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ABSTRACT
A particular strength of many evolution strategies is their
invariance against strictly monotonic and therefore rank-
preserving transformations of the objective function. Their
view onto a continuous fitness landscape is therefore com-
pletely determined by the shapes of the level sets. Most
modern algorithms can cope well with diverse shapes as
long as these are sufficiently smooth. In contrast, the sharp
angles found in level sets of ridge functions can cause pre-
mature convergence to a non-optimal point. We propose
a simple and generic family of transformation of the fit-
ness function to avoid this effect. This allows general pur-
pose evolution strategies to solve even extremely sharp ridge
problems.

Categories and Subject Descriptors
[Evolution Strategies and Evolutionary Program-
ming]

General Terms
Algorithms

Keywords
Evolution strategies, Robust Optimization, Ridge Functions

1. INTRODUCTION
In principle, evolution strategies (ES) are applicable to

an extremely wide variety of optimization problems: with
their direct search paradigm they interface the objective
function as a black-box, and they do not presume any spe-
cific structure or even smoothness. Nowadays there is a
rather modular repertoire of techniques available for han-
dling different types of difficulties by means of online adap-
tation. The most prominent of these techniques is covari-
ance matrix adaptation [8] which remedies otherwise slow
convergence into ill-conditioned optima. Other challenges

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
GECCO’14, July 12–16 2014, Vancouver, BC, Canada.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2662-9/14/07 ...$15.00.
http://dx.doi.org/10.1145/2576768.2598215.

posed by multi-modality [2], fitness noise [7], and black-box
constraints [1] have been approached with good success.

Here we focus on the challenge of non-smooth objectives.
Although capable of handling non-smooth and even discon-
tinuous objectives in principle it is well known that ES may
fail on such problems. This was demonstrated recently for
the extremely difficult “HappyCat” problem [4]. Since we
are far from understanding the complete picture of which
cases can and cannot be handled successfully by evolution
strategies present analysis is limited to prototypical test
cases such as ridge functions. We follow this approach in
the present paper.

Our aim is to advance the optimization capabilities of
evolution strategies (and possibly other optimizers) when
facing difficult, non-smooth objectives. To this end we pro-
pose a rather generic technique that is based on performing
a specific transformation to the objective function. This
transformation alleviates the difficulty of sharp angles found
in the shapes of non-smooth level sets. We make sure that
the optimum of the untransformed objective can be located
with arbitrarily good precision.

Ridges.
Ridge functions such as

f ridge
α,d : RN → R ; x =

x1

...
xN

 7→ x1 + d ·

(
N∑
i=2

x2
i

)α
(1)

are a class or rather well investigated problems (see [9]
for a systematic investigation for evolution strategies with
isotropic search distributions, as well as [4] and references
therein for an up-to-date discussion). They have been of
some interest since they can be demonstrated to systemati-
cally misguide search strategy adaptation rules to the point
where optimization breaks down completely. It should be
noted that many gradient-based search schemes are facing
similar problems, however, they are often considered inap-
plicable to non-smooth problems in the first place while ES
remain a viable alternative.

In particular on sharp1 ridges with α < 1/2 the core
mechanism of step size control is susceptible to cause prema-
ture convergence. This behavior can be understood qualita-
tively from the fact that rank-based algorithms “perceive”

1We refer to the cases α < 1/2, α = 1/2, and α > 1/2 as
sharp, linear, and smooth ridges, respectively. Note that in
some previous work the case α = 1/2 is already considered
“sharp”.
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Figure 1: Illustration of the definition of the angle-
based hardness measure for (sub-)level sets. The
figure shows a non-smooth, connected level set with
the corresponding sub-level set shaded in gray. The
dark blue cone realizes the largest opening angle in
the corner.

the objective landscape in terms of (sub-)level sets only,
ignoring absolute function values.

