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Abstract

End-to-end learning refers to training a possibly complex learning system by applying
gradient-based learning to the system as a whole. End-to-end learning systems are specifi-
cally designed so that all modules are differentiable. In effect, not only a central learning
machine, but also all “peripheral” modules like representation learning and memory forma-
tion are covered by a holistic learning process. The power of end-to-end learning has been
demonstrated on many tasks, like playing a whole array of Atari video games with a single
architecture. While pushing for solutions to more challenging tasks, network architectures
keep growing more and more complex.

In this paper we ask the question whether and to what extent end-to-end learning is
a future-proof technique in the sense of scaling to complex and diverse data processing
architectures. We point out potential inefficiencies, and we argue in particular that end-to-
end learning does not make optimal use of the modular design of present neural networks.
Our surprisingly simple experiments demonstrate these inefficiencies, up to the complete
breakdown of learning.

Keywords: end-to-end machine learning

1. Introduction

We are today in the position to train rather deep and complex neural networks in an
end-to-end (e2e) fashion, by gradient descent. In a nutshell, this amounts to scaling up
the good old backpropagation algorithm (see Schmidhuber, 2015 and references therein)
to immensely rich and complex models. However, the end-to-end learning philosophy goes
one step further: carefully ensuring that all modules of a learning systems are differentiable
with respect to all adjustable parameters (weights) and training this system as a whole are
lifted to the status of principles.

This elegant although straightforward and somewhat brute-force technique has been
popularized in the context of deep learning. It is a seemingly natural consequence of deep
neural architectures blurring the classic boundaries between learning machine and other
processing components by casting a possibly complex processing pipeline into the coherent
and flexible modeling language of neural networks.! The approach yields state-of-the-art
results (Collobert et al., 2011; Krizhevsky et al., 2012; Mnih et al., 2015). Its appeal is a
unified training scheme that makes most of the available information by taking labels (su-
pervised learning) and rewards (reinforcement learning) into account, instead of relying only
on the input distribution (unsupervised pre-training). Excellent recent examples of studies

1. In practice, some preprocessing steps like color space normalization of images are still best done outside
the framework.
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deeply rooted in the e2e learning philosophy—naming only a few well known ones—are the
neural Turing machine (Graves et al., 2014) and the differentiable neural computer (Graves
et al., 2016), value iteration networks (Tamar et al., 2016), and vision-based navigation in
3D environments (Mirowski et al., 2016). These achievements defy the well-known principal
limitations of gradient descent, namely local optima and slow convergence in various circum-
stances depending on the exact algorithm in use, typically on badly conditioned problems.
Intuitively, both of these problems may become more severe when network architectures
grow in complexity.

The current state-of-the-art is based on a long sequence of technological advancements,
which took only about one decade to evolve. Major steps and factors are listed in the
following.

e Interestingly, the success story of deep learning as we know it today (notwithstanding
many earlier findings which, however, did not make a comparable impact at the time
(LeCun et al., 2005; Schmidhuber, 2015) started with structured, layer-wise train-
ing of deep belief networks (Hinton et al., 2006) and stacked auto-encoders (Vincent
et al., 2008). These techniques can be understood as the exact opposite of e2e learn-
ing. Although they mark breakthroughs of representation learning, they are widely
considered to have become obsolete.

e More “classic” networks moved back into the focus due to progress on efficient GPU
implementations of backpropagation for deep convolutional neural networks (CNNs)
and, as a consequence, significant progress on computer vision tasks (Ciregan et al.,
2011).

e GPU-based processing allowed to scale to extremely large networks and learning prob-
lems. The availability of huge training sets and the computational power to process
them were key prerequisites for solving previously intractable tasks with deep learning
techniques (Krizhevsky et al., 2012).

e The development went hand-in-hand with tremendous progress in the area of stochas-
tic gradient descent (SGD). On the one hand side, linearly convergent methods for
finite sums were developed (Schmidt et al., 2013; Johnson and Zhang, 2013), on the
other hand, effective component-wise online adaptation techniques for learning rate
parameters resulted in significant speed-ups over plain SGD. The new techniques made
deep learning far more tractable and resulted in even better performance (Zeiler, 2012;
Kingma and Ba, 2014).

