Turning Binary Large-margin Bounds into Multi-class Bounds

Ürün Dogan
Institut für Mathematik, Universität Potsdam, Germany
DOGAN UDB@MATI. UNI-POTSDAM.DE

Tobias Glasmachers
Institut für Neuroinformatik, Ruhr-Universität Bochum, Germany
TOBIAS.GLASTMACHERS@INI. RUHR-UNI-BOCHUM.DE

Christian Igel
Department of Computer Science, University of Copenhagen, Denmark
IGEL@DIKU.DK

1. Introduction

The theory of generalization bounds for multi-class support vector machines (multi-class SVMs, Vapnik 1998; Weston & Watkins 1999; Bredensteiner & Bennett 1999; Crammer & Singer 2002; Lee et al. 2004) follows the route already paved by the analysis of binary large-margin classifiers (e.g. Guermeur, 2007; 2010). We link the analysis of binary and multi-class large margin classifiers explicitly by presenting a straightforward technique to generalize bounds for binary learning machines to the multi-class case.

2. Basic definitions

Given training data \(S = \{(x_1, y_1), \ldots, (x_t, y_t)\} \in (X \times Y)^t \) sampled i.i.d. from a fixed distribution \(P \) over an input space \(X \) and a finite label space \(Y \), multi-class SVMs (including the one-versus-all method) learn a hypothesis \(h: X \to Y \) of the form

\[
x \mapsto \arg \max_{c \in Y} \left(\langle w_c, \phi(x) \rangle + b_c \right),
\]

where \(\phi: X \to H \) is a feature map into an inner product space \(H \), \(w_1, \ldots, w_d \in H \) are class-wise weight vectors, and \(b_1, \ldots, b_d \in \mathbb{R} \) are class-wise bias/offset values. We denote the risk of a hypothesis \(h \) w.r.t. the 0-1 loss (i.e., the probability of misclassification) by \(\mathcal{R}(h) \).

For a binary classifier based on thresholding a real-valued function \(f^{\text{bin}}: X \to \mathbb{R} \) at zero, the empirical risk based on the hinge loss \(L^{\text{hinge}}(f^{\text{bin}}(x), y) = \max(0, 1 - y \cdot f^{\text{bin}}(x)) \) is given by:

\[
\mathcal{R}^{\text{hinge}}_S(f^{\text{bin}}) = \frac{1}{t} \sum_{i=1}^{t} L^{\text{hinge}}(f^{\text{bin}}(x_i), y_i)
\]

One way of extending this definition to the multi-class case is by measuring the empirical risk with the sum loss

\[
L^{\text{sum}}_S(f, y) = \sum_{c \in Y \setminus \{y\}} L^{\text{hinge}} \left(\frac{1}{2} (f_y(x) - f_c(x)), 2\delta_{y,c} - 1 \right).
\]

The corresponding empirical risk is denoted by \(\mathcal{R}^{\text{sum}}_S \).

3. Main result

Our analysis relies on the basic insight that there are \(d-1 \) distinct possible mistakes per example \((x, y)\), namely preferring class \(c \in Y \setminus \{y\} \) over the true class \(y \). Each of these mistakes corresponds to one binary problem (having a decision function with weight vector \(w_y - w_c \)) indicating the specific mistake. One of these mistakes is sufficient for wrong classification, and no “binary” mistake at all implies correct classification. Then, a union bound over all mistakes gives the multi-class generalization result based on established bounds for binary classifiers.

Let us assume that we have a bound of the following generic form: With probability \(1 - \delta \) over randomly drawn training sets \(S \) of size \(\ell \) the risk \(\mathcal{R}(f^{\text{bin}}) \) of a binary classifier derived from a function \(f^{\text{bin}} \in \mathbb{F}^{\text{bin}} \) is bounded by

\[
\mathcal{R}(f^{\text{bin}}) \leq B^{\text{bin}} \left(\ell, \mathcal{R}^{\text{hinge}}_S(f^{\text{bin}}), C(\mathbb{F}^{\text{bin}}), \delta \right),
\]

where \(\mathbb{F}^{\text{bin}} \) is a space of functions \(X \to \mathbb{R} \). The function \(C \) measures the complexity of the function class \(\mathbb{F}^{\text{bin}} \) in a possibly data-dependent manner (i.e., it may implicitly depend on properties of the training data, typically in terms of the kernel Gram matrix).

Then we have:
Theorem 1. Given the aforementioned binary bound it holds: With probability $1 - \delta$ over randomly drawn training sets $S \in (X \times \{1, \ldots, d\})^L$, the risk $R(f)$ of a multi-class classifier derived from the function $f = (f_1, \ldots, f_d) : X \to \mathbb{R}^d$, $f \in F$, using the decision rule (1) is bounded by:

$$R(f) \leq \sum_{1 \leq c < e \leq d} \left(\frac{\ell(c,e)}{\ell} + \frac{1}{\sqrt{\ell}} \sqrt{\log(d(d - 1)) - \log \delta} \right) .$$

Corollary 1. Let $S \in (X \times \{1, \ldots, d\})^L$ be a training set. Fix $\rho > 0$, and let F_ρ be the class of \mathbb{R}^d-valued functions in a kernel-defined feature space with semi-norm at most $1/\rho$ w.r.t. the semi-norm $\|f\| = \max \{ \frac{1}{2} \| f_c - f_e \| \mid 1 \leq c < e \leq d \}$. With probability $1 - \delta$ over randomly drawn training sets $S \in (X \times \{1, \ldots, d\})^L$, the risk $R(f)$ of a multi-class classifier using the decision rule (1) is bounded by

$$R(f) \leq \sum_{1 \leq c < e \leq d} \left(\frac{\ell(c,e)}{\ell} + \frac{1}{\sqrt{\ell}} \sqrt{\log(d(d - 1)) - \log \delta} \right) .$$

$$\cdot \left[R_{\log}^{\text{hinge}} \left(\frac{1}{2} (f_c - f_e) \right) + \frac{4}{\ell(c,e)} \sqrt{\text{tr}(K(c,e))} + 3 \sqrt{\frac{\log(2d(d - 1)/\delta)}{2\ell(c,e)}} \right],$$

where $K(c,e)$ denotes the $\ell(c,e) \times \ell(c,e)$ kernel matrix restricted to examples of classes c and e.

With $\text{tr}(K(c,e)) \leq \text{tr}(K)$ this bound reads in soft-O notation (ignoring logarithmic terms)

$$R(f) \in \tilde{O} \left(\frac{d(d - 1)}{2} \frac{4}{\rho \cdot \ell} \cdot \sqrt{\text{tr}(K)} + \mathcal{R}^{\text{SM}}(f) \right),$$

with the same separation of complexity and empirical risk terms as in the binary bound.

5. Conclusion

The proposed way to extend generalization bounds for binary large-margin classifiers to large-margin multi-category classifiers is very simple, compared to taking all pairwise interactions between classes into account at once, and it has a number of advantageous properties. It is versatile and generic in the sense that it is applicable to basically every binary margin-based bound. Compared to the underlying bounds we pay the price of considering the worst case over $d(d - 1)/2$ pairs of classes. However, also the state-of-the-art results obtained by Guermeur (2007) exhibit the same $O(d(d - 1))$ scaling in the number of classes. In any case this term does not affect the asymptotic tightness of the bounds w.r.t. the number of samples. The same argument, put the other way round, implies that the asymptotic tightness of a bound for binary classification carries over one-to-one to the multi-class case. This implies that binary and multi-class learning have the same sample complexity.

References

