
Texture attribute synthesis and transfer using feed-forward CNNs

Thomas Irmer
Ruhr University Bochum
thomas.irmer@rub.de

Tobias Glasmachers
Ruhr University Bochum

tobias.glasmachers@ini.rub.de

Subhransu Maji
University of Massachusetts

smaji@cs.umass.edu

Abstract

We present a novel technique for texture synthesis and
style transfer based on convolutional neural networks
(CNNs). Our method learns feed-forward image genera-
tors that correspond to specification of styles and textures in
terms of high-level describable attributes such as ‘striped’,
‘dotted’, or ‘veined’. Two key conceptual advantages over
template-based approaches are that attributes can be an-
alyzed and activated individually, while a template image
necessarily represents a simultaneous specification of many
attributes, and that attributes can combine aspects of many
texture templates allowing flexibility in the generation pro-
cess. Once the attribute-wise networks are trained, applica-
tions to texture synthesis and style transfer are fast, allow-
ing for real-time video processing.

1. Introduction
Texture synthesis techniques can be roughly divided

into two fundamentally different approaches: (1) procedu-
ral texture synthesis, which generates textures using a set
of predefined parameters and some randomness, and (2)
template-based texture synthesis, which takes a template
image as input and produces similar-looking textures.

Procedural methods are useful when a reference texture
image (or template) is not available [7, 26]. These are based
on hand-crafted mathematical functions or algorithms that
use randomness to generate a certain type of texture such as
wood, marble, or clouds. Such models also have category-
specific parameters which can be adjusted to generate a
wide range of textures. However, these parameters rarely
have an intuitive meaning, which makes them hard to ad-
just. In contrast, template-based methods can generate very
realistic looking textures [8, 14, 23, 29]. Nevertheless the
availability of such a template is mandatory.

In this paper we aim for a third approach which over-
comes these shortcomings, in the following sense. Humans
often think about textures in terms of natural language, e.g.,
in terms of high-level attributes. Say, a designer wants to
create a veined texture, but without any additional constraint

given by a concrete template image. Current procedural
models based on simple mathematical models are not capa-
ble of generating textures based on high-level attributes. We
propose a method, which synthesizes a texture, or transfers
it to an image, given just a texture attribute like veined. It
uses a convolutional neural network (CNN) architecture in a
generative manner such that the resulting images are classi-
fied as the desired attributes. The classifier itself is based on
models trained on publicly-available texture datasets, hence
the proposed models can be trained without direct human
supervision. Once trained, these models are fast since they
process the image in a feed-forward manner allowing real-
time processing of high-resolution images or video.

Convolutional neural networks are powerful image pro-
cessors. While they are primarily known for their capabili-
ties for various image recognition tasks [17, 15, 25], some
recent works have shown that CNNs are effective as texture
descriptors [10, 21, 4] and texture generators [6, 28, 16].
In these approaches, texture generation is template based:
for each style or texture template, a new network is trained.
The proposed approach generalizes this to the setting where
instead of a reference style image, we train networks that
generate images corresponding to various texture attributes
such as veined.

Aside from computational advantages, this approach re-
sults in networks representing and generating textures with
interpretable attributes. We believe that this property is key
for the practical utility of the method in a creative environ-
ment. Moreover, these attributes combine aspects of style
common across many images, allowing greater flexibility in
the generated style. For example, in order to make an image
more ‘cracked’, the orientation and scale of the cracks must
match the structures within the image. A single cracked
image template may only have cracks at a single scale or
orientation making the style transfer difficult. On the other
hand, if the goal is to simply generate a cracked image, the
generator can achieve the desired effect by flexibly choosing
parts from different cracked images. Our results show that
such parts are essentially embodied in a classifier trained to
recognize a set of cracked images.



