, a complete view of the vehicle’s
surrounding can be provided eliminating blind zones for the
driver, cf. [5][6][7]. For a detailed overview over technical
aspects like distortion correction and transformations, we
refer to [8].

Fisheye images available in a car can not only be displayed
to the driver – but also computer vision algorithms can
be employed in order to allow for advanced assistance
applications. Wide angle cameras have been used for rear-
view lane detection [9], for intersection assistance [10],and
for obstacle detection [11][12], just to name a few. The
strong distortion has to be accounted for in specialized image
processing algorithms that usually are more demanding in
term of computation costs than their pendants on narrow-
angled cameras.

As soon as rear-view cameras are applied in a growing
number, it stands to reason also to consider these for trailer
monitoring. Taking into account the relatively short distance
between the car’s rear end and the trailer, wide angle cameras
are particularly suited for this application.

To our best knowledge, there is no study yet considering
video-based trailer detection and estimation of articulation
angle. However, there are patents that cover contactless
sensing in general for detection [13] and articulation estima-
tion [14]. Another patent considering video-based articula-
tion estimation has been applied [15] but remains unspecific
on the image processing pipeline. The authors solely present
a tracking algorithm for a trailer with an artificial pattern
attached. In the paper at hand, no assumptions about the
trailer appearance are made. Nonetheless, the algorithm pa-
rameters do implicitly contain information on a coarse scene
representation (e.g. the position of the hitch, the maximum
length of the drawbar within the image)

III. METHOD

The procedure consists of two subsequent steps: the detec-
tion stage determines whether or not a trailer is coupled to
the vehicle, in that case the second step estimates the coupled
trailer’s articulation angle, and subsequently the articulation
angle is integrated over time and the most plausible hypoth-
esis is selected. The only information provided a priori is the
image position of the hitch. We do not make any assumption
about the trailer’s appearance.

A. Detection of trailer

Knowing the hitch’s position in the camera image the
detection of a trailer can straightforwardly be solved by ex-
amining its surrounding (cf. Fig. 2a). To learn the appearance
of asphalt and other ground structures we chose a subset of
image sections around the hitch from sequences recorded
without a trailer attached and clustered them tok centers

by Kruskal’s algorithm with the normalized cross-correlation
coefficient (NCC) as distance function.

The resulting average image sections are prototypes for
different pavement textures (cf. Fig. 4). If this very image
section from an unknown frame is to be classified the highest
of its NCCs with all the prototypes can be regarded as a
likelihood of the absence of a trailer.

For the choice of an adequate training image set as well as
the parametersk and a thresholdτ for the resulting likelihood
we refer to section IV.

B. Estimation of articulation angle

Since we do in general not have any information about
the trailer’s appearance, we decide to take advantage of
the symmetric geometry of the trailer drawbar at least in
proximity to the hitch. To simplify this task, we take an
image section around the image position of the hitchC

and calculate polar coordinates assigning a pixel(φ, r) with
angle φ to the image row and distancer to C the gray
value of the respective image pixel. The result is shown in
figure 2b.

The symmetry search now reduces to a linewise search
with an inspection of all columns as possible symmetry axis
at the end.

Depending on weather conditions the trailer’s drawbar
often is shadowed by its setup. It is therefore imperative
to apply a relative intensity difference model. We decided to
take the natural logarithm of every pixel’s intensity value
mimicking the human relative brightness perception. The
resulting image is processed by a gradient operator. We only
take those pixels into account whoseφ-component, i. e., the
horizontal direction in figure 3a, exceeds ther-component,
i. e., the vertical direction, by a given factorα. This favours
edges that are aligned radial to the hitch. We foundα = 2
to work fine. A result of this step is shown in figure 3d.

The symmetry measure is now taken by a voting scheme
that linewisely (containing pixels with equal radial distance
to the hitch) regards all pairs of pixels with significant
gradient magnitude and votes for their respective centre.
These pixels are determined by linewisely selecting then

ones with the highest magnitude.
The vote image has the same size as the gradient image

before and accumulates possible symmetry axes. An example
is shown in figure 3e.

To determine the column with the dominant symmetry axis
it is not sufficient to sum over all columns and subsequently
take the maximum vote weight. A common source of false
angle estimations is the presence of other symmetric struc-
tures receiving high symmetry votes as well. These structures
can be distinguished from the drawbar’s symmetry axis since
their votes do not fill the whole column (refer to figure 1 for
an example). However, depending on the magnitude of their
edges the sum of all votes in that incorrect column can be of
significant weight. We therefore calculate thep-quantile of
all vote values in all columns to have a more robust estimator
of the column’s overall magnitude.



