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ABSTRACT
We present a comparison of step size adaptation methods
for evolution strategies, covering recent developments in the
field. Following recent work by Hansen et al. we formulate
a concise list of performance criteria: a) fast convergence
of the mean, b) near-optimal fixed point of the normalized
step size dynamics, and c) invariance to adding constant di-
mensions of the objective function. Our results show that
algorithms violating these principles tend to underestimate
the step size or are unreliable when the function does not fit
to the algorithm’s tuned hyperparameters. In contrast, we
find that cumulative step size adaptation (CSA) and two-
point adaptation (TPA) provide reliable estimates of the
optimal step size. We further find that removing the evolu-
tion path of CSA still leads to a reliable algorithm without
the computational requirements of CSA.

Categories and Subject Descriptors
[Continuous Optimization]

Keywords
evolution strategies, step size adaptation, comparison

1. INTRODUCTION
We consider minimization of a “black-box” function f :

Rd → R defined on a d-dimensional real vector space. For
optimization we consider Evolution Strategies (ES) using a
normal search distribution N (m,σ2C) with mean m ∈ Rd,
covariance matrix C ∈ Rd×d, and global step size σ > 0.
Adaptation of the step size enables linear convergence on
scale invariant functions [2], while covariance matrix adap-
tation (CMA) [8] renders the asymptotic convergence rate
independent of the conditioning number of the Hessian.1

1This statement requires a twice continuously differentiable
function with strictly positive definite Hessian in the isolated
optimum.
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This paper is concerned with the conceptual and empiri-
cal comparison of a number of state-of-the-art mechanisms
for controlling the algorithm’s step size σ.

Step size control mechanisms have been a core component
of ESs, dating back to Rechenberg’s famous 1/5-rule [16].
Consequently there exists a plethora of step size adaptation
(SA) mechanisms [15, 5, 12, 9, 1]

Comparing these algorithms is a problematic task. The
traditional approach is to judge the competitors on a set
of benchmark problems. However, such a comparison relies
heavily on the tuning of the algorithms’ hyperparameters.
Relying on previously tuned settings of the hyperparame-
ters does not lead to a fair comparison as tuning always in-
volves a trade-off between performance and the stability of
the algorithm on unknown functions, which might lead to a
much more conservative tuning which can often be improved
for specific tasks. Moreover, even assuming well tuned al-
gorithms, in a regime where one algorithm does not domi-
nate all others on every tested benchmark function it is not
straightforward to rank the algorithms.

Recently a new, more qualitative approach was proposed.
It is based on how the behavior of an algorithm matches
a desired reference behavior [7]. Only a small set of simple
benchmark functions is used and algorithms are not assessed
by their optimization performance alone, but according to
how they achieve it. Thus it is not only important how fast
an algorithm finds a solution of given accuracy. In addition
it is judged according to how effective and robust its internal
mechanisms work. This type of analysis gives deeper insight
into the algorithm’s behavior. Consequently, tuning plays
a much smaller role than in a purely benchmark function
based comparison.

The present comparison study is similar in nature and
draws heavily from the approach proposed by [7]. We mod-
ify the original catalog of desiderata only slightly for our
comparison, most significantly by adding the criterion of in-
variance under the addition of insignificant variables. We
include two relatively recent methods, namely the median
success rule [1] and the population step size adaptation [12].
For simplicity and clarity we perform our analysis for an ES
without CMA mechanism (fixing C to the identity matrix).

The paper is organized as follows. In the next section we
introduce the simple ES with step size adaptation. Then we
formulate a list of desirable properties for step size adapta-
tion methods (section 3). In section 4 we review a variety of
existing SA methods and list their properties as far as they
can be derived analytically. This analysis is enriched with



Table 1: Constants used in the ES.

constant value
λ 4 + b3 log(d)c
wi

max{0,log(λ/2+1/2)−log(i)}∑λ
j=1 max{0,log(λ/2+1/2)−log(j)}

σ0
1√
d

empirical data in section 5. The results obtained in sections
4 and 5 culminate in a discussion (section 6), from which we
extract our conclusions (section 7).

