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ABSTRACT
Covariance matrix adaptation (CMA) mechanisms are core
building blocks of modern evolution strategies. Despite shar-
ing a common principle, the exact implementation of CMA
varies considerably between different algorithms. In this pa-
per, we investigate the benefits of an exponential parametriza-
tion of the covariance matrix in the CMA-ES. This technique
was first proposed for the xNES algorithm. It results in a
multiplicative update formula for the covariance matrix. We
show that the exponential parameterization and the mul-
tiplicative update are compatible with all mechanisms of
CMA-ES. The resulting algorithm, xCMA-ES, performs at
least on par with plain CMA-ES. Its advantages show in
particular with updates that actively decrease the sampling
variance in specific directions, i.e., for active constraint han-
dling.

Categories and Subject Descriptors
[Continuous Optimization]

General Terms
Algorithms

Keywords
evolution strategies, covariance matrix adaptation, CMA-
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1. INTRODUCTION
Evolution Strategies (ES) are randomized direct search

algorithms suitable for solving black box problems in the
continuous domain, i.e., minimization problems f : Rd → R
defined on a d-dimensional real vector space. Most of these
algorithms generate a number of normally distributed off-
spring in each generation. The efficiency of this scheme,
at least for unimodal problems, crucially depends on online
adaptation of parameters of the Gaussian search distribution
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N (m,σ2C), namely the global step size σ and the covari-
ance matrix C. Adaptation of the step size enables linear
convergence on scale invariant functions [4], while covari-
ance matrix adaptation (CMA) [10] renders the asymptotic
convergence rate independent of the conditioning number of
the Hessian in the optimum of a twice continuously differ-
entiable function.

The most prominent algorithm implementing the above
principles is CMA-ES [10, 8, 12]. Nowadays there exists a
plethora of variants and extensions of the basic algorithm.

A generic principle for the online update of parameters
(including the search distribution) is to maximize the ex-
pected progress. This goal can be approximated by adapting
the search distribution so that the probability of the pertur-
bations that generated successful offspring in the past are
increased. This is likely to foster the generation of better
points in the near future.1

The application of the above principle to CMA means to
change the covariance matrix towards the maximum likeli-
hood estimator of successful steps. To this end let N (m,C)
denote the search distribution, and let x1, . . . , xµ denote suc-
cessful offspring. The maximum likelihood estimator of the
covariance matrix generating step δi = xi −m is the rank-
one matrix δiδ

T
i . All CMA updates of CMA-ES are of the

generic form C ← (1− c) ·C + c · δδT , which is a realization
of this technique keeping an exponentially fading record of
previous successful steps δ. CMA-ES variants differ in which
step vectors enter the covariance matrix update. Early vari-
ants were based on cumulation of directions in an evolution
path vector pc and a single rank-one update of C per gener-
ation [10]. Later versions added a rank-µ update based on
immediate information from the current population [8].

A different perspective on CMA techniques is provided
within the framework of information geometric optimization
(IGO) [14], in particular by the natural evolution strategy
(NES) approach [17, 16]. It turns out that the rank-µ update
equation can be derived from stochastic natural gradient de-
scent of a stochastically relaxed problem on the statistical
manifold of search distributions. This more general perspec-
tive opens up new possibilities for CMA mechanisms, e.g.,
reparameterizing the covariance matrix in exponential form
as done in the xNES algorithm [7]. This results in an update
equation with the following properties: a) the update is mul-
tiplicative, in contrast to the standard additive update, b) it
is possible to leave the variance in directions orthogonal to

1This statement holds only under (mild) assumptions on the
regularity of the fitness landscape, which remain implicit,
but may be violated, e.g., in the presence of constraints.



all observed steps unchanged, and c) even when performing
“active” (negative) updates the covariance matrix is guaran-
teed to remain positive definite.

In this paper we incorporate the exponential parameteri-
zation of the covariance matrix into CMA-ES. We derive all
mechanisms found in the standard CMA-ES algorithm in
this framework, demonstrating the compatibility of cumula-
tive step size adaptation and evolution paths (two features
missing in xNES) with exponential coordinates. The new
algorithm is called xCMA-ES. Its performance on standard
(unimodal) benchmarks coincides with that of CMA-ES,
however, in addition it benefits from neat properties of the
exponential parameters, which show up prominently when
performing active CMA updates with negative weights, e.g.,
for constraint handling.

