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Abstract— Regularized Maximum Mean Discrepancy (RMMD), 
our novel measure for kernel-based hypothesis testing, excels at 
hypothesis tests involving multiple comparisons with power 
control even when sample sizes are small.  We derive asymptotic 
distributions under the null and alternative hypotheses, and 
assess power control. Outstanding results are obtained on 
challenging benchmark datasets. 

Keywords- kernel-based hypothesis testing, Homogeneity 
testing, Multiple comparisons, Power 

I.  INTRODUCTION  

Homogeneity testing is an important problem in statistics 
and machine learning. It tests whether two samples are drawn 
from different distributions. This is relevant for many 
applications, for instance, schema matching in databases [1] 
and speaker identification [2]. Popular two-sample tests like 
Kolmogorov-Smirnov [3] and Cramer-von-Mises [4] are not 
capable of capturing statistical information of densities with 
high frequency features. Nonparametric kernel-based statistical 
tests such as Maximum Mean Discrepancy (MMD) [1], [5] 
enable one to obtain greater power than such density based 
methods. MMD is applicable not only to Euclidean spaces	ℝ�, 
but also to groups and semigroups [6], and to structures such as 
strings or graphs in bioinformatics, and robotics problems, etc. 
[7]. Here we consider a regularized version of MMD to address 
hypothesis testing. 

With more than two distributions to be compared 
simultaneously, we face the multiple comparisons setting, for 
which statistical methods exist to deal with the issue of 
multiple test correction [8]. Given a prescribed global 
significance threshold α (type I error) for the set of all 
comparisons, however, the corresponding threshold per 
comparison becomes small, which greatly reduces the power of 
the test. In situations where one wants to retain the null 
hypothesis, tests with small α are not conservative. Our main 
contribution is the definition of a regularized MMD (RMMD) 
method. 

The regularization term in RMMD allows controlling the 
power of the test statistic. The regularizer is set provably 
optimal for maximal power; there is no need for fine-tuning by 
the user. RMMD improves on MMD through higher power, 
especially for small sample sizes, while preserving the 
advantages of MMD. Power control enables us to look for true 
sets of null distributions among the significant ones in 
challenging multiple comparison tasks. 

We provide experimental evidence of good performance on 
a challenging Electroencephalography (EEG) dataset, 
artificially generated periodic and Gaussian data, the 
CIFAR10, the MNIST and Covertype datasets. We also assess 
power control with the Asymptotic Relative Efficiency (ARE) 
test. 

The paper is organized as follows. In section 2, we 
elaborate on hypothesis testing and define maximum mean 
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discrepancy (MMD) as a metric. We describe how to use 
MMD for homogeneity testing, and how to extend it to 
multiple comparisons. In section 3, we define RMMD for 
hypothesis testing and compare it to MMD and Kernel Fisher 
Discriminant Analysis (KFDA), and assess power control 
through ARE. Additional empirical justification of our test on 
various datasets is presented in section 4. 

II. STATISTICAL HYPOTHESIS TESTING 

A statistical hypothesis test is a method which, based on 
experimental data, aims to decide whether a hypothesis (called 
null or H0) is true or false, against an alternative hypothesis 
(H1). The level of significance �  of the test represents the 
probability of rejecting H0 under the assumption that H0 is true 
(type I error). A type II error (β) occurs when we reject H1 
although it holds.  
 

The power of the statistical test is usually defined as 1-β. A 
desirable property of a statistical test is that for a prescribed 
global significance level� , the power equals one in the 
population limit. We divide the discussion of hypothesis 
testing into two topics: homogeneity testing and multiple 
comparisons. 