2. EVOLUTION STRATEGIES
Throughout this paper we consider the following ES. At

the beginning of each iteration t it samples a new offspring
population

{
xt,1, . . . , xt,λ

}
of size λ from its Gaussian search

distribution with density

pt(x) =
1√

2dπdσdt
exp

(
−‖x−mt‖2

2σ2
t

)
,

which is parameterized by the current mean mt and the step
size (standard deviation) σt. In the next step it computes
the function values f(xt,i) and sorts the offspring by fitness,
so that f(xt,i) ≤ f(xt,i+1). The next mean mt+1 is obtained
as a convex combination of the offspring using weights wi
with

∑λ
i=1 wi = 1

mt+1 =

λ∑
i=1

wixt,i .

Truncation selection is encoded by giving non-zero weights
only to the first µ = λ/2 points. Finally a step size adapta-
tion (SA) algorithm computes σt+1. Even though σt appears
only in the sampling of offspring points it is a crucial param-
eter since it governs the length of the step µt+1−µt. For the
parameters λ and wi we use the default values of CMA-ES
[8], which are given in Table 1.

3. REQUIREMENTS FOR SA METHODS
The prime measure of performance of an optimization al-

gorithm operating on a continuous domain is its rate of con-
vergence. However, the convergence rate can be measured
in different ways, e.g., based on distance in search and ob-
jective space. In the following, we will focus our discussion
on scale invariant functions, that is functions for which hold
f(a ∗ x) = g(a) · f(x), x ∈ Rd, a ∈ R. On these functions,
most evolution strategies exhibit convergence to the isolated
optimum x∗ at a linear rate, which is defined in accordance
with [7] as2

r = lim
t→∞

exp

(
1

2t
log

(
f(xt)− f(x∗)

f(x1)− f(x∗)

))
. (1)

Comparing SA methods empirically based on the achieved
rate of convergence is hard since their performance depends
crucially on their tuning parameters. In practice, the heuris-
tics are tuned on a set of benchmark functions to show good

2In contrast to the ES, this definition is not invariant under
monotonic transformations of fitness values. However, it
is well-defined for quadratic objective functions, which are
used in the experimental evaluation.

average or worst case performance. What is missing is an
assessment of whether the tuning makes sense or whether
it is a byproduct of over-fitting to the chosen benchmark
functions.

The primary example is an SA algorithm that naturally
adapts the step sizes to too small values. Honest tuning of
the algorithm might result in hyperparameter settings that
slow down the adaptation so much that the observed step
sizes are on the right scale. It is obvious that the tuning re-
sult is fragile and may yield sub-optimal step sizes on other
problems. Thus, severe flaws of an SA method can be hid-
den and the chosen parameters might only work reasonably
well on the given set of benchmark functions, while the per-
formance on unseen functions might be much worse. In the
example above, if a new function is chosen so that the opti-
mizer can approach the optimum only slowly, then the step
size has more time to adapt and thus the SA method will
select a too small step size. This could be observed, e.g.,
when tuning on the Sphere function and testing the tuned
SA algorithm on an Ellipsoid function.

One way of dealing with this problem is to require tuning
on an extensive predefined set of objective functions. How-
ever, this makes tuning even harder, and new methods have
to compete with well-known and thus well tuned algorithms.
Also the benefit of this approach can be disputed since even
an extensive set of benchmark functions might not give us a
deep understanding of the method.

Therefore we follow a different route proposed in [7]: step
size adaptation methods are judged according to whether
and to which degree they fulfill a set of requirements. The
properties we consider in this paper are:

1. Mean Progress. The mean mt is the ES’s best cur-
rent estimate of the optimum, hence it should improve
over time. The SA should optimize this progress by
maximizing (1). This means that the optimal step
sizes found by the algorithm should be close to the
one that optimizes progress in each single step and
that this estimate is reliable over different problems.

2. Fixed Point dynamics of σ. We require that for
a properly tuned algorithm the realized step sizes are
close to the fixed-point dynamics of the step size adap-
tation algorithm. This entails that the fixed point is a
meaningful estimate of the optimal step size and thus
the learning rates merely govern how fast and how well
the algorithm tracks it.

3. Invariance to Constant Dimensions. The step size
should be independent of the addition of variables in
which the objective function values are constant (i.e.,
the function does not depend on these variables). This
is important in a black-box setting in which we can-
not find a reparameterization that would remove an
irrelevant subspace.

