
A Natural Evolution Strategy
with Asynchronous Strategy Updates

Tobias Glasmachers
Institut für Neuroinformatik

Ruhr-Universität Bochum, Germany
tobias.glasmachers@ini.rub.de

ABSTRACT

We propose a generic method for turning a modern, non-
elitist evolution strategy with fully adaptive covariance ma-
trix into an asynchronous algorithm. This algorithm can
process the result of an evaluation of the fitness function
anytime and update its search strategy, without the need
to synchronize with the rest of the population. The asyn-
chronous update builds on the recent developments of natu-
ral evolution strategies and information geometric optimiza-
tion.
Our algorithm improves on the usual generational scheme

in two respects. Remarkably, the possibility to process fit-
ness values immediately results in a speed-up of the sequen-
tial algorithm. Furthermore, our algorithm is much better
suited for parallel processing. It allows to use more proces-
sors than offspring individuals in a meaningful way.

Categories and Subject Descriptors

[Evolution Strategies and Evolutionary Programming]

General Terms

Algorithms

Keywords

Evolution strategies, Speedup technique, Parallelization

1. INTRODUCTION
In pure form, most evolutionary algorithms (EAs) oper-

ate in generation cycles. For many specific variants it is
easy to weaken this assumption and to allow for anytime
or asynchronous application of certain operators, such as
selection of parents, generation of offspring (application of
variation operators), as well as the evaluation of offspring,
an operation that is typically considered expensive. Other
operators basically require synchronous operation, such as
survivor selection. Among these, the evaluation of individ-
uals by means of the fitness function is of primary interest,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’13, July 6-10, 2013, Amsterdam, The Netherlands.
Copyright 2013 ACM 978-1-4503-1963-8/13/07 ...$15.00.

since it is a standard assumption that the lion’s share of the
overall computation time is spent on this step. The pos-
sibility to perform individual steps asynchronously enables
more efficient parallelism, since synchronization points form
potential bottlenecks.

Evolution Strategies (ESs) are special within the wider
field of evolutionary computation in that they rely heavily
on active“self”-adaptation of their search or mutation distri-
bution. While this technique is a blessing in many respects
(it enables linear convergence into twice continuously dif-
ferentiable optima), it is also a curse, since it can interfere
with typical difficulties of evolutionary optimization, such
as fitness noise and constraint handling. The same holds
for asynchronous processing. In the present study we show
how to make fitness evaluation in a modern non-elitist evo-
lution strategy an asynchronous operation, while preserving
meaningful strategy updates of the full covariance structure.

Parallelization of evolutionary algorithms (EAs) has been
subject to a large number of studies since EAs, being popula-
tion-based algorithms, are well suited for parallelization.
Different types of parallelism have been identified, see e.g. [1].
Relatively simple master-slave architectures can distribute
fitness evaluations within an offspring population to multiple
processors. More complex systems are based on distributed
or otherwise structured populations, like for example island
models [2] with synchronous or asynchronous message pass-
ing.

Recently there have been impressive demonstrations of
massively parallel evolutionary algorithms using huge pop-
ulation sizes of tens of thousands [7]. Such implementation
rely heavily of the general purpose computing capabilities
of modern graphics processing units (GPUs). Such mas-
sively parallel implementations are most commonly found
for genetic algorithms (GAs) and genetic programming (GP)
systems, where the search distribution is defined by static
operators (without self-adaptation) applied to the current
population.

In general, parallelism and synchronity of different steps
on an algorithm are distinct properties. However, asyn-
chronicity of an operation is useless in a strictly sequential
program, while it can avoid synchronization overheads in a
parallel computation. Asynchronicity is not a prerequisite
for parallelism, but it can increase its efficiency.