2. Convolutional Neural Networks

A feed-forward neural network is a parameterized, non-
linear map [1]. The information processing is organized
into layers. Data, for example raw RGB image pixel values,
is propagated from the input layer through so-called hidden
layers to the output layer. Layers are collections of artifi-
cial neurons, each of which is connected to neurons from
previous layers. Each neuron receives a linear combination
of the activations of these neurons it is connected to, pa-
rameterized by connection weights, which are the trainable
parameters of the model. The neuron computes its activa-
tion by applying a non-linear transfer function to its input.
The number n of layers, the number of neurons Ml per
layer (layer size), the connectivity pattern between layers,
and the type of transfer function are hyperparameters of the
network. Once the hyperparameters are set, the weights are
trained by minimizing the (regularized) empirical risk func-
tional defined over a training set of labeled images, usually
with a variant of stochastic gradient descent [2].

In convolutional neural networks (CNNs), layers have a
spatial layout, just like input images [18, 9]. The flow of
information is furthermore restricted to local interactions,
e.g., with convolution and pooling filters applied uniformly
across a whole layer, resembling visual fields found in early
visual cortex.

The neural activation patterns arising in higher layers are
intermediate representations of the input. They are some-
times referred to as the network’s feature maps. Following
the notation of Gatys et al., each layer l with Nl filters gen-
erates Nl feature maps of size Ml when vectorized. All
feature maps can then be written as a matrix Fl ∈ RNl×Ml .

CNNs are known to be powerful object detectors [5, 17],
therefore a standard hypothesis is that the feature maps of
layers close to the output encode valuable high-level infor-
mation. In recent years, huge deep networks were trained
on large data sets for various detection and classification
tasks. The hidden layers of these networks are frequently
applied in other contexts as general-purpose image descrip-
tors. These descriptors were found to contain information
about many aspects of an image, including its texture [10].

3. Related Work

A remarkable discovery about the descriptive power of
CNNs was made by Gatys et al. [10]. Their idea follows
work by Portilla and Simoncelli [24], who extracted differ-
ently sized features homogeneously from a template image
and formed spatial summary statistics from those features.
In contrast to the original approach, Gatys et al. used a pre-
trained VGG network [27] instead of hand-crafted features–
namely the Gram matrices of the VGG’s feature maps.

A natural goal for a texture descriptor is spatial invari-
ance. This is achieved by considering the Gram matrices

Glij ∈ RNl×Nl , which are defined by

Glij =
∑
k

F likF
l
jk, (1)

where Glij is the inner product between feature maps i and
j in layer l. A set of Gram matrices extracted from some
hand-chosen layers forms the texture descriptor. This de-
scriptor has the desirable property of being spatially invari-
ant because the inner products forming the entries of the
Gram matrices blend information form all locations in the
feature maps together.

To generate new textures which look alike a template im-
age ~x, Gatys et al. match the descriptor of that template im-
age by minimizing the following objective Ltexture, starting
from a noise image ~̂x:

Ltexture(~x, ~̂x) =

L∑
l=0

wlEl (2)

El =
1

4N2
l M

2
l

∑
i,j

(Glij − Ĝlij)2, (3)

where wl ∈ {0, 1} are weight factors used to select the de-
scriptive layers.

In a follow-up work Gatys et al. [11] additionally added
another loss term to their method, which aims to preserve
the content of the input image. This makes it possible to not
only generate new texture images starting from noise but
also transfer textures to real images. As the loss term for
the content they simply chose the squared-loss on a single
layer on the feature maps directly:

Lcontent(~x, ~̂x) =
1

2

∑
i,j

(Fij − F̂i,j)2. (4)

By optimizing a weighted combination

Ltotal(~x, ~̂x) = αLcontent(~x, ~̂x) + βLtexture(~x, ~̂x) (5)

of the texture and content loss terms they yield appealing
results with transferring textures to any given input image.

Another work which exploits the descriptive power of
CNNs has been published by Lin et al. [21]. They explore
to what extend those Gram matrices–which they refer to as
bilinear features–are suitable for classification. They train
linear classifiers for texture attributes on top of the extracted
bilinear features for a set of layers L and obtain attribute
prediction probabilities Cl on the selected layers l ∈ L.
Similar to Gatys et al., they then generate new texture im-
ages by optimizing an input image ~̂x until it converges to
the same texture attribute prediction as a given template ~x:

Lattribute(~x, ~̂x) =

L∑
l=0

c(Cl, Ĉl) (6)



Figure 1. Overview of the proposed architecture. The image transform network fT takes an image ~x of arbitrary size and aspect ratio
and outputs an image ~̂x with the same dimensions. The attached target network θ serves as the descriptor network where the labels are
extracted from. We use the VGG-16 network [27], trained to classify the texture images from the DTD database [3] into it’s 47 categories.

where c is a cost function such as the negative log-likelihood
of the label C.