e Various easy-to-use deep learning software libraries were developed (Jia et al., 2014;
Chollet, 2015; Vedaldi and Lenc, 2015), many of which are based on powerful symbolic
computation software packages like theano (Theano Development Team, 2016) and
tensorflow (Abadi et al., 2016).

e The race for solving Imagenet classification (Deng et al., 2009) resulted in deeper and
deeper architectures. It lead to novel, modular connectivity patterns (Szegedy et al.,
2015), and also shed new light on the utility of good shortcut connections (He et al.,
2016).

e The immense progress even allowed to train highly flexible networks in a (vision-
based) reinforcement learning fashion (Mnih et al., 2015; Silver et al., 2016; Mirowski
et al., 2016), despite the limited and sometimes delayed information contained in the
reward signal.
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In this paper, we take the freedom to extrapolate this development into the (foreseeable)
future. We discuss the implications of applying e2e learning methods to considerably more
complex systems, which we today envision to be required for solving the “holy Grale” of
tasks, namely operating autonomous agents in a human environment.

As such, and although we present experimental results later on, we consider this work
primarily as a position paper. Our central claim is that e2e learning has limitations that
will keep us from using it in its current form as the sole way of training networks in the
future. This claim necessarily remains unproven. Also, although we point into a direction
of a possible solution, we do by no means claim to have an alternative to e2e learning ready
for use.

The work by Shalev-Shwartz et al. (2017) is closely related to ours. It emphasizes the
reasons for failure of e2e learning on the conceptually lowest level of machine learning,
namely its foundation formed by (stochastic gradient-based) optimization. This rather
technical perspective is insightful, and for very specific cases it allows for an analysis in
terms of well-known problems like vanishing gradients and ill-conditioned problems. The
paper also emphasizes the value of problem decomposition of a complex architecture as
an alternative to e2e learning. Here we take the high-level perspective of neural network
architectures and the consequences of propagating information through a number of network
modules as a prerequisite for e2e learning.

The remainder of this paper is organized as follows. In the next section we present and
discuss the problem in an informal way and point towards a possible route to solution. We
summarize this discussion by collecting merits and limitations of e2e learning for better
overview. Then we underpin our arguments experimentally: we show how e2e learning can
fail for the training even of rather small systems due to non-trivial couplings that originate
either from the network structure itself or from the task. We close with a brief conclusion.

2. Model Engineering vs. End-to-end Learning

State-of-the-art e2e learning enjoys a high degree of automation, however, it does not work
fully autonomously: the design and configuration of a learning system suited for a given
task requires a certain level of experience and machine learning knowledge. Today’s deep
learning systems are engineered from modules, often organized into layers and groups of
layers with specific roles. Prominent examples are alternating sequences of convolution and
pooling layers, fully connected layers, auto-encoders (bottleneck layers), and LSTM layers.
Even dropout, which is a regularization technique and not a model component, it often
thought of as a layer, which (at least in software) can be added on top of any other layer.
The general proceeding is to compose a system with the capacity—in principle and by
design—to exhibit a desired behavior. After the design phase, full automation takes over:
weights are initialized and random, and they are subsequently trained, e2e, with variants
of stochastic gradient descent.

Driving this to the extreme, one could try to design a full “brain” this way, consisting
of cortical areas like visual cortex, auditory cortex, motor cortex, a hippocampus, and so
forth. Of course, there is no need for the design to resemble biological brains in structure
and connectivity, however, for any non-trivial agent we will surely end up with dedicated
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Figure 1: Fictitious complex learning system composed of a large number of modules with
diverse roles, and their connectivity. In e2e learning, each module is fully differ-
entiable with respect to its parameters.

modules for sensory data processing, natural language processing, memory, decision making,
planning, motor control, and more (see figure 1 for an illustration).

