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Abstract— Regularized Maximum Mean Discrepancy (RMMD),
our novel measure for kernel-based hypothesis testj, excels at
hypothesis tests involving multiple comparisons wit power
control even when sample sizes are small. We desiasymptotic
distributions under the null and alternative hypotheses, and
assess power control. Outstanding results are obted on
challenging benchmark datasets.
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Homogeneity

. INTRODUCTION

Homogeneity testing is an important problem inistiat
and machine learning. It tests whether two sampiesdrawn
from different distributions. This is relevant fomany
applications, for instance, schema matching in biegas [1]
and speaker identification [2]. Popular two-sampsts like
Kolmogorov-Smirnov [3] and Cramer-von-Mises [4] aret
capable of capturing statistical information of siéias with
high frequency features. Nonparametric kernel-basatistical
tests such as Maximum Mean Discrepancy (MMD) [5], [
enable one to obtain greater power than such gebaied
methods. MMD is applicable not only to EuclideaacgsR",
but also to groups and semigroups [6], and to &tras such as
strings or graphs in bioinformatics, and robotioshtems, etc.
[7]. Here we consider a regularized version of MktCaddress
hypothesis testing.
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With more than two distributions to be compared
simultaneously, we face the multiple comparisortsngg for
which statistical methods exist to deal with theues of
multiple test correction [8]. Given a prescribedolsl
significance thresholdn (type | error) for the set of all
comparisons, however, the corresponding threshoddt p
comparison becomes small, which greatly reducepdher of
the test. In situations where one wants to rethim null
hypothesis, tests with small are not conservative. Our main
contribution is the definition of a regularized MMBRMMD)
method.

The regularization term in RMMD allows controllirige
power of the test statistic. The regularizer is geivably
optimal for maximal power; there is no need for fine-tunby
the user. RMMD improves on MMD through higher power
especially for small sample sizes, while preservitg
advantages of MMDPower control enables us to look for true
sets of null distributions among the significantesnin
challenging multiple comparison tasks.

We provide experimental evidence of good perforreast
a challenging Electroencephalography (EEG) dataset,
artificially generated periodic and Gaussian datag
CIFAR10, the MNIST and Covertype datasets. We aks®ess
power control with the Asymptotic Relative Efficen(ARE)
test.

The paper is organized as follows. In section 2, we
elaborate on hypothesis testing and define maxinmean
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discrepancy (MMD) as a metric. We describe how $& u
MMD for homogeneity testing, and how to extend at t
multiple comparisons. In section 3, we define RMMar
hypothesis testing and compare it to MMD and KeFisher
Discriminant Analysis (KFDA), and assess power munt
through ARE. Additional empirical justification @fur test on
various datasets is presented in section 4.

II.  STATISTICALHYPOTHESISTESTING

A statistical hypothesis test is a method whichseoaon
experimental data, aims to decide whether a hygatlfealled
null or Hy) is true or false, against an alternative hypdthes
(Hy). The level of significance of the test represents the
probability of rejecting | under the assumption thag I8 true
(type | error). A type Il errorff) occurs when we reject;H
although it holds.

The power of the statistical test is usually defined a$. I
desirable property of a statistical test is that doprescribed
global significance levet, the power equals one in the
population limit. We divide the discussion of hyjpesis
testing into two topics: homogeneity testing andltipie
comparisons.

A. Maximum Mean Discrepancy (MMD)

Embedding probability distributions into Reprodugin
Kernel Hilbert Spaces (RKHS) yields a linear methbdt
takes information of higher order statistics inte@unt [1], [9],
[10]. Characteristic kernels [6], [10], [11], injaecly map the
probability distribution onto its mean element imet
corresponding RKHSs. The distance betwesan elements
(w) in the RKHS is known as MMD [1], [5]. The defiiwih of
MMD [1] is given in the following theorem:

Theorem 1.Let (X, B) be a metric space, and ktQ be
two Borel probability measures defined &h The kernel
function k: X’ X X — R embeds the pointse X into the
corresponding reproducing kernel Hilbert spa&fe Then
P = Q@ if and only ifMMD(P,Q) = 0 where