Level sets and sub-level sets of ridge functions are con-
nected but non-smooth. Their problem hardness or decep-
tiveness can be measured, e.g., by the inner angle of sub-
level sets. We define the smallest inner angle of a sub-level
set as the smallest opening angle of an infinitesimal cone
that fits into the set. More precisely, let w ∈ RN be a unit
vector, s > 0, β ∈ (0, π/2) and x ∈ RN then we define the
cone

Cx,s,w,β =

{
x+ p

∣∣∣∣ p ∈ RN , ‖p− (wT p)w‖
tan(β)

≤ wT p ≤ s
}

at x with principal axis w, length s and opening angle β.
We define the smallest opening angle of the set M as

](M) = inf
x∈M

lim
s→0

sup
w∈SN−1

{
β ∈ (0, π/2)

∣∣∣Cx,s,w,β ⊂M}
where SN−1 denotes the unit sphere in RN , and for the
positivity of β we define the infimum of an empty set as
zero. Consequently we define the (maximal) hardness of an
objective function f : RN → R (to be minimized) as

](f) = inf
v∈R

]
(
{x ∈ RN | f(x) < v}

)
.

Figure 1 illustrates the concept.
For example, it holds ](f ridge

α,d ) = π/2 for smooth ridges

with α > 1/2, 0 < ](f ridge
α,d ) = tan−1(1/d) < π/2 for linear

ridges with α = 1/2, and ](f ridge
α,d ) = 0 for sharp ridges

with α < 1/2.
Any positive angle can be opened up as widely as nec-

essary by means of a linear transformation and therefore
essentially by a CMA mechanism. Thus, an ES with CMA
may handle ridges with α = 1/2 for any value of d when
given sufficient time to adapt the covariance matrix.

The same approach does not solve the problem for the
arbitrarily sharp angles of level sets for α < 1/2. The prob-
ability of sampling better offspring quickly decays to zero as
the search distribution approaches the ridge. Consequently
success-based step size adaptation (e.g., by means of the
classic 1/5 rule [10]) results in premature convergence. At

the same time there is a trend for the most successful off-
spring to be sampled close to the ridge. This effect can
result in convergence of estimation of distribution style ap-
proaches, including the cumulative step size control mech-
anisms used in many modern non-elitist ES (see e.g. [8]).

Furthermore, the problem can be made even harder by
bending the ridge and by replacing the linear trend term
x1 along the ridge with a quadratic term (e.g., x2

1). Then
the relative impact of the trend along the ridge vanishes
when approaching the optimum not only towards but also
along the ridge. These two additional challenges have been
combined in the so-called HappyCat benchmark problem [4]
that turns out notoriously hard to solve for a number of
well-established direct search algorithms.

Smoothing Difficult Level Sets.
In this paper we propose an approach to handling difficult

shapes of level sets by optimizing a parameterized family of
approximate objectives with more regularly shaped level
sets. Since the question of what makes shapes of level sets
difficult for optimization is hard to answer in general we fo-
cuses our analysis on the important aspect of ridges, which
covers a large share of the difficulties arising in continuous,
non-smooth objective functions.

Our approach does not tackle the problem by proposing
novel search strategies tailored to the handling of ridges.
In particular we do not touch existing step size and covari-
ance matrix adaptation mechanisms. Instead our method
can be understood as a family of transformations of the ob-
jective function, making the method generically applicable
in principle to nearly every existing search algorithm. The
only addition required to this search algorithm is a control
mechanism for the parameter of the family of transforma-
tions, which can be set up as an additional outer loop.

In the following section we propose the aforementioned
family of transformations and establish general properties
that are of importance for optimization in general and for
ES in particular. Then we investigate the impact of the
transformations on different types of level sets, with a focus
on ridge functions. We turn these insights into a meta opti-
mization algorithm that can embrace many different types
of optimizers as a module. Its performance is then eval-
uated on a number of standard benchmarks as well as on
ridge functions of varying difficulty. We demonstrate how
our approach enables an ES with CMA to successfully solve
not only “standard” ridges of arbitrary difficulty but also
more difficult variants. We close with our conclusions.

2. LOCAL SUPREMUM TRANSFORMS
In this section we introduce a number of non-linear trans-

formations of objective (or fitness) functions. Let f : RN →
R be the objective function to be optimized. Without loss
of generality we consider minimization in the following. For
non-empty ∆ ⊂ RN we define the new function

Ff,∆(x) = sup
{
f(x+ δ)

∣∣∣ δ ∈ ∆
}
.

We call Ff,∆ a supremum transform of the original fitness f .
For maximization of f we replace the supremum with the
infimum. Of course, in special cases such as for finite ∆ or
for continuous f and compact ∆ the supremum is guaran-
teed to be attained and the supremum actually becomes a
maximum.