In the next section we recap CMA-ES and xNES. Based
thereon we present our new xCMA-ES algorithm. In sec-
tion 3 its performance is evaluated empirically on standard
benchmarks. We demonstrate the superiority for special
tasks involving active CMA updates.

2. ALGORITHMS
In this section we provide the necessary background for

our new algorithm before introducing the xCMA-ES. We will
cover the well-known CMA-ES algorithm as well as xNES,
both with a focus on the components required for our own
contribution. In the following algorithms, a few implemen-
tation details are not shown, e.g., the eigen decomposition
of C required for sampling as well as for the computation of
the inverse matrix square root C−1/2.

2.1 CMA-ES
The Covariance Matrix Adaptation Evolution Strategy

(CMA-ES) [10, 12] is the most prominent evolution strategy
in existence. It comes in many variants, e.g., with extensions
for handling of fitness noise [9] and multi-modality [5]. Here
we describe what can be considered a baseline version, fea-
turing non-elitist (µ, λ) selection, cumulative step size con-
trol (CSA), and two different types of covariance matrix up-
dates, namely a rank-1 update based on an evolution path,
and the so-called rank-µ update based on the survivors of
environmental truncation selection.

The state of CMA-ES is given by the parameters m ∈ Rd,
σ > 0, and C ∈ Rd×d of its multi-variate normal search dis-
tribution N (m,σ2C), as well as by the two evolution paths
ps, pc ∈ Rd. Pseudo-code of a basic CMA-ES is provided
in algorithm 1. The algorithm has a number of tuning con-
stants, e.g., the sizes of parent and offspring population µ
and λ, the various leaning rates, and the rank-based weights
w1, . . . , wµ. For robust default settings for the different pa-
rameters we refer to [12].
In each generation, CMA-ES executes the following steps:

1. Sample offspring x1, . . . , xλ ∼ N (m,σ2C). This step is
realized by sampling standard normally distributed vec-
tors z1, . . . , zλ ∈ Rd, which are then transformed via
xi ← m + σAzi, where A is a factor of the covariance
matrix fulfilling AAT = C. It can be computed via a
Cholesky decomposition of C, however, the usual method
is eigen decomposition since this operation is needed any-
way later on.

2. Evaluate the offspring’s fitness values f(x1), . . . , f(xλ).
This function call is often considered a black box, and

Algorithm 1: CMA-ES

Input: m, σ
C ← I
while stopping condition not met do

// sample and evaluate offspring
for i ∈ {1, . . . , λ} do

xi ← N (m,σ2C)
end
sort {xi} with respect to f(xi)
// internal update (paths and parameters)
m′ ←

∑µ
i=1 wixi

ps ← (1− cs) · ps +
√
cs(2− cs)µeff · C−1/2(m′ −m)

pc ← (1− cc) · pc +
√
cc(2− cc)µeff · m

′−m
σ

C ← (1− c1 − cµ) · C + c1 · pcpTc
+cµ ·

∑µ
i=1 wi

(
xi−m
σ

) (
xi−m
σ

)T
σ ← σ · exp

(
cs
Dσ
·
(
‖ps‖
χd
− 1
))

m← m′

end

it is assumed that its computational cost is substantial,
usually exceeding the internal computational complexity
of the algorithm.

3. Sort the offspring by fitness. Post-condition: f(x1) ≤
f(x2) ≤ · · · ≤ f(xλ).

4. Perform environmental selection: keep {x1, . . . , xµ}, dis-
card {xµ+1, . . . , xλ}, usually the worse half.

5. Update the evolution path for cumulative step size adap-
tation: the path ps is an exponentially fading record of
steps of the mean vector, back-transformed by multipli-
cation with the inverse matrix square root C−1/2 into a
coordinate system where the sampling distribution is a
standard normal distribution. This path is supposed to
follow a standard normal distribution.

6. Update the evolution path for covariance matrix adap-
tation: the path pc is an exponentially fading record of
steps of the mean vector divided (corrected) by the step
size. This path models the movement direction of the
distribution center over time.

7. Update the covariance matrix: a new matrix is obtained
by additive blending of the old matrix with a rank-one
matrix formed by the path pc and a rank-µ matrix formed
by successful steps of the current population.