MMD(P, Q) = |lup — oll,, = I|Eplk(x, )] — Eqlie(x, 1],
= (Eyprplk(x,x)] + Byl

— 2By py-olk(x,1)])? €

B. Homogeneity Testing

A two-sample test investigates whether two samples
generated by the same distribution. To do tesiigD can be
used to measure the distance between embeddedbfiitgba
distributions in RKHS. Besides calculating the aligte
measure, we need to check whether this distance
significantly different from zero. For this, the yawptotic
distribution of this distance measure is used tdaioba
threshold on MMD values, and to extract the siatfly
significant cases. We perform a hypothesis tesh witll
hypothesis lt P = Q and alternative H P # Q on samples
drawn from two distributions P and Q. If the reafltMMD is
close enough to zero, we accept Which indicates that the
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distributionsP and Q coincide; otherwise the alternative is
assumed to hold. With as a threshold on the asymptotic
distribution of the empirical MMD (wheP= Q), the(1 —

a) — quantile of this distribution is statistically sificant. Our
MMD test determines it by means of a bootstrap gdace.

C. Multiple Comparisons

Statistical analysis of a data set typically ne¢elsting
many hypotheses. The multiple comparisons or nialtip
testing problem arises when we evaluate severistital
hypotheses simultaneously. Lebe the overall type | error,
and leta denote the type | error of a single comparisothan
multiple testing scenario. Maintaining the presed
significance level of in multiple comparisons yieldgto be
more stringent thaa. Nevertheless, in many studies= @ is
used without correction. Several statistical teqghas have
been developed to contral [8]. We use the DunSidak
method forn independent comparisons in multiple testing, the
significance levekr is obtained bg =1 - (1 —a)". Asa
decreases, the probability of type Il errfy hcreases and the
power of the test decreases. This requires coimgddl while
correctingx. To tackle this problem, and to contrp] we
define a new hypothesis test based on RMMD, whiak h
higher power than the MMD-based test, in the negtisn. To
compare the distributions in the multiple testimglgem we
use two approaches: one-vs-all and pairwise cosmpasi In
the one-vs-all case each distribution is compacedllt other
distributions in the family, thus! distributions requireM-1
comparisons. In the pairwise case each pair ofiloligions is

compared at the cost &@ comparisons.

. REGULARIZED MAXIMUM MEAN

DISCREPANCY(RMMD)

The main contribution of this paper is a novel tagmation
of MMD measure called RMMD. This regularization airto
provide a test statistics with greater power (powleser to 1
with a prescribed type | erref). Erdogmus and Principe [12]
showed that-log||up||3; is the Parzen window estimation of
the Renyi entropy [13]. With RMMD we obtain a ssttal
test with greater power by penalizing the tdimp||3, +

||uQ||i[. We formulate RMMD and its empirical estimator as
follows:

RMMD(P, Q) = MMD(P,Q) — xpllupll} — xqllell., (@

RMMD(P,Q) = ||@r — Aol — xrllell% — xllaqll;, 3

wherek,, andk, are nonnegative regularization constants.
Esor simplicity we considet, = k, = k in many application,

owever, we can introduce prior knowledge about the
complexity of distributions by choosing, # k, . The

modified Jensen-Shanon divergence (JS) [14] cooretipg to
RMMD is defined as:

D(P,Q) = Hs(P,Q) — (x + D(Hs(P) + Hs(Q))  (4)
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where H denotes the (cross) entropy. Simcis positive, To increase the powerof our RMMD-based test we need
the absolute value of second term on the right-rsaahel of (4) to decrease the variance under Hin Theorem 2. The
increases, leading to a higher weight for the mutdarmation  following Theorem can be used to obtain maximal @owy
than for the entropy (vice versadfwould be lower than -1J. settingk = 1. This will give us a fixed hyper-parameterno
need for user tuning. The optimal valuecadecreases both the
variance of Hand H simultaneously and the fixedis defined
over the changed variance of.H

Here we summarize the notation needed in the Betios.
Given samplegx;}i2, and{y;}'2 drawn from distributionsP

and Q, respectively, the mean element, the cross-cavegia

operator and the covariance operator are definetblbsvs Theorem 3. Thehighest powerof RMMD is obtained for
~ 1 & PN PN

[1]1 [15] Up = n_12:1=11 k(xil z ’ EPQ = n‘r:-:_niz (”P - #Q) k =1.