The function Ff,∆ has a simple interpretation: it com-
putes the worst case fitness over the set x+∆ = {x+δ | δ ∈
∆}. For ∆ = {0} it holds Ff,∆ = f . If ∆ is a small
neighborhood of the origin then we can think of Ff,∆ as a
“pessimistic”approximation to f , in the sense that minimiz-
ing Ff,∆ reveals the solution with best worst case behavior
over its ∆-shaped neighborhood.

It is intuitive that for small enough ∆ and under certain
assumptions optimizing f and Ff,∆ will give similar results.
The quality of the approximation will typically increase as
∆ shrinks. We are interested in approximating an opti-
mum of f , which can be achieved by optimizing Ff,∆ for
a sequence of sets ∆ with increasing concentration around
the origin. For the time being we fix this approach and
postpone the discussion why this may make sense to sec-
tion 3. The simplest way to make the proceeding explicit is
by means of an additional scaling parameter. For a fixed,
bounded neighborhood ∆ of the origin, all scaled versions
s ·∆, s > 0, are also bounded neighborhoods of the origin.
We define the family

Ff,∆,s(x) = sup
{
f(x+ s · δ)

∣∣∣ δ ∈ ∆
}
.

of local supremum transforms (LSTs) of f . We consider
the set ∆ fixed and vary only the scale parameter s ≥ 0.
Similar to filters in topology the emphasis in on the fact
that for s → 0 the sets x + s · ∆ over which the suprema
are taken become arbitrarily concentrated around x.

Such families of LSTs have a number of properties with
relevance in an optimization context. In the following we
assume that the set ∆ is bounded and contains the origin.
Then it holds:

1. For a scale of s = 0 the transformation reduces to the
original objective: Ff,∆,0 = f .

2. For a continuous function f it holds

lim
s→0

Ff,∆,s(x) = f(x) ,

for all x ∈ RN , i.e., the family Ff,∆,s of functions con-
verges to the original objective in a point-wise man-
ner. Furthermore, each Ff,∆,s is a continuous func-
tion.

3. For a uniformly continuous function f it holds

lim
s→0

Ff,∆,s = f

with convergence in the maximum norm topology, i.e.,
the family Ff,∆,s of functions converges uniformly to
the original objective. Furthermore, each Ff,∆,s is
uniformly continuous. Note that this property holds
automatically for continuous fitness f restricted to a
compact subset of RN .

4. Assume that f is continuous and unimodal and that
all of its level sets are bounded. Then the set X∗ of
optimizers of f as well as all sets X∗f,∆,s of optimizers
of Ff,∆,s are non-empty. Let d(·, ·) denote Euclidean
distance between compact sets (with points as a spe-
cial case). Then it holds

lim
s→0

max
{
d(x,X∗)

∣∣∣x ∈ X∗f,∆,s} = 0 .

5. For a convex function f also all functions Ff,∆,s are
convex.

6. Let φ : R → R be a strictly monotonically increasing
function. Then it holds

Fφ◦f,∆,s = φ ◦ Ff,∆,s .

Proofs of these elementary properties are found in the
supplementary material. The first property is of limited
value when applying Ff,∆,s for optimization. However, prop-
erties 2 and 3 indicate that shrinking s to zero over the
course of the optimization turns the objective function grad-
ually into the objective of original interest. This is useful
when we are interested in solutions of approximately opti-
mal quality. It is property 4 that ensures that minimiza-
tion of LSTs of f results in convergence to a minimizer
of f . Property 5 is a trivial consequence of convexity. Its
importance lies in the fact that the LSTs do not destroy
the polynomial time complexity of a convex optimization
problem.

The last property is relevant in the context of rank-based
algorithms, including most evolution strategies. It ensures
that Ff,∆,s is compatible with rank-based selection since it
is invariant under rank-preserving transformations.

The supremum transformed fitness Ff,∆ is loosely con-
nected to robust optimization [3] where the task is to find
the solution with the best worst case behavior over a region
of parameters that result, e.g., from parameter uncertainty.
The uncertainty is often of a more complex nature than a
∆-shaped region, e.g., when parameters of constraints are
uncertain. Our situation is quite different. We assume that
values of f are reliable, thus we are not at all interested into
optimizing worst case behavior. This allows us to drive s
to zero, which does not make any sense in a robust op-
timization setting since uncertainty is not reduced during
the optimization run.