8. Update the step size: the step size is changed if the norm
of ps indicates a systematic deviation from the standard
normal distribution. Note (for later reference) that this
update has a multiplicative form, involving the exponen-
tial function.

9. Update the mean: discard the old mean and center the
distribution on a weighted mean of the new parent pop-
ulation.

2.2 xNES
The exponential natural evolution strategy (xNES) algo-

rithm [7] is a prominent member of the family of natural evo-
lution strategies (NES) [17, 16]. While exhibiting all prop-
erties of an evolution strategy, it is derived as a stochastic
natural gradient descent method on the statistical manifold
of search distributions, an approach that is best understood



Algorithm 2: xNES

Input: m, σ
B ← I
while stopping condition not met do

// sample and evaluate individuals
for i ∈ {1, . . . , λ} do

zi ← N (0, I)
xi ← m+ σ ·Bzi

end
sort {(zi, xi)} with respect to f(xi)
// internal update (SNGD step)

Gδ ←
∑λ
i=1 ui · zi

GM ←
∑λ
i=1 ui · (ziz

T
i − I)

Gσ ← tr(GM )/d
GB ← GM −Gσ · I
m← m+ ηm · σB ·Gδ
σ ← σ · exp(ησ/2 ·Gσ)
B ← B · exp(ηB/2 ·GB)

end

as an instance of information geometric optimization [14].
NES was found to have close relations to CMA-ES [1, 7].

The NES family of algorithms is derived as follow. Let
{Pθ | θ ∈ Θ} denote a family of search distributions with
parameters θ, where Θ is a differentiable manifold. The most
prominent example are multivariate Gaussian distributions
Pθ = N (m,C) with parameters θ = (m,C) and density
pθ(x). The algorithm aims to solve the optimization problem

min
θ
F (θ) = Ex∼Pθ

[
f(x)

]
which is lifted from points x to distributions Pθ. The gra-
dient of ∇θF (θ) is

∫
f(x)∇ log(pθ(x))dx (given that the in-

tegral converges in an open set around θ). It is intractable
in the black box model, however, it can be approximated by
the Monte Carlo estimator

G(θ) =
1

λ

λ∑
i=1

f(xi)∇ log(pθ(xi))

with samples xi ∼ Pθ. These samples correspond to the
offspring population of an ES. The update θ ← θ − γ ·G(θ)
(with learning rate γ > 0) amounts to minimization of F
with stochastic gradient descent (SGD).

This update is unsatisfactory in the context of NES since
it depends on the chosen parameterization θ 7→ Pθ (see [14],
and refer to [16, 6] for further shortcomings). In the case of
optimizing Pθ, the question which direction to follow has a
canonical answer. This is because {Pθ | θ ∈ Θ} is a statistical
manifold (a manifold the points of which are distributions)
with an intrinsic Riemannian information geometry induced
by KL-divergence [17, 16, 14]. The gradient w.r.t. the in-
trinsic geometry, pulled back to the parameter space Θ, is
known as the natural gradient, usually denoted by ∇̃θF (θ).
It is obtained from the plain gradient as

∇̃θF (θ) = I(θ)−1 · ∇θF (θ) ,

since the Fisher information matrix I(θ) is the metric ten-
sor describing the intrinsic geometry. It is estimated in a
straightforward manner by I(θ)−1G(θ). The update

θ → θ − γ · I(θ)−1G(θ)

is known as stochastic natural gradient descent (SNGD).
Several different implementations of this general scheme

have been developed with a focus on computational aspects
[15]. It is common to replace “raw” fitness values f(xi) with
rank-based utility values ui that turn out to correspond ex-
actly to the weights wi of CMA-ES.

The xNES algorithm supersedes earlier developments with
two novel approaches. The first of these is to perform the
NES update in a local parameterisation θ 7→ Pθ for which
the Fisher matrix is the identity matrix, which saves its
computation or estimation and in particular its (numerical)
inversion. The second technique is a parameterization of the
positive definite covariance matrix involving the matrix ex-
ponential, which allows for an unconstrained representation
of the covariance matrix.

Covariance matrices are symmetric and positive definite

d× d matrices. Symmetric matrices form the d(d+1)
2

dimen-
sional vector space Sd. The requirement of positive defi-
niteness adds a non-linear constraint. Let Pd denote the
open sub-manifold of positive definite symmetric matrices.
Then the parameter space takes the form (m,C) = θ ∈ Θ =
Rd × Pd.

