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1. Introduction

The theory of generalization bounds for multi-
class support vector machines (multi-class
SVMs, Vapnik 1998; Weston & Watkins 1999;
Bredensteiner & Bennett 1999; Crammer & Singer
2002; Lee et al. 2004) follows the route already paved
by the analysis of binary large-margin classifiers (e.g.
Guermeur, 2007; 2010). We link the analysis of binary
and multi-class large margin classifiers explicitly by
presenting a straightforward technique to generalize
bounds for binary learning machines to the multi-class
case.

2. Basic definitions

Given training data S =
(

(x1, y1), . . . , (xℓ, yℓ)
)

∈
(

X×
Y
)ℓ

sampled i.i.d. from a fixed distribution P over an
input space X and a finite label space Y , multi-class
SVMs (including the one-versus-all method) learn a
hypothesis h : X → Y of the form

x 7→ argmax
c∈Y

[

〈wc, φ(x)〉+ bc
]

, (1)

where φ : X → H is a feature map into an inner
product space H, w1, . . . , wd ∈ H are class-wise weight
vectors, and b1, . . . , bd ∈ R are class-wise bias/offset
values. We denote the risk of a hypothesis h w.r.t the
0-1 loss (i.e., the probability of misclassification) by
R(h).

For a binary classifier based on thresholding a real-
valued function fbin : X → R at zero, the empiri-
cal risk based on the hinge loss Lhinge(fbin(x), y) =
max{0, 1− y · fbin(x)} is given by:

Rhinge
S

(

fbin
)

=
1

ℓ

ℓ
∑

i=1

Lhinge
(

fbin(xi), yi
)

One way of extending this definition to the multi-class
case is by measuring the empirical risk with the sum
loss

Lsum(f(x), y) =

∑

c∈Y \{y}

Lhinge

(

1

2

(

fy(x)− fc(x)
)

, 2δy,c − 1

)

.

The corresponding empirical risk is denoted by Rsum
S .

3. Main result

Our analysis relies on the basic insight that there are
d − 1 distinct possible mistakes per example (x, y),
namely preferring class c ∈ Y \ {y} over the true
class y. Each of these mistakes corresponds to one bi-
nary problem (having a decision function with weight
vector wy − wc) indicating the specific mistake. One
of these mistakes is sufficient for wrong classification,
and no “binary” mistake at all implies correct classi-
fication. Then, a union bound over all mistakes gives
the multi-class generalization result based on estab-
lished bounds for binary classifiers.

Let us assume that we have a bound of the following
generic form: With probability 1 − δ over randomly
drawn training sets S of size ℓ the risk R(fbin) of a
binary classifier derived from a function fbin ∈ F

bin is
bounded by

R(fbin) ≤ Bbin
(

ℓ,Rhinge
S (fbin), C(Fbin), δ

)

,

where F
bin is a space of functions X → R. The func-

tion C measures the complexity of the function class
F
bin in a possibly data-dependent manner (i.e., it may

implicitly depend on properties of the training data,
typically in terms of the kernel Gram matrix).

Then we have:
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Theorem 1. Given the aforementioned binary bound

it holds: With probability 1 − δ over randomly drawn

training sets S ∈
(

X × {1, . . . , d}
)ℓ
, the risk R(f) of

a multi-class classifier derived from the function f =
(f1, . . . , fd) : X → R

d, f ∈ F, using the decision rule

(1) is bounded by:

R(f) ≤
∑

1≤c<e≤d

(

ℓ(c,e)

ℓ
+

1√
ℓ

√

log(d(d− 1))− log δ

2

)

·Bbin

(

ℓ(c,e),Rhinge

S(c,e)

(

1

2
(fc − fe)

)

, C(F(c,e)),
δ

d(d− 1)

)

Here S(c,e) =
{

(x, y) ∈ S
∣

∣ y ∈ {c, e}
}

is the training

set restricted to examples of classes c and e, ℓ(c,e) =
∣

∣S(c,e)
∣

∣ denotes its cardinality, and the pairwise binary

function classes are defined as

F
(c,e) =

{

1

2
(fc − fe)

∣

∣

∣

∣

f = (f1, . . . , fd) ∈ F

}

.

4. Sample application

As an example, we apply our result to a simple text-
book generalization bound for binary machines based
on the Rademacher complexity. The underlying bi-
nary bound can be derived, for instance, following the
proof of Theorem 4.17 by Shawe-Taylor & Cristianini
(2004). We get:

Corollary 1. Let S ∈
(

X × {1, . . . , d}
)ℓ

be a train-

ing set. Fix ρ > 0, and let Fρ be the class of

R
d-valued functions in a kernel-defined feature space

with semi-norm at most 1/ρ w.r.t. the semi-norm

‖f‖ = max
{

1
2‖fc − fe‖

∣

∣ 1 ≤ c < e ≤ d
}

. With

probability 1 − δ over randomly drawn training sets

S ∈
(

X × {1, . . . , d}
)ℓ
, the risk R(f) of a multi-class

classifier using the decision rule (1) is bounded by

R(f) ≤
∑

1≤c<e≤d

(

ℓ(c,e)

ℓ
+

1√
ℓ

√

log(d(d− 1))− log δ

2

)

·
[

Rhinge

S(c,e)

(

1

2
(fc − fe)

)

+
4

ℓ(c,e)ρ

√

tr(K(c,e))

+ 3

√

log(2d(d− 1)/δ)

2ℓ(c,e)

]

,

where K(c,e) denotes the ℓ(c,e) × ℓ(c,e) kernel matrix

restricted to examples of classes c and e.

With tr(K(c,e)) ≤ tr(K) this bound reads in soft-O
notation (ignoring logarithmic terms)

R(f) ∈ Õ

(

d(d− 1)

2

(

4

ρ · ℓ ·
√

tr(K) +Rsum
S (f)

))

,

with the same separation of complexity and empirical
risk terms as in the binary bound.

5. Conclusion

The proposed way to extend generalization bounds for
binary large-margin classifiers to large-margin multi-
category classifiers is very simple, compared to taking
all pairwise interactions between classes into account
at once, and it has a number of advantageous prop-
erties. It is versatile and generic in the sense that it
is applicable to basically every binary margin-based
bound. Compared to the underlying bounds we pay
the price of considering the worst case over d(d− 1)/2
pairs of classes. However, also the state-of-the-art re-
sults obtained by Guermeur (2007) exhibit the same
Õ(d(d − 1)) scaling in the number of classes. In any
case this term does not affect the asymptotic tight-
ness of the bounds w.r.t. the number of samples. The
same argument, put the other way round, implies that
the asymptotic tightness of a bound for binary classi-
fication carries over one-to-one to the multi-class case.
This implies that binary and multi-class learning have
the same sample complexity.
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