3. ANALYSIS OF LEVEL SETS
The view of a direct search optimizer with invariance

under rank-preserving transformations of objective values
on the fitness landscape is completely determined by the
shapes of the level sets. In this section we will investigate
the effect of the (local) supremum transform on the shape
of level sets. We will analyze three different models, namely
the smooth, convex level sets of the ellipsoid function and
the level sets of the ridge function (1) for α = 1/2 and for
α < 1/2. For simplicity we assume that ∆ is the closed unit
ball ∆ =

{
δ ∈ RN

∣∣ ‖δ‖ ≤ 1
}

. Geometrically this means
that the level sets of Ff,∆,s originate from level sets of f
but “inwards shifted” towards the optimum by a distance of
s and possibly cut off appropriately. This will become more
clear in the examples below.

Ellipsoid.
The standard ellipsoid function takes the form

felli
α (x) =

N∑
i=1

α
i−1
N−1 x2

i .

For α = 1 we obtain the sphere function f sphere(x) = ‖x‖2.
It is easy to see that it holds Ff,∆,s(x) = (‖x‖ + s)2 by
means of which the level sets of Ff,∆,s turn out to be also
spheres around the origin. They originate from moving the
level sets“inwards”by s. In other words even for fixed s > 0
optimization of f and Ff,∆,s are equivalent.

The situation changes as we change the parameter α and
with it the difficulty of the problem. A standard choice



Figure 2: A prototypical level set of the ellipse func-
tion (outermost, red), with three inwards shifted
level sets of LSTs. The angle ] decreases from outer
to inner (growing s), corresponding to increasing
problem hardness.

for benchmarking is α = 10−6, resulting in ellipsoidal level
sets with shortest principal axis 1000 times shorter than the
longest principal axis. This is a linear transformation of the
sphere that can be corrected for with a CMA mechanism.
However, moving such a level sets inwards by a radius of s
first results in ellipsoid-like shapes with even worse ratio of
longest and shortest principal axis, and from some point on
the outline becomes non-smooth. This effect is illustrated in
figure 2. A level set of f with smallest principal axis length
of s + ε shows up as a corresponding level set of Ff,∆,s
with shorted axis length of only ε. For ε → 0 the level
set becomes arbitrarily eccentric, with increasing difficulty
]→ 0. Thus for a fixed value of s, when minimizing Ff,∆,s
we cannot expect to get systematically much closer to the
optimum than reaching a level set with a smallest principal
axis of about s. Of course, shrinking s to zero will allow a
reasonable optimizer to make further progress and to locate
the optimum with arbitrary precision.

Ridge.
For α > 1/2 the level sets of the ridge function (1) are

smooth. We do not consider this situation further since
it is essentially covered by the ellipse case. For α = 1/2
the level sets turn into cones with a singularity right on
the ridge. The parameter d controls the opening angle ] of
these cones. For large d the angle decays towards zero which
makes following the linear trend along the ridge increasingly
hard. Since for fixed d the angle is always positive it can be
opened up with a simple linear transformation which makes
CMA mechanisms suitable for solving this type of problem.

Similar to the sphere, shifting the cone-shaped level sets
towards the ridge does not change their shapes, see also
figure 3. Therefore optimization of f and Ff,∆,s are equiv-
alent.

Sharp Ridge.
For α < 1/2 the level sets of the ridge undergo a decisive

change of shape: when approaching the ridge the open-
ing angle quickly approaches zero. Figure 4 illustrates this
property. In this situation CMA mechanisms can turn out
to be insufficient if the search approaches the ridge faster

Figure 3: Level sets of the ridge function fridge
α,d for

α = 1/2 and d = 1. The level sets are cone shaped.
The angle of the cone singularity becomes smaller
for increasing values of the problem hardness pa-
rameter d. The level sets of all LSTs coincide with
those of the ridge function.

than CMA can open up the angle, possibly resulting in pre-
mature convergence.

Interestingly, shifting the level sets of the sharp ridge in-
wards by any fixed distance s > 0 leaves us with a positive
opening angle which can easily be opened up further with
CMA, see figure 5. It is obvious that this property makes
supremum transformations extremely valuable for the opti-
mization of ridge functions.