In this paper we do not aim for the massive parallelism
mentioned above. Speed-ups in the order of hundreds are
not to be expected for (todays) ESs, simply for their com-
paratively small population sizes. Therefore, instead of GPU
hardware, we consider a setting that is better fitted for the

standard ES: assume the fitness evaluation involves a com-
putation intensive simulation that needs a full blown CPU-
based architecture to run efficiently. We have a few dedi-
cated compute servers available for the task, with a total
of c independent processors, with c in the order of maybe
dozens. Then we can choose any multiple of c for the off-
spring population size n to obtain a basically linear speed-
up, compared to the naive sequential implementation. This
can be achieved with a simple master-slave architecture. It
is assumed in particular that the lion’s share of the com-
putation time is spent on fitness evaluations, not on com-
munication overhead, strategy updates, sampling of random
numbers, and relatively cheap bookkeeping tasks that are
performed after synchronization by the central master pro-
cess. Such work has been conducted, e.g., for the highly
efficient CMA-ES algorithm [5].
Although we have already made quite a few assumptions

at this point, our performance calculation can still turn out
to be very far off. For example, it may well happen that
the ES would actually run at its highest efficiency with a
smaller population size. While this effect is often small (al-
though considerable for huge populations, see e.g. [5]), an-
other one may turn out to be crucial: the runtime of the
simulation may vary unpredictably (with the search point,
with the compute node, with factors deeply hidden in indus-
trial simulation software, or with other factors outside our
control). Then most processors will have to wait for the syn-
chronization with the slowest-to-evaluate individual in the
population.
A principled solution to this problem is to break up the

generation cycle and to turn to asynchronous algorithms.
The synchronous generation cycle of many EAs is obviously
an over-simplification of natural evolution, and there has
been considerable work to overcome this restriction algo-
rithmically [2].
The standard solution to the asynchronous update re-

quirement in EAs is steady state selection. The elitist char-
acter of selection schemes directly suitable for asynchronicity
is problematic in the presence of multi-modality and noise
in fitness values, which are both common characteristics of
fitness functions based on simulations.
Furthermore, most existing schemes are designed for ge-

netic algorithms or genetic programming systems and there-
fore ignore issues of search strategy updates. It is a priori
unclear how step size (or full covariance) adaptation can be
achieved in a fully asynchronous evolution strategy with a
non-trivial offspring population.
Recent research on evolution strategies in particular [11]

and on randomized optimization in general [3] emphasizes
the connection between the updates of mean and covariance
of the search distribution. This discourages asynchronous
updates of the mean (e.g., the elitist) together with a sepa-
rate, possibly synchronous, and thus different type of update
for the covariance.
This paper tries to fill this gap with a straightforward ap-

proach to asynchronous search strategy updates within the
framework of so-called natural evolution strategies (NES).
This framework has recently been put into an even broader
context by the work on information geometric optimiza-
tion [3]. This approach interprets certain ESs (e.g., CMA-
ES [6] and xNES [4]) as a time discrete Monte Carlo approx-
imated continuous flow in the space of search distributions.
Since the flow is given by a gradient, strategy updates essen-

tially become stochastic gradient steps in parameter space,
which are augmented by learning rates.

Our approach modifies a generational ES so that it be-
comes a fully asynchronous algorithm. The asynchronous
scheme creates an offspring xi as soon as a compute node
becomes idle. This compute node is then busy for some time
evaluating the offspring’s fitness f(xi). In general, fitness
values may be returned in an arbitrary order by the com-
pute nodes, so that evaluated offspring (xi, f(xi)) become
available in an order that is different from the generation of
offspring. In this setting we argue that evaluated individuals
should not be viewed as members of populations in a discrete
cycle, but rather as a continuous stream of individuals.

This view offers the opportunity to use all information as
soon as they become available for updating the search distri-
bution from which new offspring are generated. Now assume
that a compute node has just returned the fitness value of
an individual. Put in a nutshell, our approach amounts to
applying a 1/n fraction of the strategy update of a stan-
dard generational ES, to account for the higher update fre-
quency, using the n most recently arrived individuals from
the stream as the current population. This rule needs minor
corrections to account for noise induced by delayed arrival
of individuals due to varying evaluations times.