All of the above mentioned works reveal a lot about the
descriptive power of CNNs and yield amazing results in tex-
ture synthesis and texture transfer to other images. How-
ever, both methods are slow since they use iterative opti-
mization processes.

Two recent works by Ulyanov et al. [28] and Johnson
et al. [16] moved this slow iterative optimization process to
the training phase of a neural network. They showed that
the optimization which has previously been done by meth-
ods such as gradient descent can also be done by a trained
CNN instantly. In that case one can use the loss in eq. (5)
as objective for a CNN. This requires training a network
per texture template, which usually takes longer than the
optimization-based approach but can be used in real-time
after training. Although their results cannot match the qual-
ity of the previous methods yet, they show a major boost in
computational performance and memory efficiency. Nev-
ertheless their methods are also template based and have
to train a single network for each texture template image,
which makes it cumbersome to incorporate new textures.

4. Texture Attribute Generator

Here we describe the details of our approach, which en-
ables us to transfer selected texture attributes like veined
to any input image, while the content of the image is still
well preserved, and synthesize new texture images of the
selected attribute from nothing but noise.

Our method draws on various aspects of previous work
on texture synthesis and texture transfer. Essential are the
texture descriptors proposed by Gatys et al. [10], the clas-
sification scores introduced by Lin et al. [20], and the feed-
forward architectures as described by Johnson et al. [16].
We aim to generalize template-based methods and to dras-
tically speed up the generations process.

4.1. Method Overview

The overall architecture is shown in figure 1. To en-
force our method to be independent of image dimensions
we use an image transformation network fT , which com-
presses the input to a shallower representation and scales it
up to it’s original dimensions. The architecture is derived
from [16] and a detailed network architecture is given in ta-
ble 1. During training the image dimensions are as stated
in table 1, but at test time any image size can be used. For
the descriptor CNN we use a pre-trained network θ. For a
fixed texture attribute t, we extract a set of target features
φ
(1)
texture(t), φ

(2)
texture(t), . . . , φ

(n)
texture(t) from θ’s n layers. The

network fT maps an input image ~x to the output ~̂x = fT (~x).
Then ~̂x is fed through θ and produces a set of feature re-
sponses φ(1)texture(~̂x), φ

(2)
texture(~̂x), . . . , φ

(n)
texture(~̂x) and a content

response φcont(~̂x).
We then minimize the loss function Ltotal which repre-

sents the loss on the texture features and the content features
combined with an image prior.

Ltotal(~x, ~̂x) =

n∑
i=1

λ
(i)
texture · L

(i)
texture(t, ~̂x)

+ λcontent · Lcontent(~x, ~̂x)

+ λprior · Lprior(~̂x)

(7)

Ltotal consists of three weighted parts: the texture feature
loss Ltexture, the content feature loss Lcontent, and a prior for
natural images Lprior, for which we chose the total variation
norm (TV norm):

L(l)
texture(t, ~̂x) =

(
φ
(l)
texture(t)− φ

(l)
texture(~̂x)

)2
(8)

Lcontent(~x, ~̂x) =
(
φcontent(~x)− φcontent(~̂x)

)2
(9)

Lprior(~̂x) =
∑
i,j

((
~̂xi,j+1 − ~̂xij

)2
(10)

+
(
~̂xi+1,j − ~̂xij

)2)β/2
(11)



Figure 2. Modified Residual Block by [12]

Descriptor CNN and Training Targets The network θ
is the VGG-16 network [27] trained to classify texture at-
tributes using the bilinear features from a subset of layers.
So the texture targets φ(l)texture(t) on layer l for a given texture
attribute t are the classification scores of the linear classifier
of that network for this attribute on the bilinear features.
The content targets φcontent(~x) are the feature maps of one
of θ’s layers without any modification.