Problem decomposition is central to solving a complex problem. This divide and conquer
approach is the core principle of engineering. It is underlying our network design decisions,
and we are well aware that learning problems become much harder if we don’t know how
to decompose them, or if we simply get it wrong.

Hence, divide-and-conquer is heavily used for the design of complex learning machines.
However, training such a system in an e2e fashion means to explicitly ignore the problem
decomposition during learning. Instead, training is done in good hope that the structural
preconditioning is sufficiently strong to direct a method as simple as gradient descent from
a random initial state to a highly non-trivial solution. Intuitively, this is a dangerous
assumption: since the resulting optimization problem is by no means convex, learning can
only work if the task is “nearly trivial” given the structure on which it operates. Data
efficiency is a second concern, since unmodeled interactions between modules may require
an amount of training data that grows possibly exponentially with the number of modules
for the problem to be well-sampled.

One could argue that compared to a fully connected (possibly recurrent) network mod-
ular models do indeed provide a useful problem decomposition also during learning, simply
because many potential connections are not present, which is equivalent to fixing their
weights to zero. However, this structure is not exploited in the optimization algorithm,
which is usually blind to the structure.

Let us return to the above example of the brain-like model. Assume that each module
is realized as a neural network. The roles of these modules reflect the network designer’s
intention and his ideas of how to structure a possible solution to an overwhelmingly complex
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problem. However, these roles are not assigned formally to the modules. Nothing enforces
that a specific module actually learns to fulfill its role and only that role. The role is
only suggested by the pre-defined network structure, and the near-black-box character of
complex neural networks makes even checking whether the assumptions are fulfilled or not
a non-trivial task. Hence, the learning rule may come up with an alternative solution, or
something that looks like a potential solution during an early training phase. More often
than not, this route may lead to convergence into a poor local optimum.

Against this background it seems obvious that we should respect and even explicitly
exploit the carefully chosen structure during training. There are many possible ways how
to ensure that the training procedure respects our design plan. It seems that the simplest
strategy is to structure the training process directly in terms of network modules and their
connectivity. A simple procedure with this property is greedy, layer-wise training, however,
its performance is usually inferior to e2e learning due to its inability to use labels and
rewards. We consider finding a training procedure that makes the powerful of e2e learning
approach aware of the network structure a grand challenge of neural network research.

The insight that existing learning methodologies may not scale to arbitrarily complex
tasks and to learning systems matching this complexity is by no means new. It motivated
various proposals that were popularized in the domains of control, reinforcement learning,
and artificial intelligence (Ring, 1994; Abbeel and Ng, 2004; Schmidhuber, 2004; Bengio
et al., 2009; Schmidhuber, 2010; Thrun and Pratt, 2012), known under different names like
learning to learn, curriculum learning, continual learning, and many more. A prominent
idea is to bootstrap the learning process by solving simple tasks first, in the hope that
solution components of generic value evolve, which turn out to be helpful building blocks
for more complex tasks later on. All of this can, but does not have to happen in an e2e
fashion. The approach is very different and actually orthogonal to our vision of organizing
the training process of neural networks along their structure.

3. Merits and Limitations of End-to-end Learning

Let us have a more systematic look at the strong and weak spots of the e2e learning principle.
The following lists are intended to provide a hopefully useful overview of pros and cons of
the method, as we see them, without claiming completeness. The purpose is to offer a basis
for supporting the decision whether e2e learning may be suitable for a problem at hand or
not. It is not our intent to judge the method according to the number or weight of items
on either side.