Note that this space is not closed under subtraction, and
also not under addition of terms from Sd (e.g., (natural)
gradients). When performing an additive update of the co-
variance matrix of the form C ← C − γ · ∆, e.g., an SGD
step, then a large enough step γ ·∆ can result in a violation
of the positivity constraint.2

Possible workarounds are line search for a feasible step
length or more elaborate constraint handling techniques. A
conceptually easier and more elegant solution is to parame-
terize the manifold Pd with a vector space and perform SGD
on this new parameter space. This is exactly the role of the
matrix exponential exp : Sd → Pd, which is a diffeomor-
phism (a bijective, smooth mapping with smooth inverse).

The exponential map for matrices is in general defined in
terms of the power series expansion exp(M) =

∑∞
n=0

1
n!
Mn,

mapping general d× d matrices to the general linear group
of invertible d × d matrices. For symmetric matrices it can
be understood in terms of a spectral transformation. Let
M = UDUT with U orthogonal and D diagonal denote the
eigen decomposition of M , then it is easy to see from the
power series formula that it holds exp(M) = U exp(D)UT .
The exponential of a diagonal matrix is simply the diagonal
matrix consisting of the scalar exponentials of the diagonal
entries. Hence the matrix exponential corresponds to expo-
nentiation of the eigen values, mapping general to positive
eigen values and thus Sd to Pd.

The xNES algorithm uses a special coordinate system
for θ, centered into the current search distribution. Let
(m,C) denote the parameters of the current search distri-
bution, and let A denote a factor of the covariance matrix
C, fulfilling AAT = C. We introduce local coordinates
(δ,M) = θ ∈ Θ = Rd × Sd (hence now Θ forms a vector
space, which is in particular closed under addition) so that
(δ,M) = (0, 0) represents the current distribution, and new

2This problem does not appear with standard CMA-ES up-
dates where positive semi-definite matrices are added to a
positive definite matrix, the result of which is always positive
definite.



distribution parameters (m′, A′) are represented as

(δ, M) 7→
(
m′, A′

)
=

(
m+Aδ, A exp

(
1

2
M

))
.

The coordinates are chosen so that the Fisher matrix is the
identity: I(0, 0) = I. Hence the coordinates are orthonormal
w.r.t. the intrinsic geometry. Plain and natural gradient
coincide.

Despite the seemingly complicated derivation of xNES in-
volving stochastic natural gradient on a statistical manifold
and a non-linear coordinate system based on the matrix ex-
ponential, its update equations are surprisingly simple. The
complete pseudo-code is given in algorithm 2.

In this implementation the covariance matrix factor A is
represented as A = σB, where the transformation matrix B
fulfills det(B) = 1. In the chosen exponential coordinates
the determinant corresponds to the trace (see computation
of Gσ and GB in the algorithm). The parameters m, σ, and
B can be updated with independent SNGD steps, poten-
tially with different learning rates.

The parameters of the xNES algorithm are the sample
(population) size λ, the learning rates ηm, ησ, and ηB , as
well as the rank-based weights u1, . . . , uλ. Population size
and weights essentially follow the settings of CMA-ES, with
the deviation to subtract the mean from the weights. This
leads to the weights ui = wi − 1/λ, resulting in negative
weights for individuals that simply don’t enter the CMA-
ES due to truncation selection. The mean learning rate has
the canonical value ηm = 1, which results in the exact same
mean update as in CMA-ES [1, 7], while the other learning
rates were empirically tuned, see [7].

Note that due to the use of the matrix exponential in
xNES the updates of σ and B have exactly the same form.
In contrast to CMA-ES, the covariance matrix update of
xNES is multiplicative in nature. We argue that conceptu-
ally this is a desirable property since σ (scale) and B (shape)
both describe complementary properties of the covariance
matrix C = σ2BBT , and they enter the sampling process in
a similar way, namely by left-multiplication with the stan-
dard normally distributed random vectors zi. In fact, the
exponential parameterization seems to be canonical since it
allows for a clear separation of the scale component σ and
the shape component B of the search distribution as linear
sub-spaces of Θ, see also [7].