The size of φ(l)texture(t) is the same for any layer of θ and
depends on the database θ has been trained on. With n dif-
ferent categories φ(l)texture(t) would be a vector with n ele-
ments where each element is 1 if it corresponds to t and
0 otherwise. The content targets φcontent(~x) are the feature
maps taken from layer relu4 2 of the VGG-16 which has
image height

8 × image width
8 × 512 elements.

4.2. Network Architecture

The network architecture of the image transform net-
work is shown in table 1. Each convolutional layer (conv)
is followed by a batch normalization layer (bnorm) and a
leaky ReLU (relu) with a = 0.01. The last layer is fol-
lowed by a scaled sigmoid non-linearity instead of a ReLU.
The scaled sigmoid version ensures that the output is in
the range [0, 255], which is important because θ has been
trained on pixel intensities in that range. The residual blocks

Layer name Filter size Feature map size
Input 224× 224× 3
conv1 9× 9× 3× 32 224× 224× 32
conv2 3× 3× 32× 64 112× 112× 64
conv3 3× 3× 64× 128 56× 56× 128

res-conv4 3× 3× 128× 128 56× 56× 128
res-conv5 3× 3× 128× 128 56× 56× 128
res-conv6 3× 3× 128× 128 56× 56× 128
res-conv7 3× 3× 128× 128 56× 56× 128
res-conv8 3× 3× 128× 128 56× 56× 128
deconv9 4× 4× 128× 64 112× 112× 64
deconv10 4× 4× 64× 32 224× 224× 32
conv11 9× 9× 32× 3 224× 224× 3
Output 224× 224× 3

Table 1. Detailed network architecture for texture transfer and gen-
erator network

(res-conv), which have been introduced by [13], are used in
a modified manner as described by [12] (see figure 2). The
idea behind using residual blocks is, that the network has
to achieve two competitive goals: preserving the content of
the image and applying the texture. The skip connections
provide an easy way for the network to forward all needed
information about the content to the output. The convolu-
tional layer in the residual blocks can then take care of the
texture transfer.

The first three convolution layers increase the number
of channels and down-sample the image. The number of
channels has a direct impact on the learning capacity of the
network. The more channels and thus filters, the more infor-
mation it can encode. There is a trade-off between the com-
putational cost of using many layers and the quality of the
output. The down-sampling might seem superfluous at first,
but it reduces the number of activations and gives us the
opportunity to create a deeper network than without down-
sampling. If we reduce the input size by a factor of two we
can use four times more filters at the same computational
effort or we could use four times more layers with the same
number of filters [16].

Another important property of the down-sampling oper-
ations is the increase of the receptive field of later layers.
Whenever we down-sample a feature map, the next layer’s
receptive field size represents a twice as big area of the in-
put as without down-sampling. This, however, comes with
the cost of up-sampling the feature map to it’s original size,
which tends to introduce artifacts.

4.3. Training

For each texture attribute (category) in a dataset we train
a separate network. Before we start the training we need
to set the target values for the texture attributes φ(l)texture(t).
These are the classification scores taken from the descrip-
tor network θ, pre-trained on texture classification. The de-
scriptor network θ is the VGG-16 network, which has been
fine-tuned for texture attribute classification. The attribute
classification has been done by extracting the bilinear fea-
tures from a set of layers, normalizing them by the signed
square root and l2, using a convolutional layer to form the
classification vector and finally applying a soft-max layer.
The loss, used to train this network on these features, was
the negative log-likelihood on the attribute labels. The tex-
ture features φ(l)texture(t) are extracted from the subset of lay-
ers: relu2 2, relu3 3, relu4 3, relu5 3. The specific choice
for the feature layers is not as important as choosing layers,
which represent feature maps of different spatial size. This
ensures that texture features of all sizes can be transferred
[10]. After setting the targets for the given attribute t we
can start the training procedure.



