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Generating motor behavior

> behavioral dynamics
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behavioral constraint: target acquisition

Behavioral dynamics: example
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behavioral constraint: obstacle avoidance

Behavioral dynamics: example
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bifurcations in obstacle avoidance and target 
acquisition

constraints not in conflict

Behavioral dynamics
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constraints in conflict
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transition from “constraints not in conflict” 
to “constraints in conflict” is a bifurcation
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each microphone samples heading direction
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and provides input to the field
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detection instability on a phonotaxis robot



target selection on phonotaxis vehicle



robust estimation



tracking



memory & forgetting on phonotaxis vehicle



a robotic demo of all of instabilities



back to attractor dynamics of heading

couple peak in direction field into dynamics of 
heading direction as an attractor

Behavioral Dynamics

behavioral dynamics ⌅̇ is driven by the motor
planning field
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=> transition from DFT to DST

peak specifies value for a 
dynamical variable that is 
congruent to the field 
dimension

dimension

activation
field

specified value

peak position



from DFT to DST

treating sigmoided field 
as probability: need to 
normalize 

=> problem when there is no 
peak: devide by zero! 
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from DFT to DST
solution: peak sets attractor

location of attractor: peak location

strength of attractor: summed supra-threshold activation

xpeak =
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from DFT to DST
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=> Bicho, Mallet, Schöner (2000)

this is how target acquisition is integrated into 
obstacle avoidance on the robot



Piaget’s A not B paradigm: “out-of-sight 
-- out of mind” 
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A B
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Toyless variant of A not B task

toy to be hidden [24]. Directing attention to an in-view
object (A) heightens activation at the location and, in the
experiment, infants reach to that continually in-view
object. Subsequently, when the experimenter directs
attention to a different nearby in-view object (B), infants
watch, but then reach back to the original object (A).

Experimenters have also made the error vanish by
making the reaches on the B trials different in some way
from the A trial reaches. In the model, these differences
decrease the influence of the A trial memories on the
activations in the field. One experiment achieved this by

shifting the posture of the infant [24]. An infant who sat
during the A trials would then be stood up, as shown in
Fig. 3 , to watch the hiding event at B, during the delay and
during the search. This posture shift causes even 8- and
10-month-old infants to search correctly, just like
12-month-olds. In another experiment, we changed the
similarity of reaches on A and B trials by putting on and
taking off wrist weights [25]. Infants who reached with
‘heavy’ arms onA trials but ‘light’ ones on B trials (and vice
versa) did not make the error, again performing as if they
were 2– 3 months older. These results suggest that the
relevant memories are in the language of the body and
close to the sensory surface. In addition, they underscore
the highly decentralized nature of error: the relevant
causes include the covers on the table, the hiding event,
the delay, the past activity of the infant and the feel of the
body of the infant.

This multicausality demands a rethinking of what is
meant by knowledge and development. Do 10-month-
old infants know something different when they make
the error compared with when they do not? The answer
is ‘yes’ if we conceptualize knowledge and knowing as
emergent, that is, made at a precise moment from
multiple components in relation to the task and to the
immediately preceding activity of the system. What do
12-month-olds know that 10-month-olds do not? There
can be no single cause, no single mechanism and no
one knowledge structure that distinguishes 10-month-
olds from 12-month-olds because there are many
causes that make the error appear and disappear.
Instead, both 10-and 12-month-olds can be regarded as
complex systems that self-organize in the task. How-
ever, just as trial dynamics are nested in task
dynamics, so are task dynamics nested in develop-
mental dynamics.

Developmental dynamics
The A-not-B error has been important to developmental
theory because it is tightly linked to a few months in
infancy. However, the neural field model suggests that the
dynamics that create the error in infants are basic
processes involved in goal-directed actions at all ages.
Indeed, by changing the task, researchers can make
perseverative errors come and go in older children and
adults, just as in infants. Recently, Spencer and colleagues

Fig. 2 . (a) The time evolution of activation in the planning field on the first A trial.
The activation rises as the object is hidden and, owing to self-organizing properties
in the field, is sustained during the delay. (b) The time evolution of activation in
the planning field on the first B trial. There is heightened activation at A before the
hiding event, owing to memory for prior reaches. As the object is hidden at B, acti-
vation rises at B, but as this transient event ends, owing to the memory properties
of the field, activation at A declines and that at B rises.