Our simple yet efficient scheme can deal with variation in
the runtimes of fitness evaluations without wasting compu-
tation time. Interestingly it also improves sequential search
on a single core. The reason is that the first individual of a
hypothetical offspring population is readily evaluated before
the second one needs to be generated. The information con-
tained in the first fitness value can already guide the search
to better points, even within a single generation.

The remainder of this paper is organized as follows: Nat-
ural evolution strategies in general and the xNES algorithm
in particular are presented in the context of information ge-
ometric optimization. Then we introduce the asynchronous
update. The new algorithm is benchmarked in a number of
different sequential and parallel settings against the popula-
tion-based ES. We close with our conclusions.

2. NATURAL EVOLUTION STRATEGIES
Natural evolution strategies (NES) [11] are a class of evo-

lutionary algorithms for real-valued optimization. The prin-
cipal idea is to adapt the search distribution to the problem
at hand by following the natural gradient of expected fitness
in parameter space. NES exist in different variants, mostly
with fully adaptive covariance matrix [9, 4], but the very
same principle can be applied to any class of distributions
with continuous parameters (see, e.g, [8, 3]).

The recently developed framework of information geomet-
ric optimization (IGO) [3] offers a modern perspective on
natural evolution strategies. IGO algorithms update their
search distribution by a rule that follows a Monte Carlo
approximation of a continuous flow on the statistical mani-
fold formed by the class of search distributions in use. The
flow direction points towards better fitness. A scalar objec-
tive function is constructed from the distribution of fitness
values under the current search distribution as a weighted
combination of fitness quantiles. The IGO flow is defined
locally as the natural gradient field of this objective (see [3]
for details). Thus, distribution updates of IGO algorithms
can be understood as stochastic gradient ascent steps. How-
ever, the IGO flow is designed such that these steps can be

Algorithm 1: The xNES Algorithm

Input: d ∈ N, f : Rd → R, m ∈ R
d, A ∈ R

d×d

σ ← d
√

| det(A)|
B ← σ−1 ·A
while stopping condition not met do

for i ∈ {1, . . . , n} do
zi ← N (0, I)
xi ← m+ σB · zi

end
end

sort {(zi, xi)} with respect to f(xi)

Gm ←
∑n

i=1 ui · zi
GA ←

∑n
i=1 ui · (zizTi − I)

Gσ ← tr(GA)/d
GB ← GA −Gσ · I
m← m+ ηm · σB ·Gm

σ ← σ · exp(ησ ·Gσ)
B ← B · exp(ηB ·GB)

end
end

performed with a fixed rather than a decaying learning rate.
We refer the reader to the excellent paper [3] for further
details and for a more gentle introduction to the topic.
The most prominent application of IGO to evolution strate-

gies are strategy updates for Gaussian search distributions,
parameterized by mean m ∈ R

d and covariance matrix C ∈
R

d×d. The approach guarantees convenient invariance prop-
erties, since the flow direction is independent of the param-
eterization of the underlying distributions.
Our general proceeding is applicable to any IGO algo-

rithm, and to any NES algorithm in particular. For demon-
stration purposes we apply it to the xNES (exponential
NES) algorithm [4]. Its name originates from the locally ex-
ponential parameterization of the covariance matrix. Pseudo
code is presented in algorithm 1.
In each generation, xNES samples a population of n ∈

N individuals xi ∼ N (m,C), i ∈ {1, . . . , n}, i.i.d. from
its search distribution, which is represented by the center
m ∈ R

d and a factor A ∈ R
d×d of the covariance ma-

trix C = AAT . These points are obtained by sampling
zi ∼ N (0, I) (where I ∈ R

d×d is the unit matrix) and setting
xi = m + A · zi. Let p(x |m,A) denote the density of the
search distribution N (m,AAT). Then

J(m,A) = E[f(x) |m,A] =

∫

f(x) p(x |m,A) dx

is the expected fitness under the current search distribution.
The so-called ‘log-likelihood trick’ enables us to write

∇(m,A)J(m,A)

=

∫

[

f(x) ∇(m,A) log(p(x |m,A))
]

p(x |m,A) dx

≈ 1

n

n
∑

i=1

f(xi) ∇(m,A) log(p(x |m,A)) .