Checking these requirements makes it easier to compare al-
gorithms and, more importantly, to judge whether a given
empirical comparison is fair or not. For example, comparing
an algorithm fulfilling the requirement of the quality of the
stationary distribution to one that does not, might not be
fair since the latter could be tuned to a small set of bench-
mark functions while the former is inherently stable across
a larger set of problems.



In addition to these requirements Hansen et al. [7] con-
sider the following goals: on a random or flat fitness log(σt)
should perform an unbiased random walk, σt should grow
exponentially fast on a linear function, and the algorithm
should be invariant under translation and rotation of the
search space. We are not testing these since the desired be-
havior on a random or flat fitness is debatable, and in our
setup all considered algorithms grow σt at an exponentially
rate on a linear function and fulfill the invariance properties
by design.

4. ALGORITHMS
In this section we introduce seven different step size adap-

tation (SA) algorithms and analyze them in terms of the
requirements listed in section 3.

4.1 Cumulative Step Size Adaptation (CSA)
Cumulative Step Size Adaptation (CSA) is the current

state-of-the-art used in the CMA-ES algorithm. It is based
on the assumption that when the step size is well adapted,
steps taken will become uncorrelated [15] on average. The
CSA computes an evolution path, a long-term average of
previous steps, and compares its length with the length ex-
pected for uncorrelated steps. When samples are drawn from
a normal distribution with mean mt and covariance matrix
Ct, the update of the evolution path pσ,t is given by

pσ,t+1 = (1− cp)pσ,t +
√
cσ(1− cp)µeffC

−1/2
t

mt+1 −mt

σt
.

Here, µeff =
(∑λ

i=1 w
2
i

)−1
is the effective sample size of the

weighted individuals, cp is a hyperparameter, and C
−1/2
t is

the matrix square root. The term C
−1/2
t

mt+1−mt
σt

is the
last step of the mean transformed into a coordinate sys-
tem which is independent of σt and Ct, and

√
cσ(1− cσ)µeff

is a normalization term ensuring pσ,t ∼ N (0, Id) assuming
√
µeffC

−1/2
t

mt+1−mt
σt

∼ N (0, Id). Thus, ‖pσ‖ can be com-
pared with the expected length of a sample from the stan-
dard normal distribution. If it is longer (shorter), then the
step size in increased (decreased) in an exponential manner.
The resulting update reads

σt+1 = σt exp

(
cσ
dσ

(
‖pσ,t+1‖
χd

− 1

))
,

where dσ is another damping factor and χd is the expecta-
tion of the χ distribution with d degrees of freedom.

The CSA method is not invariant w.r.t. the addition of
constant dimensions because all individuals and hence the
mean take on random values in these components, which
adds noise to the path vector. The fixed point dynamics of
the CSA is not independent of its hyperparameters, as the
learning rate of the evolution path changes how correlation is
measured. In the extreme case cσ = 1 correlation is ignored
completely and only the length of the current step is taken
into account.

4.2 xNES SA
The exponential Natural Evolution Strategy (xNES) al-

gorithm [5, 18] is an instance of the information geometric
optimization (IGO) method [14]. The xNES algorithm ap-
plies multi-variate Gaussian distributions with mean m and
covariance matrix C. The square root σ = 2d

√
det(C) of the

geometric mean of the eigenvalues of C is interpreted as the

method’s global step size parameter, and xNES allows to
control the learning rate for this scale parameter indepen-
dent of the learning rates for the shape of the distribution.

The IGO framework treats all parameters of the search
distribution the same, irrespective of their role. Hence there
is no dedicated mechanism for the adaptation of the step
size, instead the parameter is adapted just like the mean
and the remaining covariance parameters. The update rule
is derived from stochastic natural gradient descent on the
statistical manifold spanned by the search distribution pa-
rameters, where the offspring population serves as a Monte
Carlo sample. For details we refer the interested reader to [5,
14].

The simplistic step size adaptation rule of the xNES al-
gorithm can be extracted as a standalone method, subse-
quently referred to as xNES SA. The update rule reads

σt+1 = σt · exp

(
cσ√
d
·
λ∑
i=1

wi ·

[∥∥∥∥C−1/2
t

xt,i −mt

σt

∥∥∥∥2

− d

])
,

where cσ > 0 is a hyperparameter. The rule is based solely
on the immediate offspring xt,i, which enter the stateless ex-
ponential update term as standardized samples. The squared
norms of these samples are compared to their expectation
(the dimension d). If highly weighted offspring correspond
to steps longer than the expectation, then the argument of
the exponential is positive and the step size is increased. If
successful steps are shorter, the step size is decreased.