Merits

e Conceptual and mathematical beauty: the system is trained in a holistic manner
based on a single principle.

e Every learning step is directed at the final goal, encoded by the overall objective
function. There is no need to train modules on an “auxiliary” objective,? unrelated
to the task, like contrastive divergence or reconstruction error. However, it should
be noted that e2e learning can in principle incorporate auxiliary objectives, possibly

2. Here we do not refer to cases like using a differentiable loss like cross-entropy instead of the 0/1 loss,
which is of final interest, but rather to using an entirely unrelated loss, often because labels and rewards
have not (yet) been propagated to the module.
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affecting only parts of the network, usually with the goal of avoiding slow learning
and bad local optima (Mirowski et al., 2016).

e The power of e2e learning for training powerful predictors was proven many times in
various domains (Collobert et al., 2011; Krizhevsky et al., 2012; Mnih et al., 2015;
Silver et al., 2016).

e E2e learning is nicely consistent with the general approach of machine learning to
take the human expert out of the loop and to solve problems in a purely data-driven
manner.

Limitations

e The principal limitations of (stochastic) gradient descent apply, like slow convergence
on ill-conditioned problems, convergence into possibly poor local optima, and vanish-
ing gradients due to saturating non-linearities. The implications of these problems for
deep e2e learning are discussed in detail by Shalev-Shwartz et al. (2017).

e In some cases, the learning signals used for e2e learning can be of inappropriate nature.
For example, a network module responsible for visual representation learning can be
trained together with a very different module representing a policy (Mnih et al., 2015),
based on possibly sparse and delayed rewards. It seems to be far more efficient to
train the vision module independently, either with unsupervised methods (exploiting
the the visual input is far more rich than the reward signal), or starting from one of
the many available pre-trained networks.

e The valuable information contained in the problem decomposition that resulted in a
specific network design is ignored during e2e training. Intuitively, this can be danger-
ous, in particular if modules interact in a non-trivial way, since they can hamper each
other’s learning progress. Examples in section 4 demonstrate that such interactions
can slow down learning significantly, to the point of a complete breakdown. It seems
that, at least in principle, the decomposition into modules could be used to device
structured training schemes with the potential to overcome these problems.

Trade-Offs
e In a general analysis, the convergence speed of gradient-based methods is indepen-

dent of the number of parameters (Polyak, 1963). Therefore it can be expected that
training all modules of a network at once takes fewer gradients (data samples) than
training them independently, e.g., in a greedy layer-wise or otherwise structured man-
ner. However, this argument can be disputed since the learning speed depends on the
conditioning of the problem, which can well be significantly better for sub-problems
involving only few modules.

This summary does not yield a general conclusion. We leave it as such and instead turn to

concrete learning systems designed to stress the limits of e2e learning.

4. Experiments

In previous sections we have made seemingly speculative claims about possible issues re-
sulting from applications of e2e learning to networks consisting of interacting modules. In
this section we will demonstrate that such problems indeed exist. We aim to validate the
following claims empirically:
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e As the network complexity or the task difficulty grows, e2e learning can become
inefficient.
e For too complex tasks or networks, e2e learning can fail completely.
e Training modules one at a time can solve this issue.?
We demonstrate these claims based on experiments in the following.*

4.1. Scalable Stacking

This first series of experiments relies on a network structure with freely scalable complexity,
i.e., a class of networks with parameterizable number of modules. It is no the purpose to
design a learning system that solves a realistic, complex task, but to demonstrate certain
effects in an as clean as possible system. Therefore we aim to keep things plain and simple.

We start with is a rather trivial supervised classification problem with B € N classes.
Inputs are one-hot-encoded numbers in the range 1,..., B, and so are the target outputs,
which agree with the inputs. We apply a standard setup, which is mini-batch gradient
descent training with the ada-delta method (Zeiler, 2012), minimizing the cross-entropy
loss.

While in a real application network modules may have widely varying structure and
connectivity, we define a single module to be applied in a sequence of arbitrary length (or
depth).

Network Module. The module takes one-hot encoded numbers in the range 1,...,B
as input, sends them through a bottleneck layer of size b < B with sigmoidal (logistic)
activation function, and propagates the result to the output layer of size B with softmax
activation. The goal of learning is to represent the identity mapping restricted to one-hot
encoded vectors; for chained modules, the overall chain shall represent the identity mapping.