On the sharp ridge the family of LSTs has a regularizing
effect in a sense similar to, e.g., Tikhonov regularization:
the problem of optimizing f is “ill-posed” (degenerate level
sets), while for each fixed s > 0 optimizing Ff,∆,s is “well-
posed” (positive opening angle of the level set), and the
solution of the ill-posed problem can be found by taking
the limit s→ 0 of the solutions of the well-posed problems.
Importantly, taking limits on the levels of problems and
solutions commutes.

4. A META OPTIMIZATION STRATEGY
In this section we discuss a practical implementation of

an optimization strategy based on LSTs. This is a rather
conceptual algorithm, leaving many opportunities for im-
provement. At this point we are mostly interested in the
difference between premature convergence and convergence
to the optimum, which is a binary observable. The algo-
rithm is by no means tuned for efficiency in terms of mini-
mal number of queries to the black box fitness f .

The first question is for the shape of the set ∆. A ball
shape is attractive for a number of reasons, including math-
ematical simplicity and invariance properties. However,
this renders the practical evaluation of Ff,∆,s intractable.
Therefore we resort to a finite approximation. A reasonable
set ∆ should satisfy a few minimal requirements: its convex



Figure 4: Level sets of the sharp ridge with param-
eter α = 1/4 < 1/2. The sets originate (for N = 3)
from rotating one branch of a parabula around the
x1 axis. Thus the opening angle of the sub-level set
in the singularity becomes arbitrarily small when
approaching the ridge. It is not possible to change
this property by means of a linear transformation.
Thus CMA techniques cannot fully resolve this is-
sue.

Figure 5: Level set of the sharp ridge with param-
eter α = 1/4 (outermost, red), as well as three level
sets of LSTs. Notice that the opening angle ] of the
singular point is positive for all s > 0. It increases
(decreasing problem hardness) for growing s.

hull should be of full dimension, and it should contain the
origin. Any such set is of size at least N + 1. One may fur-
ther require symmetry of some sort as well as centering in
some sense, e.g., with the origin forming the center of mass.
Our intuition is that with these requirements fulfilled the
exact choice of ∆ should not play too much of a role. A
simple choice fulfilling these requirements is

∆ = {0} ∪
N⋃
i=1

{ei,−ei}

where ei = (0, . . . , 1, . . . , 0) ∈ RN denotes the i-th unit vec-
tor. Due to |∆| = 2N + 1, the complexity of evaluating
Ff,∆,s is increased by a factor of 2N + 1 ∈ O(N) as com-
pared to the original fitness function f .

After fixing ∆ it is straightforward to apply any black
box optimizer A to the supremum transformed objective
Ff,∆,s for some fixed s > 0. Even if successful this will
not result in the exact optimizer of f . Instead we need to
drive s towards zero during the optimization run. This can
be achieved trivially in an outer loop around the black box
optimizer that shrinks s according to a predefined sched-
ule. Starting with a rather large s and halving it in ev-
ery iteration until some target accuracy is reached gives a
straightforward implementation. Starting with large s is in
accordance with a large initial variance of the search distri-
bution so as to initially “cover” a large enough part of the
search space.

It is worth noting that this proceeding requires the defi-
nition of a stopping criterion for the black box optimizer A
after which the scale s can be reduced and the search can
start over, typically starting from the position of the best-
so-far solution. In many cases it is possible to leave some
state variables of A in place when transitioning to a smaller
value of s while other variables will need updating. This
wrapper approach is formalized in algorithm 1.

Algorithm 1: Wrapper algorithm for LST optimiza-
tion.
Input: s0 > smin > 0, search algorithm A
s = s0

repeat
update/reset state of A for fitness Ff,∆,s
repeat

perform step of A with fitness Ff,∆,s
until stopping criterion of A is met
s← s/2

until s < smin

At this point we specialize our considerations to an evo-
lution strategy with adaptive step size parameter σ. This
ES may additionally employ a CMA mechanism. We stop
the inner loop as soon as the step size σ drops below then
s-dependent threshold c · s. Setting c = 10−5 has proven
sufficient in our experiments. Then the optimizer is re-
initialized. Its position parameter (e.g., the parent in a
(1+1)-ES) stays as is. Also the covariance matrix can be
kept (or it may be regularized in order to undo adaptation
for fine tuning). The step size σ is reset to the new value
of s. Elitist strategies must reevaluate all parents since the
fitness function has effectively changed. It is obvious that
the concrete measures depend on the underlying algorithm
and that many variations are possible.