4.3 mean-xNES SA
In a variant of xNES SA we replace the samples by the

actual step taken. This leads to an update similar to the
CSA without an evolution path

σt+1 = σt · exp

(
cσ
d
·

[
µeff

∥∥∥∥C−1/2
t

mt+1 −mt

σt

∥∥∥∥2

− d

])
.

We call this the mean-xNES SA. In contrast to the xNES
SA, we scale the χ2-statistic by d−1, not d−1/2, motivated
by our experimental findings in Section 6. The difference
in scaling factor does not matter in most cases as it can be
compensated by the learning rate. However, when changing
the learning rate this scaling turns out to be more stable
across different dimensions.

4.4 xNES SA with Log-normal Prior
One disadvantage of xNES SA and mean-xNES SA is that

they do not compare a-priori defined step sizes, but only
a-posteriori observed step sizes, which are not invariant un-
der the addition of constant dimensions. We can expand
the xNES approach by introducing a prior probability dis-
tribution on σ and amend the ES by sampling individu-
als as pt(x) = pt(x|σ)pt(σ) by sampling σt,i ∼ pt(σ) and
xx,i ∼ pt(x|σt,i), for i = 1, . . . , λ. We choose pt(σ) as the
log-normal distribution with density

pt(σ) =
1

σβ
√

2π
exp

(
− (log(σ)− log(σt))

2

2β

)
and pt(x|σ) as a normal distribution with mean mt and stan-
dard deviation σ. Applying the same derivation as in the
xNES SA on σt we arrive at the update

σt+1 = σ1−cσ
t exp

(
cσ

λ∑
i=1

wi log(σt,i)

)



with learning rate cσ. The update can be interpreted as
a geometric update of the old step size using the weighted
geometric mean of the current iteration. The hyperparam-
eters are the learning rate cσ and the variance parameter β
of the log-normal distribution. This update is close to the
update rule of the CMSA [3] with cσ = 1 and exchanging
the geometric average of σt,i by an arithmetic average. The
geometric average leads to an unbiased estimate of the mean
on a flat or random function and therefore to random walk
behaviour.

The xNES SA and the mean-xNES SA are not invariant
w.r.t. the addition of constant dimensions due to the vari-
ability of xt,i in these dimensions. This defect is fixed by
the introduction of a prior, because the step size σt,i is in-
dependent of the actual step.

4.5 Median Rule
The Median Rule was proposed in [1] as a way to adapt

Rechenberg’s 1/5-rule [16] to non-elitist algorithms. The
idea is to compare the objective function values f(xt,1) ≤
· · · ≤ f(xt,λ) of the current iteration to a chosen quantile
of the function values f(xt−1,1) ≤ · · · ≤ f(xt−1,λ) of the
previous iteration. Let κ be the rank of the individual in the
previous generation that represents the threshold f(xt−1,κ).
Then we estimate the probability that a newly sampled point
has a smaller function value as

ut =
1

λ

λ∑
i=1

1 {f(xt,i) ≤ f(xt−1,κ)} .

The rank κ is a hyperparameter. It is chosen so that with an
optimal step size the probability that a currently sampled
point has a smaller function value than f(xt−1,κ) is 1/2 on
the Sphere function. Normalizing the values of ut to [−1, 1]
so that a success rate of 1/2 transforms to 0 we define the
time averaged statistic

zt+1 = (1− cz)zt + cz(2ut − 1)

and σt is updated in an exponential fashion according to

σt+1 = σt exp

(
zt+1

dσ

)
,

where dσ is a damping factor controlling the speed of adap-
tation.

4.6 Population SA
This algorithm has recently been introduced as part of

the Limited Memory CMA-ES [12] as an improvement to
the Median-Rule, motivated by the need to overcome the
runtime complexity problems of CSA. This success-based
rule increases the step size when the new samples are more
successful than the previous ones. The measure of success
is based on a Whitney-U rank sum statistic.