TRENDS in Cognitive Sciences 
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Fig. 3 . An infant sitting for an A trial (left) and standing for a B trial (right). This
change in posture causes younger infants to search as 12-month-old infants do
(see text for details).
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[Smith, Thelen et al.: Psychological Review (1999)]



Toyless variant of A not B task 
reveals that A not B is essentially a 

decision task!
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[Smith, Thelen et al.: Psychological Review (1999)]
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[Dinveva, Schöner, Dev. Science 2007]
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Instabilities

detection: forming and initiating 
a movement goal

selection: making sensori-
motor decisions

(learning: memory trace)

boost-driven detection: 
initiating the action

memory instability: old infants 
sustain during the delay, young 
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Instabilities

detection: forming and initiating 
a movement goal

selection: making sensori-
motor decisions

(learning: memory trace)

boost-driven detection: 
initiating the action

memory instability: old infants 
sustain during the delay, young 
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DFT of infant perseverative reaching

[Dinveva, Schöner, Dev. Science 2007]



DFT of infant perseverative reaching

[Dinveva, Schöner, Dev. Science 2007]

memory trace



DFT of infant perseverative reaching

[Dinveva, Schöner, Dev. Science 2007]

perseverative
errors



in spotaneous 
errors, activation 
arises at B on an A 
trial

which leads to 
correct reaching on 
B trial

spontaneous
error correct on B!

DFT of infant perseverative reaching

[Dinveva, Schöner, Dev. Science 2007]



that is because 
reaches to B on A 
trials leave memory 
trace at B

spontaneous
error correct on B!

DFT of infant perseverative reaching

[Dinveva, Schöner, Dev. Science 2007]



DFT is a neural process model

that makes the decisions in each individual trial, by 
amplifying small differences into a macroscopic stable 
state

and that’s how decisions leave traces, have consequences



spontaneous errors 
promote 
spontaneous errors
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summary: instabilities

detection: forming and 
initiating a movement 
goal

selection: making sensori-
motor decisions

boost-driven detection: 
initiating the the action

learning: memory trace 

working memory: 
sustaining a delay

A trial

delay

A B

A B

Toyless version of A not B 
(Smith, Thelen, et al., 1999)



Embodied A not B

implementing the A not B model on a autonomous 
robot with continuous link to sensory and motor 
surfaces...

The A-not-B Task for the Robot

ego-position �

start specific cue delay turns to target

six A trials are presented: response is typically correct

ego-position �

start specific cue delay turns to target

on the B trial: perseveration or A-not-B error
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Visual input

color-based segmentation

summing color pixels within color slot along the 
vertical 

spatially filter at two resolutionsPerception: Vision
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low level visual input is the sum of two
point-spread functions S = S1 + S2:
localized input S1 specifies target positions & amplitudes

broad smeared input S2 general scene attractiveness
ICPA–June 14, 2007 6



Dynamic field

defined over direction in the world

(requires coordinate transform from retina 
based on dead-reckoning)

Frame Transformation:
Retinal ⇥�World Coordinates
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Motor dynamics

couple peak in direction field into dynamics of 
heading direction as an attractor

Behavioral Dynamics

behavioral dynamics ⌅̇ is driven by the motor
planning field
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“Read-out” by generating  attractor 
dynamics for motor system

peak specifies value for a 
dynamical variable that is 
congruent to the field 
dimension

dimension

activation
field

specified value

peak position



treating sigmoided field as 
probability: need to 
normalize 

=> problem when there is no 
peak: devide by zero! 
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peak position
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solution: peak sets attractor

location of attractor: peak location

strength of attractor: summed supra-threshold activation
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result: reproduce fundamental 
age-delay trade-off in A not B

young old

AUTONOMOUS ROBOT: A -NOT-B—JUNE 13, 2010 7

(a) mid-aged robot (b) older robot

Fig. 7. Motor planning field on trial B 1 for the mid-aged (hrest = �9, at 7
sec. delay) and older (hrest = �7, at 11 sec. delay) robot.