Figure 3. top left: network input The Starry Night by Vincent van Gogh, 1889, top row: network outputs for attributes porous, knitted,
cracked, bottom row: network outputs with color from input image and luminance from network outputs

For the training we used the MS COCO dataset1 [19],
using SGD with momentum and a mini-batch size of 20
images per iteration. The learning rate was set to 10−12

and the momentum term was 0.9. We did not use weight
decay, dropout or any other form of regularization. The
objective weights λ were set as follows: λcontent = 1,
λprior = 10−1, λ(l)texture = 0 for the first 1,000 iterations
and λ(relu2 2)

texture = 1 · 1010, λ(relu3 3)
texture = 4 · 1010, λ(relu4 3)

texture =

8 · 1010, λ(relu4 3)
texture = 64 · 1010 for the next 2,000 iterations.

This staged training makes the network learn the optimal re-
construction first and then apply the texture. We found that
this gives better results than training on all objectives from
the beginning. The huge magnitude difference between the
content and texture weights is caused by the range of the
target values. The classification scores for the texture at-
tributes are between 0 and 1, whereas the content feature
maps are of size 28× 28× 512 with a range of (0,255) for
each activation, which results in huge values when applying
the loss function. The values for the texture weights (1, 4, 8,
64) are hand-picked and have to be optimized in the future
but yielded the best results.

Before running the image transform network fT in each
iteration we have to set the content target features φcontent by
running θ forward and saving the feature maps for the con-
tent target layer, which we decided to be relu4 2. This is
a good trade-off between reconstruction quality and feature
map size. Earlier feature maps yield better reconstruction
but have more activations which makes it computational and
memory-wise more expensive to use earlier layers. In our
case we can live with the slightly worse reconstruction be-
cause we do not want to reconstruct the content perfectly
anyway.

The chain of processing steps for each mini-batch of
RGB images is as follows:

1MS COCO Dataset - http://mscoco.org

• We rescale all images to a size of 224×224 pixels. The
RGB values of these images are in the range [0, 255].
• We subtract the channel-wise RGB mean, provided by

the VGG-16’s training data, and then compute the con-
tent target features.
• We feed these images through fT to obtain the recon-

struction ~̂x.
• These are propagated through θ to obtain the content

features φcontent and the texture scores φ(l)texture.
• On those we compute the losses Lcontent and Ltexture,

which we back-propagate through θ, each weighted by
its λ-term.
• After this back-propagation we get the loss of the con-

tent features and the texture scores with respect to ~̂x
to which we add the natural image prior loss Lprior.
This combined loss is then used to back-propagate
through fT .

At this point we have all gradients needed to perform the
next SGD step.

The training dataset of MS COCO has 82,783 images.
That means that with a mini-batch size of 20 images we
would need 4,140 iterations to run a single epoch over the
whole dataset. Because the training yields promising results
after just a few iterations we do not use SGD in terms of
epochs over the whole dataset but only look at individual
iterations. That means that the network has not even seen
the whole data set after just 3,000 iterations.

5. Empirical Evaluation

For training our networks we chose the following param-
eters:

The descriptive target network θ, was chosen to be the
VGG-16 network [27], pre-trained on texture classification
using the bilinear features by Lin et al. [20]. The texture
dataset, which has been used to train θ, was the DTD (De-

http://mscoco.org


Figure 4. top left: network input Self-Portrait by Pablo Picasso, 1907, top row: network outputs for attributes braided, fibrous, interlaced,
veined, bottom row: network outputs with color from input image and luminance from network outputs

scribable Texture Dataset)2, which consists of 5,640 im-
ages, evenly distributed over 47 categories, which are the
following:

banded, blotchy, braided, bubbly, bumpy, che-
quered, cobwebbed, cracked, crosshatched, crys-
talline, dotted, fibrous, flecked, frilly, gauzy, grid,
grooved, honeycombed, interlaced, knitted, lace-
like, lined, marbled, matted, meshed, paisley,
perforated, pitted, pleated, polka-dotted, porous,
potholed, scaly, smeared, spiralled, sprinkled,
stained, stratified, striped, studded, swirly,
veined, waffled, woven, wrinkled, zigzagged [3]

Since we aim to transfer textures to natural images and
synthesize new textures we will mostly rely on qualitative
inspection of the results since it there is no measure which
tells us something about the naturalness as humans perceive
images.