Let rt,i be the rank of the point xt,i and ot,i the rank
of the individual xt−1,i in the combined set

{
f(xt−1,1), . . . ,

f(xt−1,λ), f(xt,1), . . . , f(xt,λ)
}

. We define the rank-sum

ut =
1

λ2

λ∑
i=1

(ot,i − rt,i) ∈ [−1, 1] .

When ut > 0 then the current population is more success-
ful than the previous one. A target success rate b > 0 is
subtracted and the statistic is time averaged by zt+1 =

(1 − cz)zt + cz(ut − b). The update of σt is then again
performed in an exponential fashion

σt+1 = σt exp

(
zt+1

dσ

)
with damping factor dσ.

The bias b serves two roles: It corrects for the fact that
any successful step of the mean mt will improve the sampled
points compared to the previous iterations and thus setting
b = 0 would increase the step size until no progress can be
seen any more. The second role is to force the algorithm to
shrink its step size once the progress seen is smaller than the
expected value.

Median Rule and Population SA are perfectly invariant
w.r.t. the addition of constant dimensions. This is because
they rely solely on function values f(xt,i), not on the under-
lying vectors xt,i, where random fluctuation in these com-
ponents would show. On the other hand, they rely on the
assumption that the optimal step size is coupled to a fixed
success rate. This assumption is fragile, as the optimal suc-
cess rate is problem independent. For example, on an ill-
conditioned ellipsoid, the success rate will be very small un-
less individuals are sampled with small variance. Thus a
fixed target success rate might entail small steps.

4.7 Two-point Step Size Adaptation (TPA)
The Two-point Step Size Adaptation (TPA) is one of the

most simple adaptation rules. It was introduced in [17],
adopted in [6] and reformulated in [7]. Its idea can be viewed
as a simplified line-search approach. The version we use
here is closer to [6], as [7] is incompatible with the ES de-
fined in section 2. We further deviate from [6] by using the
step size proposal from [17] since it showed better results in
our experiments. Further improvements can be obtained by
swapping the order of updating σt and xt in the ES, which
is more in line with the line-search motivation and closer to
the approach in [17].

After a step in direction st is performed with the current
step size σ we are at the point mt+1 = mt+σtst. We want to
know whether it would have been beneficial to have taken a
longer or shorter step. In a non-black-box method we could
check the sign of the derivative d = sTt

∂
∂mt+1

f(mt+1). A

positive (negative) value indicates that a shorter (longer)
step would have made more progress. Hence we should de-
crease (increase) the step size.

In a black-box setting we cannot compute derivatives, but
we can estimate the sign numerically simply by comparing
two points created by making the step shorter and longer.
We choose to decrease the step size by a factor α < 1 and
increase it by a factor β > 1, evaluate ft,α = f(xt + ασst)
and ft,β = f(xt + βσst), and estimate the sign as sign(d) =
sign(ft,β − ft,α). We compute the time-average

zt+1 = (1− cz)zt + cz log(α)1{ft,α < ft,β}
+ cz log(β)1{ft,α ≥ ft,β}

and finally perform the exponential update

σt+1 = σt exp

(
zt+1

dσ

)
.

Analog to [17] we choose β = 1
α

in our experiments. This
amounts to increasing or decreasing log(σ) by the same value
| log(α)| = | log(β)|.



Table 2: Theoretical and empirical properties of the studied
algorithms as described in section 3.

Algorithm Mean Fixed Const.
Progress Point Dim.

Cumulative SA yes yes no
Median SA no no yes
Population SA no no yes
xNES SA no no no
prior-xNES SA no no yes
mean-xNES SA yes yes no
Two-point SA yes yes yes

The two-point method is completely invariant under the
addition of constant dimensions.

In this study, we considered the original variant of two-
point step size adaptation, which uses two additional func-
tion evaluations per generation. This makes it the only
method in our comparison that requires additional evalu-
ations of the objective function. However, newer variants
of two-point step size adaptation do not suffer from this
drawback [7]. If the step size adaptation is delayed by one
generation, the individuals used for the two-point method
can be part of the next offspring population, for details and
further enhancements of the two-point method we refer to
[7].