For B = 2% the problem can be solved by a demultiplexer /multiplexer logic circuit,
which translates one-hot-encoded numbers to a binary representation and back. We verified
empirically that networks can reliably learn solutions even for values of B significantly larger
than 2°, e.g., B = 64 and b = 4. In principle, even as few as b = 2 hidden units suffice,
for any number B of inputs/outputs. In the sequel we resort to the rather simple problem
with parameters B = 10 and b = 4. Including the biases, the total number of weights per
network module is as small as 94. This module fulfills our requirements of performing a
non-trivial computation, and being stackable without limit.

Stacked Modules. In a first experiment we train N network modules stacked on top
of each other. The data set consists of 10 points, with input and target corresponding to
the 10 possible one-hot encodings. We train the network until it has learned the identity
mapping, i.e., the classification error on the training data drops to zero. Note that we are
not interested in the question whether the network generalizes, which is trivial in this case
since the training data cover all possible one-hot encodings.

3. Caveat: we do not claim to offer a constructive alternative to e2e learning. We do not know a way how
to train modules in isolation that works generically across a large number of tasks and could act as a
plug-in replacement for e2e learning.

4. Our code is based on the Keras library (Chollet, 2015). It is available from the first author’s homepage:
https://www.ini.rub.de/PEOPLE/glasmtbl/code/limits-of-e2e-learning/code-supplement.zip
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In figure 2 we provide the number of epochs until training is completed. Note that each
epoch corresponds to only 10 gradients, therefore the numbers are large. We see a roughly
exponential increase of the training effort. For N = 5 modules (not shown), 8 out of 10
training runs hit the limit of 10° gradients computations (10® epochs) without solving the
task.

In a control experiment, the weights be-
tween the different modules were shared.
Hence the module received gradients from
all layers at once. The scaling was similar,
but the numbers were even worse.

This is an interesting and insightful re-
sult. All networks are rather small, fea-
turing only a few hundred weights. Train- 1051
ing a single module is easy. However,
training multiple modules at once is much
harder, with effort growing exponentially, 10%1
by roughly one order of magnitude per mod-
ule. This implies that training of multi-
ple modules interferes in a non-trivial and ~ 10°;
highly disruptive way.

It can be argued that the problem is eas- ] > 3 )
ily avoided by a residual learning approach
(He et al., 2016). This is certainly true for
our setup, however, recall that the simplis-
tic architecture is supposed to act as a dras-
tically simplified model of a complex net-
work where different modules have different
roles. For example, feeding raw vision in-
put directly into a high-level decision mak-
ing module (e.g., behavior planning) usually
does not make a whole lot of sense, since the
decision making module relies on high-level
cues that are output of the vision module,
possibly further processed by other modules into a stable scene representation.

10°;
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/
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Figure 2: Number of epochs T required for
solving the stacked network mod-
ules task for N € {1,2,3,4} mod-
ules. The solid line is the aver-
age over 10 runs, individual runs
are represented as dots. The gray
lines in the background indicate ex-
ponential growth of the form T =
c-10V.

Handwritten Digit Classification. We extend the above experiment to test how the
difficulty to learn with multiple modules affects the training of proven components. For
this purpose we created a fairly straightforward network for classifying handwritten digits
from the well-known MNIST data set. The network consists of the following layers: 5 x 5
convolution (relu), 2 x 2 max-pooling, 5 X 5 convolution (relu), 2 x 2 max-pooling, fully
connected layer with 200 nodes (relu), and finally a fully connected output layer with 10
nodes (softmax). We refer to this rather plain architecture as the “basic MNIST module”.
It achieves non-trivial results (= 99.3% correct after about 10 epochs). Then we stack
N > 0 of the above described modules on to of the basic MNIST module. The network is
trained in an e2e manner until the validation error stalls for at least 20 epochs in a row.
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Figure 3: Number of epochs (left) and resulting classification accuracy (right) for the hand-
written digit recognition task, with N € {0, 1,2, 3,4} modules stacked on top of
the basic MNIST module. The solid lines are averaged over 10 runs, individual
runs are represented as black circles. Note that the performance values tend to
cluster roughly at multiple of 10%, corresponding to the overwhelming majority
of a classes being classified correctly.