Replacement of raw fitness values f(xi) with rank-based
weights or utilities ui turns this quantity into the (Monte
Carlo estimate of the) gradient of the local IGO objective
function. The ranked offspring fitnesses are nothing but a

parameter default value

n 4 + ⌊3 log(d)⌋
ηm 1

ησ = ηB
3
5
· (3+log(d))

d
√
d

ui
max(0,log(n

2
+1)−log(i))

∑
n
j=1

max(0,log(n
2
+1)−log(j))

− 1
n

Table 1: Default parameter values for xNES as a
function of the problem dimension d. The number
of samples n and the utilities ui have been taken over
from CMA-ES [6].

Monte Carlo sample of the true fitness quantiles. Thus, with
utility values resembling IGO’s quantile weights,

1

n

n
∑

i=1

ui · ∇(m,A) log(p(xi |m,A)) (1)

is a Monte Carlo sample of the gradient of the IGO objective.
When multiplied with the inverse of the Fisher matrix (the
metric tensor of the inner geometry of the statistical param-
eter manifold), this vector turns into the natural gradient,
which is the canonical ascent direction, since it is invariant
under changes of parameterization.

The xNES algorithm implements the IGO update rule for
the special case of Gaussian search distributions. It uses a
local parameterization of the manifold of Gaussian distri-
butions. Coordinates are chosen so that the current search
distribution becomes a standard normal distribution. This
simple trick turns the Fisher metric into the identity ma-
trix, which saves its explicit computation, and moreover
its inversion. The positive definite, symmetric covariance
matrix is represented by unconstrained parameters in the
form C = exp(M), with M being symmetric, but not nec-
essarily positive definite. Then, w.l.o.g., we can assume
A = exp

(

1
2
M

)

. The covariance factor A is further split
into a step size parameter σ and a shape matrix B of unit
determinant, so that it holds A = σB. We refer the reader
to [4] for a detailed discussion of the rationale behind this
representation. Straightforward application of equation (1)
to the state variables m, σ, and B results in the IGO flow
gradient components Gm, Gσ, and GB as presented in al-
gorithm 1. The last three lines of the algorithm perform
a gradient step with learning rates ηm, ησ, and ηB , in the
non-linear coordinates induced by the exponential map. The
default settings of all parameters are summarized in table 1.

3. ASYNCHRONOUS STRATEGY UPDATES
Turning a generational ES into an asynchronous one is in

general a challenging undertaking, in particular with non-
elitist“comma”selection. Not only does the selection require
a fixed generation cycle, even so does the strategy adapta-
tion rule. For NES and IGO algorithms the task is greatly
simplified by the fact that strategy updates are stochastic
gradient steps. These steps do already involve (typically
empirically tuned) learning rate parameters.

Our goal is to perform a search strategy update instanta-
neously as soon as a new fitness evaluation becomes avail-
able. The basic idea is to perform the standard update each
time, but with a learning rate that is reduced by a factor
of 1/n (with n being the number of offspring in the gener-
ational ES). Formally, let θ be the state vector of an IGO

algorithm, and let the random variable Gθ be the current
Monte Carlo sample of the IGO flow vector, obtained from
a sample of n offspring. Then the generational algorithm
would perform the update

θ ← θ + η ·Gθ

which is replaced by n updates

θ ← θ +
η

n
·Gθ ,

one for each fitness evaluation. In their simplicity these
equations do not describe the algorithm in detail. The fol-
lowing questions remain open:

1. The strategy update of an ES with “comma” selection
requires a whole offspring population, not only a sin-
gle individual. How should the current population be
formed from the stream of evaluated individuals? It
surely needs to consist of already evaluated points, but
these may not arrive in the order of their creation.