A. Maximum Mean Discrepancy (MMD) 

Embedding probability distributions into Reproducing 
Kernel Hilbert Spaces (RKHS) yields a linear method that 
takes information of higher order statistics into account [1], [9], 
[10]. Characteristic kernels [6], [10], [11], injectively map the 
probability distribution onto its mean element in the 
corresponding RKHSs. The distance between mean elements 
(µ) in the RKHS is known as MMD [1], [5]. The definition of 
MMD [1] is given in the following theorem:  

Theorem 1. Let (�, ℬ) be a metric space, and let �, � be 
two Borel probability measures defined on � . The kernel 
function  	:	� × �	 → 	ℝ  embeds the points  ∈ �  into the 
corresponding reproducing kernel Hilbert spaceℋ . Then 
� = �	 if and only if MMD(P,Q) = 0, where 

�����, �� ≔ ��� − ���ℋ
=	����	�, . �� − ���	�, . ���ℋ

=  �!,!"~��	�, 
$�� + �&,&"~��	�', '

$��

− 2�!~�,&~��	�, '��)
*
+																														�1�	

    

B. Homogeneity Testing 

A two-sample test investigates whether two samples are 
generated by the same distribution. To do testing, MMD can be 
used to measure the distance between embedded probability 
distributions in RKHS. Besides calculating the distance 
measure, we need to check whether this distance is 
significantly different from zero. For this, the asymptotic 
distribution of this distance measure is used to obtain a 
threshold on MMD values, and to extract the statistically 
significant cases. We perform a hypothesis test with null 
hypothesis H0: � = �	 and alternative H1: � ≠ �	on samples 
drawn from two distributions P and Q. If the result of MMD is 
close enough to zero, we accept H0, which indicates that the 

distributions �  and �  coincide; otherwise the alternative is 
assumed to hold. With �  as a threshold on the asymptotic 
distribution of the empirical MMD (when� = � ), the �1 −
�� − quantile of this distribution is statistically significant. Our 
MMD test determines it by means of a bootstrap procedure. 

C. Multiple Comparisons 

Statistical analysis of a data set typically needs testing 
many hypotheses. The multiple comparisons or multiple 
testing problem arises when we evaluate several statistical 
hypotheses simultaneously. Let � be the overall type I error, 
and let �. denote the type I error of a single comparison in the 
multiple testing scenario.  Maintaining the prescribed 
significance level of � in multiple comparisons yields �. to be 
more stringent than	�. Nevertheless, in many studies � = �. is 
used without correction. Several statistical techniques have 
been developed to control �  [8]. We use the Dunn-Ŝidák 
method for n independent comparisons in multiple testing, the 
significance level �  is obtained by� = 1 − �1 − �.�� . As � 
decreases, the probability of type II error (β) increases and the 
power of the test decreases. This requires controlling β while 
correcting� . To tackle this problem, and to control β, we 
define a new hypothesis test based on RMMD, which has 
higher power than the MMD-based test, in the next section. To 
compare the distributions in the multiple testing problem we 
use two approaches: one-vs-all and pairwise comparisons. In 
the one-vs-all case each distribution is compared to all other 
distributions in the family, thus M distributions require M-1 
comparisons. In the pairwise case each pair of distributions is 

compared at the cost of 	/�/0*�

+
 comparisons. 

III.  REGULARIZED MAXIMUM  MEAN 

DISCREPANCY (RMMD) 

The main contribution of this paper is a novel regularization 
of MMD measure called RMMD. This regularization aims to 
provide a test statistics with greater power (power closer to 1 
with a prescribed type I error α). Erdogmus and Principe [12] 
showed that −log‖��‖ℋ

+ 	is the Parzen window estimation of 
the Renyi entropy [13]. With RMMD we obtain a statistical 
test with greater power by penalizing the term‖��‖ℋ

+ +
����ℋ

+
. We formulate RMMD and its empirical estimator as 

follows: 

5�����, �� ≔ 	�����, ��+ −	6�‖��‖ℋ
+ − 6�����ℋ

+
	�2�	 

                

5���7 ��,�� ≔ 	��̂� − �̂��ℋ

+
−	6�‖�̂�‖ℋ

+ − 6���̂��ℋ	

+
	�3� 

where 6�, and 6� are nonnegative regularization constants. 
For simplicity we consider 6� = 6� = 6	in many application, 
however, we can introduce prior knowledge about the 
complexity of distributions by choosing 6� ≠ 6� . The 
modified Jensen-Shanon divergence (JS) [14] corresponding to 
RMMD is defined as: 