Validation accuracies and numbers of epochs for this experiment are provided in figure 3.
It is understood that the results are no better than in the first experiment; actually, they
are worse. With a single module on top of the basic MNIST module, the system achieves
an accuracy of nearly 99% correct, however, with significantly increased training effort
compared to the basic MNIST module and slightly worse accuracy (and with frequent
failures if the early stopping criterion is set to 10 instead of 20 epochs without improvement
of the validation error). For N = 2 the performance drops significantly, in only 3 of 10 runs
does the network manage to classify all digit classes correctly. For N = 3, this rate drops
to 1 out of 10 runs, and with N = 4 modules, learning fails entirely. The weights remain
very close to their initial values.

Figure 4 illustrates the learned filters of the first network layer at the end of the epoch
with best validation accuracy, i.e., the network selected by early stopping. Various orien-
tations are clearly recognizable for the first three networks. All networks are initialized
exactly the same, hence they evolve similar filters. The networks with N > 3 modules fail
to evolve meaningful filters; indeed, the filter weights remain close to their initial values.

As a control experiment, we tested the same networks with the basic MNIST module
initialized with well-tuned filters, and all further modules initialized at random as before.
The results were overall comparable. With N = 4 modules on top the networks did not
learn, however, training also did not destroy the existing filters.

We find that stacking non-trivial modules on top of the basic MNIST module results
in significant slow-downs, and quickly to a complete breakdown of end-to-end training. In
this case, none of the layers is able to learn, not even the first convolution layer, which is
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Figure 4: Visualization of the convolution filters in the first layer before and after training,
and the corresponding validation accuracy, for the first out of 10 runs.

closest to the data. This is easily explained by the fact that the gradient at each node is
affected by all weights during the forward pass, and by all subsequent weights during the
backwards pass. Hence, as long as none of the components is reasonably well-trained, no
component can expect to receive a meaningful update direction, unless there is a rather
broad and hopefully straight path from random initialization to the goal state. This is in
contrast to greedy, layer-wise training, which is entirely unaffected by later layers, and by
their detrimental effect on the gradient.

4.2. Sequence Forecasting

We consider a classic sequence learning problem introduced by Hochreiter and Schmid-
huber (1997) for demonstrating the power of LSTM cells. We are given two sequences
(z,a1,a2,..., ap,x) and (y,a1,as9,...,a,,y), where the symbols are one-hot encoded. The
task is to predict the next input. The difficulty lies in storing the first input (x or y) for the
duration of the whole sequence. The authors apply a straightforward network architecture
with a hidden LSTM layer and skip connections. They train the network in two phases:
first only the skip connections (a non-recursive and essentially linear model) are trained
until convergence, then a single LSTM cell is added. This is to avoid what they call the
“abuse problem”: this problem decomposition avoid the “abuse” of the LSTM cell, e.g., as
a bias units.

We investigate this phenomenon more closely by training networks with the above prob-
lem decomposition, and alternatively in an e2e fashion with the LSTM unit added from the

10
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start. We suspect that due to modern techniques like Glorot initialization (Glorot and Ben-
gio, 2010) and adaptive learning rates (Zeiler, 2012) the problem is less severe compared to
the 1990es, however, figure 5 shows that the effect is still pronounced.

Already in this 20 years old experiment
it was found that e2e learning can be ineffi-
cient. However, the problem was not recog- A

nized as an instance of a more general phe- 100%
nomenon.

80%
4.3. Planning 60%

In the board game of RoboRally,” in each
turn a simplistic mobile robot is pre-
programmed for five movements steps in 20%
a row, in a race to reach a goal location.

Most of the fun of the game comes from 0% -
the impossibility of reliable planning due to 1020 30 50 100 200300
unforeseen interactions with other robots,
programmed by other players, resulting in
robots being pre-programmed with the best
intentions, but moving straight into fatal
disaster. For our planning task, we ignore
these interactions and consider a simplified
setup that is more alike to a classic grid
world navigation task, however, we stick to
the game element of pre-programming five
moves in a row.