2. How to account for the fact that there is not a sin-
gle source distribution for all offspring in the current
population, but each individual is drawn from its own
distribution?

3. How to deal with added variation in the fitness due
to variance in the delay with which fitness evaluations
become available?

A straightforward answer to all three questions at once
is importance mixing. This technique has been introduced
quite early into NES algorithms [9]. The original idea is
to reuse offspring from recent generations by reweighting
them so that their impact is proportional to the quotient of
their density in the current search distribution divided by
their density at the time of their creation. This technique is
an a posteriori correction inspired by standard importance
sampling. Applied to the problem at hand one may com-
pose an effective population as a weighted combination of
readily evaluated individuals from the stream, with impor-
tance mixing weights, so that the sum of weights equals the
nominal population size n. This technique automatically
accounts for delays in fitness evaluation and for individuals
generated from other than the current search distribution:
if an individual happens to stem from an outdated search
distribution, then its weight is usually very small. However,
the Gaussian density decays quickly with the distance to
the mean, and so the quotient of such densities can take ex-
treme values. For this reason the ES using reweighting can
easily become unstable. We observe such instabilities in par-
ticular in high dimensional search problems, and sometimes
even with dimensions as low as three. Despite its conceptual
beauty we therefore discard this approach.
A conceptually much simpler and seemingly ad hoc solu-

tion is to answer question 1 as follows: always consider the n
most recently arrived fitness evaluations from the stream as
the current population.1 This simple choice has the advan-
tage that every individual takes part in exactly n strategy
updates. This is why this scheme is much less prone to
instability. As a consequence, answers to questions 2 and 3
above become non-trivial. Our equally naive answer to ques-
tion 2 is to simply ignore the effect, instead of performing

1A related approach has been introduced in [10].

density-based corrections. This means that the Monto Carlo
estimate of IGO’s fitness quantiles may be systematically bi-
ased. Also, question 3 points at a newly introduced source of
uncertainty, namely that the orders of offspring generation
and evaluation differ. Instead of performing active correc-
tions we rely on the working principle of IGO algorithms.
We simply lower the learning rate in order to obtain a bet-
ter approximation of the underling flow, which stabilizes the
algorithm agains all kinds of noise effects.

It turns out that for the xNES algorithm these effects are
most pronounced for small problem dimensions d. This is be-
cause of the sub-linear growth of the population size with the
problem dimension, and the resulting decay of the covariance
matrix learning rate. Therefore, in high dimensions subse-
quent search distribution are usually close. Another factor
of influence is the number c of available compute nodes. A
single CPU results in a sequential algorithm, which removes
the variability due to delayed arrival of fitness values, and
leaves us only with the effect of offspring being sampled from
different distributions. With increasing number of CPUs the
variation in delays starts to grow.

We have found empirically that asynchronous updates can
result not only in a slowdown, but even in a complete break-
down of the algorithm. A decrease of the IGO step learning
rates by the factor

ν =

(

2

3

)(2c)/(nd)

seems sufficient as a counter measure. It results in a reli-
able stabilization of the algorithm. In many realistic cases
the correction factor is close to one, in particular for high
dimensional problems.

A minor side effect of asynchronous strategy updates is
that the first update can be performed already before a full
population of size n has been evaluated. The only difference
is that the effective population cannot consist of n individu-
als, which requires a corresponding correction of the utility
weights.

Putting everything together, the pseudo code of the asyn-
chronous xNES algorithm is summarized in algorithm 2.

4. EXPERIMENTS
The following questions guide our experimental evaluation

of the asynchronous xNES algorithm:

1. What is the effect of asynchronous strategy updates
on the sequential algorithm? How does asynchronous
xNES perform compared to the original generational
xNES algorithm?

2. How do the two algorithms compare when running fit-
ness evaluations in parallel?

3. How close does asynchronous xNES come to linear
speed-ups w.r.t. the number of processors when run-
ning fitness computations in parallel?