���, �� ≔ :;��, �� − �6 + 1� :;��� + :;���)							�4� 
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where Hs denotes the (cross) entropy. Since 6 is positive, 
the absolute value of second term on the right-hand side of (4) 
increases, leading to a higher weight for the mutual information 
than for the entropy (vice versa if 6 would be lower than -1). 1 

Here we summarize the notation needed in the next section. 
Given samples =>?>@*

�A and ='>?>@*
�B drawn from distributions P 

and Q, respectively, the mean element, the cross-covariance 
operator and the covariance operator are defined as follows  
[1], [15]: �̂� = *

�A
∑ 	�> , . �

�A
>@*  , ΣE�� = �A�B

�AF�B
	 �̂� − �̂�)		

⨂ �̂� − �̂�)  , and  ΣE�  = 
*

�A
	∑ �	�> , . �

�A
>@* ⨂	�> , . �� 	−	

	��̂�⨂�̂��, where H⨂I for H, I	 ∈ 	ℋ is defined for all J	 ∈ ℋ 
as �H⨂I�J = 〈I, J〉ℋH. The quantities μN�  and ΣE�are defined 
analogously for the second sample ='>?>@*

�B . The population 
counterparts, i.e., the population mean element and the 
population covariance operator are defined for any probability 
measure P as 〈��, J〉ℋ = ��J���  for all J ∈ ℋ , and 
〈J, Σ�O〉ℋ = PQI��J��, O�'��  for J, O ∈ ℋ .  From now on 
we call ΣR = Σ�� the between-distribution covariance. The 
pooled covariance operator (which we call also the within-
distribution covariance) is denoted by: ΣS	 =	 �A

�AF�B
Σ� +

�B

�AF�B
	Σ� . 

A. Limit distribution of RMMD Under Null and Fixed 
Alternative Hypotheses 

Now we derive the distribution of the test statistics under 
the null hypothesis of homogeneity H0: � = �	 (Theorem 2), 
which implies �� = ��  and Σ�	 = Σ�	 =	ΣS	 . Consistency of 
the test is guaranteed by the form of the distribution under H1: 
� ≠ �	  (Theorem 2). Assume that =>?>@*

�A and ='>?>@*
�B are 

independent samples from P and Q, respectively (a priori they 
are not equally distributed). Let T> ≔ �> , '>� , ℎ T> , TV) ≔
	 > , V) + 		 '> , 'V) − 	 > , 'V) − 	 V , '>) − ℎ$ T> , TV) , and 

ℎ$ T> , TV) = 6�	 > , V) + 6�	 '> , 'V) , and 
W→  denotes 

convergence in distribution. Without loss of generality we 
assume	X* = X+ = X, and 6� = 6� = 6. The proofs hold even 
when 6� ≠ 6�. Based on Hoeffding [16], Theorem A (p. 192) 
and Theorem B (p. 193) by Serfling [17], we can prove the 
following theorem: 

Theorem 2.  If 	�[ℎ+] < ∞ , under H1, 5���7  is 
asymptotically normally distributed 

√X 5���7 − 5���	) W→\(0, N̂+) 
with variance ̂N+ = 4 �_`�_"[ℎ(T, T$)+]a − 	�+_,_"[ℎ(T, T$)]) , 
uniformly at rate 1/√X. Under H0, the same convergence holds 
with N̂+ = 4 �_`�_"[ℎ′(T, T$)+]a −	�+_,_"[ℎ′(T, T$)]) > 0. 

                                                           
1 RMMD with negative-valued 6 can be used in clustering as a 
divergence to compare clusters. We achieve greater entropy 
with broader clusters. The resulting clustering method avoids 
overfitting with narrow clusters. 