5.1. Texture Transfer

Figures 3 and 4 show examples of textures transfered to
van Gogh’s Starry Night and Picassos’s self-portrait. As we
can see in the first row of each figure, the color information
of the input image gets lost, which is why we show a post-
processed version of the output aside all generated results.
This post-processing step consists of using the luminance

2DTD - http://www.robots.ox.ac.uk/˜vgg/data/dtd/

of the output image and the color and saturation of the input
image, which preserves the original color.

As we see in figures 3 and 4, this method can produce
results, that contain information about the content of the in-
put image as well as the attribute of the given texture. If
we look at the first output - the porous starry night - we
see that the input’s color information gets lost but we still
see a strong similarity with the original input. Most people
would agree that these starry nights look porous, knitted
and cracked. Also the self-portrait by Picasso is clearly rec-
ognizable after the texture transfer. Although those results
are appealing not all texture attributes from the DTD dataset
yield similarly good results.

Figure 5 shows examples for attributes that produce in-
teresting images but do not look very natural. Although we
can clearly see, that features of the given attribute appear in
the output and they are oriented along the input features–
like it’s edges–they do not look very realistic. Another ob-
servation is, that in all texture attributes only a few actual
texture features appear. They come in different scales but
most parts of the output image consist of similar elements.

5.2. Texture Synthesis

Besides texture transfer we are also able to synthesize
textures from just noise. The synthesis can be achieved
by simply using noise as input instead of a natural image.
Many choices for the noise type work but we found that Per-
lin noise [22] yields the best results. Figure 6 shows some

http://www.robots.ox.ac.uk/~vgg/data/dtd/


Figure 5. top left: network input Der Schrei by Edvard Munch, 1910, top row: network outputs for attributes banded, bubbly, cobwebbed,
dotted, bottom row: network outputs with color from input image and luminance from network outputs

of the categories from DTD synthesized using Perlin color
noise images of 192× 192 pixels.

We can see that not all categories look natural but those
who do look very promising indeed. These synthesized tex-
tures can be generated at any size only depending on the size
of the noise input but all texture features (bubbles in bubbly,
honeycombs in honeycombed, veins in veined, ...) will stay
at the same scale. This is because the filters, learned by our
networks, have a fixed size. So if the bubbles in the bubbly
texture are about 32 × 32 pixels, they will be that size no
matter how big the input noise is.

Training Iterations and Texture Scale One will easily
realize that the effect of the texture transferred to an input
depends on how long we train the generative network. The
texture attribute becomes stronger and the content less rec-
ognizable the longer we train a network. Figure 7 shows
how strong the texture appears after different iterations of
the training. However the training behaves differently for
other attributes–some might have a very strong effect in
early iterations whereas others need much longer training.
Another observation is the effect of the size of the input im-
age. The texture features always appear at the same scale
because the filters, learned by the generative network, have
fixed size. Therefore the size of the input determines the
textured look of the output.

6. Conclusion

We have presented a novel method for style transfer and
texture generation. A key property of the method is that
textures can be specified in terms of interpretable, high-
level attributes, such as striped, marbled, or veined. This is
achieved by training independent generative convolutional
neural networks for each attribute.

In contrast to procedural methods, our texture genera-
tor enjoys the flexibility of a data-driven, neural networks
based approach. Hence, an arbitrary attribute can be spec-
ified by simply providing a training set, and without any
expert knowledge of how to generate the texture’s structure
algorithmically. In contrast to methods based on a single
template image, the potentially large training set allows to
focus on a single attribute, shared by all training instances,
while a single image necessarily represents characteristics
of multiple attributes.