For the assessment of the first two points we have re-
produced the experimental setup of [4]. In that study, the
xNES algorithm was compared to CMA-ES on nine standard
benchmark functions in dimensions d ∈ {2, 4, 8, 16, 32, 64}
(refer to [4] for more details). The initial search distribution
is N (x, I), with center component x ∼ N (0, I) being itself
a random variable that varies across trials. The assessment

Algorithm 2: The asyncronous xNES Algorithm

Input: d ∈ N, f : Rd → R, m ∈ R
d, A ∈ R

d×d

σ ← d
√

| det(A)|
B ← σ−1 ·A
P ← ∅
forall the compute nodes do

z ← N (0, I)
x← m+ σB · z
start computation of f(x)

end
end

while stopping condition not met do
wait for compute node to finish; result:

(

z, x, f(x)
)

P ← P ∪
(

z, x, f(x)
)

If |P | > n Then remove oldest individual from P

sort P with respect to f(x)

Gm ←
∑|P |

i=1 ui · zi
GA ←

∑|P |
i=1 ui · (zizTi − I)

Gσ ← tr(GA)/d
GB ← GA −Gσ · I
m← m+ ν

n
· ηm · σB ·Gm

σ ← σ · exp
(

ν
n
· ησ ·Gσ

)

B ← B · exp
(

ν
n
· ηB ·GB

)

z ← N (0, I)
x← m+ σB · z
start computation of f(x) on the idle node

end
end

was assuming a standard sequential scheme, using the num-
ber of fitness evaluations for reaching a target fitness value
as its evaluation criterion.
For the present study we have modified the setup in two

respects. First, we simulate parallel fitness evaluations with
an adjustable number of processors. Second, we introduce a
distribution of running times for fitness evaluations. This
runtime is on an abstract scale, and it is uniformly dis-
tributed on logarithmic scale in the form t = Tu, where
T ≥ 1 is an adjustable parameter controlling variability,
and u ∼ U([0, 1]) in drawn uniformly from the unit inter-
val. This gives random simulated runtimes in the interval
t ∈ [1, T]. Importantly, the runtime t of an evaluation of
the fitness function is known to the algorithm only after the
process has finished, and the random quantity t is indepen-
dent of the search point x and the fitness value f(x). We
use T = 3 and T = 10 in our experiments.
Unpredictable runtimes are an issue that is not tested by

standard benchmark problems. The above mechanism al-
lows us to randomize runtimes of established benchmarks,
and thus to use them as surrogates of simulation-based fit-
ness functions with runtime variability.
When running the original xNES on multiple processors,

we need to parallelize the process for comparison. We make
optimal use of available resources as follows. If the number
c of processors is greater or equal to the population size n
then we start all fitness evaluations in parallel. Otherwise
we fill all available processors. Once the first evaluation
finishes, the processor is given a new task, until the whole

population has been scheduled for evaluation. Then all we
can do is wait for all evaluations to finish.

In this study we report the median over 100 independent
runs for all performance metrics. The distributions turn
out to be sufficiently concentrated, so that reporting other
quantiles or the mean does not change the general picture.

4.1 Asynchronous, Sequential Updates
In a first experiment we compare two sequential algo-

rithms, running on a single processor (c = 1), namely gen-
eration based xNES and asynchronous xNES. In this case
the parameter T does not matter at all and we resort to
the number of fitness evaluations as our evaluation crite-
rion. The only difference between the two algorithms is that
the asynchronous version makes smaller updates more often.
Since the two algorithms are very similar, differences are ex-
pected to be small. The results are presented in the first
row of figure 1a. It turns out that the asynchronous algo-
rithm is always faster than the generation-based one, with
a surprisingly stable speed-up across all tested benchmark
problems. We obtain a very clear answer to question 1: the
asynchronous scheme gives a reliable speed-up. The amount
of speed-up depends on the dimension, but it is rather in-
dependent of the problem. In low dimensions the effect is
most pronounced, with speed-ups of about 20%− 30%.