The robot’s state is given by its posi-
tion (2D integer coordinates) and orienta-
tion (north, south, east, west) in a grid
world. It plays only a single turn, consisting of five elementary actions chosen from the
set move_forward, turn_left, turn_right, and wait.® A grid cell is either a normal (empty)
cell, the goal cell, a wall (obstacle), a bottomless pit, a cell with a laser, or a conveyor
belt. Moving into a wall is a legal and available action, but does not change the robot’s
state. Entering a pit cell kills the robot instantly, entering the goal cell results in immediate
success. In these cases the robot stops moving (ignoring further actions), so the states are
terminal. However, each episode is always run for five steps and the robot keeps collecting
rewards. Hence reaching the goal quickly is beneficial. For simplicity, in our setup all con-
veyor belts transport the robot one field to the north (after its own movement), and lasers
(usually damaging the robot) have no effect other than giving negative reward. Rewards
are structured as follows: goal 410, pit -10, laser -1, and in order to encourage exploration,
the wait action is penalized with an “intrinsic” reward of -1. This is a quite simple and

40%

Figure 5: Fraction of runs in which the se-
quence forecasting problem was
solved, as a function of sequence
length (log scale) with pre-training
(dashed curve) vs. e2e training
(solid curve). A run is consid-
ered successful if the error drops
below 0.01 within 100.000 training
epochs.

5. Designer: Richard Garfield; Publisher (as of 2017): Hasbro, Inc.

6. The wait action can be useful when interacting with certain game elements like conveyor belts. The orig-
inal game dynamics are more complex, adding multi-step and backwards movements, and in particular
by executing the steps of multiple robots in a specific order.

11



(GLASMACHERS

actually deterministic Markov decision process (MDP). We used the map shown in figure 6,
which allows the robot to reach the goal in only four steps (optimally: turn_right followed
three times by move_forward).

Playing this game successfully and even optimally is not hard at all, since there are only
45 = 1024 possible action sequences, 25 of which reach the goal, and the environment is de-
terministic. Our agent proceeds by planning its actions based on a forward model, which by
itself is a neural network and must be learned from interactions. Given a state-action pair
(s,a) with s and a each one-hot-encoded (representing explicit probabilities, the outer prod-
uct representing the joint distribution acts as the actual input), the forward model maps
to a probability distribution over successor states. It is implemented by a fully connected
network layer with linear activation and probability simplex constraints. Expected imme-
diate rewards are modeled analogously with a linear layer without any constraints. This
model is extremely simple in nature; it is essentially linear. The model can capture the
true transition and reward structure of the MDP exactly, and it is suitable for propagating
distributions over states and actions arbitrarily far into the future. This property makes the
model suitable for planning, e.g., by executing mental trials. Of course, the predictions will
be off as long as the model is not yet well trained. The actions are encoded as probability
distributions, realized as a softmax layer receiving five one-hot encoded “time step” inputs.
The overall agent consists of two trainable modules, the world model mapping state s and
action a to successor state s’ and reward r, and the programming module (action selector
module), mapping time ¢ € {1,2,3,4,5} to an action a from the action set defined above.
The full system is displayed in figure 6.

The system is trained in an e2e manner for 10,000 episodes. In each step, an episode is
planned. The plan is refined by a gradient step on the programming module, based on the
total reward predicted by the forward model. L.e., the agent improves its policy based on its
current world model. Then an actual action sequence is sampled from the updated action
distribution (the actual action in the RoboRally game), and the episode is executed in the
environment. Note that this setup differs from standard reinforcement learning, since the
agent essentially performs only a single action with a “reactive” policy, consisting of five
sub-actions, which must be pre-programmed and hence planned upfront. Then the world
model module is updated based on the observed successor states and rewards.”