(a) (b)

Fig. 2: 2a The surrounding of the hitch that is taken into account for detecting the presence of a trailer. 2b The definition
of the polar coordinate system to transform the area around the hitch for later symmetry analysis.

C. Temporal integration and plausibility check

To stabilize the angle measurements we apply an alpha-
beta filter [16] that can predict future angle articulationsby
a simple constant velocity model which we feed back into
the symmetry detection process by only looking for the next
maximum in a vicinity of the predicted angle.

IV. EXPERIMENTS

We test our algorithm on15 sequences with2 different
trailers recorded in Michigan, USA. The driving scenarios
encompass slow manoeuvring with trailer articulation angles
up to 50 degrees with respect to the driving direction as well
as road and freeway situations at moderate velocity. The lat-
ter were recorded in natural traffic situations. Since weather
and lighting conditions are always critical when doing real-
world image processing, the test sequences also comprise
both scenes with bright sunshine (and strong shadows) and
cloudy weather. We therefore claim that the main areas of
application for our system are covered.

The computations were performed on an Intel i7 at 2.00
GHz on a single core. We reached an average performance
of 15 ms for the entire processing pipeline, trailer detection
and articulation estimation.

A. Trailer detection

Table I gives an overview about the distribution of se-
quences to test, training, and prototype set. The naming is
used throughout this subsection.

1) Clustering prototypes:To generate a representative
collection of prototypes we choose a subset of three se-
quences without trailer extracting150 image sections (PRO-
TOTYPE SET). For the number of cluster centresk we ex-
aminedk ∈ {1, 2, 5, 150}. Figure 4 shows the cluster centres
of k = 5 clusters. We learn that it already contains clusters
with only one example. Table II shows the best classification
performance achieved on the training sets (cf. Sec. IV-A.2).
Refer to figure 5 for a detailed analysis of the performance
for different choices of the NCC threshold andk. Inspecting
the false classifications also reveals that they do rarely occur

TABLE I: Separation of training and test dataset for trailer
detection performance

#sequences
(#frames)

without trailer

#sequences
(# frames)
with trailer

PROTOTYPE SET 3 (150) –

TRAINING A 1 (200) 1 (200)

TRAINING B 3 (600) 3 (600)

TEST 2 (200) 2 (200)

TABLE II: Performance regarding several number of proto-
types

#Clusters

Dataset

k = 1 k = 2 k = 5 k = 150

TRAINING A 99.3% 99.5% 92.5% 91.8%

TRAINING B 95.1% 96.1% 87.3% 82.1%

in consecutive frames. It is therefore safe to say that the use
of one or two cluster centres describes our prototype set best
and yields an excellent classification performance.

2) Parameter choice:For parameter choice we selected
two training sets consisting of two sequences (TRAINING A,
one with trailer, one without) and six sequences (TRAINING
B, three with trailer, three without), respectively. None of
these sequences coincide with the ones used for prototype
clustering. By evaluating the algorithm trained on a small
and a large training dataset we want to gather insight on
how well the method generalizes to unknown situations and
how stable the parameters can be set. Figure 5 shows the
classification performance (trailer vs. no trailer) for different
NCC thresholds andk. We can state that a NCC threshold
from [0.35, 0.5] combined with one or two representative



(a) Image section from figure 2b in polar coordinates

(b) Its logarithm

(c) Median filtering

(d) Salient gradients with high x component

(e) Symmetry measure on the gradients
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(f) Columnwisep-quantile of above symmetry image. The
column index of the maximum corresponds to the trailer’s
articulation angle.

Fig. 3: The processing line for estimating the articulation
angle

Fig. 4: Five of the prototype images that were clustered from
hitch surrounding image sections. The cluster corresponding
to the rightmost prototype did only consist of one example.

Fig. 5: Classification performance on TRAINING A and
TRAINING B with varying NCC thresholdτ for different
number of clustersk.

prototypes is a good choice as it results independently from
both training datasets. The course of the classification perfor-
mance w. r. t. the NCC threshold is in both cases comparable
which demonstrates the robustness and generality of our
parameter choice.

B. Articulation estimation

To gather ground truth about the trailer’s articulation
we deployed a mechanical measurement unit at the hitch
recording both video and articulation data. Since the unit was
not available in all sequences we collected further ground
truth by manually marking the drawbar in every video image.
By this means we arrive at 4 sequences for training or
parameter choice and 3 for testing.