®(p —ho) , and £, = - Nidy Uy, ) @ k(xi,.)) — Proof. Let denoted = k(x;,x;)+ k(v;,y;), andB =

(Ap®fg), Whereu®v foru,v € H is defined for alf € H k(xi,yj) + k(x,-,yi). Based on Theorem 2, the variance under
as(u®v)f = (v, f)yu. The quantitiegiy andiQare defined H; is obtained by:

analogously for the second samgie};?,. The population 52 — 4(E.[E /Th(z 2021 = E2Z. . [h(z 7'
counterparts, i.e., the population mean element tired g (E,[E, [h(z,2z")?]] 22 [1(z,2))])

population covariance operator are defined for mopability =4 (E [((1 —K)A— B)Z] —(E?[(1 - KA - B]))
measure P as (up, f)y = E[f(x)] for all feH , and =4 ((1 — K)2(E[4%] — E2[A]) + E[B?] — E%[B])
(f,Zpg)s = covp[f(x),g(y)] for f,g € H. From now on =4 ((1 =) A B 5
we call 2z = Xp, the between-distribution covarianceThe (@ =) var(4) + var(B)), _ ©)
pooled covariance operator (which we call also wigin- wherevar(4), andvar(B)denote the variances. To get
distribution covariancp is denoted byz, = —1-3, + maximal power, we set

ni+nz
n1+2n2 %, . 6((1—K)2v;2~iA)+Var(B)) —0, 6)

A. Limit dis:tribution of RMMD Under Null and Fixed which yieldsk = 1.
Alternative Hypotheses

Now we derive the distribution of the test statistunder B Compa.risn between RMMD, MMD, and KFDA

the null hypothesis of homogeneity:H? = Q (Theorem 2), According to Theorem 8 by Gretton et al. [1], undee
which impliesup = py andZp, =%, = I . Consistency of null hypothesis the test statistics of MMD degetesaThis
the test is guaranteed by the form of the distidoutinder H: ~ corresponds té2 = 0 in our Theorem 2. For large sample
P #Q (Theorem 2). Assume thdncl.}’;zll and {yi}?zzl are Sizes the null distribution of MMD approaches istdbution
independent samples frofandQ, respectively (a priori they as an infinite weighted sum of independeyit random
are not equally distributed). Let == (x;,¥,), h(z,z) =  variables, with weights equal to the eigenvaluethefwithin-
k(x, %)+ k(yiy:) = k(x,v;) = k(x;,y;) — h'(z,2), and distribution covariance operatay, . If we denote the test
(i) Oiry) ~ k(e 37) = k(e 1) (z:%) statistics based on MMD byTMMP | then

D
h’(zi, z]-) = ka(xi, x]-) + KQk(yi,yj) , and — denotes D - .
convergence in distribution. Without loss of geligrawe TP — C21=111(ZIZ —-1), where z~N(0,2) are liid.
assumer, = n, = n, andk, = k, = k. The proofs hold even random variables, an@ is a scaling factor. Harchaoui et al.
wheni, # K. Based on Hoeffding [16], Theorem A (p. 192) [2], [18] introduced Kernel Fisher Discriminant Awpsis

and Theorem B (p. 193) by Serfling [17], we canverdhe (KFDA) as a homogeneity test by regularizing MMDttwihe
following theorem: within-distribution covariance operator. The maximiérisher

) _ discriminant ratio defines this test statistic. Tampirical
Theorem 2. If E[h*] <oo, under H, RMMD is KFDA test statistic is denoted akFDA(P,Q) =

asymptotically normally distributed oo 2 . i
) e % . To analyze the asymptotic behaviour of
A ~ 1 2 PTVn H
Vn(RMMD — RMMD ) > IV (0,6%) this statistics under the null hypothesis, Harchaual. [2]
with variances? = 4(EZ[EZr[h(z,z’)2]] _ Ezz,z'[h(Z,Z')]), consider two situations regarding the regularizapparameter

uniformly at ratel /+/n. UnderH,, the same convergence holds g’? ) .;) _one.w.Tereyn IS heldd flxed,2 Obta'n'ﬂg the I|(;n|t
with 62 = 4(E, [,/ [l (z,2)?]] ~ E2, #[I'(z,2)]) > 0 istribution similar to MMD un er lyj_ ) one whergy, tends
zl=z ’ 2z ’ ) to zero slower than=1/2. In the first situation the test statistic
~KFDA(yy) © w 19 (2
converges to T, > CYR L +v) Az —1) .
Thus, the test statistics based on KFDA normalifes