2.3 Efficient Multiplicative Update
While the multiplicative update rule of the xNES guar-

antees positive definiteness of the covariance matrix, the
matrix exponential in itself is usually a computationally ex-
pensive operation. In the following we show that the update
can be implemented efficiently with time complexityO(d2λ),
which coincides with the complexity of the additive update
of the CMA-ES. Thus the computational difference between
the updates is merely a constant.

Lemma 1. Consider a matrix G =
∑λ
i=1 ui(ziz

T
i −I) built

from λ < d vectors zi ∈ Rd, weights ui ∈ R, and a positive
definite symmetric matrix C ∈ Rd×d for which a decomposi-
tion C = AAT is available. Then the term

A exp(G)AT

can be computed with time complexity O(λd2 + λ2d+ λ3).

Proof. The proof has two parts. In the case that
∑λ
i=1 ui =

0, this reduces to G =
∑λ
i=1 uiziz

T
i . We first take a look at

the case that ū =
∑λ
i=1 ui 6= 0. Then we have

exp(G) = exp

(
−ūI +

λ∑
i=1

uiziz
T
i

)

= exp(−ūI) exp

(
λ∑
i=1

uiziz
T
i

)

= exp(−ū) exp

(
λ∑
i=1

uiziz
T
i

)
The second step holds since−ūI commutes with

∑λ
i=1 uiziz

T
i .

We can thus assume w.l.o.g. that G =
∑λ
i=1 uiziz

T
i , which

includes the case ū = 0. Because of rank(G) ≤ λ we can find
an eigen decomposition of G = QDQT with Q ∈ Rd×λ and
D ∈ Rλ×λ in O(λ2d + λ3) time3. With this decomposition
the matrix exponential can be rewritten as

exp(G) =
(

I−QQT
)

+Q exp(D)QT

= I +Q (exp(D)− I)QT .

The first equality holds because exp(G) maps all 0-eigenvalues
of G to 1, which leads to the first term. Insertion of the re-
sult into the term of interest yields

A exp(G)AT = A
[
I +Q (exp(D)− I)QT

]
AT

= AAT +AQ (exp(D)− I) (AQ)T

= C +AQ (exp(D)− I) (AQ)T

We can compute K = AQ ∈ Rd×λ in O(λd2) and C +
K (exp(D)− I)KT in O(λd2) time.

The lemma implies that if a decomposition C = AAT is
available then the update C ← A exp(G)AT , or C ← C +
K (exp(D)− I)KT in the notation of the proof, can now be
seen as a rank-λ update to C. It can be computed signifi-
cantly faster than a full eigen decomposition of C. Typically,
as λ = O(log(d)), the runtime costs are dominated by the
O(λd2) operations of the matrix multiplications, which leads
to the same runtime complexity as the additive matrix up-
date. If A was a Cholesky-factor then it could be updated
efficiently in O(d2λ) operations as well, without requiring
to store or compute C first [13]. If A has been computed
through an eigenvalue decomposition then there is currently
no fast algorithm known to perform the update of the eigen-
value decomposition, and recomputing it from C has time
complexity Θ(d3), dominating the overhead of the exponen-
tial update.

2.4 xCMA-ES
In this section we show that exponential coordinates for

the covariance matrix are compatible with all mechanisms of
CMA-ES. Consequently, we incorporate this technique into
the CMA-ES algorithm, resulting in a new method called
exponential CMA-ES, or xCMA-ES for short.

3This can be achieved by first applying a QR-decomposition
on the matrix Z = (z1, . . . , zλ) which yields a λ× d-matrix
B with BBT = I and BGBT = K ∈ Rλ×λ in O(λd2).
An eigenvalue decomposition of K = V DV T can then be
performed in O(λ3) and Q = BTV .



The xCMA-ES algorithm features all techniques found in
CMA-ES, but in addition incorporates the multiplicative co-
variance matrix update of the xNES algorithm. This means
that xCMA-ES is equipped with two evolution paths, one
for cumulative step size control, and one for the rank-one
covariance matrix update. Notably, xCMA-ES comes with
explicit step size control, while in xNES the step size is up-
dated with the same mechanism as the shape component
of the covariance matrix, with the only difference that the
learning rates can be decoupled. For xCMA-ES we follow
the proceeding of CMA-ES and do not decouple these pa-
rameters explicitly (i.e., the scale of the covariance matrix
is allowed to drift).