5. EXPERIMENTS
While properties like invariance under the addition of con-

stant dimensions (and the need for additional function eval-
uations) can be determined from the algorithm description,
this is not (always) the case for the progress of the mean
and steady state stability. Therefore these properties are
investigated experimentally in the following.

For all our experiments we utilize the family of quadratic
functions

fy(x) =

d∑
i=1

yix
2
i .

This family of functions has the property of scale invariance,
i.e., all (non-optimal) level sets share the same shape up to
scaling. For the quadratic functions above this is ensured by
the relation f(ax) = a2f(x). For any given point x, setting
a = 1√

f(x)
, we can always “normalize” the algorithm state

to the unit level set f(ax) = 1.
A special case of this family is the Sphere function fs(x) =
‖x‖2, which is distinguished in this study for exhibiting the
same symmetries as the Gaussian search distribution. In
addition we consider the Ellipsoid

fell,k(x) =

d∑
i=1

ki/dx2
i

and the sphere function with d − k constant dimensions
(“Constant Sphere”)

fcs(x) =

k∑
i=1

x2
i .

We set k = 4 in all of our experiments. The ill-conditioned
Ellipsoid problem is well known to be difficult to solve with
isotropic search distributions, which poses a challenge to SA

methods. The Constant Sphere function should be no harder
to optimize than the Sphere function, provided that the SA
method is invariant under the addition of constant dimen-
sions.

Well-tuned default values are available for the various SA
methods, usually from the papers where they were originally
proposed. However, tuning can be performed aggressively
or conservatively, on different benchmark suits and problem
dimensions, and with different goals. The resulting opti-
mization performance can differ significantly [13].

Therefore, in order to remove possible biases and to make
our comparison fair, we first tuned all algorithms with the
same setup. All parameters were tuned on the Sphere func-
tion at varying dimensionality for optimal performance. In
many cases, the parameters found were close to those pub-
lished in earlier literature, often only differing by a constant
factor which lead to less conservative, larger learning rates.
In subsequent experiments the algorithms are analyzed with
the pre-tuned parameters. The parameters we found are
summarized in Table 3. The experiments can be reproduced
with the source code provided as supplementary material.

Experiment 1: Optimization Performance.
In this experiment we measured the performance of all

tuned algorithms on the Sphere function. We varied the
dimensionality d ∈ {4, 8, 16, 32, 64, 128} and measured the
number of function evaluations until reaching the target ob-
jective value of 10−14. We report median and lower and
upper quantiles over 100 trials.

We repeated this experiment on the Constant Sphere func-
tion to asses how the algorithms are affected by meaningless
variables. We performed this experiment in two variants:
firstly, we set the learning rates exactly as on the Sphere
function with ambient dimension d, and secondly, we set the
values as for dimension d = 4, which makes the results com-
parable to the underlying 4-dimensional Sphere problem. In
the latter experiment, an algorithm that is completely in-
variant to constant dimensions must show identical perfor-
mance.

Experiment 2: Distribution of Step Sizes.
In our second experiment we compare the realized (nor-

malized) step sizes of the different algorithms to the optimal
step size. This provides first insights into why an algorithm
performs well or not. Scale invariance of the objective func-
tion as well as the algorithms under consideration implies
that the algorithm state given by mt, σt and other state
variables such as evolution paths and stored function values
from previous iterations, normalized by the scaling factor

1√
f(mt)

, forms a Markov chain, the stationary distribution of

which gives rise to its long-term behavior [4]. Hence the nor-

malized step size σt/
√
f(mt) can be estimated by the mean

or median over a large number of iterations. Numerically
more stable results are achieved by instead re-normalizing
the algorithm state after each iteration.

In all experiments we first perform 50, 000 iterations to
let the algorithm converge to its long term behavior and
then compute the median normalized step size over the next
50, 000 iterations. We again analyze problem dimensions
d ∈ {4, 8, 16, 32, 64, 128} and report the results on Ellipsoid
functions of various difficulties with k ∈ {1, 10, 100}.