Compared to the youngest robot (hrest = �12, Fig. 6b), the
mid-aged robot (hrest = �9, Fig. 7a)) sustains cue activation
for a longer period. In both cases the cue peak decays com-
pletely during the given delay, which is 7 seconds for the mid-
aged robot but only 3 seconds for the youngest one. Therefore,
solely the preshape at A provides some input that makes a
decision peak likely at A when at the end of the delay, the
task-flags are moved close and induce a homogeneous boost.
In contrast, the oldest robot (hrest = �7, Fig. 7b) responds
correctly because the cue peak remains above threshold even
after a long delay of 11 seconds. Note that the peak drops
off early in the delay but remains unchanged thereafter. The
robot’s dynamics operates in a qualitatively different regime
in which a peak is a stable state solution. This arises when
the neural interactions are strong enough to overcome the pull
from the less negative resting level. An even higher resting
level brings the dynamics into a different regime where it can
self-sustain an activation peak even without additional input
[16]. This is the case for the old robot (Fig. 7b). Such a peak
directs a turn to B after any delay and despite a strong motor
trace at A .

The graded nature of decision-making can be observed
when for the younger robots the delay at which they persever-
ate is shortened. This leads to a situation where a persistent
preshape trace at A competes with some residual cuing
activation at B . The shorter the delay is, the more activation
is at B , and the more likely is a correct response when the
boost translates the differences of sub-threshold activation into
a selection decision. For example, for the mid-aged robot
(Fig. 7a) activation at B is quite strong at 3 seconds after
cuing. Thus, if the delay were interrupted then or earlier by
placing task-flags close, a correct response is very likely (not
so for youngest robot in Fig. 6b, where interactions are weak
and the peak has decayed entirely after 3 seconds). As the
delay progresses, the peak at B gradually decays. Thus, an A -
not-B error becomes more and more likely the later a decision
is induced. The decay of cuing peak translates into a graded
dependence of perseveration on the delay. The younger the
robot is, the weaker are its neural interactions, and the quicker
the cue peak decays . This is younger robots more A -not-B
errors at shorter delays.

2) Statistical Results: Implementing the DFT account of
infant development in A -not-B [1] on the robot—neuronal in-
teractions strengthen over development—replicates the infant
age-delay effect [10], [15]. Its major characteristics result from

AUTONOMOUS ROBOT: A -NOT-B—MARCH 6, 2010 7
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resting level hrest=−12

 

 

delay = 0
delay = 1
delay = 2
delay = 3
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max

inputs

Fig. 8. Fig. 4 in SpontErrorsCompetition of specific cue and preshape
activation in the motor planning field during the delay period of the first
B trial in a simulation of the young model (hrest = �12) without noise.
Snapshots of the motor planning field at different fixed times (gray scale
coded, cf. legend) demonstrate the decay of cuing activation. Without delay,
the strong peak at B (darkest solid curve) is induced by the just-recent cue
presentation. This activation decays (lighter solid curves) and converges to the
task and preshape inputs (doted curve) that are persistent during the delay.
Because of previous reaches to A , the maximum of preshape plus task input is
at A (it is marked by the dashed line for better comparison with the decaying
peak at B ). The field activation at the recently cued B location fades away
during the delay and eventually drops slightly below the preshape plus task
input maxim at A (lightest solid curve at B is below the dashed line). How
the differences of activation at A and B translate into probabilities to reach
at either location is explained in the text.