The beauty of this construction is that all mechanisms of
standard CMA-ES are naturally compatible with the expo-
nential parameterization of the covariance matrix. In par-
ticular, the updates of the evolution paths and the step size
do not require any changes.

The stochastic natural gradient component
∑λ
i=1 ui·(ziz

T
i −

I) of xNES deserves particular attention. This matrix is—up
to scaling—the quantity entering the matrix exponential. It
consists of a weighted sum of outer products of steps in the
“natural” coordinate system of the standard normally dis-
tributed samples zi minus their expected value, which (for
standard normal samples) is the identity matrix. Note that
due to

∑
i ui = 0 the weighted identity matrices cancel each

other out. Also note that in first order Taylor approxima-
tion around the origin the matrix exponential reduces to
exp(M) ≈ I + M , resulting in the exact rank-µ update of
CMA-ES [1, 7, 14].

Hence it is natural to incorporate the rank-one update of
CMA-ES into the multiplicative update by adding the term
c1 · (ppT − I) to the term entering the matrix exponential,

where p = C−1/2pc is the evolution path transformed back
to the coordinate system of standard normally distributed
samples.

A disadvantage of the mean-free weights ui in the xNES
algorithm is that the computed steps Gδ are only mean-free
with respect to the estimated mean ẑ = 1

λ

∑λ
i=1 zi as

Gδ =

λ∑
i=1

ui · zi =

λ∑
i=1

(
wi −

1

λ

)
· zi =

λ∑
i=1

wi · zi − ẑ ,

thus adding additional noise to the update. By replacing ẑ
by the true (zero) mean, we achieve a better estimate—the
original CMA-ES update4.

These changes applied to CMA-ES define the basic xCMA-
ES algorithm. Its pseudo-code is found in algorithm 3.

As noted above, when using identical weights and learning
rates, in first order approximation the multiplicative update
in xCMA-ES coincides with the additive update in stan-
dard CMA-ES. Both updates rely on a rank-(λ+ 1) matrix5

formed by the outer products of the sampling steps and the
evolution path pc. An interesting conceptual difference be-
tween additive and multiplicative update is that the additive
update shrinks the variance in all directions orthogonal to
the λ + 1 update vectors by a factor of 1 − c1 − cc, while
the multiplicative update leaves these variance components

4with both update choices, µeff is the same and computed
from the wi.
5In standard CMA-ES the rank is even reduced to µ + 1
due to truncation selection effectively setting the weights of
discarded offspring to zero.

Algorithm 3: xCMA-ES

Input: m, σ
C ← I
while stopping condition not met do

// sample and evaluate offspring
for i ∈ {1, . . . , λ} do

zi ← N (0, I)

xi ← m+ σ ·
√
Czi

end
sort {(zi, xi)} with respect to f(xi)
// internal update (paths and parameters)

m′ ←
∑λ
i=1(ui + 1

λ
)xi

ps ← (1− cs) · ps +
√
cs(2− cs)µeff · C−1/2(m′ −m)

pc ← (1− cc) · pc +
√
cc(2− cc)µeff · m

′−m
σ

Z ← c1 ·
[
C−1/2pcp

T
c C
−1/2 − I

]
+ cµ ·

∑λ
i=1 uiziz

T
i

C ← C1/2 exp(Z)C1/2

σ ← σ · exp
(
cs
Dσ
·
(
‖ps‖
χd
− 1
))

m← m′

end

untouched. In our opinion the latter better reflects the fact
that no information was observed about these directions.
Also, by means of subtraction of the identity (the expected
value) from the positive semi-definite weighted sum of outer
products, it is natural for the multiplicative update to (mul-
tiplicatively) grow or shrink the variance in a specific direc-
tion. In contrast, the additive update can only (additively)
grow the variance in a specific direction, while shrinking
works only through global shrinking and subsequently grow-
ing all other directions, which can be slow.

This problem was mitigated to some extent with so-called
active covariance matrix updates [2, 11]. In an active up-
date step the algorithm subtracts an outer product from the
covariance matrix, an operation that must carefully ensure
the positive definiteness of the result, e.g., by means of line
search or finely tuned learning rates. In contrast, the multi-
plicative update operates on an unconstrained problem and
hence can never result in an invalid configuration.