This experiment reveals the realized normalized step sizes
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(b) Constant Sphere
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(c) Constant Sphere, d = 4 rates

Figure 1: Number of iterations needed by the different algorithms to reach the target threshold at varying dimensionality.
From top to bottom: Sphere, Sphere with d− 4 constant dimensions, and Sphere with d− 4 constant dimensions and learning
rates of d = 4. The shaded areas depict the 25% and 75% percentile. Note that due to the tuning all curves are largely
overlapping on Sphere.

while approaching the optimum. On scale invariant func-
tions, the realized step sizes will on average overestimate the
value obtained at the fixed point, as the update step of σt

will update it in direction of the current true unnormalized
step size, while with every successful step the true unnor-
malized step size will shrink. To obtain the fixed point, we



perform the same re-normalization as in the previous exper-
iment, but do not re-normalize σt. As the renomalization
normalizes to the f(mt) = 1 iso-surface, this allows the al-
gorithm to let its value of σt converge to the value of the
normalized step size at its fixed-point.

We estimated the optimal normalized step size by per-
forming a grid search over σ/

√
f(m) for maximal conver-

gence rate. We used a two stage grid (coarse to fine), first

obtaining the best σ̂∗0 ∈ {10−3+ 3
20
i | i = 1, . . . , 20} and then

finding the best σ∗0 ∈ {σ̂∗010−
1
5

+ 2
5
i
30 | i = 1, . . . , 30}.

6. RESULTS AND DISCUSSION
When interpreting the experimental results we are pri-

marily interested in identifying sub-optimal behavior, and
we focus in particular on how and why different SA mech-
anisms break. We intend to provide insights and potential
starting points for improving SA mechanisms in the future.

The results of the first experiment are illustrated in Fig-
ure 1. On Sphere (Figure 1, left) all algorithms performed
essentially the same. This is of course an artifact of tuning
on this very function. More interestingly, on Sphere with
constant dimensions (Figure 1, middle) we see large differ-
ences between algorithms. While xNES SA, prior-xNES SA,
and mean-xNES SA performed the same as on the Sphere
function, CSA required more iterations, while the remaining
algorithms required less. When setting learning rates and
population size to the values of the four-dimensional Sphere
problem (Figure 1, right), we saw that CSA performance im-
proved to the level of mean-xNES SA and xNES SA, while
for the remaining algorithms the number of iterations be-
came independent of the ambient problem dimension.

These results can be explained as follows. CSA, xNES SA,
and mean-xNES SA compare lengths of vectors (either steps
or a path) to the expected length under random selection.
In this case only four dimensions are relevant for selection,
hence the ES performs a random walk in the orthogonal
subspace. The squared norm of the vectors in the orthogonal
subspace follows the χ2

d−4 distribution with variance 2(d−4).
Thus, to keep the algorithms stable, the learning rate must
be scaled to reduce the overall variance in the update of the
step size. This is achieved by the factor 1/d or 1/

√
d in the

update rules of the algorithms, which slows down learning
of the meaningful dimensions for d� 4.

The results of the second experiment are given in Figure 2.
Since all algorithms were tuned on Sphere (k = 1, left col-
umn), the realized step sizes were close to optimal. Still, the
fixed-point step sizes of xNES SA and prior-xNES SA were
underestimating the optimal step size.

On the Ellipsoid problem, the gap between the optimal
and the realized step size increased with increasing condi-
tioning k. For xNES SA and prior-xNES SA the gap in-
creased further as they converged to their fixed-point. Also,
the fixed points of Population SA and Median SA were
clearly inferior to CSA and TPA, where CSA was superior to
TPA for large conditioning numbers k. We observe that for
large k algorithms relying on a statistic on the mean (CSA,
TPA and mean-xNES SA) outperformed xNES SA relying
on the length of individual steps and the population-based
variants relying purely on ranking information.

The biggest difference between xNES SA and prior-xNES
SA on the one hand and CSA and TPA on the other hand
is that the former are based on distances of sampled points

Table 3: Parameters used by the algorithms in the experi-
ments after tuning on Sphere.

constant value
CSA

cp
µeff + 2

d+ µeff + 5

dσ
1

4

(
1 + cp + 2 max

{
0,

√
µeff − 1

d+ 1
− 1

})
Median-Rule

κ

⌊
1 +

µeff

λ

1

d

⌋
cz 0.4
dσ 1

Population SA
cz 0.4
b 0.4
dσ 1

xNES SA

cσ
µeff

2 log(d)
√
d

mean-xNES SA
cσ 1

prior-xNES SA

β
log 2√
d log(d)

cσ
9µeff

10
√
d

Two-point SA
α 0.7
cz 0.5
dσ 1

from the mean, while the latter consider the lengths of steps
of the mean. This is an important difference, as it is im-
probable to create a sample in the optimal direction, while
the mean of the selected samples is a much more stable es-
timate of this direction. However, when the direction is not
optimal, then the optimal step size in this direction will very
likely be smaller than in the optimal direction, which holds
especially true on Ellipsoid with large k. This results in
a bias towards smaller step sizes, which is pronounced for
methods relying on properties of selected individuals.