In our system, texture generation and style transfer are
feed forward processes. This makes the method capable of
real-time video processing, which can be a decisive advan-
tage over optimization-based approaches. We believe that
already the demonstration that attribute-based style trans-
fer is possible in a purely feed-forward manner is a signifi-
cant contribution. The quality of the results is already quite
pleasing. However, since we do not yet reach the perfec-
tion of far more compute-intensive optimization-based ap-
proaches, we still see room for future improvements.



Figure 6. Synthesized textures using 192 × 192 pixel RGB Perlin noise images as input. The texture attributes that have been used to
generate those textures are (top left to bottom right): braided, bubbly, bumpy, chequered, cracked, crystalline, fibrous, honeycombed,
interlaced, knitted, marbled, paisley, scaly, swirly, veined, waffled, woven and zigzagged

Figure 7. top left: input image showing portrait of Sintel–the pro-
tagonist from the identically named open source movie, others:
texture attribute veined transferred to Sintel after training iterations
30, 60, 90, 120 and 150.

Acknowledgments
This research was supported in part by the National Sci-

ence Foundation (NSF) grant IIS-1617917, and a Faculty

Figure 8. top left: input image showing portrait of Sintel, others:
texture attribute veined at training iteration 120 transferred to Sin-
tel at resolutions 128 × 92, 256 × 183, 512 × 366, 1024 × 761
and 2048× 1461.

gift from Facebook. Some of the GPUs used in this research
were generously donated by NVIDIA.



References
[1] C. Bishop. Pattern Recognition and Machine Learning.

Springer, 2006. 2
[2] L. Bottou. Stochastic gradient descent tricks. In Neural Net-

works: Tricks of the Trade, pages 421–436. Springer, 2012.
2

[3] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and
A. Vedaldi. Describing textures in the wild. In 2014 IEEE
Conference on Computer Vision and Pattern Recognition,
CVPR 2014, Columbus, OH, USA, June 23-28, 2014, pages
3606–3613, 2014. 3, 6

[4] M. Cimpoi, S. Maji, I. Kokkinos, and A. Vedaldi. Deep fil-
ter banks for texture recognition, description, and segmenta-
tion. International Journal of Computer Vision, 118(1):65–
94, 2016. 1

[5] D. C. Ciresan, U. Meier, J. Masci, and J. Schmidhuber. A
committee of neural networks for traffic sign classification.
In The 2011 International Joint Conference on Neural Net-
works, IJCNN 2011, San Jose, California, USA, July 31 -
August 5, 2011, pages 1918–1921, 2011. 2

[6] A. Dosovitskiy, J. T. Springenberg, and T. Brox. Learning
to generate chairs with convolutional neural networks. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2015, Boston, MA, USA, June 7-12, 2015, pages
1538–1546, 2015. 1

[7] D. S. Ebert. Texturing & modeling: a procedural approach.
Morgan Kaufmann, 2003. 1

[8] A. A. Efros and T. K. Leung. Texture synthesis by non-
parametric sampling. In ICCV, pages 1033–1038, 1999. 1

[9] L. Fei-Fei, A. Karpathy, and J. Johnson. Cs231n: Con-
volutional neural networks for visual recognition. http:
//cs231n.github.io, 2016. 2

[10] L. A. Gatys, A. S. Ecker, and M. Bethge. Texture synthesis
using convolutional neural networks. In Advances in Neural
Information Processing Systems 28: Annual Conference on
Neural Information Processing Systems 2015, December 7-
12, 2015, Montreal, Quebec, Canada, pages 262–270, 2015.
1, 2, 3, 4

[11] L. A. Gatys, A. S. Ecker, and M. Bethge. Image style trans-
fer using convolutional neural networks. In 2016 IEEE Con-
ference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, June 27-30, 2016, pages 2414–
2423, 2016. 2

[12] S. Gross and M. Wilber. Training and investigating resid-
ual nets. http://torch.ch/blog/2016/02/04/
resnets.html, 2016. 4

[13] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. In 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2016, Las Ve-
gas, NV, USA, June 27-30, 2016, pages 770–778, 2016. 4

[14] D. J. Heeger and J. R. Bergen. Pyramid-based texture analy-
sis/synthesis. In Proceedings of the 22nd Annual Conference
on Computer Graphics and Interactive Techniques, SIG-
GRAPH 1995, Los Angeles, CA, USA, August 6-11, 1995,
pages 229–238, 1995. 1