2.5 Constraint Handling
A powerful constraint handling mechanism for the (1, λ)-

CMA-ES was introduces in [3]. In principle, the same mech-
anism can be applied to the non-elitist, population-based
standard formulation of CMA-ES. The simple yet highly ef-
ficient approach amounts to performing active CMA updates
for steps resulting in infeasible offspring, effectively reducing
the variance in the direction of the constraint normal, while
suspending step size adaptation.

The corresponding mechanism for xCMA-ES is essentially
the same, namely to perform a standard update with neg-
ative weight, but of course without a need for constrain-
ing the step size. There is a subtle difference to the elitist
setting considered in [3]: with non-elitist selection it is in
principle possible for infeasible offspring to enter the new
parent population, namely if more than λ−µ offspring hap-
pen to be infeasible—this can indeed be observed in exper-
iments. Then the algorithm can get caught in a random
walk through the infeasible region. To avoid this effect we
propose to make the weights adaptive to the number of in-
feasible offspring as follows. We first compute the standard



weights wi of CMA-ES. Infeasible offspring are treated as
worst, generally obtaining low weights. For the active CMA
update we subtract a constant from the weights of infeasi-
ble offspring, which is set to 0.4

λ

∑
i wi. Then we normalize

the absolute values of the weights to one (by dividing all
weights by

∑
i |wi|), compute µeff based on these weights,

and then make them mean free by subtracting 1
λ

∑
i wi. Fi-

nally, the parameters cs, dσ, c1, cc, cµ are recomputed based
on the new weights.

Finally, we ensure that the mean m stays in the feasible
region by finding the minimum k ∈ N0 such that

m+ γk(m′ −m) , (1)

where we set γ = 2/3.

3. EXPERIMENTS
In this section we perform an empirical evaluation of xCMA-

ES and compare it to CMA-ES. This comparison highlights
the effect of the exponential covariance matrix parameters
and the resulting multiplicative covariance matrix update.
In particular, we aim to answer the following questions:

1. Does the exponential update impact black box perfor-
mance?

2. How do active covariance updates perform in exponen-
tial form?

In order to answer the first question we perform experi-
ments on the same standard benchmark sets as used for the
xNES algorithm [7].

Due to lack of a fair baseline for comparison we cannot
provide a good answer for the second question. However, we
demonstrate that active updates work qualitatively as de-
sired in a constraint optimization setting. As the CMA-ES

constant value
λ, µ 4 + b3 log(d)c, λ/2
cs

µeff+2
d+µeff+5

cc
4+µeff/d

d+4+2µeff/d

c1
2

(d+1.3)2+µeff

cµ min
{

1− c1, 2 µeff−2+1/µeff
(d+2)2+2µeff/2

}
Dσ 1 + cs + 2 max{0,

√
µeff−1
d+1

− 1}
wi

max{0,log(λ/2−1)−log(i−1)}∑λ
j=1 max{0,log(λ/2−1)−log(i−1)}

Table 1: Constants used for the CMA-ES and xCMA-ES
algorithms

is tuned on a large number of benchmark functions, ranking
stability over speed, it is not hard to find parameters which
beat it on a smaller set of functions. Thus tuning the pa-
rameters of the xCMA-ES on a small set of function would
lead to an unfair benchmark. To avoid this situation we
avoid tuning altogether and instead resort to the default pa-
rameters of CMA-ES which are given in table 1. This choice
is justified by the similarity of the update rules, especially
in the settings of small dimensionality with the conservative
learning rates of CMA-ES.

3.1 Black Box Performance
To assess the black box performance of xCMA-ES, we

compare it to CMA-ES on the set of benchmark functions
used in [7]. We run both algorithms for 100 trials on each

name f(x) fstop

SharpRidge −x1 + 100
√∑d

i=2 x
2
i -1000

ParabRidge −x1 + 100
∑d
i=2 x

2
i -1000

Rosenbrock
∑d−1
i=1 100(xi+1 − x2

i )
2 + (1− xi)2 10−14

Sphere
∑d
i=1 x

2
i 10−14

Cigar αx2
1 +

∑d
i=2 x

2
i 10−14

Discus x2
1 + α

∑d
i=2 x

2
i 10−14

Ellipsoid
∑d
i=1 α

i
d−1 x2

i 10−14

Schwefel
∑d
i=1

(∑i
j=1 xi

)2

10−14

DiffPowers
∑d
i=1 |xi|

2+10 i−1
d 10−14

Table 2: The formulas for the benchmark functions. The
default value α = 10−6 was used in all experiments.