The estimation procedure is parametrized with several
quantities and optimizing them all is infeasible. However,
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Fig. 6: Average error of angle estimation w. r. t. several parameters. Cases in which the drawbar could not be tracked are
shown as empty bars. (6a) Average error of angle estimation w. r. t. the size of the considered hitch vicinityrmin, rmax.
(6b) Average error of angle estimation w. r. t. the number of salient gradientsn and the columnwise symmetry quantilep.

(6c) Average error of angle estimation w. r. t. the parameters α, β of the temporal filter

we expect the parameters with the greatest influence on the
estimation result to be

• the number of salient gradientsn that vote for their
respective symmetric centre

• the quantilep of symmetry votes that is calculated for
each column in the vote image

• the circular surrounding defined byrmin and rmax of
the hitch that is considered for symmetry measures
(cf. Fig. 2b)

• the alpha-beta filter’s noise and uncertainty parameters
α andβ

Other values like the sample density of the semi-circle do
not play such an important role if not chosen too coarse. We
evaluate the estimation error on the training set for different
pairs ofp, n, rmin, rmax, α, andβ. The results are shown
in figure 6.

Regardingrmin and rmax we conclude that our method
performs best when examining a large vicinity around the
hitch. As a matter of fact, the best values are achieved
for rmax = 500 pixels which takes the whole drawbar
into account. This is even more noteworthy as one would
expect shadows to have a stronger negative influence on the
measurement the larger the vicinity becomes.

Figure 6b reveals thatp is a crucial parameter to the
articulation estimation and does, as we expected, highly
depend on the number of salient gradients. In fact, the choice
of p affects how robust the measurement is against local
symmetric structures (cf. Fig. 1).

The tests with varyingα andβ were performed with the
optimal parametersrmin, rmax, n, andp that were computed
beforehand.

V. RESULTS

A. Trailer classification

In view of the results of the parameter training in section
IV we choosek = 2 prototypes,τ = 0.5 via TRAINING A,
andτ = 0.4 via TRAINING B respectively. The test setup is

TABLE III: Classification performance in test scenarios

Sequence Detection rate
(no trailer)

Detection rate
(trailer)

TEST A

(τ = 0.5)

76.5% 100.0%

TEST B

(τ = 0.4)

99.5% 95.0%

composed of 4 sequences with 400 frames (200 with trailer,
200 without).

We learn that the parameters from TRAINING A are
insufficiently precise to achieve a reasonable result during
this test scenario (cf. Tab. III). Nonetheless, the results with
the more complete training set TRAINING B are very
promising. We conclude thatτ is indeed crucial to the algo-
rithm performance and parameter training should therefore
be based on an adequately large data set. The strong model
assumptions,k = 2 cluster centres, lead to a nearly identical
performance between test and training data set as the latter
is strongly generalized by the clustering algorithm. Closer
inspection of incorrectly classified images in TEST B reveals
that errors seldom occur on consecutive frames. We can
therefore consider this problem solved.

B. Articulation estimation

Examining the findings from section IV-B we apply
rmin = 0, rmax = 500, n = 32, p = 0.6, α = 0.5, and
β = 0.5 as parameter test settings. Table IV shows that
the average absolute deviation on angle measurements is
at about 1.95degrees. Figure 7 shows the temporal course
of the GT angles and their respective estimation. Since
our algorithm provides angles in image coordinates, we
introduced a mapping between the measurements of the
mechanical unit and manually labelled articulations by an
affine function.
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Fig. 7: Average error of angle estimation in test sequences over time.

TABLE IV: Overall angle estimation performance on test
sequences. The asterisc marks the sequence wih ground truth
determined by the mechanical measurement device.

#Frames Scenario Avg. Estimation
error [◦]

(maximum error)

TEST A 277 slow
manoeuvring

2.19± 1.19 (5.48)

TEST B 977 countryside
driving

1.69± 1.38 (7.55)

TEST C (*) 826 slow
manoeuvring

1.97± 1.64 (5.78)

Total 2080 1.95

VI. DISCUSSION AND FUTURE WORK

In order to test the method’s ability to predict trailer in-
stability we want to perform longer test drives. Additionally,
the use of other than the tested cameras should be considered
in order to examine if the proximity of the hitch implies the
need for wide-angle cameras or if a narrow-angle camera
will suffice as these are currently installed more often in
today’s middle-class vehicles. Furthermore, different camera
positions should be taken into account.

We were able to show that trailer monitoring with wide-
angle cameras is a promising solution to provide trailer safety
applications for middle-class vehicles with the necessary
hardware that are occasionally used for trailer drives. De-
tection and tracking of the trailer’s drawbar has been proven
to be a reliable and general method. The parametrization of
the proposed algorithm was shown to be stable with respect
to different weather and lighting conditions as well as the
attached trailer model.
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