To increase the power of our RMMD-based test we need 
to decrease the variance under H1 in Theorem 2. The 
following Theorem can be used to obtain maximal power by 
setting 6 = 1. This will give us a fixed hyper-parameter – no 
need for user tuning. The optimal value of 6 decreases both the 
variance of H1 and H0 simultaneously and the fixed α is defined 
over the changed variance of H0. 

Theorem 3.  The highest power of RMMD is obtained for  

κ =1. 

Proof. Let denote e = 	 > , V) + 		 '> , 'V) , and f =
	 > , 'V) + 	 V , '>). Based on Theorem 2, the variance under 
H1 is obtained by: 

N̂+ = 4 �_`�_"[ℎ(T, T$)+]a −	�+_,_"[ℎ(T, T$)])	
						= 4 g� h (1 − 6)e − f)+i − (�+[(1 − 6)e − f])j	
						= 4	((1 − 6)+(�[e+] − �+[e]) + �[f+] − �+[f])	
						= 4	((1 − 6)+var(e) + var(f)),																																(5) 
where var(e) , and var(f)denote the variances. To get 

maximal power, we set 

o (*0p)Bvar(q)Fvar(R))
op = 0,																													(6) 

which yields 6 = 1. 

B. Comparisn between RMMD, MMD, and KFDA 

According to Theorem 8 by Gretton et al. [1], under the 
null hypothesis the test statistics of MMD degenerates. This 
corresponds to ̂N+ = 0 in our Theorem 2. For large sample 
sizes the null distribution of MMD approaches in distribution 
as an infinite weighted sum of independent r*+ random 
variables, with weights equal to the eigenvalues of the within-
distribution covariance operator ΣS	 . If we denote the test 
statistics based on MMD by sE�//W , then 

sE�//W W→ 	t ∑ uv(Tv+ − 1)wv@* , where Tv~\(0,2)  are i.i.d. 
random variables, and C is a scaling factor.  Harchaoui et al. 
[2], [18] introduced Kernel Fisher Discriminant Analysis 
(KFDA) as a homogeneity test by regularizing MMD with the 
within-distribution covariance operator. The maximum Fisher 
discriminant ratio defines this test statistic. The empirical 
KFDA test statistic is denoted as xy�e7 (�,�) =
�A�B
�AF�B

z {|}0{|~
(��}F���)A/Bzℋ

+
. To analyze the asymptotic behaviour of 

this statistics under the null hypothesis, Harchaoui et al. [2] 
consider two situations regarding the regularization parameter 
�� : 1) one where ��  is held fixed, obtaining the limit 
distribution similar to MMD under H0; 2) one where �� tends 
to zero slower than X0*/+. In the first situation the test statistic 

converges to sE���Wq(��) W→ 	t ∑ (uv + ��)0*uv(Tv+ − 1)wv@* . 
Thus, the test statistics based on KFDA normalizes the 

weights of r*+  random variables by using the covariance 
operator as the regularizer. In comparison MMD is more 
sensitive to the information of higher order moments because 
of their bigger weights (larger eigenvalues of the covariance 
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operator). In the second situation (applicable in practice only 
for very large sample sizes) the test statistics converges to 

sE�
��Wq���� W→\(t, 1), where t is a constant. 

 
        The asymptotic convergence of the test statistic based on 

RMMD is sE��//W W→ \(0, N̂+), where ̂N+  is the variance of 
the function h in Theorem 2. The precise analytical normal 
distribution obtains higher power in RMMD. Because of the 
divergence (̂ + = 0 in the asymptotic distribution) for MMD 
and KFDA, they use an estimation of the distribution under 
the null hypothesis which loses the accuracy and affect the 
power. In contrast to MMD and KFDA, RMMD is consistent 
since the divergence under the null hypothesis does not 
happen anymore. RMMD is the generalized form of the test 
statistics based on MMD, which we obtain for 6 = 0 .  
Moreover, by minimizing the variance of the normal 
distribution, we obtain the best power for 6 = 1 and thus the 
hyper-parameter 6  is fixed without requiring tuning by the 
user. 
 