The population-based algorithms Median-Rule and Pop-
ulation SA suffer from their definition of success. With in-
creasing k the probability to draw a point that is better
than the current median decreases. Thus the distributions
of ranks overlap more and more. Therefore, for optimal per-
formance, with growing k the success rates or percentiles
would need to be adapted to smaller values.

The algorithms CSA, TPA, and mean-xNES SA suffered
the least losses in performance on the Ellipsoid. Although
for k = 10 they were close to the optimal learning rate,
there was still a relevant loss in performance. This is be-
cause the Euclidean length of a step gives less information
than on Sphere about how much progress was made. For
CSA there is another problem. Samples are selected more
aggressively in some directions than in others, thus the dis-
tribution of the observed noise is not as expected and the
noise level of uncorrelated steps changes. TPA suffers from
a similar problem because it adapts the step size based on
the expected success probability of a larger or smaller step.



This leads to a more conservative choice of the step size in
cases where the probability of success is small but the gain
of a successful step is large.

7. CONCLUSION
We have analyzed the behavior of a set of step size adap-

tation (SA) algorithms based on a predefined set of require-
ments. Some of the requirements can be checked based on
obvious properties of the SA methods. Others required an
empirical investigation, which could be limited to a small
set of easy to analyze benchmark functions found in many
of the current benchmark sets.

We focus on the following aspects: Is the algorithm in-
variant to the addition of constant dimensions or does its
performance suffer? Does the normalized step size converge
to a reasonable fixed-point on scale invariant functions? And
is this fixed point close to optimal across different objective
functions?

We argue that an algorithm can only be competitive on a
wide range of black-box functions if it fulfills (at least) these
requirements, since otherwise its performance will depend
crucially on the tuning of its parameters.

It turns out that only one of the analyzed algorithms, the
two-point adaptation method TPA, fulfills all these require-
ments. This makes the new variant of TPA, which does not
require additional objective function evaluations, an inter-
esting alternative to CSA in the CMA-ES [7], also because
it should work seamlessly with the novel efficient covariance
matrix update scheme proposed in [11, 10].

We show that algorithms that are based on information
geometric optimization (natural gradients) under-estimate
the step size, an effect that gets even worse for ill-conditioned
problems. This explains the conservatively tuned learning
rates of the xNES algorithm, which has significantly smaller
default learning rates than all of its competitors. We argue
that this is the case because most offspring are not sampled
in the direction towards the optimum, but instead more and
more orthogonal with growing problem dimension. Thus
the step size adaptation mechanisms take steps into account
which the overall algorithm does not take. As in these di-
rections successful steps are typically smaller, this results in
a too small step size. We showed that this is indeed the case
by implementing a new algorithm that performs the update
using the actual step taken. This leads to a competitive
algorithm, which is however not derived from information
geometry, but instead closely resembles CSA without tem-
poral integration.

While present SA methods work quite satisfactory in many
situations, it is still easy to construct problems resulting in
far from optimal step sizes. In this paper we have systemat-
ically investigated the weak spots of the underlying adapta-
tion mechanisms. The currently available algorithms differ
quite widely in their working principles and also in their rel-
ative strengths and weaknesses. We therefore believe that
there is room for developing techniques that combine the
strengths of all present SA algorithms.
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(a) Sphere, k = 1
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(b) k = 10
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(c) k = 100

Figure 2: Normalized step sizes times dimensions obtained by the algorithms on the ellipsoid function, with growing difficulty
k ∈ {1, 10, 100} from top to bottom. The plots compare the progress of the fixed-point of the step size adaptation(dashed
lines) and the progress of the step size of the optimization dynamics to the progress with optimal step size. Note that for
large k fixed-point and normal dynamics are overlapping.