N 2 4 8 16 32
xNES 339 1, 064 3, 985 16, 374 70, 084
LST wrapper 480 1, 608 5, 250 19, 092 75, 852

Table 1: Number of function evaluations for xNES
with plain fitness and the xNES wrapper algorithm
using local supremum transforms (LST) for the El-
lipsoid function in different dimensions N . Note
that supremum evaluations correspond to 2d + 1
black box fitness evaluations each. The optimum
was successfully located within the target accuracy
in all cases.

5. EXPERIMENTS
In this section we evaluate LST optimization empirically.

We base our evaluation on the cases that have already been
investigated in section 3. However, in this section we replace
the ball-shaped set ∆ with the finite version defined in the
previous section. In addition we consider the extremely
difficult ridge function known as HappyCat [4].

We implemented the wrapper algorithm described in the
previous section with the xNES evolution strategy [6] as
its inner loop optimization algorithm. We compare this
approach to plain xNES without LST. xNES shares many
properties with the well-known CMA-ES algorithm [8] with
rank-µ update, but without evolution paths. In particular
it adapts the covariance of its Gaussian search distribution
to the problem at hand.

Our setup is as follows. Both optimizers are initialized
with an isotropic search distribution with unit covariance
matrix. The center of the distribution is randomly sampled
in each run the from standard normal distribution.2 For the
wrapper algorithm the scale parameter is initialized to the
same value as the global step size of xNES, in other words
to s0 = 1.

The algorithms are stopped as soon as a (problem de-
pendent) target fitness value is reached. Premature con-
vergence was detected by monitoring the smallest eigen-
value of the covariance matrix. If this value falls below
the numerical accuracy of IEEE 64bit floating point (“dou-
ble precition”) numbers that were used for all experiments
then the algorithm has converged prematurely.

All experiments were repeated 100 times. All numbers
reported in this sections are medians over 100 independent
runs.

5.1 Ellipsoid
It was shown in section 3 that for convex (sub-)level sets

the supremum transform can increase problem difficulty.
Here we investigate the severity of this effect. Therefore
we have run the above algorithm on the ellipsoid problem
with α = 10−6 in dimensions N ∈ {2, 4, 8, 16, 32}. The
target fitness was set to 10−10. The number of function
evaluations is reported in table 1.

The difference between the two algorithms is surprisingly
small. The LST wrapper requires between 10% to 75%
more individuals to locate the optimum.3 This is despite

2For the HappyCat problem (see below) the distribution
refers to the original problem formulation. In other words
it is shifted by (1, . . . , 1)T in our experiments.
3The difference in number of black box queries grows lin-
early with problem dimension since the size of the set ∆
does.

d 103 104 105 106 107 108 109

xNES 98 86 53 53 18 18 1
LST wrapper 100 100 100 100 100 100 100

Table 2: Number of successful runs out of 100 for
both algorithms for the sharp ridge problem with
α = 1/8 in N = 10 dimensions for growing values of
the parameter d, corresponding to increasing prob-
lem difficulty.

the fact that it can runs the inner optimizer several times
for different scales s. We can conclude that the irregular
level sets of the supremum transformed ellipsoid problem
do not make the problem significantly more difficult.

5.2 Linear Ridge
For the ridge function (1) with α = 1/2 both algorithms

reliably manage to reach the target fitness value of −106

for virtually any value of the parameter d > 0. We have
tested values up to one billion, where both algorithms are
still capable of escaping the drag of the ridge in all 100 out
of 100 runs.

5.3 Sharp Ridge
We perform a test similar to the previous one with the

ridge function for α = 1/8. The resulting ridge is sharp in
the sense that the opening angles of the level sets become
arbitrarily small when approaching the ridge. In success-
ful runs the algorithms manages to quickly reach a target
value of −106, while prematurely convergent runs usually
get stuck far before reaching the target value. The number
of successful runs out of 100 is reported in table 2.

The performance of default xNES slowly degrades with
growing problem difficulty. Due to the analysis of section 3
and with the results on the linear ridge it is not surprising
that the LST wrapper algorithm manages to solve the sharp
ridge problem reliably even for extremely difficult instances
with d as large as a billion. In other words, the theoretically
predicted advantage is fully observable in practice.