       In comparison to KFDA, RMMD does not require 
restrictive constraints to obtain high power. It also results in 
higher power than MMD and KFDA in cases with small 
sample size. The speed of power convergence in KFDA is 
��(1)  which is slower than ��(X0*/+)  in RMMD when 
X → ∞.  
 

Regarding the computational complexity, for MMD a 
parametric model with lower order moments of the test 
statistics is used to estimate the value of MMD which 
degenerates under H0, and which has no consistency or 
accuracy guarantee. In comparison, the bootstrap resampling 
and the eigen-spectrum of the gram matrix are more consistent 
estimates with computational cost of �(X+), where n is the 
number of samples [19]. For RMMD, the convergence of the 
test statistic to a Normal distribution enables a fast, consistent 
and straightforward estimation of the null distribution within 
�(X+) time without the need of using an estimation method. 
The results of power comparison between these tests are 
reported in section 4. 

C. Assymptotic Relative Efficiency of Statistical Tests 

To assess the power control we use the asymptotic relative 
efficiency. This criterion shows that RMMD is a better test 
statistic and obtains higher power rather than KFDA and MMD 
with smaller sample size. Relative efficiency enables one to 
select the most effective statistical test quantitatively [20]. Let 
T and V be test statistics to be compared. The necessary sample 
size for the test statistics T to achieve the power 1- β with the 
significance level α is denoted by ��(�, 1 − �). The relative 
efficiency of the statistical test T with respect to the statistical 
test V is given by: 

��,�(�, 1 − �)= ��(�, 1 − �)/��(�, 1 − �)	.               (7) 

  Since calculating ��(�, 1 − �)  is hard even for the 
simplest test statistics, the limit value ��,�(�, 1 − �) , as 

1 − � → 1, is used. The limiting value is called the Bahadur 
Asymptotic Relative Efficiency (ARE) denoted by ��,�R , 

��,�R : = lim*0�→* ��,�(�, 1 − �),                (8) 

The test statistic V is considered better than T, if ��,�	is 
smaller than 1, because it means that V needs  a lower sample 
size to obtain a power of 1 − �, for the given �. In [2], the 
authors assessed the power control by means of analysis of 
local alternatives which work when we have very large sample 
size or when n tends to infinity. In this article, we focus our 
attention on the small sample size case, which is more 
challenging. In section 4, we compute �//W,�//WR =
�����
����

, 	�//W,��WqR = �����
����

 and ���Wq,�//WR = �����
�����

using 

artificial datasets and two types of kernels, and we obtain 
smaller ARE for RMMD rather than KFDA and MMD. This 
means RMMD gives higher power with much smaller sample 
size. Results for different data sets are reported in Table 2, 
Figure 2, and Figure 3. 

IV.  EXPERIMENTS 

MMD [1] was experimentally shown to outperform many 
traditional two-sample tests such as the generalized Wald-
Wolfowitz test, the generalized Kolm-ogorov-Smirnov (KS) 
test [3], the Hall-Tajvidi (Hall) test [21], and the Biau-Györf 
test. It was shown [2] that KFDA outperforms the Hall-Tajvidi 
test. We select KS and Hall as traditional baseline methods, on 
top of which we compare RMMD, KFDA, and MMD. To 
experimentally evaluate the utility of the proposed hypothesis 
testing method, we present results on various artificial and real-
world benchmark datasets. 