. 2 . . .
I RMMD with negative-valuea can be used in clustering as a Weights of ¥1 random variables by using the covariance

with broader clusters. The resulting clustering hodtavoids ~ Sensitive to the information of higher order monsebecause
overfitting with narrow clusters. of their bigger weights (larger eigenvalues of tuwariance
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operator). In the second situation (applicableractice only 1—p8 — 1, is used. The limiting value is called the Bahadur

for very large sample sizes) the test statisticeerges to Asymptotic Relative Efficiency (ARE) denoted bﬁv,
N D .
TTi{FDA(Vn) - N(C, 1), whereC is a constant. efy:= lim;_g_;ery(a,1—p), (8)

. ~rmmp P 2 o ) smaller than 1, because it means Mateeds a lower sample
RMMD is T, — NV (0,6°), where* is the variance of gj;q g obtain a power df— g3, for the giverw. In [2], the
the functionh in Theorem 2. The precise analytical normal g inors assessed the power control by means ofsimaif
distribution obtains higher power in RMMD. Becausfethe  |oca) alternatives which work when we have vergéasample
divergence ¢ = 0 in the asymptotic distribution) for MMD  size or whem tends to infinity. In this article, we focus our
and KFDA, they use an estimation of the distributinder  attention on the small sample size case, which @em
the null hypothesis which loses the accuracy areicathe challenging. In section 4, we computel,prymp =
power. In contrast to MMD and KFDA, RMMD is consiat ~ Nrmmp NKFDA and eBpo  pmp = NRMMD

, es = usin
since the divergence under the null hypothesis doeis grl{l'?g'al eg’;‘:;;{;t”; angMK/eo pes of Kermels Ng%q mbta'?\
happen anymore. RMMD is the generalized form of teést el Yy ' n
staF:iZtics byased on MMD Whi(?h we obtain fer= 0 smaller ARE for RMMD rather than KFDA and MMD. This

Moreover, by minimizing the variance of the normal means RMMD gives higher power with much smaller siem

distribution, we obtain the best power for= 1 and thus the size. Results fqr different data sets are repomedable 2,
S : . X Figure 2, and Figure 3.
hyper-parametek is fixed without requiring tuning by the

user. IV. EXPERIMENTS

: . MMD [1] was experimentally shown to outperform many
e o o 2% adiional w5 saple et Such a5 the generkitic
higher power than MMD and KFDA in cases with small 'O Oz test, the generalized Kolm-ogorov-SmirnS)

9 PO ; test [3], the Hall-Tajvidi (Hall) test [21], and @hBiau-Gyorf
sample size. The speed of power tonvergence in KEDA test. It was shown [2] that KFDA outperforms thellFajvidi
0p(1) which is slower thar0,(n™"/?) in RMMD when  test We select KS and Hall as traditional basetiethods, on
n — oo, top of which we compare RMMD, KFDA, and MMD. To

experimentally evaluate the utility of the propossgbothesis

Regarding the computational complexity, for MMD a testing method, we present results on varioudaatifand real-
parametric model with lower order moments of thatte world benchmark datasets.
statistics is used to estimate the value of MMD ahhi
degenerates under jHand which has no consistency or
accuracy guarantee. In comparison, the bootstrsgmpgling )
and the eigen-spectrum of the gram matrix are roonsistent Our proposed method can be used for testing the
estimates with computational cost @fn?), wheren is the —homogeneity of structured data, which is an adgtaver
number of samples [19]. For RMMD, the convergenteéhe ~ traditional two-sample tests. We artificially ~geaied
test statistic to a Normal distribution enablesst,fconsistent distributions from Locally Compact Abelian Groupe(iodic
and straightforward estimation of the null disttiba within data)l and appfhed Orl]” RMMIg_—tesl; to decide Whet“f t
0(n?) time without the need of using an estimation metho samples come from the same distributions or ngipSse the