4.2 Parallel Fitness Evaluations
The second question is a bit harder to answer. The generation-

based version can make use of at most n processors, which
usually is a function of the problem dimension. We have
varied the number of processors c ∈ {1, ⌈√n⌉, n} and the
time variability T ∈ {3, 10}. The resulting number of fitness
evaluations and the required wall clock time are presented
in figure 1. Note that this comparison to biased towards
the generation based algorithm, which cannot benefit from
c > n processors at all.

It is expected that the number of fitness evaluations in-
creases as a price for delayed arrival of fitness evaluations
in the parallel, asynchronous algorithm. This is indeed the
case when comparing to the sequential, asynchronous algo-
rithm. In comparison to the synchronous baseline the ef-
fect is compensated in most cases by the performance gain
that originates from using available information immedi-
ately. The only notable exceptions are the “ridge” bench-
marks for relatively large numbers of parallel processors,
where the number of fitness evaluations increases in some
cases by about 30%.

In a parallel computation we are usually most concerned
with the overall wall clock time. Here we ask specifically
for the effect of asynchronous strategy updates. It turns
out that the parallel, asynchronous algorithm provides ex-
tensive savings over the also parallel, but synchronous one.
Although both algorithms use the same number of proces-
sors, the asynchronous scheme saves between 10% and more
than 50% of the wall clock time, despite requiring slightly
more fitness evaluations. This effect is due to better pro-
cessor use over time, enabled by the asynchronous update
scheme.

4.3 Linear Acceleration
To assess the evolution of the speed-up with increasing

number of processors we vary the number of processors in the
range c ∈ {1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 25}, for the Rosen-

Sphere Elli Cigar Tablet Schwefel Diff-Pow Rosenbrock Parab. Ridge Sharp Ridge

c = 1

c = ⌈√n⌉

c = ⌈√n⌉

c = n

c = n

T = 1

T = 3

T = 3

T = 10

T = 10

(a) fitness evaluations

Sphere Elli Cigar Tablet Schwefel Diff-Pow Rosenbrock Parab. Ridge Sharp Ridge

c = ⌈√n⌉

c = ⌈√n⌉

c = n

c = n

T = 3

T = 3

T = 10

T = 10

(b) runtime (wall clock time)

Figure 1: The figure presents relative (a) number of function evaluations and (b) running times of asyn-
chronous versus generations xNES. Five test configurations (rows, first configuration is only in (a)) and nine
fitness functions (columns) are shown. The six bars in each square represent relative resource demands of
the asynchronous scheme as compared to the generational baseline, in dimensions 2, 4, 8, 16, 32, and 64.
Bars upwards and downwards from the center line indicate a relative increase or decrease, respectively, on
logarithmic scale. Thus, downwards bars represent improvements of asynchronous xNES over its predecessor.
Each small red line indicates 10% of difference. The indicators range from halved (50%) to doubled (200%)
computational demands.

0

5

10

15

20

25

0 5 10 15 20 25

Figure 2: Plot of the speed-up over the number of
processors. Let τ(c) denote the runtime with c pro-
cessors in parallel, then the graph represents the
function τ(1)/τ(c). The plot is based on median times
over 100 independent runs on the Rosenbrock bench-
mark in dimension d = 8. The two curves refer to
the time variabilities T = 3 (light circles) and T = 10
(dark squares). For comparison, the dashed line in-
dicates linear speed-up.

brock problem in dimension d = 8 with nominal population
size of n = 10. The resulting speed-up as functions of the
number of processors is illustrated in figure 2.
The plot indicates that the speed-up from parallelization

of the asynchronous xNES algorithm is nearly linear in the
number of processors up to about the nominal population
size. Then it drops to a sub-linear speedup. The speed-up
increases consistently even for numbers of processors that
exceed the nominal population size n. For comparison note
that for c > n the generation-based algorithm is unable to
achieve any further speed-up.
We can answer question 3 as follows: asynchronicity helps

to use multiple processors well. Up to about c = n proces-
sors, the speed-up is nearly linear. Beyond this point the
speed-up is sub-linear, but importantly consistently increas-
ing with increasing number of parallel processors.