[15] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. B.
Girshick, S. Guadarrama, and T. Darrell. Caffe: Convolu-

tional architecture for fast feature embedding. In Proceed-
ings of the ACM International Conference on Multimedia,
MM ’14, Orlando, FL, USA, November 03 - 07, 2014, pages
675–678, 2014. 1

[16] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for
real-time style transfer and super-resolution. In Computer
Vision - ECCV 2016 - 14th European Conference, Amster-
dam, The Netherlands, October 11-14, 2016, Proceedings,
Part II, pages 694–711, 2016. 1, 3, 4

[17] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet clas-
sification with deep convolutional neural networks. In Ad-
vances in Neural Information Processing Systems 25: 26th
Annual Conference on Neural Information Processing Sys-
tems 2012. Proceedings of a meeting held December 3-6,
2012, Lake Tahoe, Nevada, United States., pages 1106–
1114, 2012. 1, 2

[18] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998. 2

[19] T. Lin, M. Maire, S. J. Belongie, J. Hays, P. Perona, D. Ra-
manan, P. Dollár, and C. L. Zitnick. Microsoft COCO: com-
mon objects in context. In Computer Vision - ECCV 2014 -
13th European Conference, Zurich, Switzerland, September
6-12, 2014, Proceedings, Part V, pages 740–755, 2014. 5

[20] T. Lin and S. Maji. Visualizing and understanding deep tex-
ture representations. In 2016 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV,
USA, June 27-30, 2016, pages 2791–2799, 2016. 3, 5

[21] T. Lin, A. Roy Chowdhury, and S. Maji. Bilinear CNN mod-
els for fine-grained visual recognition. In 2015 IEEE Inter-
national Conference on Computer Vision, ICCV 2015, San-
tiago, Chile, December 7-13, 2015, pages 1449–1457, 2015.
1, 2

[22] K. Perlin. An image synthesizer. In Proceedings of the 12th
Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH 1985, San Francisco, California,
USA, July 22-26, 1985, pages 287–296, 1985. 6

[23] J. Portilla and E. P. Simoncelli. Texture modeling and syn-
thesis using joint statistics of complex wavelet coefficients.
In IEEE workshop on statistical and computational theories
of vision, 1999. 1

[24] J. Portilla and E. P. Simoncelli. A parametric texture model
based on joint statistics of complex wavelet coefficients. In-
ternational Journal of Computer Vision, 40(1):49–70, 2000.
2

[25] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carls-
son. CNN features off-the-shelf: An astounding baseline
for recognition. In IEEE Conference on Computer Vision
and Pattern Recognition, CVPR Workshops 2014, Columbus,
OH, USA, June 23-28, 2014, pages 512–519, 2014. 1

[26] J. Schpok, J. Simons, D. S. Ebert, and C. D. Hansen. A
real-time cloud modeling, rendering, and animation system.
In Proceedings of the 2003 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, San Diego, CA, USA,
July 26-27, 2003, pages 160–166, 2003. 1

[27] K. Simonyan and A. Zisserman. Very deep convolu-
tional networks for large-scale image recognition. CoRR,
abs/1409.1556, 2014. 2, 3, 4, 5

http://cs231n.github.io
http://cs231n.github.io
http://torch.ch/blog/2016/02/04/resnets.html
http://torch.ch/blog/2016/02/04/resnets.html


[28] D. Ulyanov, V. Lebedev, A. Vedaldi, and V. S. Lempitsky.
Texture networks: Feed-forward synthesis of textures and
stylized images. In Proceedings of the 33nd International
Conference on Machine Learning, ICML 2016, New York
City, NY, USA, June 19-24, 2016, pages 1349–1357, 2016.
1, 3

[29] L. Wei and M. Levoy. Fast texture synthesis using tree-
structured vector quantization. In Proceedings of the 27th
Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH 2000, New Orleans, LA, USA, July
23-28, 2000, pages 479–488, 2000. 1