The Tresults of power comparison between these imsds first sample is drawn from a uniform distributi®non the unit
: P P interval. The other sample is drawn from a pertdrbaiform
reported in section 4.

distribution Q, with density 1+ sin(wx). For higher

C. Assymptotic Relative Efficiency of Statistical $est perturbation frequencias it becomes harder to discriminate
To assess the power control we use the asymptitive Q,, from P. Since the distributions have a periodic nature, w

efficiency. This criterion shows that RMMD is a feettest use a characteristic kernel tailored to the peciodibmain,
statistic and obtains higher power rather than Krmdl MMD (4, ¥) = cosh(m — (X — ¥)inoqzr). For 200 samples from
with smaller sample size. Relative efficiency emabbne to each d'SFr'bUt'on’ the type Il error is computeddnynparlng
select the most effective statistical test quatntisly [20]. Let (e Prediction to the ground truth over 1000 rejoeti We
T andV be test statistics to be compared. The necesaaryls aveirage the results over 10 runs. The S|gn!f|cm IS set to
size for the test statisticGto achieve the powet- 8 with the OIEF_D A??(SS W% ﬁeﬂorﬁq the same . fﬁ(p%rlment with %MD’
significance level is denoted bw;(a,1 — ). The relative ' and Hall. The powers of the homogeneit fr

L ot g ot comparingP andQ, with the above mentioned methods are
;aefg&eir;cgi\gntrg.stat|st|cal tedt with respect to the statistical reported in Table 1 as Periodicl. The best powacligeved by

RMMD, and as expected, the results of kernel methaa
ery(a,1—B)=Ny(a,1—=B)/Nr(a,1 ). @) better than traditional ones.

Since calculatingN;(a,1— ) is hard even for the Since the selection of the kernel is a critical icaoin
simplest test statistics, the limit valug,(a,1— ), as kernel-based methods, we also investigated theeusdga

A. Artificial Benchmarks with Periodic and Gaussian
Distributions
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TABLE 1. THE POWER OBTAINED ON THE PERIODIC DATATHE GAUSSIAN, THE MNIST, COVERTYPE, AND FLARE SOLAR DATASETS BY APPLYING RMMD WITH
k = 0.8 FOR THE PERIODIC DATA ANDk = 1 FOR THE OTHERSAND KFDA WITHy = 1071,

0.07

RMMD KFDA MMD KS Hall
Periodicl 0.40+0.02 0.24+0.01 0.280.02 0.1%0.02 0.120.04
Periodic2 0.83+0.03 0.66+0.05 0.56+0.05 0.11+0.02 0.19+0.04
Gaussian 1.00 0.89+0.03 0.88+0.03 0.04+0.02 1.00
MNIST 0.99+0.01 0.97+0.01 0.95+0.01 0.12+0.04 0.77+0.04
Covertype 1.00 1.00 1.00 0.98+0.02 0.00
Flare-Solar 0.93 0.91 0.89 0.00 0.00
CIFAR10 0.99+0.01 0.99+0.01 0.99+0.01| 0.64+0.07 0.00

-3 -2

-1
X

0 1

Figure 1. Effect ok on the power of the test. The alternatives aygxGhe left and Qin the right figure.

0.06 -

0.05-

4
>
z

Type I error
=4
>
<

0.02

—&— RMMD
@ MMD
KFDA ||

0

Figure 2.Type | error changed based on different samplersize

different kernel

20

40

and

L L
60 80
Sample size n

replaced the previous kernathw

o
100

120

140 160

k(x,y) = —log(1 — 20 cos(x — y) + 62), where @

hyperparameter. We report the best results achidwed
6 = 0.9 as Periodic2 in Table 1. The reader is referrefbfo

[22] for a detailed study on these kernels.

is

a

We also report the results on the toy problem ofigaring

two 25-dimensional Gaussian distributions wi2b0 samples,

both with zero mean vector but with covariance matr5 |

and 1.8 |, respectively. This dataset is referred as Gangnia

Table 1.