Thus, the longer the delay is, the more likely is a
�
A similar mechanism leads to a graded dependence of

perseveration on the delay. When the delay is short, there
stolen from spontaneous errors paper with minor edits:

A similar mechanism leads to a graded dependence of perse-
veration on the delay, as illustrated for the mid-aged robot in
Figure 8. It shows the average activation pattern for different
delay durations. Field activation has two sub-threshold peaks,
one at A and one at B (from task and preshape input
plus decaying cue activation). However, perceptual and neural
noise distorts the actual activation levels. When the boost
rises activation in the entire system homogeneously, piercing
the interaction threshold will set up a cascade of neural
interactions that then will stabilize a localized peak where the
threshold is hit first. The location with higher sub-threshold
activation is likely to be selected simply because it is closer to
the interaction threshold. The less activated sub-threshold peak
is selected with lower probability, because it needs a larger
and thus less likely stochastic kick to win the competition.
The difference in sub-threshold activation levels thus translates
into a difference in selection probabilities. Given that shorter
delays lead to more activation at the cued side, this explains
how the probability of selecting the cued B location increases
with shorter delays.

An even higher resting level brings the dynamics into a
different regime where it can self-sustain an activation peak
even without additional input [16]. This is the case for the old
robot (Fig. 7b). Such a peak directs a turn to B after any delay
and despite a strong motor trace at A .
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Fig. 7. Age-delay interaction for the robot. The percent perserveration on
B and correct responses on A (y-axis) are plotted for different delay lengths
(x-axis) and colors code for the different resting levels (legend for hrest). The
tested delay-hrest combinations are connected by solid lines. The dashed lines
are continuations that indicate the expected performance for other delays (see
text for discussion).

(a) mid-aged robot (b) older robot

Fig. 8. Motor planning field on trial B 1 for the mid-aged (hrest = �9, at 7
sec. delay) and older (hrest = �7, at 11 sec. delay) robot.

directly allows for a stronger self-excitation. Figure 8 shows
how fields with stronger interactions integrate the specific cue
input that comes from the cue-flag.

Compared to the youngest robot (hrest = �12, Fig. 6b),
because of support from stronger interactions for the mid-aged
robot (hrest = �9, Fig. 8a)), the cue persists for a longer
period—note that the delay is 7 seconds for the mid-aged
robot, versus the base-line of 3 seconds for the youngest one.
In both cases, however, the cue-activation decays fully during
the given delay. Therefore, solely the preshape at A provides
some input that makes a decision peak likely at A when at the
end of the delay, the task-flags are moved close and induce
a homogeneous boost (recall that this corresponds to pushing
the hiding box into reaching space in the infant experiments).
The boost translates sub-threshold activation into a stable
selection decision that is maintained by neuronal interactions
(Eq. ref). the cue peak at B decays fully, but . For the
mid-aged robot, in contrast, a decision peak is more likely
to stabilize at the B location because cue activation at B is
stronger then the preshape activation at A .

At the end of the delay, the task-flags are moved close

and induce a homogeneous boost. The boost translates sub-
threshold activation into a stable selection decision that is
maintained by neuronal interactions (Eq. ref). For the
youngest robot, the cue peak at B decays fully, but the
preshape at A provides some input that makes a decision peak
likely at A . For the mid-aged robot, in contrast, a decision
peak is more likely to stabilize at the B location because cue
activation at B is stronger then the preshape activation at A .

For the mid-aged robot, activation at B is quite strong after
a 3 second delay, but will gradually decay for extended delays.
Thus, the longer the delay is, the more likely is a

�
A similar mechanism leads to a graded dependence of

perseveration on the delay. When the delay is short, there
stolen from spontaneous errors paper with minor edits:

A similar mechanism leads to a graded dependence of perse-
veration on the delay, as illustrated for the mid-aged robot in
Figure 9. It shows the average activation pattern for different
delay durations. Field activation has two sub-threshold peaks,
one at A and one at B (from task and preshape input
plus decaying cue activation). However, perceptual and neural
noise distorts the actual activation levels. When the boost
rises activation in the entire system homogeneously, piercing
the interaction threshold will set up a cascade of neural
interactions that then will stabilize a localized peak where the
threshold is hit first. The location with higher sub-threshold
activation is likely to be selected simply because it is closer to
the interaction threshold. The less activated sub-threshold peak
is selected with lower probability, because it needs a larger
and thus less likely stochastic kick to win the competition.
The difference in sub-threshold activation levels thus translates
into a difference in selection probabilities. Given that shorter
delays lead to more activation at the cued side, this explains
how the probability of selecting the cued B location increases
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Fig. 9. Age-delay interaction for the robot. Percent correct responses on
A and perserveration on B (y-axes) are plotted for different delay lengths
(x-axis) and resting levels (legend: hrest colors code). The tested delay-hrest
combinations are connected by solid lines. The dashed lines are continuations
that indicate the expected perserveration rate for other delays (see text for
discussion).

2) Statistical Results: The resulting statistics are shown in
Figure 9 for correct responses on the A trails (top plot) and
perseveration on the B trials (bottom plot). Responses on the
A trials are above chance correct across all age and delay
conditions, which is consistent with infant A trail behavior for
different delays and at different ages (e.g., [10]). The robot’s
responses on the B trails replicates the age-delay effect [10],
[15]. For instance, a rather young robot (hrest = �11) is correct
if there is no delay, it performs around chance for a 2 seconds
delay, and it perseverates for a 3 seconds delay. A mid-aged
robot (hrest = �9) shows a similar increase of perserveration,
but for overall longer delays—the entire curve for hrest = �9
is shifted towards longer delays to the right of that for hrest =
�11.

Note that for the mid-aged robot performance is correct
at ceiling (no perseveration) for the three second delay; and
shortening the delay will not change this since the cue-induced
peak that guides the correct decision is strong also earlier in
the delay (Fig. 7a). Similarly, perserveration is at ceiling once
the peak has decayed. The dashed lines in Fig. 9 indicate these
ceiling effects. The oldest robot with (hrest = �7) is correct
for a long delay of 11 seconds. The motor planning peak is
persistent (Fig. 7b) and will not decay unless it is actively
destructed at the end of a trial (de-boosting). Performance is
therefore always correct.

V. PARAMETRIC EFFECTS

ED recap parametric dependence of the A -not-B error
qualitative accounts for parametric effects

• cue strength ...
• training trials

Fig. 8. Age-delay interaction for the robot. Correct responses on A trails
(top) and perserveration on B trials (bottom) are plotted in percent (y-axes)
for different delay lengths (x-axis) and resting levels (legend: hrest colors
code). The tested delay-hrest combinations are connected by solid lines. The
dashed lines are continuations that indicate the expected perserveration rate
for other delays.

the above discussed precess and are reflected in the statistical
results shown in Fig. 8. Overall, A trial responses are correct
(78–100%) for all age and delay conditions because, like in
the base-line task, pre-training and preshape bias decisions to
A . The residual cuing activation A might add support for A .
Correct A trail behavior is a prerequisite for the test of B
responses.

On the critical B trails, the older the robots are (higher
resting level) the longer the delay is after which they will per-
severate. Third, robots perseverate gradually less for gradually
shorter delays. For instance, a rather young robot (hrest = �11)
perseverates for a 3 seconds delay, it performs around chance
for a 2 seconds delay, and it is correct if there is no delay.
A mid-aged robot (hrest = �9) shows a similar decrease of
perserveration, but for overall longer delays—the entire curve
for hrest = �9 is shifted towards longer delays to the right
of that for hrest = �11. Finally, the oldest robot does not
perseverate even at the maximal given delay.

Note that for the mid-aged robot performance is correct
at ceiling (no perseveration) for the three second delay; and
shortening the delay will not change this since the cue-induced
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DFT models can be embodied

stabilization of decisions is critical

(when we failed to do so, by just “reading out” the 
location with maximal activation after the delay, that 
location fluctuate from moment to moment leading 
to meandering of the robot in an averaged 
direction)