This setup is obviously not the most efficient possible for the task at hand, which can
of course be solved easily, e.g., by tabular reinforcement learning, or simply by brute force
enumeration of all action sequences, or assuming possible stochasticity, by multi-armed
bandit algorithms. Therefore it must be emphasized that this is a toy experiment, the only
purpose of which is to demonstrate the effects of unmodeled dependencies between learning
modules. Our learning system indeed has the property of interest, namely a non-trivial
mutual dependency of the two learning modules: the action selector depends on the quality
of the world model for correct forward planning, and the world model depends on the action
selector to perform sufficient exploration so that it gets to see the relevant parts of the state
space.

Despite the simplicity of the task, learning both modules in the above described inter-
twined manner works only in 47 out of 100 runs. In the other 53 runs the system quickly

7. Our learning system is related to value iteration networks (Tamar et al., 2016), however, in our case the
term planning actually refers to performing a full “mental trial” based on a learned forward model.
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Figure 6: Left: Visualization of the RoboRally type grid-world navigation task. The start-
ing state is in the lower left, with initial orientation north (upwards). Conveyor
belts are are marked with bold arrows, the laser with a red line, the bottomless
pit is displayed as a black square with a striped boundary in yellow and gray,
and the goal is marked with a flag. The dark gray cells are walls; they cannot be
entered. Overall the environment has 24 reachable states, including two states for
the pit (facing north or east). Right: System architecture of the agent. Compu-
tations proceed from bottom to top. The forward model is shown on the left. The
computation of the joint distribution (outer product) is hard-coded, only the lin-
ear read-out layers (dashed) for the successor state distribution and the expected
immediate reward are trainable. The action selector consists of a softmax layer
(dotted) with five inputs for the five time steps. The planning module is shown
on the right. It applies action selector and forward model five times. The action
selector is best understood as encoding five independent action distributions. The
forward model is used five times in a row, hence the planner can be thought of as
containing five copies of the network with shared weights. The initial state and
the time steps are provided as (constant) inputs, so that all adjustable quantities
are represented as network weights.

converges to a local optimum, consisting of turning movements, since they avoid negative
rewards. This task is on the edge of the manageable difficulty; even slightly more complex
tasks result in near certain failure. This is despite the facts that both modules can rep-
resent the optimal solution exactly (the solution is realizable), the time horizon is rather
small, the environment consists of only 24 states with four actions, and learning any of
the modules in isolation works flawlessly: learning the MDP from random actions works
fine, and so does learning the optimal policy from the exact MDP or a pre-trained forward
model.® This result suggests a simple solution: first train the world model till convergence
based on random actions, then train the action selector. This decomposition of the training

8. Care must be taken not to insert too many pits, since otherwise the chance of dying during exploration
exceeds that or reaching the goal. That turns “not moving” into a local optimum, which is easily
reachable from the initial random policy. An explicit exploration strategy would be needed to overcome
this problem.
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process is exactly in line with the problem decomposition underlying the network design. Of
course, in its simple form this solution is dissatisfactory since random exploration is often
inefficient, but it is a simplistic demonstration showing that a learning process organized
along the network structure can indeed be a viable solution.

5. Conclusion

We have demonstrated that end-to-end learning can be very inefficient for training neural
network models composed of multiple non-trivial modules. End-to-end learning can even
break down entirely; in the worst case none of the modules manages to learn. In contrast,
each module is able to learn if the other modules are already trained and their weights frozen.
This suggests that training of complex learning machines should proceed in a structured
manner, training simple modules first and independent of the rest of the network.

Our example problems are necessarily somewhat contrived. Considering neural networks
designed for solving real tasks, whether the limits of end-to-end will show up in the fore-
seeable future or not remains to be seen. At this point we simply want to raise awareness
for the existence of limitations. To overcome these problems in a principled manner, we
believe that new structured learning paradigms are needed, which should be in line with
the network structure, and which may or may not contain greedy learning and end-to-end
learning as techniques. We are convinced that such structured learning paradigms would
allow us to push the boundaries of training complex learning systems beyond the current
state-of-the-art.
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