A. Artificial Benchmarks with Periodic and Gaussian 
Distributions 

Our proposed method can be used for testing the 
homogeneity of structured data, which is an advantage over 
traditional two-sample tests. We artificially generated 
distributions from Locally Compact Abelian Groups (periodic 
data) and applied our RMMD-test to decide whether the 
samples come from the same distributions or not. Suppose the  
first sample is drawn from a uniform distribution P on the unit 
interval. The other sample is drawn from a perturbed uniform 
distribution �� with density 1 + sin(�).  For higher 
perturbation frequencies � it becomes harder to discriminate 
�� from P. Since the distributions have a periodic nature, we 
use a characteristic kernel tailored to the periodic domain, 
	(, ') = cosh(� − ( − ') ¡¢+£).	 For 200 samples from 
each distribution, the type II error is computed by comparing 
the prediction to the ground truth over 1000 repetition. We 
average the results over 10 runs. The significance level is set to 
α = 0.05. We perform the same experiment with MMD, 
KFDA, KS and Hall. The powers of the homogeneity test for 
comparing P and �¤  with the above mentioned methods are 
reported in Table 1 as Periodic1. The best power is achieved by 
RMMD, and as expected, the results of kernel methods are 
better than traditional ones. 

Since the selection of the kernel is a critical choice in 
kernel-based methods, we also investigated the usage of a 
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TABLE 1. THE POWER OBTAINED ON THE PERIODIC DATA, THE GAUSSIAN, THE MNIST, COVERTYPE, AND FLARE SOLAR DATASETS, BY APPLYING RMMD WITH 
6 = 0.8 FOR THE PERIODIC DATA AND 6 � 1 FOR THE OTHERS, AND KFDA WITH � � 100*. 

 RMMD KFDA MMD KS Hall 

Periodic1 0.40±0.02 0.24±0.01 0.23±0.02 0.11±0.02 0.19±0.04 

Periodic2 0.83±0.03 0.66±0.05 0.56±0.05 0.11±0.02 0.19±0.04 

Gaussian 1.00 0.89±0.03 0.88±0.03 0.04±0.02 1.00 

MNIST 0.99±0.01 0.97±0.01 0.95±0.01 0.12±0.04 0.77±0.04 

Covertype 1.00 1.00 1.00 0.98±0.02 0.00 

Flare-Solar 0.93 0.91 0.89 0.00 0.00 

CIFAR10 0.99±0.01 0.99±0.01 0.99±0.01 0.64±0.07 0.00 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

different kernel and replaced the previous kernel with 
	�, '� � � log�1 � 2¦ cos� � '� % ¦+�, where ¦  is a 
hyperparameter. We report the best results achieved by 
¦ � 0.9 as Periodic2 in Table 1. The reader is referred to [6], 
[22] for a detailed study on these kernels. 

We also report the results on the toy problem of comparing 
two 25-dimensional Gaussian distributions with 250 samples, 
both with zero mean vector but with covariance matrix 1.5 I 
and 1.8 I, respectively. This dataset is referred as Gaussian in 
Table 1. 

An investigation of the effect of kernel selection and tuning 
parameters [23] showed that best results for MMD can be 
achieved by those kernels and parameters that obtain supreme 
value for MMD. Our reported results agree. The results of 
kernel-based test statistics (RMMD, KFDA, and MMD) are 
improved by kernel justification and parameter tuning, and in 

  

 

 

 

 

 

all cases RMMD outperform KFDA and MMD. For instance, 
the result of periodic kernel with tuned hyper-parameter θ is 
better than the one of the first periodic kernel without hyper-
parameter (reported in Table 1 as Periodic2 and Periodic1, 
respectively). For Gaussian kernel-processed datasets, the 
median distance between data points provided the best results. 
We used the 5-fold cross validation procedure to tune the 
parameters in our experiment. 

The effect of changing 6 on the power is simulated in two 
tests: first, by testing the similarity between the uniform 
distribution and �¨, and second with �¤. In both cases, the best 
power is obtained for 6 � 0.8. The results slightly differ from 
the theoretical value 6 � 1) because of the relatively small 
sample sizes (n1 = n2 = 200) used for the tests. For samples 
with larger sizes we obtained maximal power with 6 � 1. The 
results are depicted in Figure 1. 

To assure that the statistical test is not aggressive for 
rejecting the null hypothesis, we reported the results of type I 
error for RMMD, KFDA, and MMD with different sample 
sizes in Figure 2. Both samples are supposed to be drawn from 
�¤. We used Gaussian kernel with a variance equals to medium 
distance of data points. The results were averaged over 100 
runs and the confidence interval obtained by 10 replicates 
(notice that the intervals are not visible in Figure 2 since their 
magnitude is less than 0.001). RMMD obtains zero type I error 
with smaller sample sizes, and the results of KFDA and MMD 
are comparable. 