An investigation of the effect of kernel selectamd tuning

parameters [23] showed that best results for MMD be

achieved by those kernels and parameters thatnobtgireme

value for MMD. Our reported results agree. The ltssaf
kernel-based test statistics (RMMD, KFDA, and MMB&e

improved by kernel justification and parameter tgpiand in

Www.ijcit.com

all cases RMMD outperform KFDA and MMD. For instanc
the result of periodic kernel with tuned hyper-pagter 6 is
better than the one of the first periodic kernetheut hyper-
parameter (reported in Table 1 as Periodic2 andbdHet,
respectively). For Gaussian kernel-processed datashe
median distance between data points provided therbsults.
We used the 5-fold cross validation procedure toetthe
parameters in our experiment.

The effect of changing on the power is simulated in two
tests: first, by testing the similarity between thaiform
distribution andl,, and second witld,. In both cases, the best
power is obtained far = 0.8. The results slightly differ from
the theoretical valug = 1) because of the relatively small
sample sizes (n= n, = 200) used for the tests. For samples
with larger sizes we obtained maximal power wits 1. The
results are depicted in Figure 1.

To assure that the statistical test is not aggresr
rejecting the null hypothesis, we reported the ltesaf type |
error for RMMD, KFDA, and MMD with different sample
sizes in Figure 2. Both samples are supposed trdven from
Q. We used Gaussian kernel with a variance equatetium
distance of data points. The results were averayed 100
runs and the confidence interval obtained by lQicaes
(notice that the intervals are not visible in Fig@ since their
magnitude is less than 0.001). RMMD obtains zepe tlyerror
with smaller sample sizes, and the results of KRDA MMD
are comparable.

To assess the power control of the test statistiesalso
comparedegiyp rumps €nmp krpa AN egppa pump UNDEr Hy
whenP is a uniform distribution and the alternativeQis We
obtained smaller ARE for RMMD rather than for KFDahd
MMD. This means RMMD gives higher power with fewer
samples. Table 2 shows the results, averaged @@ tins,
for periodic data (Periodicl and Periodic2). FigBiepicts
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Figure 4 The probability density function of Punil with= 1 on the left and the probability density funotiof Puni6é with
® = 6 on the right. As increases the probability density function looksrensimilar to the uniform distribution and the
discrimination of P and £becomes more difficult for the test statistics.
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—&— RMMD
- MMD
2000} ~* “KFDA
)
= 1500
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z y e —————
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3
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5
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1000
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Figure 5.0n the left, different sample sizedor different frequencies are shown. The type Il error changes based oerdift
sample sizea and different frequencies, in the middle for the KFDA-based test, and onrtgkt for the MMD-based test.

of w, the discrimination of),, from P becomes harder (Figure

the detailed results of the type Il error for RMMIAMD, and
KFDA based on different sample sizes AREs are also
calculated for more complex tasks. Consider thet §ample is
drawn from a uniform distribution P on the unitar&he other
sample is drawn from the perturbed uniform distidou
Q. with densityl + sin(wx) + sin(wy). For increasing values

Www.ijcit.com

4). The range ofv changes between 1 to 6. We call these
problems Punil to Puni6, respectively. The besiltedor all
statistical kernel-based methods are achieved hggua
characteristic kernel tailored to the periodic doma(x, y) =
2 1/(1— 20 cos(x; — y;) + 6%), with & = 0.9 tuned using
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TABLE I. THE ARE OBTAINED ON THE PERIODIC DATA BY APPLYING
RMMD WITH k = 1, AND 8 = 0.9 IN PERIODIC KERNELS AND KFDA WITH

y=10"1,
B B B
QVIMD,RMMD Q\/IMD,KFDA Q<FDA,RMMD
Periodicl 0.71 0.75 0.93
Periodic2 0.75 1 0.75
Punil 0.11 0.78 0.14
Puni2 0.09 0.82 0.11
Puni3 0.09 0.82 0.11
Puni4 0.08 0.85 0.09
Puni5 0.07 0.88 0.06
Puni6 0.05 0.81 0.06

the 5-fold cross validation procedure. The resté{sorted in
Table 2 show much smaller values of ARE for RMMEhea
than for KFDA and MMD. Figure 5 shows the detaifedults
of type Il error for RMMD, MMD, and KFDA based on
different sample sizes and different frequencies. As
displayed in Figure 5, RMMD obtains the robust tesfizero
type Il error for 100 samples over all differenedquencies.
Instead KFDA and MMD need much larger samples ffar t
more difficult cases with larges to obtain a power of one.