5.4 Ridge with Corner
Until now both algorithms did profit from the symmetry

of the test problems. For ellipse and ridge the optima of
all supremum transforms for sufficiently symmetric ∆ coin-
cide with the optimum of the fitness, making it in principle
unnecessary to shrink the scale parameter s (of course, the
shape of the level sets of the ellipse function creates a neces-
sity from a practical point of view). Now we consider less
symmetric case for which the optima of Fd,∆,s are indeed
shifted away from the optimum of f

Further on, the above test problems do require an adapta-
tion of the covariance matrix, but once the adaptation phase
was successful no further adaptation is required. Next we
test both algorithms on more difficult problems that require
continuous adaptation of the covariance matrix.

We introduce a 90◦ corner into the ridge:

fcorner
α,d (x) = x1 + d ·

(
(x2 − |x1|)2 +

N∑
i=3

x2
i

)α
Figure 6 illustrates this problem.

For this benchmark we sample the starting point with
unit variance around (10, 10, 0, . . . , 0) ∈ RN (i.e., close to



Figure 6: Left: level sets of the sharp ridge with
corner with parameter α = 1/4. Right: level sets of
corresponding LSTs. The ridge is indicated by the
dashed line.

d 101 102 103 104 105 106 107

xNES 100 1 0 0 0 0 0
LST wrapper 100 27 78 75 17 5 0

Table 3: Number of successful runs out of 100 for
each of the algorithm for the sharp ridge with cor-
ner with α = 1/8 in N = 10 dimensions for growing
values of the parameter d, corresponding to increas-
ing problem difficulty.

the ridge on the “worse” side of the corner). The additional
difficulty of this problem is that a covariance matrix that
is well adapted to the ridge hampers sampling a success-
ful offspring around the corner. This effect becomes more
pronounced with increasing eccentricity of the search distri-
bution. Thus CMA algorithms may get stuck at the corner.

The results for both algorithms are found in table 3. The
problem turns out to be much harder than without corner.
Plain xNES breaks down already for rather low values of d.
Compared to the sharp ridge without corner the perfor-
mance of the LST wrapper algorithm is far less stable, but
obviously the LST technique helps a lot also in this case.
However, for extremely high values of d it fails completely.

5.5 HappyCat
The benchmark problem named HappyCat [4]

fhc
α (x) =

[(
‖x‖2 −N

)2]α
+

1

N

(
1

2
‖x‖2 +

N∑
i=1

xi

)
+

1

2

is composed of a spherical ridge and a quadratic trend along
this ridge. The naming of the function is due to its level
lines for dimension N = 2, see figure 7. This is a unimodal
function with unique optimum at x∗ = (−1, . . . ,−1), with
optimal value f∗ = f(x∗) = 0. For α = 1 the function
is a fourth order polynomial, but for the default value of
α = 1/8 the ridge is rather sharp, while the quadratic trend
within the ridge vanishes when approaching the optimum.

The visible trend towards the optimum decays while the
impact of the ridge remains constant. Thus, this benchmark
effectively tests the ability to solve the sharp ridge problem
continuously for ever increasing values of d. At the same
time the ridge is curved which requires a continuous adap-
tation of the covariance matrix. Both effects are active at
the same time, making the problem extremely hard for most
direct search algorithms.

Figure 7: Level lines of the HappyCat benchmark
function for α = 1/8 in the area [−2,+2]2 ⊂ R2.
The picture arising from the level lines explains the
name. The lines for levels f = 1 and f = 2 exhibit
sharp angles. They remain nearly parallel while the
curvature of the ridge becomes already visible. This
gives an idea of the hardness of the problem once
the optimizer has arrived at the ridge.

In the original work [4] on the HappyCat function an ES-
style algorithm based on line search (the so-called “Ray-
ES”) has been proposed as a possible conceptual solution.
However, this algorithm is obviously tailored to the task of
following a narrow valley or ridge while its performance on
other objective was not evaluated. Here we test whether the
supremum transform in conjunction with a general purpose
ES can serve as an alternative algorithm for solving the
HappyCat problem.