To assess the power control of the test statistics we also 
compared,�//W,�//W

R , �//W,��Wq
R and ���Wq,�//W

R  under H1 
when P is a uniform distribution and the alternative is �¤. We 
obtained smaller ARE for RMMD rather than for KFDA and 
MMD. This means RMMD gives higher power with fewer 
samples. Table 2 shows the results, averaged over 1000 runs, 
for periodic data (Periodic1 and Periodic2). Figure 3 depicts  

 
Figure 1. Effect of κ on the power of the test. The alternatives are Q6 in the left and Q4 in the right figure. 

 

 
Figure 2. Type I error changed based on different sample size n. 
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the detailed results of the type II error for RMMD, MMD, and 
KFDA based on different sample sizes n. AREs are also 
calculated for more complex tasks. Consider the first sample is 
drawn from a uniform distribution P on the unit area. The other 
sample is drawn from the perturbed uniform distribution 
��with density 1 % sin��� % sin	��'�. For increasing values  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of ω, the discrimination of �� from P becomes harder (Figure 
4). The range of �  changes between 1 to 6. We call these 
problems Puni1 to Puni6, respectively. The best results for all 
statistical kernel-based methods are achieved by using a 
characteristic kernel tailored to the periodic domain, 	�, '� �
∏ 1/�1 � 2¦ cos�> � '>� % ¦

+�+
>@* , with ¦ � 0.9 tuned using  

 
Figure 3. Type II error change based on different sample size n. On the left, the results with Periodic kernel 1 and on the right,  

the results with Periodic kernel 2. 
 

 
Figure 4. The probability density function of Puni1 with ω = 1 on the left and the probability density function of Puni6 with 

 ω = 6 on the right. As ω increases the probability density function looks more similar to the uniform distribution and the 
 discrimination of P and Qω becomes more difficult for the test statistics. 

 
Figure 5. On the left, different sample sizes n for different frequencies ω are shown. The type II error changes based on different  

sample sizes n  and different frequencies ω, in the middle for the KFDA-based test, and on the right for the MMD-based test. 
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TABLE I.  THE ARE OBTAINED ON THE PERIODIC DATA, BY APPLYING 
RMMD WITH 6 � 1, AND ¦ = 0.9 IN PERIODIC KERNELS, AND  KFDA WITH 

� = 100*. 

 
B

RMMDMMDe ,  
B

KFDAMMDe ,  
B

RMMDKFDAe ,  

Periodic1 0.71 0.75 0.93 
Periodic2 0.75 1 0.75 

Puni1 0.11 0.78 0.14 
Puni2 0.09 0.82 0.11 
Puni3 0.09 0.82 0.11 
Puni4 0.08 0.85 0.09 
Puni5 0.07 0.88 0.06 
Puni6 0.05 0.81 0.06 

 

the 5-fold cross validation procedure. The results reported in 
Table 2 show much smaller values of ARE for RMMD rather 
than for KFDA and MMD. Figure 5 shows the detailed results  
of type II error for RMMD, MMD, and KFDA based on 
different sample sizes n and different frequencies ω. As 
displayed in Figure 5, RMMD obtains the robust result of zero 
type II error for 100 samples over all different frequencies. 
Instead KFDA and MMD need much larger samples for the 
more difficult cases with larger ω to obtain a power of one. 