B. Perormance on Benchmark Datasets

Moving from synthetic data to standard benchmavkes,
tested our method on three datasets: 1) the MNE#&sét of
handwritten digits (LibSVM library: 10 classes, 58@mple
size, and 784 dimensions); 2) the Covertype dataisirest
cover types (LibSVM library: 7 classes, 200 samgife, and
54 dimensions); 3) the Flare-Solar dataset (midega.?2
classes, 50 sample size, 10 dimensions); 4) theAR1B
dataset of tiny object images (10 classes, 200 leasige, 3072
dimensions (raw features)). We compare the perfoceaf
RMMD with k = 1, KFDA with y = 10~*and MMD, using
the pairwise approach and testing for differencetsveen the
distributions of the classes, see Table 1. We geetlze results
over 10 runs. The family wide level is set to=
0.05 (resulting ina = 0.0011, @ = 0.0024, @ = 0.05 and
a = 0.0011 for each individual comparison for MNIST,
Covertype, Flare-Solar, and CIFAR10 datasets, wmisjety).
The RMMD-based test achieves higher power thanother
methods (see Table 1).

C. Electroencephalography Data

We recorded EEG from four subjects performing aalisask.
A checkerboard was presented in the subject'vikgil field.
We refer to [24] for
preprocessing. In our learning task, for each stlvje have 64
signal distributions assigned to 64 electrodes. ddta contain
360 instances of a 200 dimensional feature veatorefch
distribution. The goal of hypothesis testing isdteambiguate
signals recorded from electrodes correspondingatly isual

cortex from the rest. This is difficult becauselmf signal-to-
noise ratio and the similarity of the patterns thfedectrodes.
Moreover, the high number
experiment a good candidate to assess the mutiipigarison
part of our method. In the one-vs-all approachrtbemalized
distribution of each electrode is compared to tbemalized
combined distribution of the other 63 electrodeSINFD with
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details on data collection andreward based

of electrodes makes this
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k = 1 with Gaussian kernel is used as our hypothesisThs
parameters of the Gaussian kernel is set to the median
distance of data points. The results of our hyptheest reject
the null hypothesis and confirm the dissimilarityf o
distributions in 63 electrodes. The results of {herwise
approach with RMMD and MMD are depicted in Figure 6

Neuroscientists usually subjectively assess thaultees
obtained from imaging techniques and inferred frmachine
learning. For instance, in the current experimehe t
expectation is that electrodes in region(see Figure 7) are
categorized together by means of EEG imaging teciasi and
multiple comparisons. But electrodes of other gsegh as\,
andA;, see Figure 7) can be confused as belonging, tdu&
to the high noise. Figure 7 describes the categiiwiz of the
electrodes.

We assess our results quantitatively by means ¢tfeFa
Discovery Rates (FDR), using the following FDRsctompare
the results of RMMD to those of MMD:

no.of electrodes categorized for the visual task in A,UA3UB

FDR, = - :
no.of electrodes categorized for the visual task in A3UB

FDR, = 8 5 Al
no.of electrodes categorized for the visual task in B

FDR, = 8 , Where U

U
is the total number of electrodes categorized Hiertask. The
results are depicted in Figure 7. RMMD obtained enmbust
and better results than MMD with smaller FDRs.

. CONCLUSION

Our novel regularized maximum mean discrepancy
(RMMD) is a kernel-based test statistic generadjzime MMD
test. We proved that RMMD overpowers MMD and KFDA,;
power consistency is obtained with higher rate. &osontrol
makes RMMD a good hypothesis test for multiple
comparisons, especially for the crucial case ofllssample
sizes. In contrast to KFDA and MMD, the convergemde
RMMD-based test statistics to the normal distribotunder
null and alternative hypotheses yields fast anaigttforward
RMMD  estimates. Experiments with  goldstandard
benchmarks (CIFAR10, MNIST, Covertype and Flarea&ol
dataset) and with EEG data yield state of theeslts.
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