With the above formulation of the HappyCat function
one quickly observes numerical problems. Assume some x
close to x∗ is represented with standard 64bit IEEE double
precision floating point numbers (52 bits mantissa, 11 bits
exponent, one sign bit). Then a distance of, say, 10−20 ≈
2−66 of x from the ridge is already far below the numerical
resolution. Due to the small value of α = 1/8 such a de-
viation results in a considerable cost of about (10−20)2α =
10−5. For N = 5 the same penalty is received with the
quadratic function in a distance of about

√
2N · 10−5 =

10−2 from the optimum. An ES with Gaussian sampling is
essentially unable to avoid the minimal deviation of 10−20

while making steps in the order of 10−2 along the ridge,
again because numerical accuracy limits the conditioning
(multiplicative difference between eigen values) of the co-
variance matrix to about 1015. Thus, with an ES with
Gaussian sampling we cannot expect to obtain solutions
systematically much closer than about 10−2 to the opti-
mum, which is a poor resolution.

To alleviate the issue we shift the problem by (1, . . . , 1),
moving the optimum x∗ into the origin. The shifted func-



N 2 3 5 10

(1+1)-xNES 1.89 · 10−1 2.38 · 10−1 4.49 · 10−1 7.75 · 10−1

LST wrapper 2.11 · 10−8 1.52 · 10−9 1.21 · 10−5 2.14 · 10−1

Table 4: Distance of the best search point from the optimum for the HappyCat problem with α = 1/8.

tion can be expressed compactly as

fhc
α (x) =

[
Q2 − 4QS + 4S2

]α
+

Q

2N
.

with Q = ‖x‖2 and S =
∑N
i=1 xi. This formulation can

make good use of the increased precision of IEEE floating
point numbers close to the origin. In theory this should
enable solutions of extremely high precision. However, this
arguments holds only for points very close to the origin,
while in practice one has to follow the ridge already in some
distance from the origin.

We have tested both algorithms on the HappyCat func-
tion for a number of different dimensions N . It turns out
that the inner xNES instance of the LST wrapper regularly
experiences numerical difficulties in its covariance update
(due to its need for a matrix exponential, which turns out
to be problematic in this case). Therefore we replace this
algorithm with its (1+1)-ES counterpart (see [5]). The rank
one updates of this variant can be computed in exponential
form without the need for a matrix decomposition. For fair-
ness of comparison we use this numerically stable algorithm
also as a baseline method.

The algorithms were run until convergence and the dis-
tance of the best point to the optimum was recorded. The
results are presented in table 4.

The results are clearly in favor of the LST wrapper ap-
proach. Plain (1+1)-xNES fails to locate the optimum to a
satisfactory precision. Local supremum transforms do ob-
viously help significantly. The algorithm manages to locate
the optimum nearly exactly in low dimensions. However,
for N = 10 performance degrades significantly. We con-
clude that the LST wrapper algorithm with (1+1)-xNES
solves the HappyCat problem only in low dimensions.

6. CONCLUSION
We have introduced local supremum transforms, a family

of parameterized transformations of the objective function.
The transformations are compatible with the black box
model since in practice they amount to simple maximiza-
tion over a finite set of function evaluations. They interact
nicely with rank-based algorithms since they are themselves
invariant under rank-preserving transformations. The fam-
ily of local supremum transforms has desirable properties
that make it suitable as a replacement of the original opti-
mization objective.

We have analyzed the impact of the supremum trans-
formation on a class of objective functions that is notori-
ously difficult for black box direct search algorithms, namely
sharp ridge functions. It was shown that the supremum
transformed fitness is significantly easier to optimize than
the ridge function itself. This enables an ES with covari-
ance matrix adaptation to solve problems involving even
extremely sharp ridges. In low search space dimensions the
approach succeeds even on the HappyCat problem – a ridge-
based benchmark problem that was designed to demon-
strate the limitations of many direct search procedures.

We argue that the supremum transform is a principled
approach to the otherwise problematic handling of sharp
ridge functions with ES since it is completely agnostic to
the underlying optimizer. Its disadvantages are a significant
increase in the number of function evaluations and the need
for an explicit mechanism controlling the scale parameter.
Both shortcomings are worth addressing in future work,
e.g., by means of online adaptation of the scale parameter
and by adaptive switching between the optimization of plain
fitness and its local supremum transformations.
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