function for each dimensionality d ∈ {4, 8, 16, 32, 64} until a
target value fstop is reached. We chose as initial step size for
all functions σ = 1√

d
. We report the median of the required

function evaluations over the successful trials for both al-
gorithms. A trial is considered successful if the algorithm
converges to the right optimum(which is only an issue on
Rosenbrock). The function descriptions and the values of
fstop are given in table 2. The results of the experiments are
given in Figure 1.

The results show that both algorithms perform equally
well on all functions, showing nearly no differences between
the algorithms, with a minimal (maybe insignificant and
surely irrelevant) edge for xCMA-ES.

3.2 Constraint Handling
Due to a lack of a non-elitist CMA-ES variant with a

constraint handling mechanism based on (active) covariance
matrix updates we can not provide a strong baseline algo-
rithm for comparison with xCMA-ES. To obtain a reason-
able baseline we constrain the mean of CMA-ES to never
leave the feasible region with the same mechanism as pro-
posed for xCMA-ES (see equation (1)). The standard se-
lection operator is already capable of handling constraints
to some extent when treating infeasible offspring as worse
than feasible ones. The only differences between the base-
line CMA-ES and xCMA-ES are the additive update vs. the
multiplicative update with active constraint handling.

As a benchmark problem we use the constrained sphere
function proposed in [3]:

min
x
‖x‖2 −m s.t xi ≥ 1, i = 1, . . . ,m

The optimum x∗ has components x∗i = 1 for i ≤ m and
x∗i = 0 for i > m. The difficulty of this problem is twofold:
In the vicinity of the optimum only a fraction of 2−m of
the space it feasible—hence the problem gets harder with
growing number of constraints. At the same time, while ap-
proaching the optimum the gradient of the objective func-
tion in the unconstrained components towards zero vanishes.
To counteract this trend the algorithm must reduce the vari-
ance of its sampling distribution in the subspace spanned by
all constraint normals—a task for which active CMA up-
dates are supposed to be helpful. We perform 100 runs
of both algorithm in d = 16 and d = 32 dimensions with
m ∈ {2, 4, . . . , d/2} constraints.

The results are given in figure 2. A plot of an example
run with d = 32 and m = 4 is given in figure 3 showing the
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Figure 1: Median number of black box function evaluations over problem dimension of CMA-ES and xCMA-ES on nine
standard benchmark problems. Due to low spread, the 25% and 75% quantile indicators are nearly invisible.

function values of the best point in the sampled population
as well as the current step-size.

It turns out that xCMA-ES is always faster then the base-
line CMA-ES. Moreover, CMA-ES became unstable with
increasing m and in the case d = 32 and m = 16 fails to
converge in all 100 runs. The plot in figure 3 shows this
instability already for m = 4 constraints.

4. CONCLUSION
We have incorporated a new type of covariance matrix

update into the CMA-ES algorithm. This multiplicative up-
date stems from the xNES algorithm. It guarantees positive
definiteness of the covariance matrix even with negative up-
date weights. The resulting algorithm features all mecha-
nisms of CMA-ES and is hence called xCMA-ES.

We showed that its performance on standard benchmarks
is nearly indistinguishable from that of the CMA-ES. We
demonstrated that, despite the application of the matrix
exponential, it is possible to implement the multiplicative
update with a time complexity of only O(d2λ).

We further investigated an extension of the algorithm for
constrained optimization problems and showed that by a
simple use of negative weights xCMA-ES outperforms the
CMA-ES. This demonstrates the benefits of the multiplica-
tive update.
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Figure 2: Number of iterations (generations) necessary to
reach the target objective value of 10−12 over the number m
of constraints for the constrained sphere problems in d = 16
and d = 32 dimensions. The value for CMA-ES at d = 32
and m = 16 is missing because the algorithm failed in all
100 runs.
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Figure 3: Plot of a single run of the CMA-ES and xCMA-ES
algorithms on the constrained Sphere function with d = 32
and m = 4. Plotted are function value and step length over
generations.
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