B. Perormance on Benchmark Datasets 

Moving from synthetic data to standard benchmarks, we 
tested our method on three datasets: 1) the MNIST dataset of 
handwritten digits (LibSVM library: 10 classes, 500 sample 
size, and 784 dimensions); 2) the Covertype dataset of forest 
cover types (LibSVM library: 7 classes, 200 sample size, and 
54 dimensions); 3) the Flare-Solar dataset (mldata.org: 2 
classes, 50 sample size, 10 dimensions); 4) the CIFAR10 
dataset of tiny object images (10 classes, 200 sample size, 3072 
dimensions (raw features)). We compare the performance of 
RMMD with 6 = 1, KFDA with � = 100*and MMD, using 
the pairwise approach and testing for differences between the 
distributions of the classes, see Table 1. We average the results 
over 10 runs. The family wide level is set to � =
0.05 (resulting in �. = 0.0011,  �. = 0.0024 , �. = 0.05  and 
�. = 0.0011 for each individual comparison for MNIST, 
Covertype, Flare-Solar, and CIFAR10 datasets, respectively). 
The RMMD-based test achieves higher power than the other 
methods (see Table 1). 

C. Electroencephalography Data 

We recorded EEG from four subjects performing a visual task. 
A checkerboard was presented in the subject's left visual field. 
We refer to [24] for details on data collection and 
preprocessing. In our learning task, for each subject we have 64 
signal distributions assigned to 64 electrodes. The data contain 
360 instances of a 200 dimensional feature vector for each 
distribution. The goal of hypothesis testing is to disambiguate 
signals recorded from electrodes corresponding to early visual 
cortex from the rest. This is difficult because of low signal-to-
noise ratio and the similarity of the patterns of all electrodes. 
Moreover, the high number of electrodes makes this 
experiment a good candidate to assess the multiple comparison 
part of our method. In the one-vs-all approach the normalized 
distribution of each electrode is compared to the normalized 
combined distribution of the other 63 electrodes. RMMD with 

6 = 1 with Gaussian kernel is used as our hypothesis test. The 
parameter ̂  of the Gaussian kernel is set to the median 
distance of data points. The results of our hypothesis test reject 
the null hypothesis and confirm the dissimilarity of 
distributions in 63 electrodes. The results of the pairwise 
approach with RMMD and MMD are depicted in Figure 6. 

Neuroscientists usually subjectively assess the results 
obtained from imaging techniques and inferred from machine 
learning. For instance, in the current experiment the 
expectation is that electrodes in region A* (see Figure 7) are 
categorized together by means of EEG imaging techniques and 
multiple comparisons. But electrodes of other area (such as A+ 
and A«, see Figure 7) can be confused as belonging to A1 due 
to the high noise. Figure 7 describes the categorization of the 
electrodes. 

We assess our results quantitatively by means of False 
Discovery Rates (FDR), using the following FDRs to compare 
the results of RMMD to those of MMD:  

y�5¬ = ®.®¯	°±°²³´®µ°¶	²·³°¸®´¹º°µ	¯®´	³»°	¼¹¶½·±	³·¶¾	¹	¿B∪¿Á∪R
Â ,  

y�5* = ®.®¯	°±°²³´®µ°¶	²·³°¸®´¹º°µ	¯®´	³»°	¼¹¶½·±	³·¶¾	¹	¿Á∪R
Â ,  

y�5+ = ®.®¯	°±°²³´®µ°¶	²·³°¸®´¹º°µ	¯®´	³»°	¼¹¶½·±	³·¶¾	¹	R
Â , where U 

is the total number of electrodes categorized for the task. The 
results are depicted in Figure 7. RMMD obtained more robust 
and better results than MMD with smaller FDRs. 

I. CONCLUSION 

Our novel regularized maximum mean discrepancy 
(RMMD) is a kernel-based test statistic generalizing the MMD 
test. We proved that RMMD overpowers MMD and KFDA; 
power consistency is obtained with higher rate. Power control 
makes RMMD a good hypothesis test for multiple 
comparisons, especially for the crucial case of small sample 
sizes. In contrast to KFDA and MMD, the convergence of 
RMMD-based test statistics to the normal distribution under 
null and alternative hypotheses yields fast and straightforward 
RMMD estimates. Experiments with goldstandard 
benchmarks (CIFAR10, MNIST, Covertype and Flare-Solar 
dataset) and with EEG data yield state of the art results. 
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