5. CONCLUSION
In this paper we have introduced a generic, asynchronous

strategy update for a class of non-elitist evolution strategies.
The natural gradient interpretation of evolution within nat-
ural evolution strategies and the information geometric op-
timization framework provide a canonical way of turning the
classic population-based update into an asynchronous one.
We have demonstrated that using available information

immediately—not only after a full offspring generation has
been evaluated—improves performance of sequential algo-
rithms. The same mechanism opens the door for efficient

parallel fitness evaluation, even if the evaluation time dif-
fers vastly among individuals. We have shown that nearly
linear speed-ups can be achieved for small numbers of pro-
cessors. While the speed-up naturally saturates, our method
can still benefit from a number of processors that exceeds
the nominal offspring population size.

6. REFERENCES
[1] P. Adamidis. Parallel evolutionary algorithms: A

review. In Proceedings of the 4th Hellenic-European
Conference on Computer Mathematics and its
Applications (HERCMA 1998), Athens, Greece.
Citeseer, 1998.

[2] E. Alba and J.M. Troya. Analyzing synchronous and
asynchronous parallel distributed genetic algorithms.
Future Generation Computer Systems, 17(4):451–465,
2001.

[3] L. Arnold, A. Auger, N. Hansen, and Y. Ollivier.
Information-geometric optimization algorithms: a
unifying picture via invariance principles. arXiv
preprint arXiv:1106.3708, 2011.

[4] Tobias Glasmachers, Tom Schaul, Yi Sun, Daan
Wierstra, and Jürgen Schmidhuber. Exponential
Natural Evolution Strategies. In Genetic and
Evolutionary Computation Conference (GECCO),
Portland, OR, 2010.

[5] N. Hansen, S. D. Müller, and P. Koumoutsakos.
Reducing the time complexity of the derandomized
evolution strategy with covariance matrix adaptation
(CMA-ES). Evolutionary Computation, 11(1):1–18,
2003.

[6] N. Hansen and A. Ostermeier. Completely
derandomized self-adaptation in evolution strategies.
Evolutionary Computation, 9(2):159–195, 2001.

[7] F. Krüger, O. Maitre, S. Jimenez, L. Baumes, and
P. Collet. Speedups between x70 and x120 for a
generic local search (memetic) algorithm on a single
GPGPU chip. In C. Di Chio, S. Cagnoni, C. Cotta,
M. Ebner, A. Ekárt, A. Esparcia-Alcazar, C.-K. Goh,
J. Merelo, F. Neri, M. Preuß, J. Togelius, and
G. Yannakakis, editors, EvoNum 2010, volume 6024 of
LNCS, pages 501–511. Springer Berlin / Heidelberg,
2010.

[8] T. Schaul, T. Glasmachers, and J. Schmidhuber. High
Dimensions and Heavy Tails for Natural Evolution
Strategies. In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO),
2011.

[9] Y. Sun, D. Wierstra, T. Schaul, and J. Schmidhuber.
Stochastic Search using the Natural Gradient. In
International Conference on Machine Learning
(ICML), 2009.

[10] Daan Wierstra, Tom Schaul, Jan Peters, and Jürgen
Schmidhuber. Fitness expectation maximization. In
Lecture Notes in Computer Science, Parallel Problem
Solving from Nature - PPSN X, pages 337–346.
Springer-Verlag, 2008.

[11] Daan Wierstra, Tom Schaul, Jan Peters, and Jürgen
Schmidhuber. Natural Evolution Strategies. In
Proceedings of the Congress on Evolutionary
Computation (CEC08), Hongkong. IEEE Press, 2008.

